

Second Regional Symposium on Electrochemistry

South-East Europe

Program &

Book of Abstracts

Belgrade, Serbia, June 6-10, 2010.

CIP - Каталогизација у публикацији Народна библиотека Србије, Београд

621.357/.359(048) 541.1(048) 620.193/.197(048) 66.087(048) 543.25(048)

REGIONAL Symposium on Electrochemistry South-East Europe (2 ; 2010 ; Beograd) Program ; #& #Book of Abstracts / Second Regional Symposium on Electrochemistry South-East Europe, RSE-SEE, Belgrade, Serbia, June 6-10, 2010. ; [editors Branislav Nikolić, Vesna Mišković-Stanković, Aleksandar Dekanski]. - Belgrade : Serbian Chemical Society, 2010 (Belgrade : #Faculty of Technology and Metallurgy, #Development and Research Center of Graphic Engineering). - XXIII, 170 str. : ilustr. ; 24 cm

Tiraž 270. - Registar.

ISBN 978-86-7132-043-6

а) Електрохемијско инжењерство - Апстракти b) Галванотехника - Апстракти
с) Електрохемија - Апстракти d) Електрохемијске реакције - Апстракти e)
Антикорозиона заштита - Апстракти f) Аналитичка електрохемија – Апстракти

COBISS.SR-ID 175352076

Second Regional Symposium on Electrochemistry : : South-East Europe Belgrade, Serbia, June 6-10, 2010 **PROGRAM & BOOK OF ABSTRACTS**

Published by Serbian Chemical Society, Karnegijeva 4/III, PAK 135804, 11120 Belgrade, SERBIA phone./fax: +381 11 3370 467; www.shd.org.rs, E-mail: Office@shd.org.rs

For Publisher Ivanka POPOVIĆ, Prezident of the Society

Editors Branislav NIKOLIĆ Vesna MIŠKOVIĆ-STANKOVIĆ Aleksandar DEKANSKI

Cover Design, Page Making and Computer Layout Aleksandar DEKANSKI

Circulation: 270 Copy Printing

ISBN 978-86-7132-043-6

Printing: **Development and Research Center of Graphic Engineering,** Faculty of Technology and Metallurgy, Karnegijeva 4, PAK 135804, 11120 Belgrade, SERBIA

ECS-P-01

ß

Electrochemical performance of Li_{1.2}V₃O₈ in saturated aqueous solution of LiNO₃

Ivana Stojković, Nikola Cvjetićanin, Vladimir Pavlović*, Slavko Mentus University of Belgrade, Faculty of Physical Chemistry, Studentski Trg 12-16 Belgrade, Serbia *Institute of Technical Sciences of SASA, Knez-Mihailova 35/IV, 11000 Belgrade, Serbia

The $Li_{1.2}V_3O_8$ was synthesized by modified sol-gel method and treated at several temperatures. Electrochemical performance of $Li_{1.2}V_3O_8$ was investigated by galvanostatic cycling in saturated aqueous solution of LiNO₃. The sample treated at 300 °C consisted of uniform rod-shaped particles, 100–150 nm in diameter and 300–800 nm in length. It displayed the best electrochemical performance: the initial discharge capacity amounted to 136.8 mAhg⁻¹ and capacity fade upon 50 charging/discharging cycles was only 12 %. This is significant improvement compared to the product obtained by solid state reaction, published by other authors. There is the literature evidence that $Li_{1.2}V_3O_8$ synthesized in similar way displays enhanced electrochemical properties in organic solutions, too.

ECS-P-02

Oxidation of formic acid on bulk and nanosized Pt-Co alloys

<u>Maja D. Obradović</u>, Amalija V. Tripković, Snežana Lj. Gojković* Institute of Chemistry, Technology and Metallurgy, University of Belgrade, Njegoševa 12, P.O. Box 473, 11000 Belgrade, Serbia *Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, P.O. Box 3503, 11000 Belgrade, Serbia

Bulk Pt_3Co and nanosized Pt_3Co and PtCo alloys supported on XC-72 high area carbon were investigated as the electrocatalysts for the oxidation of formic acid. Cyclic voltammetry in 0.1 M HClO₄ and stripping voltammetry of CO_{ads} in the same electrolyte show a small difference in the potentials of Pt-oxide formation and reduction and CO_{ads} oxidation. Based on these results, we concluded that electronic modification of Pt by Co atoms, which was theoretically predicted and experimentally proved on solid/gas interface, is exhibited in the electrochemical environment. Promotion of HCOOH oxidation rate on bimetallic Pt-Co surfaces with respect to pure Pt was found to be up to factor of eight in the case of PtCo/XC-72 catalyst. This moderate increase of the reaction rate is ascribed mostly to the ensemble effect, because partial leaching of Co increased Pt:Co ratio at the bimetallic surfaces, diminishing the efficiency of the ensemble effect.