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Abstract 

High-frequency oscillations and high surface aeration, induced by the strong turbulence, 

make water depth measurement for hydraulic jumps a persistently challenging task. The 

investigation of the hydraulic jump behaviour persists as an important research theme, 

especially with regards to the stilling basin design. Reliable knowledge of time-averaged and 

extreme values along a depth profile can help develop an adequate design of a stilling basin, 

improve safety and aid the understanding of the jump phenomenon. This paper presents an 

attempt of mitigating certain limitations of existing depth measurement methods by adopting 

a non-intrusive computer vision-based approach to measuring water depth profile of a 

hydraulic jump. The proposed method analyses video data in order to detect the boundary 

between the air-water mixture and the laboratory flume wall. This is achieved by coupling 

two computer vision methods: (1) analysis of the vertical image gradients, and (2) general-

purpose edge detection using a deep neural network model. While the gradient analysis 

technique alone can provide adequate results, its performance can be significantly improved 

in combination with a neural network model which incorporates a “human-like” vision in the 

algorithm. The model coupling reduces the likelihood of false detections and improves the 

overall detection accuracy. The proposed method is tested in two experiments with different 

degrees of jump aeration. Results show that the coupled model can reliably and accurately 

capture the instantaneous depth profile along the jump, with low sensitivity to image noise 

and flow aeration. The coupled model presented fewer false detections than the gradient-

based model, and offered consistent performance in regions of high, as well as low aeration. 

The proposed approach allows for automated detection of the free-surface interface and 

expands the potential of computer vision-based measurement methods in hydraulics. 

Keywords: hydraulic jump, depth measurement, stilling basins, non-intrusive measurement, computer vision, image 

processing 
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1. Introduction 

Reliable knowledge on flow depths and their temporal 

evolution is crucial for any hydraulic analysis in open 

channels. Free-surface profile detection and tracking, a 

seemingly simple research task, has proven to be rather 

challenging. For flow in the hydraulic jump, such 

measurements presents an even greater challenge due to high 

frequency free-surface oscillations and intense surface 

aeration [1]. These unfavourable conditions are present in both 

field and laboratory settings. 

Traditional depth measuring equipment can display 

intrinsic unreliability and high measurement uncertainty in 

such hydraulic conditions. Acoustic displacement meters 

(ADMs; ultrasonic meters, US) are commonly used for non-

intrusive hydraulic jump depth measurements. However, it 

was demonstrated that they are sensitive to surface aeration 

intensity, free-surface angle relative to the sensor, and the 

ejection of droplets from the air-water mixture [2]–[6]. The 

most significant shortcoming of the ADM depth measurement 

is that the acoustic beam, emitted by the transducer, penetrates 

the air-water mixture, i.e. it is reflected to the ADM receiver 

from an unknown location in the aerated region of the jump. 

Most researchers agree that the reflection depth is somewhere 

between h20 and h90, where hxx is the depth at which the time-

averaged air concentration is xx% [2], [4], [5]. Moreover, it 

was reported that the depth registered by the ADM roughly 

corresponds to the clear-water depth of the air-water mixture 

[5]. Due to this, depths acquired by the ADMs are lower than 

the actual depths of the air-water mixture. Such approach is 

also sensitive to the angle of the water surface relative to the 

sensor – the acoustic signal is emitted as a conical beam, so 

the reflection point is not necessarily in the ADM sensor axis. 

Finally, such approach can only provide a measurement of a 

small number of depths along a hydraulic jump. 

In recent years, LIDAR has proven itself as a promising 

non-intrusive method for providing a detailed spatio-temporal 

description of the jump free-surface profile. However, the 

required equipment can be relatively expensive, and the 

LIDAR is reportedly unable to provide satisfactory results in 

regions of low surface aeration, due to the penetration of the 

beam below the clear-water surface (as opposed to the ADM 

beam which penetrates highly aerated region) [7]–[9]. 

Additionally, the incidence angle of the beam can have an 

impact on the detection results due to transmission and 

refraction effects [8], and the penetration depth of the LIDAR 

beam in the aerated flow region is yet to be adequately 

quantified [9]. Recent advances have also enabled the 

application of LIDAR for high-velocity stepped spillway 

flow, where it was used to quantify both flow depths and 

velocities [10]. However, these new insights still do not enable 

the use of LIDAR for both high and low aeration flow, as [10] 

reports an average penetration of the beam in the aerated 

spillway flow up to h50 and an inability to properly detect the 

free-surface elevations in the clear-water flow. Despite such 

limitations, the potential of the LIDAR approach lies in its 

ability to investigate the entire aerated surface of the jump, as 

opposed to the single plane approach used by most image-

based methods. 

The described limitations of both ADM and LIDAR 

approaches are significant in cases with mixed surface 

aeration conditions, or when the elevation of the aerated free-

surface is of interest, e.g. the design of stilling basin sidewalls. 

In such cases, both methods are likely to underestimate the 

free-surface elevations used for the design of the sidewalls.  

Depth measurement using electroconductivity-based 

phase-detection probes is still used for the purposes of 

hydraulic jump investigation. Although such approach is 

intrusive, and can be time-consuming, it can provide an 

estimate of the time-averaged depth profile [3]–[5], [11], [12]. 

Here, an important discussion is due regarding the 

definition of the free-surface in highly aerated flows. Research 

using phase-detection probes and ADMs often defines the 

hydraulic jump free-surface as the level at which the air 

concentration is 90-95%. Such definitions arise in part from 

the nature of the measurement methods – they rely on time-

averaging of results and do not allow instantaneous detections 

– thus the exact position of the free-surface is not well defined. 

While this is a reasonable definition for many applications, 

some engineering tasks require additional details on the air-

water mixture. For the design of stilling basin sidewalls, a 

more suitable definition of the free-surface would be the 

uppermost point of the air-water mixture, above which no 

water is present at the given moment. This definition implies 

that such point is detected instantaneously. We acknowledge 

that such definition is also valid only for laboratory-scale 

investigations. 

Over the course of the last several decades, approaches 

based on image processing have become a popular alternative 

to traditional methods for monitoring hydraulic parameters 

such as depth, velocity, air-concentrations, etc. The appeal of 

image-based methods lies within their non-intrusive approach, 

relatively simple setup procedure, and low equipment cost. In 

general, several different image-based applications have been 

considered by researchers: (1) depth measurement/free-

surface detection and tracking [2], [6], [13]–[15], (2) velocity 

measurements [16]–[18], (3) air concentration estimation 

[13], [14], etc. 

For detection and tracking of the free-surface from camera 

recordings, several approaches are used: 

1) global thresholding (i.e. single-parameter binary 

segmentation) based on contrast, brightness and/or 

colour [2], [6], 

2) adaptive, local thresholding (kernel-based binary 

segmentation) [15], [19], 

3) edge or feature detection [20]–[23],  

4) temporal analysis of frame sequences [24]. 
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For the purposes of free-surface detection, previous studies 

using image processing techniques are presented with short 

comments in Table 1 excluding velocimetry research. 

Global thresholding methods, while simple in 

implementation, require high control over environmental 

variables such as lighting and background, and in some cases 

can involve tracers or dyes in order to accentuate water in 

captured images. Adaptive thresholding and edge detection 

methods are more robust in varying environmental factors but 

can often provide low accuracy with false detection – severe 

outliers that can be difficult to remove in postprocessing. 

Temporal analysis can be used to detect the water level based 

on differences between sequential images. Machine learning 

techniques are a relatively novel approach and are developed 

at a quick pace. They offer an opportunity to assess relevant 

visual features in an experience-based manner, similarly to the 

human optical mechanisms, but their complexity can vary 

significantly. 

