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LiNbO3 single crystals were grown by the Czochralski technique in an air

atmosphere. The critical crystal diameterDc = 1.5 cm and the critical rate of rotation ωc

= 35 rpm were calculated from the dynamic of fluids equations for buoyancy-driven

and forced convections under which the shape of themelt/crystal interface changed. The

domain inversion was carried out at 1473 K using a 10 min 3.75 V/cm electric field.

The obtained crystals were cut, polished and etched to determine the presence of

dislocations and single domain structures. The lattice parameters a = 0.51494 nm, c =

1.38620 nm and V = 0.3186 nm
3
were determined by X-ray powder diffraction. The

optical properties were studied by infrared spectroscopy in the wave number range 20�

5000 cm
-1
. With decreasing temperature, an atypical behaviour of the phonon modes,

due to the ferroelectric properties of LiNbO3 single crystal, could be seen. The optical

constants were calculated by Kramers-Kronig analysis and the value of the critical

temperature was estimated. The obtained results are discussed and compared with

published data.
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INTRODUCTION

The crystal structure of LiNbO3 is rhombohedral (space group R3c, point
group C3v). The lattice constants of the unit cell are a = 0.5148 nm and c = 1.3863
nm, as determined by Abrahams et al..1 Lithium niobate is insoluble in water and
practically inert to acids at room temperature. It has a density of 4.64 g cm�3, amolar
mass of 147.85, aMohs hardness of 5, a melting point of 1523K, a Curie point 1480

K, a thermal expansion coefficient aa = 15.4×10�6 K�1
, ac = 7.5×10�6 K�1 and a

thermal conductivity of 4.186×10�2 J cm�1
s
�1 K�1.

The Czochralski technique is widely known for growing single crystals from
the melt, and this can be the main reason for using this technique to grow huge
amounts of materials, corresponding to about 70 % of the crystals used in practical
devices.2 Each year a large number of publications appear which are devoted to this
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technique and applied to a great variety of crystal materials, mainly semiconductors
and oxides. Among them, LiNbO3 has been selected by researchers due to its
technological applications.3,4

It is well-known that a flat interface between the liquid and the solid during

the complete growth process is the most important criterion for obtaining good

crystals.5�9 The consequences of a non-flat interface are stresses, cracks, non-ho-

mogeneous impurity concentrations, gas-bubble entrapment, etc.7,8,10 Depending

of the hydrodynamics of themelt, a flat interface can be obtained on the set of growth

parameters used.

The optical properties of LiNbO
3
single crystals have been investigated by

many authors. The aim of the research presented here was, besides studying the

experimental conditions to obtain a flat interface, to investigate the behaviour of the

optical phonons by infrared spectroscopy at different temperatures and to look for

possible soft modes.

EXPERIMENTAL

Single crystals of LiNbO3 were grown by the Czochralski technique using a MSR 2 crystal

puller as described previously.
12

The atmosphere used was air. The platinum crucible (4 cm diameter,

4 cm high) was placed into an alumina vessel surrounded by ZrO wool isolation. Double walls were

used to protect the high radition. To decrease the radial temperature gradient in the melt, silica glass

was mounted around all the system. The pull rates were generally in the range 5�6 mm h
�1
, and the

best results were obtained with a pull rate of 5 mm h
�1
. The crystal rotation rates were between 35 and

45 rpm. The best results were obtained with a crystal rotation of 35 rpm. The crucible was not rotated

during the growth. After the growth run, the crystal boule was cooled at a rate of about 50 K/h down

to room temperature.

Single domain inversion was carried out in a horizontal cylindrical furnace. The temperature

was 1473 K, the applied electrical field 3.75 V/cm, and the time of inversion was 10 min.
13

A solution of HF : HNO3 in the ratio 2:1 at 338 K was found to be a suitable etching solution.

After exposure for 90minutes, could be clearly seen dark and bright areas due to domain concentration.

Domains could not be seen even after etching for 17 hours at room temperature.
13

Annealing was performed in a horizontal resistance furnace in an air atmosphere.

