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The mechanism of fluorescence quenching of the product S in the presence of captopril was studied. The maximum 
emission wavelength of the product S was at 405 nm with the excitation wavelength at 316 nm. It was found that the 
fluorescence quenching of product S was of a static one and the binding constant (K) was 9.29 × 106 J mol1. A linear 
relationship was found between the relative fluorescence intensity of the product S-captopril system and the concentration of 
captopril. Under optimum conditions, the linear range of the calibration curve for captopril was 2~160 μg L1 with a 
correlation coefficient of 0.9926 and a detection limit of 0.1 μg L1. The relative standard deviation (RSD) was 3.60%. The 
analytical results of the pharmaceuticals obtained by this novel method agreed quite well with those obtained by the KIO3 
titrimetry.  
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Captopril (1-[(2S)-3-mercapto-2-methylpropionyl]-
L-proline) is the first orally active inhibitor of the 
angiotensin-converting enzyme (ACE), which is 
widely used in the treatment of hypertension1 and 
congestive heart failure2. Several methods have 
already been reported for the quantitative determination 
of captopril in pharmaceutical formulations and 
biological fluids, including spectrophotometry3,4, 
chemiluminescence5, spectrofluorimetry6, electrochemical 
detection7,8, HPLC9,10, and GC11. However, some lack of 
sensitivity and selectivity, others are laborious and 
time-consuming. In all these methods, the most common 
methods used are HPLC, which used to determine 
captopril has high sensitivity, good selectivity, and the 
ability of simultaneous multicomponent determination, 
but the sample treatment is time-consuming, require 
derivatization. Spectrofluorimetry is still one of the 
common methods used for the determination of 
captopril owing to its simplicity and high sensitivity.  

Enzyme-catalyzed analytical kinetic methods have 
been extensively used for substrate, enzyme, inhibitor, 
and activator analysis in several areas of analytical 
chemistry such as in clinical, pharmaceutical, 
agricultural, industrial applications, and process 
monitorin12. Horseradish peroxidase (HRP; EC 1.11.1.7) 
is one of the most important oxidases in biology. Having 

the function of active molecular oxygen, HRP can 
enhance the transformation of H2O2 directly into H2O. 
However, natural enzymes do have shortcomings in 
some aspects. For example, they are expensive and 
unstable in solution and have strict requirements for the 
experimental conditions and storage environment in 
order to retain their catalytic activity. Therefore, the 
search for a replacement for enzymes has been a 
significant and interesting work. The mimicking of 
peroxidase is one of the important trends in enzymatic 
analysis13-15. Hemin has been used as a substitute for 
peroxidase16. The complex of iron-porphyrin with 
β-cyclodextrin (β-CD) was proposed as a better 
substitute for native peroxide proteinase due to its 
three-dimension structure17. However, the catalytic 
activity was still much less than that of peroxidase. 
Hemoglobin (Hb), a necessary vehicle for oxygen 
carriage in the body, has the natural quaternary 
structure as enzymes. It contains four subunits of 
polypeptide and each polypeptide chain contains a 
heme group that may be able to serve as the active 
center18-20. In a recent paper, Hb was used to be a 
mimetic enzyme for HRP because they have a similar 
spatial structure and it is cheaper, more stable than 
HRP21. The tyrosine reacted with H2O2 to form the 
product S which was a strong fluorescence substance 
by the catalysis of Hb22.  

In this paper, a new, sensitive method for the 
determination of captopril in pharmaceuticals was 
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established. This method was based on its 
fluorescence quenching to the product S with 
hemoglobin as the catalyst and L-tyrosine as the 
substrate. The fluorescence quenching mechanism 
was studied. 
 
Experimental 
Reagents 

Hb (bovine erythrocytes) solution was prepared by 
dissolving a certain amount of Hb (Shanghai Boao 
Institute of Biochemistry, Shanghai, China) in 
distilled water and stored below 4°C. L-tyrosine 
(Beijing Chemical Plant, Beijing, China) stock 
solution was prepared for the concentration of 10−3 M. 
H2O2 solution was prepared to the concentration of 
10−1 M. It was stored in a brown bottle in a 
refrigerator. Captopril (Shanghai Jianglai Institute of 
Biochemistry, Shanghai, China) solution was 
prepared to the concentration of 1.0 g L−1. The 
working solution was diluted appropriately before use 
with distilled water daily. Tris-HCl buffer solutions of 
different pH were used throughout the present study. 
Doubly distilled water was used throughout. All other 
chemicals were of analytical-reagent grade. 