One of the first attempts at image-based investigation of the 

open channel flow was presented by Mossa and Tolve [13] for 

aerated hydraulic jumps in laboratory conditions. They 

successfully applied image processing to investigate the 

distribution of air-concentration in the entire hydraulic jump 

region. Leandro et al. [14] furthered the idea of the estimation 

of the amount of entrained air in air-water mixtures from pixel 

densities in acquired images. While innovative and non-

intrusive, the authors concluded that the biggest issue of the 

method is the need for in-situ calibration and that results are 

representative only in the vicinity of the flume wall. Bung [2] 

used a high-speed camera at 1220 frames per second (fps) in 

order to investigate the free-surface roughness in strongly 

aerated chute flow by external image contrast enhancement 

and subsequent edge detection. He attempted to verify his 

results using an US sensor, but large discrepancy of results 

was found due to the penetration of the acoustic signal. 

Nóbrega, Schulz and Zhu [6] attempted an approach with a 

high-speed camera and a laser light sheet setup, while the free-

surface level was detected by global thresholding. 

Misra et al. [15] used a more advanced free-surface 

detection method based on texture segmentation by grey level 

co-occurrence matrices and additional postprocessing using 

active contours minimizing energy functionals. Yu and Hahn 

[19] developed an image-based method for water level 

monitoring based on the gradient detection, but their 

experiment had a noticeably small area covered by ground 

control points that are used for image transformations, and 

they were positioned far from the region-of-interest (ROI), 

which can cause significant extrapolation errors when 

transforming pixel-space to real-world coordinates. Hies et al. 

[20] applied their image-based detection algorithm to provide 

real-time water level monitoring in a small channel in 

Singapore. The algorithm was based on edge detection in a 

sharp contrast target area on the channel wall, with a 

subsequent application of Hough transformation to detect the 

straight line which represents the water level. Their results 

were successfully verified by radar measurements. A similar 

approach was later implemented for an in-situ flood warning 

system, improved by using an infrared projector and dedicated 

day and night cameras [25]. Viriyakijja and Chinnarasri [21] 

used Canny edge detection for laboratory flume wave depth 

measurements. Although the method was applied to a 

relatively small target area, they concluded that recordings 

from a camera could potentially replace wave gauge 

measurements with adequate accuracy, with an important 

quality of non-intrusiveness. While most depth/level detection 

methods used a fixed camera setup and assumed that no 

camera movement or vibrations were present during the 

recording period, Lin, Lin and Han [22] developed a more 

robust approach that could alleviate for camera movement 

through least-square matching and normalized cross-

correlation procedures. Ljubičić et al. [26] presented a 

relatively robust water level detection and tracking method for 

hydraulic jumps in laboratory channels, based on the gradient 

field analysis using large Sobel-Feldman kernels, with 

dedicated pre- and postprocessing phases. While the method 

was proven to provide satisfactory results in both high and low 

aeration regions of the hydraulic jump, a number of false 

detections were present in final results, and the overall 

accuracy of the method is still to be assessed. 

Recent advances in image and video processing 

technologies have enabled high-level methods of visual 

perception, which can attribute meaning to the observed image 

features. Certain methodologies have enabled sophisticated 

and highly accurate general-purpose image segmentation, but 

large-scale reliability and accuracy are still to be achieved. 

These methods include those based on structured forests [27], 

supervised learning technologies [28]–[30], etc. These new 

models can significantly reinforce purpose-specific image 

segmentation/edge detection [30]. 

This paper presents an approach to image-by-image visual 

detection and tracking of the instantaneous free-surface of the 

hydraulic jump, from camera-acquired data. The aim of the 

research is twofold: (1) to address the aforementioned 

inadequacies of commonly used non-intrusive depth detection 

methods (namely ADM and LIDAR) with focus on mixed 

surface aeration conditions, and (2) to investigate the accuracy 

and robustness of the proposed image processing approach in 

both high and low aeration conditions, which are commonly 

present in hydraulic jumps. The aim of this research is not to 

provide a detailed description of the hydraulic jump at hand, 

but rather to investigate the applicability of image processing 

techniques for laboratory-scale free-surface detection and 

tracking. 

Proposed approach is based on the fusion of results from 

two methods: (1) free-surface detection obtained using image 

gradient map analysis [26], and (2) general-purpose edge 
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detection with a deep neural network (DNN) model – 

holistically-nested edge detection (HED) [30]. Gradient 

analysis, as opposed to simple thresholding techniques, can be 

tuned to adequately capture the boundary between the water 

and the flume wall, even in the presence of strong image noise, 

spatial and temporal changes in surface aeration, and lighting 

conditions [26]. However, in complex, rapidly-varied 

conditions, gradient approach can produce a number of false 

detections. Thus, the free-surface detection accuracy was 

improved by coupling with a DNN-based edge detection 

phase. Proposed approach can allow for a fast and accurate 

spatio-temporal analysis of hydraulic jumps – estimation of 

depth distribution (maximum, minimum and average depths 

along the jump profile), frequency analysis using Fast Fourier 

Transform (FFT) to obtain the spectral properties of the 

hydraulic jump, etc. The spatial resolution of the proposed 

approach is considerably higher than with phase-detection 

probes, ADMs, and LIDAR. The method is significantly less 

affected by the degree of the surface aeration and provides 

adequate results across the entire hydraulic jump and in the 

downstream regions of the channel. Finally, the required 

equipment is more affordable than LIDAR, is easily available, 

and does not require training or complicated setup. In theory, 

there are no minimal requirements regarding camera 

equipment, as any high-resolution digital camera can be used 

for image-acquisition (including smartphone cameras). 

However, the potential of the proposed approach is not to 

replace any of the existing non-intrusive methods, as it 

inevitably exhibits specific limitations of its own. It is 

intended to be used in conjunction with other methods to 

provide the best available data for specific engineering tasks.  

In Section 2, all stages of the proposed detection algorithm 

are described: (1) experiment preparation, (2) preprocessing, 

(3) free-surface detection using coupled gradient/DNN-based 

model, (4) fusion of results, and (5) postprocessing. 

In Section 3, presented methods have been applied to the 

camera recordings of laboratory flume hydraulic jumps. 

Results from proposed coupled model were compared to the 

previously developed gradient-only model, proposed by 

Ljubičić et al. [26]. It was demonstrated that the coupled 

model outperforms the gradient-only model in terms of 

detection accuracy and robustness. With the proposed coupled 

model, one can obtain important insight into the behaviour of 

hydraulic jumps. 

Table 1. Summary of previous hydraulic research using image processing methods (excluding velocimetry methods) 

Paper 
Investigated 

parameters 
Method 

Results dimensionality 

(excluding time) 
Comments 

Mossa and Tolve 

(1998) 

Air concentration 

profile 

Principal component 

intensity 
2D 

Valid only near the 

sidewall 

Erikson and 

Hanson (2005) 

Wave tank level 

detection 
Edge detection 1D Non-aerated flow 

Misra et al. (2006) Level 
Gray-level 

cooccurrence matrices 
1D 

Valid only near the 

sidewall 

Yu and Hahn 

(2010) 
Level 

Sobel-Feldman 

operator 
0D 

Not applicable to HJ, no 

aeration 

Leandro et al. 