The X-ray measurements of the LiNbO3 powders were recorded with a Philips PW 1170

instrument in the 2θ range from 10º to 60º using the Cu anticathode wavelength αCuKα1 = 0.154051

nm. The anode load was 40 kV and 33 mA. Recording was in 0.02º steps, and each step was recorded

for 1.25 s.

The infrared spectra were recorded on a Bomem DA8 Fourier-transform spectrometer. A new

hyper splitter was used for the far infrared region (from 20�700 cm
-1
) and a standard KBr (400�5000

cm
-1
) beamsplitter for the infrared region. All the spectra were obtained for a near normal incidence

configuration at different temepratures (T = 75 K, and 298 K). AGlobar (SiC) source was used in both

regions of the infrared spectra. All measurements were performed using a Janis STDA 100 cryostat,

which enabled the precise exchange of the sample and themirror in the same position of the cold finger.

At the lower temperature, a polyethylene (far IR) and ZnSe (mid IR) window were used. Liquid

nitrogen (LN2) we used as the coolant. The temperatures below 77 K were obtained through an

additional pumping-out of N2. A Lake Shore 330 temperature controller provided a temperature error

within 0.1 K. The polarization was E||a. The size of the polished sample was several millimetres (3

mm) which enabled very good signal-to-noise ratios of the measured infrared spectra.
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RESULTS ANDDISCUSSION

The hydrodynamics of a melt are governed by the buoyancy-driven convec-

tion or free convection, by the forced convection due to crystal rotation, and by the

thermocappilary surface convection. All these flows can be described by three

dimensionless numbers: Grashof (Gr), Reynolds (Re) and Marangoni (Ma) num-

bers. It can be said that the depth of the melt influences the Grashof number, the

rotation rate of the crystal modifies the Reynolds number, and the temperature

gradients over the surface of the melt acts on the Marangoni number.2 Several

growth parameters can be modified simultaneously to obtain a change in the

hydrodynamics of the melt.

As has been pointed out by different authors,14,15 the crystal rotation rate and

the axial temperature distribution are two very important parameters which affect

the shape of the interface. Both of them are critical parameters which drastically

modify the Re and Gr numbers, respectively. Therefore, these two growth parame-

ters must be taken into account in order to understand the shape of the interface. The

Ma number will not change significantly if a small temperature gradient exists over

the surface of the melt, and so the hydrodynamics will be governed mainly by the

Re and Gr numbers. This was the situation in our case and by applying the

hydrodynamic forms values for the critical rate of rotation ω
c
= 35 rpm, and the

critical diameter d
c
= 15 mm were obtained. The rate of crystal growth was

experimentally obtained to be 5 mm/h.

The structure properties were obtained using X-ray analysis of powdered

samples. A PW 1710 diffractometer was used in the 2θ range from 10º to 60º. The

unit cell of LiNbO
3
was calculated by the least squaremethod using al 11 reflections

includingmoreKα
2
for 5 reflections.Many of the reflections correspond to LiNbO

3

crystals with the parameter of the hexagonal unit cell a = 0.5148 nm and c = 1.3863

nm.
1 Some divergence from the compared results can be explained by the fact that

X-ray powder diffraction analysis gives a statistical result. Our calculated results

for the lattice parameters are a = 0.51494 nm, c = 1.38620 nm and V = 0.3186 nm
3
,

which are in good agreement with publiched data.1,15

The c-axis is perpendicular to the plane of the spontaneous cracking and we

obtained slices by cutting parallel to the c-axis. The mechanically damaged surface

layers were etched off in a hot mixture of two parts HF and one part HNO
3
for about

2 min.
12 The [210] or a-axis direction is perpendicular to the direction of the

spontaneous polarization, i.e., the [001] direction. All spectra were recorded by

polarization E||a and confirmation for this was the spectrum recorded at room

temperature,12 which is almost identical with the published spectrum.11

The infrared reflectance spectra in the region 50�1500 cm�1 are presented in
Fig. 1.

The spectra were measured at 75 and 298 K. We concentrated just on the E||a
polarization due to the fact that it possesses a mode with a large TO-LO splitting

LiNbO3 393



Fig. 2. TO modes (ωTO) of LiNbO3 single crystals at 75 K and 298 K. Polarization E||a.