The measurements of fluorescence lifetime were 
carried out on an FLS-920 (Edinburgh, U.K.). Other 
fluorescent measurements were carried out on an 
FP-750 spectrofluorimeter (JASCO). The temperature 
was controlled by using a TB-85 thermostat bath 
(Shimadzu), and the pH values were measured with a 
PHS-3C precision pH meter (Shanghai, China). 
 
Procedures 

Each color comparison tube was filled with 2.00 mL 
of pH 8.50 Tris-HCl buffer solutions, 4.00 mL of 
1.0 × 10−3 M L-tyrosine, 0.50 mL of 1.0 × 10−5 M Hb, a 
proper amount of captopril solutions and 1.50 mL of 
1.0 × 10−3 M H2O2, and then diluted with water to 
10 mL. After being equilibrated in a thermostated 

water bath (25±0.2°C) for 40 min, the difference of 
the relative intensity (F0/F) between the blank (F0) 
and the sample (F) was measured at the selected 
maximum excitation wavelength of 316.0 nm and a 
maximum emission wavelength of 405.0 nm. Then, 
the value of F0/F was calculated. 
 
Results and Discussion 
Spectral characteristics 

The Hb-catalyzed reaction (Scheme 1) is shown 
below.  

According to the experimental procedure, the 
excitation and emission spectra of product S in the 
absence and the presence of captopril were recorded. As 
shown in (Fig. 1), the excitation and emission 
wavelength of product S were 316 nm and 405 nm, 
respectively. The fluorescence strength of product S 
decreased in the presence of captopril, which showed 
that the fluorescence quenching occurred in the process. 

 
Fig. 1 — Excitation and emission spectra of product S. 1-6. 
Excitation spectra and emission spectra in the presence of captopril. 
Concentration of captopril: 0, 20, 40, 80, 120, 160 μg L−1 

 
 

Scheme 1 — Reaction of producing fluorescence dimer 
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Fluorescence quenching mechanism 
Generally, several mechanisms can describe the 

nature of fluorescence quenching, such as dynamic 
quenching, static quenching, combined static, and 
dynamic quenching. In the case of the combined static 
and dynamic quenching, the Stern-Volmer plot is 
characterized by a non-linear behavior with an upward 
curvature. The polynomial equation is as follows23. 
 

F0 / F = 1 + (KD + KS) [Q] + KDKS [Q]2 … (1) 
 

where KD and KS are the dynamic and static quenching 
constants, respectively. F0 and F are the fluorescence 
intensities in the absence and the presence of 
quencher. [Q] is the molar concentration of the 
quencher. The captopril was used as a quencher in 
this experiment. The Stern-Volmer equation was: 
 

0 / 0.7332 0.0308F F C   
 

(F0 and F are the fluorescence intensities in the 
absence and the presence of captopril and C was the 
concentration of captopril) with the coefficient 
0.9929. The result in (Fig. 2) indicated that the 
quenching mechanism between captopril and product 
S was not the combined static and dynamic quenching 
because the Stern-Volmer plot was linear.  

The dynamic quenching can be expected by the 
classical Stern-Volmer relationship: 
 

F0 / F = 1 + kq0 [Q] = 1 + ksv [Q] … (2) 

 

where kq is the bimolecular quenching rate constant in 
L/mol s, τ0 is the lifetime of the fluorophore in the 
absence of quencher, kSV is the Stern-Volmer 
quenching constant in L mol−1. In this case, a linear 
plot of F0 /F vs [Q] will be obtained.  

In the case of static quenching, the Stern-Volmer 
equation is observed, giving a decrease of fluorescence 
intensity due to the formation of a non-fluorescent 
complex. 
 

F0 / F = 1 + K [Q] … (3) 
 

where K is the formation constant, the Stern-Volmer 
plot is linear too. 