(2012) 

Air concentration 

profile 
Pixel densities 2D 

Valid only near the 

sidewall 

Bung (2013) 
Level + FS 

roughness 

Single parameter 

threholding and edge 

detection 

1D 
Small ROI, valid only 

near the sidewall 

Nóbrega, Schulz 

and Zhu (2014) 
Level 

Single parameter 

threholding 
1D Valid near the sidewall 

Hies et al. (2015) Level Hough line transform 0D 
Not applicable to HJ, no 

aeration 

Viriyakijja and 

Chinnarasri (2015) 
HJ profile Canny edge detection 1D 

Non-aerated flow, not 

applicable to HJ 

Hasan et al. (2016) Level Hough line transform 0D 
Non-aerated flow, not 

applicable to HJ 

Kröhnert and 

Meichsner (2017) 

Shore-line 

detection 

Time-lapse/motion 

analysis 
1D/2D 

Potentially applicable to 

HJ 

Lin, Lin and Han 

(2018) 
Level Hough line transform 0D 

Not applicable to HJ, 

resistant to camera 

movement 

Ljubicic et al. 

(2019) 
Level 

Sobel-Feldman vertical 

gradients 
1D 

Unknown accuracy and 

reliability 



2. Materials and Methods 

2.1 Phases of free-surface detection 

In this section, we describe the two detection approaches: 

gradient-only and coupled gradient/HED model. The outlines 

of both methods can be summarized with the following steps: 

1. Data preparation: splitting the video into frames and 

elimination of distortion (rectification) caused by the 

imperfections of the specific camera, 

2. Detection of control points (CPs), mapping of real-world 

coordinates to pixel-space positions, and 

orthorectification of images, 

3. Detection of the free-surface interface: 

3.1. Using gradient analysis, with appropriate 

colorspace transformation and preprocessing to 

reduce noise and accentuate the specific features, 

3.2. Using holistically-nested edge detection, 

4. Fusion on the results from both detection methods, 

5. Postprocessing to improve accuracy and remove false 

detections. 

Outline of the proposed coupled model is presented in 

Figure 1. Sections 2.2-2.6 sequentially follow the general 

outline of the method. 

 

Figure 1. Outline of the proposed coupled free-surface 

detection model 

2.2 Camera calibration and preprocessing 

To obtain adequate results from the image data, 

imperfections of the camera’s sensor and lens should be 

estimated and compensated for, prior to the actual image 

processing. These imperfections are intrinsic (internal) 

parameters and lens distortion parameters. Intrinsic 

parameters include focal length, principal point, and skewness 

coefficient. Additionally, radial and tangential distortion of 

the camera lens should be determined as they have a 

significant impact on the quality of final results. These 

parameters have been determined using MATLAB® Camera 

Calibration App [31]. 

Camera’s extrinsic parameters, that relate the real-world 

3D points (control points, CPs) with previously determined 

locations to their in-image coordinates, depend on the actual 

experimental setup [32]. To obtain meaningful geometric 

information from camera-recorded images, relationship 

between pixel-space and real-world coordinates must be 

estimated. For this purpose, a network of wall-mounted 

control points (CPs) was used. In this research, CPs were 

specifically designed to be easily detectable in images, and 

with a well-defined centre point. A brightly coloured 

checkerboard-type pattern is used for all CPs (as seen in 

Figure 6). The in-image positions of the CPs can be manually 

determined based on a sample image. Transformation matrix 

between real-world and in-image coordinates of CPs was used 

to transform the projective perspective of the original images 

into an orthogonal perspective of the flume wall [26]. This 

procedure – orthorectification – can significantly facilitate the 

estimation of depths from the detected free-surface. If there 

are no displacements and observable vibrations of the camera 

and/or the ROI, the relationship between in-image and real-

world CP coordinates can be assumed constant during the 

experiment. It should be noted that the CPs should be 

positioned so that they cover the entire ROI in which the free-

surface detections will take place, and that the accuracy of the 

orthorectification generally increases with the increase in 

number of CPs. 

Preprocessing stage for the gradient-based method consists 

of various steps to reduce the high-frequency content (visual 

noise) in captured images and accentuate the desired features. 

Image noise can be a consequence of the camera’s 

imperfections and sensor sensitivity, but can also be caused by 

factors such as water droplets on the flume wall, dust, stains, 

etc. Since these are difficult to eliminate in large-scale 

experiments, the use of an appropriate noise reduction method 

is required. In this research, an edge-preserving bilateral 

filtering method was used [33]. The use of median filtering 

method is a good alternative, while the application of Gaussian 

or box (averaging) filter is undesirable since these can 

significantly deteriorate important visual features [33]. 

For the gradient analysis, the original three-channel image 

(usually in RGB colorspace) should be converted to an 
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adequate single-channel representation. While the grayscale 

colorspace is predominantly used in image processing, it can 

be more feasible to use individual red (R), green (G) or blue 

(B) channels, or L channel of the CIELab colorspace, since 

those can provide more valuable information with low high 

frequency content. Through colorspace analysis of the 

captured images, it was determined for the purpose of this 

research that the red (R) channel of the original RGB image 

has the highest signal-to-noise ratio for the laboratory setup 

used in this research, i.e. red channel had the lowest image 

noise and was used for gradient analysis in all three 

experiments. 

Alternative to the single-channel approach – gradient 

analysis of the individual red (R), green (G) and blue (B) 

channels and subsequent superposition of the results – has 

been determined to be inadequate as it provides unsatisfactory 

results in low aeration regions of the ROI. 

Holistically-nested edge detection should not include a 

preprocessing phase, as removing information from the image 

can have a detrimental effect on the quality of final results. 

High-frequency content holds an important role in 

identification of edges in HED [30]. The HED was performed 

using all three channels of the original image to utilize as 

much visual information as possible. 

 

2.3 Gradient method 

In order to allow consistent and automated detection of the 

free-surface on a frame-by-frame basis, a gradient-based 

approach was proposed by Ljubičić et al. [26]. This approach 

aimed to identify the boundary between the water surface and 

the flume wall based on the local variability of the pixel 

intensity. Additionally, since the direction of the free-surface 

in the image is predominantly horizontal, only vertical 

gradient field was analysed. 

Vertical gradient of any pixel neighbourhood can be 

determined as the first derivative of the pixel intensity field. 

An effective approximation of the first derivatives in 

horizontal or vertical direction can be obtained with a Sobel-

Feldman operator [34]. Such operator performs a discrete 

linear convolution on any single-channel image Y, with a 

specific kernel Ky. Considering only vertical gradients, the 

Sobel-Feldman operator can be expressed as: 

 ,y y

Y
G K Y

y


= = 


  (1) 

where   denotes the convolution operator. Schematic 

example of the Sobel-Feldman operator is presented in Figure 

2. Result of this operator is a 2D array of approximated first 

derivatives – gradient map of the same size as the original 

image (nearest-pixel constant padding was used for pixel 

neighbourhoods near the edges). Additionally, since the 

detection is sensitive to the sign of the gradient, only absolute 

values of gradients, |Gy|, should be used in subsequent 

analyses. 

Originally proposed kernel size by Sobel and Feldman [34] 

was 3×3 (Figure 2). However, such small kernel size renders 

the detection of gradients highly sensitive to noise and visually 

small features. To consistently detect larger visual features, a 

larger-sized Sobel-Feldman kernels must be used. For vertical 

gradient field, coefficients ky of an arbitrary sized kernel Ky 

can be constructed as: 
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2
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n
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 + 

+
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+
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where a and b are sensitivity coefficients, i and j are row and 

column indices, and nx and ny are the width and height of the 

kernel which must be odd integers. Coefficients a and b serve 

as weight distribution factors between kernel coefficients 

closer to the kernels centre and those farther away, and are 

equal to 2 in the original approach [34]. Based on experiences 

in [26], width of the kernel Ky should correspond to the real-

world length of 2-3 cm, while its height should generally be 

higher in order to properly accentuate local vertical features 

without severe loss of visual information. 