Fig. 1. Reflectance spectra of LiNbO3 single crystals at 77 K and 298 K. Polarization E||a.
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and a strong anharmonicity. An additional reason concerns a phonon softening

previously reported11 for this polarization. The crystal structure of LiNbO
3
below

the ferroelectric Curie point does not belong to a perovskite type. It has an ABO
3

lattice with oxygen octahedrons.16 The crystal space group is R3c (C
3v
6) and the

primitive cell contains two formula units below the T
c
. Irreducible representations

of C
3v

consists of 4 A
1
, 5 A

2
and 9 E optic modes. With E||a polarization, only the

9 E modes are infrared and Raman active. At the low temperature, all 9 modes were

observed as shown in Fig. 1. Their TO and LO frequencies were obtained by the

Kramers-Kronig analysis (Figs. 2 and 3).

The lines at 668 and 837 cm�1 in Fig. 2 for 75 K probably represent anharmonic

two-phonon modes.

Using the Lyddane-Sachs-Teller relation:

ε0

ε∞
 = ∏

j=1

n

 
ωLO,j

2

ωTO,j
2 (1)

the ratio ε
0
/ε∞ were calculated for both temperatures. In order to obtain the static

dielectric constant ε
0
, ε∞ was determined from measurements of the reflectance at

high wave numbers (R∞) and the following relation:

Fig. 3. LO modes (ωLO) of LiNbO3 single crystals at 75 K and 298 K. Polarization E||a.
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



1 + √R∞
1 − √R∞





2

(2)

The obtained values were ε∞ (75 K) = 5.1 and ε∞(298 K) = 6.6. This gave ε
0

(75 K) = 52.3 and ε
0
(298 K) = 62.4. Applying the relation:17

1
ε0

 = const (Tc − T)γ (3)

the Curie critical temperature T
c
was estimated. We assumed the critical exponent γ =

1 and obtained T
c
= 1453 K. This value is in a excellent agreement (within 2 %) with

the well established value of 1480 K. In this way we confirmed that the transition in

LiNbO
3
is very close to the second order phase transition (γ = 1).

For most of modes, except three of them, no significant phonon shifts due to

temperature changes were observed. This is in agreement with the formula17 for the

soft mode in ferroelectrics:

ωTO
2 (T≤Tc) = const ⋅ (Tc − T) (4)

In our case the ratio: ω
TO

(75 K)/ω
TO

(298 K) = 1.087. This means that the

phonons shift slightly with temperature. The surprising result concerns the large

phonon softening of the 571 cm�1 (75 K) mode (7 sm�1), which has, to the best of

our knowledge, not been reported so far. Also, the modes at 320 and 359 cm�1 (298

K) soften 4 and 2 cm�1
, respectively. The phonon at 571 cm�1 shows enormous

TO-LO splitting, larger than 300 cm�1
. Also, it has a strong anharmonic behaviour

according to its shape (Fig. 1). This could be important due to the fact that

anharmonicity plays a crucial role in stabilising a ferroelectric phase transition. In

addition, the softening of these modes could points to a second phase transition

below T
c
.

CONCLUSION

The conditions for growing LiNbO
3
single crystals were calculated by using

a combination of Reynolds and Grashof numbers.

The infrared spectra of LiNbO
3
for the E||a polarisation at different tempera-

tures were recorded. From the obtained experimenatal data, the static relative

permittivitywere determined and theCurie temperature estimated.Also, for the first

time, a large phonon softening of the anharmonic mode at 571 cm�1 (ωΤΟ) (T = 75
Κ) and smaller softening of modes at 320 and 359 cm�1 (T = 298 K) were found,

which suggested a new phase transition below T
c
.
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I Z V O D

KRISTALIZACIJA IOPTI^KE OSOBINEMONOKRISTALA LiNbO3

ALEKSANDAR GOLUBOVI],* RADO[ GAJI],** SLOBODANKANIKOLI],* STEVAN \URI]*** i

ANDREJA VAL^I]****

*Institut za hemiju, tehnologiju i metalurgiju, Wego{eva 12, 11000 Beograd, **Institut za fiziku, Pre-

grevica 118, p. pr. 57, 11081 Beograd, ***Rudarsko-geolo{ki fakultet, \u{ina 7, p. pr. 162, 11000 Beograd i