The measurement of fluorescence lifetime can 
confirm a dynamic or static quenching process. The 
lifetime (τ0) of fluorescence molecule on the excited 
state has no change in the presence of quencher if 
static quenching takes place. Reversely, τ0 has to be 
shorter if dynamic quenching occurs. That is, τ0/τ1 =1 
(τ0 andτ1 are the fluorescence lifetimes of 
fluorescence molecule in the absence and the presence 
of quencher) for static quenching; τ0/τ1= F0 /F for 
dynamic quenching24. The fluorescence lifetimes of 
product S in the absence and the presence of captopril, 
τ0 andτ1 were 4.42 ns and 4.41 ns, respectively. As 
shown in (Fig. 3), τ0/τ1≌ 1, therefore, we suggested 

 
 

Fig. 2 — Stern-Volmer plot 

 
 

Fig. 3— The fluorescence lifetime of product S in the presence of 
captopril 
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that a static quenching process was occurring between 
captopril and product S. 
 

The formation constant of static quenching 
For the static quenching interaction, if there are 

some similar and independent binding numbers in the 
fluorescence molecule, the following formula can be 
concluded between the fluorescence molecule and 
quencher25: 
 

nQ + B  Qn-B … (4) 
 

where B is the fluorescence molecule, Q is the 
quenchable molecule, Qn-Bis the non-fluorescence 
molecule, Ka is the formation constant of the reaction. 
 

][][

B-
Ka BQ

Q
n

n  … (5) 

 

[B0] is the total concentration of fluorescence 
molecule (unbound and bound with the quenchable 

molecule), therefore, [B0] = [ -nQ B ] + [B], here [B0] is 
the concentration of unbound fluorescent molecule. 
The relationship between fluorescence intensity and the 
concentration of the quenchable medicament molecule 
is [B]/ [B0] = F / F0, so there is the following equation: 
 

][lglglg 0 QnK
F

FF



 … (6) 

 

where K is the formation constant. From Equation (6), 
n was the slope, and lgK was the intercept. In our 
research, as shown in (Fig. 4), the formation constant, 
K=9.29 × 106 L/mol, and the number of binding sites 
n=1.09, were obtained. The correlation coefficient of 
Eq. (6) was 0.9919. 

The experiment results showed that the number of 
binding sites was n=1.09. We presumed that the 
carboxyl of product S bound with the sulfhydryl of 
captopril26,27. The reaction mechanism was shown in 
(Fig. 5). 
 
Thermodynamic parameters 

The thermodynamic parameters, Gibbs free energy 
change (ΔG), enthalpy change (ΔH), and entropy 
change (ΔS) of the reaction were obtained. ΔH and ΔS 
were calculated from the slope and intercept of the 
van’t Hoff equation lnK = -ΔH/RT + ΔS/R. ΔG were 
obtained according to the equation ΔG = ΔH - TΔS. 
The results were shown in (Fig. 6 & Table 1). 

ΔH<0, ΔG<0 showed that the reaction was 
spontaneous and exothermic. What is more, both ΔH 

 
 

Fig. 4—lg [(F0-F)/F] vs lg[Q] 

 

Fig. 5— The reaction mechanism 
 

 
 

Fig. 6— lnKvsT−1 
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and ΔS were negative values indicated that van der 
Waals interaction and hydrogen bonds were the 
predominant intermolecular forces between product S 
and captopril28. 
 

The optimization of variables 
The variable and ranges studied, and their optimum 

values, are summarized in (Table 2).  
It is noted that captopril has less effect in an assay 

involving higher concentrations of Hb. The F0/F 
increased with an increase in Hb concentration at first 
but decreased above 5.00 × 10−7 M. It might be due to 
the loss of substrate inhibition, which occurs at high 
Hb concentration, which could be due to the inability 
of captopril to promote conformational changes when 
Hb is at high concentration. So, 5.00 × 10−7 M of Hb 
was selected for further work.  

The effect of H2O2 concentration on inhibition was 
studied. The F0/F increased with the increase in H2O2 
up to 1.50 × 10−4 M, above which it had a little effect. 
Thus, 1.50 × 10−4 M H2O2 was selected for further 
study. The F0/F was greatest at pH 8.50. Considering 
the fluorescence intensity getting too weak at very low 
L-tyrosine concentration, 4.00 × 10−4 ML-tyrosine was 
chosen for further study. 