 

Figure 2. Schematic example of the Sobel-Feldman operator 

for vertical gradient estimation using 3×3-sized kernel 

After the convolution step, the free-surface position can be 

extracted from the gradient map |Gy|, and presented as an array 

of positions of maximal values in each individual column C, 

i.e.: 

 ( ) ( )argmax ( ) .

y

G
C G

W x C x


=   (3) 

2.4 Holistically-nested edge detection 

In search of further improvement of the methodology, a 

state-of-the-art edge detection method is included in the 

algorithm – holistically-nested edge detection (HED), 

proposed by Xie and Tu [30]. After initial testing, HED 

coupled with gradient-based method was proven to deliver 
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more accurate results than the gradient method alone, while 

decreasing the number of false detections. 

Holistically-nested edge detection is based on deep 

learning model that utilizes fully convolutional neural 

networks and deeply supervised nets in order to perform 

image-to-image edge prediction – the algorithm does not 

require a sequence of images in order to obtain edge 

predictions. Architecture consists of a single-stream deep 

network with multiple side-outputs, which improve the 

optimization and generalization for pixel-wise classification, 

while providing flexibility for combined output with 

introduction of the fusion layer [30]. The DNN architecture 

ensures state-of-the-art performance in terms of edge 

detection and memory/time cost. 

In this approach, each image was considered holistically 

(performing detection on the whole image simultaneously, as 

opposed to local approach), and the network learns features of 

the image from which it produces the edge predictions. Unlike 

some detection models, HED should not have preprocessing 

steps, generally does not require manual tuning of parameters, 

and performs well on images captured where environment and 

lighting conditions are potentially unknown or simply 

uncontrollable [30]. 

The HED is general-purpose detection model and its output 

lacks image segmentation context. However, unlike in some 

edge detection approaches (e.g. Canny edge detection), the 

result of the HED is not binary (edge/not edge). Its output is 

an edge probability map (Figure 3) where each pixel value 

indicates the likelihood of that pixel being a part of an edge in 

the original image, on a scale from 0 to 1 (0 – does not belong 

to any edge, 1 – definitely belonging to an edge). This property 

allows the HED results to be superimposed with the results of 

other detection models to obtain a better prediction of the free-

surface. In general terms, context of the detection is 

determined by the gradient analysis, while the HED 

phase/layer serves to improve the overall detection 

performance. 

This research uses a PyTorch framework and CUDA 

processing for the HED stage [35]. A deep neural network is 

based on the Caffe network [36], which was pretrained using 

the Berkeley Segmentation Dataset and Benchmark [37]. 

 

Figure 3. Left: section of the original orthorectified image; 

Right: example of the HED results 

2.5 Model coupling 

In order to improve the accuracy and overcome the 

potential unreliability of the gradient model [26], this research 

proposes coupling of the gradient analysis with an HED stage. 

The hypothesis of the coupled approach is that the 

superposition of results from different detection methods can 

lead to improvements in overall performance. Coupling of the 

gradient and HED results was achieved through element-wise 

multiplication of the individual results from gradient- and 

HED-based detections: 

 ( ) ( ) ( ), , , ,yF x y G x y HED x y=   (4) 

where F(x,y) is the fusion layer (superposed) map, Gy(x,y) is 

the vertical gradient map, and HED(x,y) is the result of the 

HED stage. Similar to the Eq. (3) for the gradient-based 

approach, the free-surface array is extracted from the fusion 

map F as: 

 ( ) ( )arg max ( ) .F
C F

W x C x


=   (5) 

Examples of how the coupling of the gradient and HED 

results provides an improvement in detection accuracy was 

presented in Section 3. 

 

2.6 Postprocessing 

Even with coupled model, there is still a chance for 

detection outliers. Filtering of such outliers requires additional 

postprocessing steps. Two-stage filtering is recommended: 

1. Spatial filtering, and 

2. Temporal filtering. 

2.6.1 Spatial filtering: Spatial filtering involves applying 1D 

filter on a free-surface array from a single timestep (single 

frame). A three-step procedure is proposed: 

a) Distance-based filter: for any given point along the 

detected free-surface, a two-sided neighbourhood is 

selected. For that window, mean value and standard 

deviation are calculated. If the distance from value in the 

centre of the window to its mean is larger than N standard 

deviations, that value is considered an outlier and is 

replaced by either the mean or median value of the 

window. For points near the edges of the free-surface 

array, nearest-value constant padding technique should 

be used: missing values at the end should be replaced by 

the last available value on that end of the free-surface 

array. 

b) Gradient limiting filter: due to physical limitations of 

the open-channel flow, the vertical distance between two 

neighbouring points in the free-surface array cannot be 

arbitrarily large. For that reason, a gradient limiting filter 
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is developed. For any two points in the free-surface 

array, maximal vertical gradient is limited to L×Dm, 

where L is the limiting coefficient, D is the column 

distance between the two points (in pixels), and m is the 

exponent in range (0, 1). If a value or multiple values are 

deemed outliers by the filter, these are replaced by 

linearly interpolated values between their closest non-

outlier neighbours. 

c) Savitzky-Golay filter [38] is finally applied for signal-

to-noise ratio improvement and smoothing of the free-

surface data. 

2.6.2 Temporal filtering: When only steady hydraulic jumps 

are considered, it is reasonable to assume that, for long 

experiments, depth at any point along the hydraulic jump 

oscillates around its time-average [9]. Because of this, 

distance-based filter is also applied to temporal domain of 

each position along the free-surface. 

Specific parameters for preprocessing, free-surface 

detection, and postprocessing used in this paper are presented 

in Table 2. 

Table 2. Detection and filtering parameters used by both 

methods in both experiments 

Phase/parameter Value 

Gradient analysis  

 Colorspace [-] red channel 

 ROI size [px] 1350×300 

 

Sobel-Feldman kernel 

nx [px] 31 

 ny [px] 81 

 a [-] 2 

 b [-] 2 

Spatial filtering  

 
Distance filter 

size [px] 101 

 N [-] 1.0 

 
Gradient limiter 

L [px] 8.0 

 m [-] 0.8 

 

Savitzky-Golay 

size [px] 11 

 
poly. 

order [-] 
1 

Temporal filtering  

 
Distance filter 

size [-] 1800 

 N [-] 5.0 

 

 

2.7 Experimental setup and equipment 

Experimental setup was prepared in the Hydraulic 

Laboratory of the Faculty of Civil Engineering, University of 

Belgrade. Results from two experiments are presented in this 

paper: 

1. Experiment 1: at discharge Q = 15.4 L/s, 

2. Experiment 2: at discharge Q = 34.9 L/s. 

Surface aeration conditions in the ROI were different for 

the two experiments, primarily as consequence of different 

jump lengths. 

 

Figure 4. Laboratory setup 

Experimental setup (Figure 4) consisted of a laboratory 

flume with an upstream stepped spillway (0.94 m in height at 

slope 1:1, and 0.46 m in width, step height/width of 4.5 cm), 

and a stilling basin (2.5 m in length, 0.46 m in width). 

Discharge, Q, was measured using two sharp-crested V-notch 

weirs and verified with an ultrasonic transit-time flow meter. 