****Tehnolo{ko-metalur{ki fakultet, Karnegijeva 4, 11000 Beograd

Monokristali LiNbO3 su dobijeni metodom rasta kristala po ^ohralskom na

vazduhu.Iz jedna~ina dinamikefluida za termi~kuiforsiranukonvekcijuizra~unati

su kriti~ni pre~nik kristala Dc = 1,5 cm i vrednost kriti~ne brzine rotacije ωc = 35

o/min pri kojima dolazi do promene oblika fronta kristalizacije. Monodomenizacija

je obavqena na temperaturi od 1473 K, pri elektri~nom poqu od 3,75 V/cm u trajawu od

10 minuta. Dobijeni kristali su se~eni, polirani i nagrizani da bi se odredilo

prisustvo dislokacija i dobijawe monodomenske strukture. Rendgenskom difrakcijom

praha odre|eni su parametri jedini~ne }elije a = 0,51494 nm, c = 1,38620 nm i zapremina

V = 0,3186 nm
3
. Opti~ke osobine su prou~avane u infracrvenoj oblasti spektra u opsegu

talasnih brojeva od 20–5000 cm
–1
. Refleksioni spektri su snimani na razli~itim

temperaturama da bi se posmatrao polo�aj fononskih modova. Sa opadawem tempera-

turemo�eda sevidiatipi~nopona{awefononskihmodova{tosepripisujeferoelek-

tri~nim osobinama monokristala LiNbO3. Opti~ke konstante monokristala LiNbO3 su

dobijene kori{}ewem Kramers-Kronig analize i procewena je vrednost kriti~ne tem-

perature. Dobijeni rezultati su diskutovani i upore|ivani sa podacima iz literature.

(Primqeno 27. oktobra 1999, revidirano 21. februara 2000)

REFERENCES

1. S. C. Abrahams, J. M. Reddy, J. L. Bernstein, J. Phys. Chem. Solids 27 (1966) 997

2. M. T. Santos, J. C. Rojo, L. Arizmendi, E. Dieguez, J. Crystal Growth 142 (1994) 103

3. K. Kawasaki, Y. Okano, S. Kan, M. Sakamoto, K. Hoshikawa, T. Fukuda, J. Crystal Growth 119
(1992) 317

4. M. Simon, St. Wevering, K. Buse, E. Krätzig, J. Phys. D: Apll. Phys. 30 (1997) 144

5. J. R. Carruthers, J. Crystal Growth 36 (1976) 212

6. A. R. Tanguay, Jr., S. Mroczkowski, R. C. Barker, J. Crystal Growth 42 (1977) 431

7. S. Miyazawa, J. Crystal Growth 49 (1980) 515

8. V. Nikolov, K. Iliev, P. Peshev, J. Crystal Growth 89 (1988) 313

9. J. Trauth, B. C. Grabmaier, J. Crystal Growth 112 (1991) 451

10. V. Nikolov, K. Iliev, P. Peshev, J. Crystal Growth 89 (1988) 324

11. A. S. Barker, Jr., R. Loudon, Phys. Rev. 158 (1967) 433

12. A. Golubovi}, R. Gaji}, A. Val~i}, J. Serb. Shem. Soc. 63 (1998) 863

13. A. Golubovi}, S. Nikoli}, R. Gaji}, S. \uri}, A. Val~i}, Tehnika: Novi materijali 8 (1999) 5

14. A. Golubovi}, S. Nikoli}, R. Gaji}, S. \uri}, A. Val~i}, J. Serb. Shem. Soc. 64 (1999) 637

15. JCPDS 20-631

16. M. Lains, A. Glass, Segnetoelektriki i rodstvennie im materiali, Mir, Moskva, 1981, p. 302

17. P. Bruesch, Phonons: Theory and Experiments III, Springer-Verlag, Berlin, Heidelberg, 1991, pp.
44 - 51.

LiNbO3 397