The effect of temperature on the system was 
investigated in a range from room up to 50°C. The 
time needed to reach equilibrium, 40 min, was 
prolonged with the decreasing temperature. Due to the 
decomposition of H2O2 at high temperature, the 
temperature was kept at 25°C and the measurements 
were carried out after 40 min. 

Analytical characteristics 
From the results obtained under the recommended 

conditions (Table 2), it was found that the F0/F of 
captopril on the Hb-catalyzed reaction was linear in 
the range 2~160 μg L−1. The linear response can be 
fitted to an equation as follows  
 

0 / 0.7332 0.0308F F C 
 

 

(r = 0.9926, n = 9) 
“C” is the concentration of captopril in μg L−1. 

“r” and “n” is  the linear correlation coefficient and 
the number of experiments, respectively. The 
detection limit, calculated according to the 3Sb/k 
criterion (in which “k” is the slope over the range of 
linear used and “Sb” is the standard deviation 
(n=11) of the signal from the blank), was found to 
be 0.1 μg L−1. The relative standard deviation for 11 
replicate determination of 40 μg L−1captopril was 
3.60%. 
 

Interference study 
Several possible inorganic ions were investigated 

for their interference in the determination of 40 μg L−1 
captopril. When the permitted relative deviation is 
larger than ± 5.0%, the examined species may cause 
an alteration in the results (Table 3). It can be seen 
that the proposed method has good selectivity. 
 

Applications 
The current method was applied to determine the 

captopril in pharmaceutical preparations. Fifty tablets 
containing captopril were accurately weighed. An 
accurately weighed potion of the homogenized 
powder corresponding to 0.30 g of captopril was 
shaken for 30 min with 100 mL of the water, and the 
solution was filtered. Working solutions were made 
by appropriate dilution of concentrated sample 
solution with Tris-HCl buffer, so that the final 
concentration was in the working range for further 

Table 1 — Thermodynamic parameters 

T(K) 288 298 308 323 328 

K (J/mol) 6.94×107 9.29×106 4.76×105 8.69×103 3.88×103 
ΔG 
(KJ/mol) 

−43.23 −39.54 −33.48 −24.36 −22.54 

ΔH 
(KJ/mol) 

 −199.70    

ΔS (J/K 
mol) 

 −540.31    

 

Table 2 — Optimization study for captopril determination by 
fluorescence quenching reaction 

Variable Range studied Recommended value 
pH 7.80-8.80 8.50 
Hb (M) (2.00-8.00)×10−7 5.00×10−7 
H2O2 (M) (0.70-2.20)×10−4 1.50×10−4 
L-tyrosine (M) (1.00-3.50)×/10−4 4.00×10−4 
Temperature (°C) 10-50 25 
Time (min) 10-100 40 

Table 3 — The effect of various species on hemoglobin catalyzed 
reaction 

Species Concentration 
(mg L−1) 

F0/F Species Concentration 
(mg L−1) 

F0/F 

NO3
−  40 1.89 CO3

2−  20 1.83 
Na+ 40 1.78 Al3+ 4 1.85 
K+

 40 1.88 Ca2+ 4 1.74 
NH4

+ 40 1.93 Ba2+ 4 1.83 
F−  40 1.86 Mg2+ 4 1.82 
Cl−  40 1.86 Cu2+ 0.2 1.82 
Mn2+ 20 1.84 Fe3+ 0.2 1.81 
BrO3

−  20 1.87    
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sample analysis. The results of the determination are 
listed in (Table 4). In order to examine these results, 
the KIO3 method was also used for the determination 
by following closely the procedure described in 
literature29. The results obtained by the two different 
methods are statistically compared in (Table 4). It can 
be seen that no significant differences were found 
between them. This confirms the validity of the 
method proposed in this work. 
 
Conclusion 
The fluorescence quenching mechanism between 
captopril and the product S was studied. The reaction, 
was the static quenching process. The data of ΔH and 
ΔS indicated that van der Waals interaction and 
hydrogen bonding played a major role in the binding of 
captopril to product S. In addition, the binding 
constant, the number of binding sites and the reaction 
mechanism were obtained. A new spectrofluorimetric 
method for trace amount of captopril determination 
was developed based on the fluorescence quenching. 
The proposed method is very simple, sensitive and the 
detection limit was 0.1 μg L1. The method can be used 
for the determination of captopril in pharmaceuticals 
with satisfactory results. 
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