Total uncertainty of the discharge measurements was 

estimated to 2%. Inflow conditions were held constant for 30 

minutes before video recording to achieve a steady hydraulic 

jump. Downstream boundary condition was set with a sluice 

gate. Flume sidewalls were made of a transparent acrylic glass 

(polymethyl methacrylate, PMMA). Jump roller lengths, Lr, 

were measured using a procedure with light tracer particles on 

the free-surface and by visually tracking the position along the 

jump where air bubbles are rising vertically towards the free-

surface, similarly to [39], [40]. Inflow conditions – clear-water 

(hw1) and aerated depths (ha1), and Froude numbers (Fr1) – 

were determined according to the empirical relations 

presented by Boes and Hager [41], [42] for stepped spillways, 

and are provided for reference purposes only. It should be 

noted that, for the hydraulic model used in this research, the 

accuracy of the empirical procedure developed by Boes and 

Hager [41], [42] was previously investigated using phase 

detection probes [43]. The results indicated up to 5% error, 

which is less than 1 mm for supercritical spillway flow. As per 

definition of the A-type jump, calculated inflow depths are 
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located in the slopped spillway, rather than in the horizontal 

stilling basin. 

In both experiments, A-type hydraulic jump was 

established [44], and the flow aeration was initialized on the 

stepped spillway. The reasoning behind choosing A-type 

instead of the classical jump is purely practical – A-type jump 

is more stable than classical jump in terms of jump toe 

oscillations. Since the aim of this research was the 

investigation of the detection methods, a steady A-type jump 

facilitated repeatability of the experiments. A bridge-type 

digital camera was used for video recording (Sony DSC-RX10 

M2), with the resolution of 3840×2160 px (4K) at 29.97 

frames-per-second (fps). Considering the high velocity 

turbulent flow, as well as high frequency free-surface 

oscillations, a large lens aperture and high shutter speeds were 

required to obtain good quality input data with low motion 

blur. A constant aperture of f/2.8 was used, shutter speed of 

1/125 sec, and an ISO value (sensor sensitivity) of 400. In 

order to achieve adequate shutter speed with low ISO (to 

minimize sensor-induced image noise), two dedicated external 

light sources were used. Region-of-interest was identical for 

both experiments, and covered flume sidewall area of 

135×30 cm. One-minute recordings were acquired for both 

experiments (1800 frames per video). Camera recording was 

controlled remotely using a smartphone app. During 

orthorectification stage, all images were scaled so that the 

pixel/mm2 ratio is equal to 1 – area covered by one pixel 

corresponds to a real-world area of 1×1 mm. Such scaling 

significantly reduced computational complexity of the 

algorithm, while allowing simple extraction of data from 

processed images. Dark blue backboard was also placed 

behind the ROI to enhance contrast and reduce reflections and 

visual noise from the background. Any residual reflections off 

the flume wall were filtered in the preprocessing stage. 

Compared to the available research, the proposed methods 

enabled better longitudinal spatial resolution for instantaneous 

detections (0.1 cm after downscaling) than ADM (up to 15 cm 

in [5]) and LIDAR (up to 0.8 cm in [8]) for similar 

interrogation lengths in the stilling basins. 

Regarding the position of the camera relative to the ROI, 

two approaches were considered (Figure 5): 

a) Recording of the wall surface closer to the camera – in-

level configuration, and, 

b) Recording of the opposing wall surface – overhead 

configuration. 

While the in-level configuration (Figure 5a) is somewhat 

easier to setup, three things are to be considered. Firstly, the 

thickness of the flume wall can cause light refraction and 

distort the detected free-surface inside the flume. The extent 

of refraction-induced errors depends on the wall material and 

its thickness. Also, the distance between the plane in which 

the CPs are mounted and the actual ROI plane is an additional 

source of errors. Secondly, since the aeration in the jump 

varies with depth, additional noise can appear in the image 

which increases the undesirable high-frequency content. Such 

noise may require additional filtering steps. Thirdly, the 

camera must always be positioned in such a way that it records 

only the free-surface on the flume wall closest to the camera 

to avoid false detections from the background. 

 

Figure 5. Camera configurations relative to the ROI 

Considering the aforementioned issues, overhead camera 

configuration (Figure 5b) was chosen for both experiments. 

Camera was aimed towards the centre of the ROI and was 

oriented perpendicularly to the flume wall (in the horizontal 

plane). The effect of the camera positioning in relation to to 

the ROI on the final results has not been investigated for the 

purpose of the current paper. 

For orthorectification purposes, a total of 12 CPs were 

positioned relatively equidistantly into 3 rows and 4 columns 

so that all detections are carried out inside the CP-covered 

area, and the orthorectification error is minimized. Since the 

camera position was constant during the experiments, position 

of the CPs was determined for empty channel before the actual 

experiments and verified post-experimentally when the 

channel was again empty of water. The real-world position of 

the CPs was determined from distance measurements using 

least-square adjustment [45]. The relationship between the 

real-world and in-image coordinates of CPs was determined 

using least-square homographic transformation with random 

sample consensus method (RANSAC) [46]. 

At the moment, there is no specific calibration procedure 

for finding optimal method parameters, and the calibration 

process is based on experience and trial-and-error. However, 

as shown in Section 3, one set of parameters covers a wide 

range of discharges and aeration intensities, and there are no 

requirements for recalibration of parameters in a single flume. 

For both experiments, identical set of preprocessing and 

postprocessing parameters was used (Table 2), and detection 

was performed on orthorectified images obtained with the 

same set of intrinsic and extrinsic camera parameters. 

Information on hydraulic conditions during the 

experiments is presented in Table 3. 
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In order to obtain an assessment of the accuracy for both 

models, manual reference depth measurements were taken 

from images at predefined stations using wall-mounted gauges 

(Figure 6). Reference measurements were obtained as average 

visual observations of the free-surface levels from 3 

independent examinees, similarly to [15] (with regards to free-

surface definition from the Introduction). Reference 

measurements were taken at t = {0, 10, 20, 30, 40, 50, 60} 

seconds from the beginning of the video, at seven stations 

along the jumps where x = {11.4, 19.5, 27.5, 40.4, 66.9, 97.9, 

127.4} cm.  

Finally, to relate the performance of the proposed approach 

to more traditional methods, depth measurements were 

performed using an acoustic displacement meter (HC-SR04) 

at the seven reference stations. Sampling frequency of ~43 Hz 

was used, and temperature compensation of sound speed was 

implemented. ADM acquisition was performed at the flume 

centerline for 1 minute at each station, and the mean depth was 

estimated by time-averaging without raw data filtering. 

Maximal depths were also extracted from the raw data. The 

ADM was unable to detect minimal depths as acoustic signal 

would occasionally become trapped in the air-water mixture 

for a random amount of time – thus the ADM would report 

negative depths. Here it should be noted that the presented 

comparison is for reference purposes only, as the image 

processing and ADM data were taken at different times and 

locations in the flume (sidewall vs. centreline). The 

comparison serves to indicate the potential inadequacy of the 

ADM approach for the design of the stilling basin sidewalls, 

as ADM is unable to record the free-surface levels in the 

vicinity of the sidewalls. 

Table 3. Hydraulic conditions during the experiments 

Exp. 

Discharge 

Q 

Froude 

number 

Fr1 

Lr 

Inflow depth 

clear-

water hw1 

aerated 

ha1 

[L/s] [-] [cm] [cm] [cm] 

1 15.4 8.2 56 1.2 2.7 

2 34.9 7.3 82 2.2 4.4 

 

3. Results and discussion 

In this section, image processing methods are applied to 

free-surface detection and subsequent extraction of depth 

profiles in two experiments with different discharge rates and 

jump lengths. Following results are presented: 

1. Examples of results from both detection models, 

2. Accuracy analyses/error estimates, using visual 

reference data, 

3. Comparison of time-averaged and maximal depth 

profiles for both experiments, obtained using image 

processing and ADM, 

4. Standard deviations of free-surface levels in the ROI, 

5. Investigation on how the coupling of two models 

improves the overall accuracy, 

6. Spectral analyses, 

7. Repeatability analysis. 

Examples of detected free-surface profiles using gradient 

and coupled model are presented in Figure 6 for both 

experiments, along with their respective jump roller lengths 

Lr. The relative roller lengths Lr/h2 (where h2 is the 

downstream sequent depth) were 4.3 and 3.9 for the two 

experiments, which is in general agreement with the 

observations of Peterka for classical hydraulic jumps where 

Lr/h2 is between 4 and 6, and that such ratio increases with an 

increase in Froude numbers. The example frames in Figure 6 

were intentionally chosen so that they demonstrate some of the 

characteristic false detections of the gradient model. They 

illustrate the main conclusions regarding the results from two 

models: 

1. Accuracy of both models is comparable across most of 

the ROI. Both models adequately describe the free-

surface, with some smaller differences, 

2. Coupled model detects somewhat higher depths across a 

majority of the ROI, 

3. Coupled model is more sensitive to detection of sudden 

splashes, as demonstrated by the details 1 and 4, 

4. Gradient-only model is more susceptible to false 

detections of the free-surface levels in conditions of 

spatially varying surface aeration intensity (details 1-5 in 

Figure 6). 

Depths obtained using both image processing models are 

presented against manually acquired reference values in 

Figure 7, and the average differences between detected and 

reference values at the seven gauging stations are presented in 

Table 4. Primary aim of this comparison is investigation of 

accuracy and (non-)uniformity of free-surface perception of 

both models, relative to the human perception. The results in 

Figure 7 and Table 4 indicate that the gradient model generally 

perceives lower depths than human eye across the entire ROI 

by as much as 1.6 cm on average at certain stations. Such 

underestimations are more prominent in the upstream low 

depth/high aeration regions of the ROI (below 15 cm in Figure 

7). The coupled model shows better agreement with reference 

values across the ROI, as demonstrated in Figure 7 and Table 

4. Average differences at the gauging locations for the 

gradient model were -1.02 and -0.89 cm for the experiments 1 

and 2, respectively. For the coupled model, these differences 

were reduced to -0.07 and -0.04 cm, respectively. The 

performance of the gradient model improves in the high 

depth/low aeration regions, while the performance of the 

coupled model is more uniform across the ROI (as shown in 

Figure 7 and Table 4).  

 



 

Figure 6. Example of results from both experiments, with several false detections of the gradient model highlighted 

 

Table 4. Absolute differences between detected and visual reference values, collected at seven stations along the jump 

Exp. Model 

Difference 
Average 

W(x1)-Z1 W(x2)-Z2 W(x3)-Z3 W(x4)-Z4 W(x5)-Z5 W(x6)-Z6 W(x7)-Z7 

[cm] [cm] [cm] [cm] [cm] [cm] [cm] [cm] 

1 
Gradient -1.46 -1.59 -1.19 -1.01 -1.04 -0.58 -0.23 -1.02 

Coupled -0.24 -0.19 0.01 0.09 -0.17 0.10 -0.07 -0.07 

2 
Gradient -1.43 -1.32 -0.53 -0.93 -0.86 -0.64 -0.53 -0.89 

Coupled -0.39 -0.12 0.23 0.07 -0.06 0.07 -0.06 -0.04 

 
Figure 7. Comparison of results from two models against 

reference values for both experiments 

The accuracy of both detection models is also evaluated, 

and the results are presented in Table 5 in terms of: (1) root 

mean-square error (RMSE) relative to the visual reference 

values, (2) coefficient of determination R2, and (3) linear fit 

parameters (slope and intercept). The error estimates indicate 

that the coupled model outperforms the gradient model in 

terms of RMSE by 313% in the first experiment and 163% in 

the second (relative to the manually acquired reference 

values). Variance of results from both methods is similar, as 

indicated by the R2, and is only around 2% higher for the 

coupled model. This suggests a similar contribution of random 

errors in the results of both models. To estimate the 

contribution of systematic errors, linear fit regression was 

determined for both models – a linear fit with slope of 1 and 

intercept value of 0 would indicate an absence of systematic 

errors. Linear regressions of gradient model results indicate a 

systematic underestimation of reference values in the high 

aeration regions of the jump, as shown by the negative 

intercept of -2.8 and -1.5 cm, and a regression slopes higher 

than 1 in both experiments. Results from the coupled model 

produce a better linear model, with slope value close to 1 and 

intercept close to 0. Figures 8 and 9 present time-averaged and 

maximal depths along the jump profile for experiments 1 and 

2, respectively, along with time-averaged and maximal depths 

at seven reference stations obtained using ADM. The results 

confirm the previously recognized differences between the 

results obtained with the two models. An examination of the 

average depth profiles indicates that the difference between 

the two models is as high as 1.5 and 1.1 cm, with an average 
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difference across the entire jump profile of 0.7 and 0.8 cm for 

experiments 1 and 2, respectively. The coupled model is 

persistently detecting higher free-surface levels across the 

entire jump profile. The difference in results generally reduces 

in the downstream direction as the surface aeration intensity 

decreases. The envelope of maximal values is similarly shaped 

but higher depths are evident in the case of the coupled model, 

by 0.6 cm on average in both experiments. 

Table 5. Statistical indicators of models’ performances 

    Linear fit 

Exp. Model 
RMSE R2 Slope Intercept 

[cm] [-] [-] [cm] 

1 
Gradient 1.13 0.964 1.147 -2.78 

Coupled 0.27 0.981 1.003 0.10 

2 
Gradient 1.16 0.970 1.034 -1.49 

Coupled 0.44 0.988 0.999 -0.02 

Time-averaged depths obtained using ADM in experiment 

1 show better agreement with the results of the gradient model, 

with an average absolute difference of 0.5 cm, while the 

average absolute difference between the coupled model and 

ADM results is 0.6 cm. As discussed in the Introduction, the 

ADM is expected to indicate depths between h20 and h90 – 

lower than time-averaged instantaneous depths due to the 

penetration of the acoustic beam in the air-water mixture. This 

difference is the lowest in the upstream region of the ROI, 

where the slope of the free-surface is the highest – the conical 

acoustic beam is likely not reflected off a point vertically 

bellow the sensor, but rather from an unknown point further 

downstream. Such differences also decrease in the 

downstream direction with the reduction of the surface 

aeration intensity. 

For experiment 2, the average difference between the ADM 

and the gradient model is around 0.6 cm, and 1.3 cm for the 

coupled model. As with the results of experiment 1, such 

differences decrease in the downstream direction with the 

reduction of surface aeration intensity. 

However, differences are evident when maximal detected 

depths are considered. For experiment 1, gradient and coupled 

model indicate maximal depths in the ROI of 17.1 and 

17.5 cm, respectively, while the ADM results show a 

maximum of 15.8 cm. The ratio of maximal depth in the ROI 

and time-averaged depths at the furthest downstream point in 

the ROI (hereafter maximal-to-downstream depth ratio) is 

1.33 and 1.35 for the gradient and coupled models, 

respectively. For ADM results, such ratio is 1.23. This ratio is 

an important parameter for the stilling basin sidewall design. 

Differences in maximal detected depths, obtained using 

different methods, decrease in the downstream direction with 

the reduction of the surface aeration intensity. 

For experiment 2, maximal detected depths using gradient 

and coupled models are 26.8 and 27.4 cm, with maximal-to-

downstream depth ratios of 1.28 and 1.29, respectively. ADM 

results indicate a maximum of 24.4 cm, and maximal-to-

downstream ratio of 1.21. As in the experiment 1, differences 

between maximal depths decrease in the downstream 

direction. 

 
Figure 8. Average, maximal and minimal depth profiles of the 

experiment 1 

 
Figure 9. Average, maximal and minimal depth profiles of the 

experiment 2 

Similar conclusions regarding the relationship of image-

detected and ADM results have been presented by [6] for 

classical jumps – depths obtained using ADM were 

consistently lower than those from the image analysis, and that 

such differences were decreasing in the downstream direction. 

The ADM results are in better agreement with the gradient-

only model across the entire ROI in both experiments. In 

experiment 1 for x > 30 cm, such differences are less than 

1 mm on average. However, since Chachereau and Chanson 

[5] state that the ADM roughly detects the clear-water depth 

in the aerated regions of the hydraulic jump, this result can 

substantiate the previous conclusion that the gradient-only 

model exhibits a slight tendency for underestimation of 

visually detected free-surface levels. This should be taken as 

a limitation in cases where the detection of the visual free-
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surface is critical, such as for the design of stilling basin 

sidewalls. However, the differences between the gradient and 

the coupled model are lower than between the two image-

based approaches and ADM. Although it contains a higher 

percentage of false detections, the gradient model still presents 

valuable results for the hydraulic research of stilling basins 

when the quality of the raw data is adequate. 

In addition to time-averaged and maximal depths, standard 

deviations of free-surface levels, σh, are presented in Figures 

10 and 11. Standard deviations from time-averaged depths 

decrease steadily and monotonically in the downstream 

direction, with both models showing relatively consistent 

results. Relative to the clear-water inflow depths hw1, the 

maximal standard deviations are approx. 1.4hw1, and 1.2hw1, 

while the minimal standard deviations are 0.5hw1 and 0.4hw1, 

for the experiments 1 and 2 respectively. This is in general 

agreement with the experimental results from Li et al. [9] for 

similar Froude numbers. Similarly as in [9], the ratio of 

standard deviations to hw1 are decreasing with the decrease in 

inflow Froude numbers Fr1. 

 
Figure 10. Standard deviations of free-surface levels in the 

ROI, experiment 1 

 
Figure 11. Standard deviations of free-surface levels in the 

ROI, experiment 2 

For a closer examination of how the coupled model reduces 

the number of false detections and improves accuracy 

compared to individual gradient- and HED-based models, 

results from three characteristic columns (x = {29.6, 48.4, 

130.7} cm) from a sample image were analysed (Figure 12). 

For each selected column, individual gradient and HED, and 

superposed results were shown, along with the manually 

acquired reference value. According to Eqs. (3) and (5), in-

image position of the free-surface at station x along the jump 

is determined by the position of the maximal value in that 

column in the fusion map F(x,y). Gradient and HED results 

used for this examination are taken before the final filtering in 

the postprocessing phase. 

Figure 13 shows the case which demonstrates that the HED, 

in general, does not differentiate between horizontal and 

vertical edges. Such vertical edges can cause ambiguity in 

HED results in their vicinity. However, the gradient analysis 

stage incorporates a “horizontal bias” due to fact that only 

vertical gradients are analysed, which improves the overall 

performance of the coupled model. The absolute difference 

between the detected and visual reference value, before the 

final filtering steps in the postprocessing stage, is 0.2 cm. 

In Figure 14, the results of the gradient model are 

polymodal with two dominant peaks. While the maximal 

value in the column of the gradient map is falsely detected 

around h = 8.2 cm, the HED model accurately detects the true 

free-surface position in the image. The second highest peak of 

the gradient map coincides with maximal value in the HED 

map, and the resulting superposed map F shows a water level 

at 0.1 cm from the visual reference value. 

Figure 15 shows that the results from HED map can be 

polymodal in cases of background noise. The results of the 

gradient analysis are more resistant to the presence of 

background features smaller than the size of the convolution 

kernel Ky. and they show maximal gradients significantly 

closer to the reference value. This also shows that the kernel 

Ky acts as a spatial filter. Superposition of results from both 

methods successfully deals with the false peak of the HED 

around h = 10.6 cm, and the position of the maximal value in 

fusion map F coincides with the visual reference value. 

Results shown in Figures 13-15 provide an important 

insight into the mechanisms which enable the high accuracy 

and robustness of the coupled free-surface detection model. In 

general, the HED map serves as a weight function on top of 

the context-specific results of the gradient analysis. This 

complementary effect reduces both the uncertainty of the 

detections and the required filtering efforts in the 

postprocessing stage. 



Journal XX (XXXX) XXXXXX Ljubičić et al.  

 14  
 

 
Figure 12. Columns for comparison of detection models 

 
Figure 13. Comparison of detection scores at x = 29.6 cm 

(column A in Figure 12) 

 
Figure 14. Comparison of detection scores at x = 48.4 cm 

(column B in Figure 12) 

 
Figure 15. Comparison of detection scores at x = 130.7 cm 

(column C in Figure 12) 

Frame-by-frame approach of the proposed image 

processing methods allow for detailed spectral analyses of the 

hydraulic jump behaviour through fast Fourier transformation 

(FFT). Because the free-surface level is tracked in a 

significantly higher number of points along the hydraulic 

jump than it could be possible with an ADM, FFT spectrums 

can be obtained for any station along the jump. This can 

significantly facilitate the processing of large amounts of data, 

to obtain a better insight into the hydraulic jump behaviour. 

Figures 16 and 17 present such spectrums for 4 stations 

relative to the jump roller lengths, where x/Lr = {0.2, 0.5, 1.0, 

1.5}. Spectrums of both methods are comparable, and show 

dominant oscillating frequencies of ~2.2 Hz, which is in 

general agreement with previous research [8]. However, the 

station x/Lr = 0.5 has a somewhat higher number of significant 

frequencies relative to the other three stations, in both 

experiments. At stations x/Lr > 1, oscillation amplitudes 

decrease significantly for all analysed frequencies. 

Finally, to examine the repeatability of the results of the 

proposed coupled model, four additional 1-minute recordings 

were made for both experiments. Time-averaged depth 

profiles of four repeated tests, along with the original results 

from Figures 8 and 9, are presented in Figures 18 and 19. The 

results indicate a significant repeatability of the results from 

the proposed coupled model. The average absolute difference 

between the five profiles and the global time-averaged profile 

(mean profile of five tests) is 0.05 cm for the conditions of 

experiment 1, and 0.08 cm for the conditions of experiment 2. 

Such differences are the most prominent in the upstream 

region of the ROI where the free-surface fluctuations are the 

highest. 
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Figure 16. FFT spectrums of free-surface oscillations for four 

stations in the ROI, experiment 1 

 
Figure 17. FFT spectrums of free-surface oscillations for four 

stations in the ROI, experiment 2 

 
Figure 18. Time-averaged depth profiles for repeated tests, 

conditions of experiment 1 

 
Figure 19. Time-averaged depth profiles for repeated tests, 

conditions of experiment 2 

Table 6. Computational time structure for the coupled 

model, excluding I/O stages for 1800 frames 

Exp. Stage 
Time 

[sec] [%] 

1 

Gradient analysis 2344 76.0 

HED 265 8.6 

Spatial filtering 212 6.9 

Temporal filtering 267 8.7 

Total 3088 100 

2 

Gradient analysis 2347 76.1 

HED 261 8.5 

Spatial filtering 216 7.0 

Temporal filtering 259 8.4 

Total 3082 100 

 

However, image processing approach is not without some 

specific shortcomings. It was found that the performance of 

both image processing models is severely limited in aerated 

high velocity flows, such as in the regions upstream of the 

jump toe. In those hydraulic conditions, both models are 



Journal XX (XXXX) XXXXXX Ljubičić et al.  

 16  
 

susceptible to severe misdetections due to the motion induced 

blur and low contrast. The proposed detection models should 

not be applied to those regions, and these have been excluded 

from the free-surface detection in this research. Such 

shortcomings could be alleviated with the use of high frame-

rate cameras or higher shutter speeds. Both such potential 

improvements also imply shorter camera sensor exposure and 

would require even greater control of environmental lighting. 

Additionally, the results obtained by the image-based 

models could be unrepresentative of the free-surface in the 

entire cross-section. The assumption of the horizontal free-

surface across the section could be justified for configurations 

with wide prismatic spillways and stilling basins, where the 

near-sidewall depths can adequately represent the entire cross-

section. For non-prismatic configurations, it should not be 

used to represent the entire cross-section. However, even in 

such cases, the detected depths are still important for the 

design of basin sidewalls. Alternatively, it can easily be 

argued that the results from the ADM for non-prismatic 

configurations would be unrepresentative for sidewall depths. 

Thus, the image-based free-surface detection approach is not 

aiming to replace some commonly used methods but could 

rather offer different insights for stilling basin research and 

design. 

The most significant limitation of both methods is the 

computational complexity of the underlying image processing 

algorithms. Total amount of values processed by the 

algorithms is equal to sum of all of pixels in all captured 

images, which was 729 million for each of the experiments in 

this research. Total analysis time of the 60 second video (4K 

resolution at 29.97 fps) was around 47 minutes for the gradient 

model, and around 51 minute for the coupled model (with 

CUDA processing for HED stage). The overall complexity of 

the code was briefly examined, excluding input/output (I/O) 

stages such as video unpacking and geometrical 

transformations, as those depend mostly on the performance 

of the storage media. It was found that the time complexity of 

the code relative to the total number of pixels is around O(n) 

for both models and using parameters presented in Table 2. 

For the analysis of a 1-minute video, computational time 

structure of the coupled model is presented in Table 6. Results 

show that, relative to the gradient model, the additional 

complexity due to the HED stage is around 8.5% which can 

be considered low when compared to the improvements 

offered by the coupled model. Future research should focus on 

more detailed investigation and reduction of the 

computational complexity of proposed methods. When the 

duration of the analyses is not an issue, the proposed model 

can be used to efficiently obtain substantial amounts of data 

for the investigations of hydraulic jumps, but also open 

channel flow in general. 

Due to the high accuracy and overall robustness of the 

proposed approach in low aeration region, future work should 

also investigate a more general application for non-aerated 

open-channel flow where methods like LIDAR are reported to 

provide inadequate results. This could be significant for the 

investigation of transient flows in long laboratory flumes. 

Based on the presented results, the differences between the 

gradient and coupled models are likely to significantly 

decrease in non-aerated flow conditions. 

 

4. Conclusions 

Based on the experimental work presented in this paper, 

following conclusions can be drawn: 

1. Previously developed gradient-based model for free-

surface interface detection can perform satisfactory 

when hydraulic jumps are analysed. Some discrepancies 

from manually acquired visual reference values are 

found in the high aeration regions of the jump, i.e. and 

the model has a slight tendency for underestimation of 

the visually observed depths. Average detection error 

was found between -0.7 cm (jump at discharge of 

15.4 L/s), and -0.9 cm (jump at discharge of 34.9 L/s). 

This indicates that the accuracy of the gradient model, 

relative to the visually perceived free-surface levels, 

increases with the decrease in surface aeration intensity, 

2. Coupling of the gradient approach with a deep neural 

network model – holistically-nested edge detection – can 

provide substantial improvement in terms of free-surface 

detection accuracy, while reducing the potential for false 

detections. Relative to the visual reference values, the 

coupled model is significantly more accurate than the 

gradient model, with average errors of -0.1 cm, and 

maximal errors lower than 0.5 cm. 

3. Gradient model is more susceptible to false detections of 

the free-surface, in conditions of spatially varying 

aeration intensity, 

4. The coupled model is less affected by the aeration 

intensity of the jump since no significant differences in 

detection accuracy were found between the results of two 

experiments. The coupled model has shown fewer false 

detections than the gradient model, 

5. In the regions of low surface aeration, both the gradient 

and coupled model provide comparable results, 

6. Frame-by-frame detection of free-surface/depth profiles 

can enable more detailed spectral analyses of hydraulic 

jump behaviour. Since data is collected with a high 

spatial resolution in the ROI, FFT spectrums can be 

obtained for any station along the jumps, 

7. ADMs consistently indicate lower time-averaged and 

maximal depths than those obtained through image 

processing. It was discussed that this can be attributed to 

the penetration of the acoustic signal in the surface air-

water mixture in the hydraulic jump. For stilling basin 

sidewall design, such underestimation can be 
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unacceptable. With the decrease of the surface aeration 

intensity in the downstream direction, the discrepancies 

between ADM and image-based results were shown to 

decrease, when both time-averaged and maximal depths 

are considered, 

8. Repeatability of results of the proposed coupled model is 

examined through repeated tests in conditions identical 

to those of experiments 1 and 2. The analysis indicates 

significant repeatability of results for time-averaged 

depth profiles, with differences lower than 0.1 cm 

relative to the global time-averaged depth profile (mean 

profile of five tests), 

9. The low cost of the equipment required for the presented 

image-based models can enable affordable estimation of 

the depth profiles in laboratory conditions – in theory, 

any camera can be used for the data acquisition. 

However, the limitations of the proposed models must be 

acknowledged. The following limitations were identified in 

this research: 

1. Particular care should be devoted to the quality of the 

raw data. In high velocity flows, camera sensor exposure 

should be short, in order to reduce the motion induced 

blur. Depending on local conditions, this criterion may 

require the use of additional, external lighting sources, 

2. The proposed coupled model is currently not suitable for 

highly aerated high velocity flow upstream of the jump 

toe due to motion-induced blur in the captured images, 

3. The free-surface profile was detected in a single vertical 

plane on the flume wall, and as such can be 

unrepresentative of the entire water surface in case of 

non-symmetrical approach conditions, 

4. The algorithm is computationally expensive due to the 

complexity of the underlying image processing steps and 

the sheer amount of data to be processed. 

Future work should primarily be directed towards the 

alleviation of aforementioned limitations. The impact of the 

camera parameters (resolution, aperture, shutter speed, ISO), 

lighting conditions, and camera position relative to the ROI, 

on the quality of obtained results is to be investigated. The use 

of high framerate cameras can expand the potential of the free-

surface detection to supercritical flow upstream of the jump 

toe. Time complexity of the underlying image processing 

operations is a major obstacle, which should be thoroughly 

analysed in future research, for the code optimization 

purposes. Finally, since the proposed coupled model 

performed accurately in the low aeration regions of the jumps, 

its application can be potentially generalized for free-surface 

flow in laboratory flumes, especially for transient open-

channel flows. 
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