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In satellite geodesy, the motion of artificial satellites has a crucial importance and the satellite’s position is the core point in 
the geodetic network. The simplicity of the broadcast ephemeris model directly determines the rate and efficiency of real-time 
navigation and positioning. GNSS broadcast message is transmitted in ECEF system either (GLONASS) or are Keplerian-like 
orbital elements (GPS, BeiDou, Galileo). The main aim of this paper is to describe the magnitude of Keplerian elements and 
correction coefficients of the navigational satellite changes based on a GPS satellite. The author examines six Keplerian 
elements and six correction coefficients for three different intervals: 2-hour, 1-day and 5-day intervals for periods of 9 days, a 
year and 10 years respectively. The analysis shows the varying behaviour of the time-series of the analysed components on the 
basis of the on-board GPS message, both random-like and repetitive (seasonal) trajectory time series. 
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Introduction 
The GPS broadcast ephemeris is the basis of satellite 

navigation and positioning1,2. GPS ephemeris are 
forecast, predicted or extrapolated satellite orbit data, 
which are transmitted to the receiver from the satellite 
via a navigation message3. The GPS navigational 
message is available in real-time, therefore it 
constitutes the essence of standalone positioning as 
well of RTK measurements, which are today in use in 
various areas, e.g. geodesy4–6, crustal deformations 
analysis7, spatial analysis8,9 or thermography10,11. GPS 
broadcasts a message as Keplerian ephemeris 
parameters12. Keplerian motion is called simplified 
satellite orbiting and the problem is called the two-
body problem. An artificial Earth satellite (AES) 
moves in a central force field and its mass is negligibly 
small compared to the mass of the Earth (𝑀). 
According to Newton’s second law of motion13, 
satellite motion is described as14: 
 

𝑟  … (1) 
 

where 𝑟 is the acceleration of the motion (second 
order differentiation of vector 𝒓 with respect to time) 
and 𝜇 ( 𝐺𝑀, 𝐺 is the universal gravitational constant) 
is the Earth’s so-called gravitational potential. 
Equation (1) describes the motion of the satellite in 
the gravity field of the central body 𝑀, on the 
assumption of its symmetry (sphere). Acceleration 

magnitude depends on the quotient of the statement 
1 𝑟⁄  — it is inversely proportional to the distance 
between the central body (Earth) and the satellite. The 
transformation of equation (1) to the general form of a 
two-body problem without taking into consideration 
the influence of the satellite on the central body 𝑀 
(the so-called limited case of the two-body problem) 
and with assumption of the position consistency of the 
𝑀 body against the origin of the coordinate system 
leads to the equation: 
 

𝒓
𝒓

0 … (2) 
 

Equation (2) is a second order differential equation. 
The geometric centre of the central body overlap with 
the origin of the coordinate system vector’s 𝑟 
coordinates will be defined as 𝑥, 𝑦, 𝑧 and the vector of 
differential equation (2) may be substituted with three 
scalar second order differential equations: 
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𝑧
𝜇
𝑟
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𝑦 𝑦 0 … (3) 
 

where 𝑟 𝑥 𝑦 𝑧 . The analytical solution of 
equation (2) leads to the Keplerian motion defined by 
six parameters15 presented in Table 1. 
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The first two parameters (𝑎 and 𝑒) define the size 
and shape of elliptical orbits. The argument of perigee 
(𝜔) defines the location of the body against the 
equator plane (Fig. 1). The orientation of the 
circulating body against the equator plane defines the 
inclination angle (𝑖) and the right ascension of the 
ascending node (Ω). The above parameters define 
others, such as altitude or orbital period (half a 
sidereal day)17. Keplerian elements can be 
characterised by annual, semi-annual or draconitic 
courses18. 

Keplerian parameters can be divided into two 
groups20: dynamical constants (𝑎, 𝑒, 𝜏) and spatial 
orientation of the angles of eclipse (𝜔, 𝑖, Ω). 
Perturbation forces acting on the orbital motion of the 
AES cause a difference between the actual position of 
the satellite and the position calculated on the basis of 
Keplerian elements21, therefore this position cannot be 
described by equation (2). Therefore, equations of 
motion can be described as14,22: 
 

𝑟 𝜇 𝑎 𝑡; 𝑟, 𝑟,𝑑 ,𝑑 , … ,𝑑  … (4) 
 

where: 
 
𝑟 —  geocentric acceleration vector of the satellite 
𝑎 —  perturbing acceleration 
𝑟 —  geocentric position vector of the satellite 
𝑟 —  geocentric velocity vector of the satellite 

𝑑  — dynamical parameters, 𝑗 1 …𝑚 
The first element in equation (4) is the force 

exerted by the central body, whereas vector  
represents the sum of all perturbing accelerations 
affecting the AES’s motion. Satellite perturbing 
forces may be described by a series of instantaneous 
Keplerian orbits deviates from true trajectory. The set 
of orbital elements assigned to the satellite vector of 
state on each epoch 𝑡 may be described by the 
equation: 
 

𝑟 𝑡 , 𝑟 𝑡 ↔ 𝑎 𝑡 , 𝑒 𝑡 , 𝑡 𝑖 ,Ω 𝑡 ,𝜔 𝑡 , 𝜏 𝑡  
  … (5) 

 

These elements are osculatory to the real orbit on a 
particular epoch 𝑡22. Accelerations caused by the 
gravity of other celestial bodies and forces not related 
to gravitational forces have an influence on the 
movement of the satellite. The role of these forces is 
negligibly small compared to the accuracy of the 
determined position. Table 2 presents the greatest 
perturbing forces acting on the AES: 

The second zonal harmonic arising from the 
Earth’s flatness is the biggest perturbing force. The 
influence of the Moon and the Sun is one order of 
magnitude smaller. The rest of the perturbing forces 
in the navigational satellite motion computation due 
to their insignificant size may be ignored. 
 

Materials and methods 
Two different approaches are followed in 

computing earth-centred, earth-fixed (ECEF) 
coordinates from GNSS broadcast orbits. Based on 
Keplerian elements transmitted in the navigational 
message, ECEF coordinates are computed as an 
analytical function with a 2-hour update rate of 
broadcast data14. This approach is adopted by GPS, 
Galileo, BeiDou, IRNSS and QZSS24,25. The second 
approach is based on the numerical integration of nine 
elements of the vector of state (three positions, 

 
 

Fig. 1 — The Keplerian elements of an elliptical orbit19. 
 

Table 1 — Keplerian orbital parameters16. 

Parameter Notation 

a semi-major axis of orbital ellipse 
e numerical eccentricity of ellipse 
τ epoch of perigee passage 
ω argument of perigee 
i inclination of orbital plane 
Ω right ascension of ascending node 
 

Table 2 — Summary of approximate perturbing forces for GPS 
satellite23. 

Source Maximum 
perturbing 

acceleration [m/s2] 

Maximum excursion 
growth in one hour 

[m/s2] 

Earth-mass attraction 5.65ꞏ10-1 — 
Second zonal harmonic 5.3ꞏ10-5 300 
Lunar gravity 5.5ꞏ10-6 40 
Solar gravity 3ꞏ10-6 20 
Fourth zonal harmonic 10-7 0.6 
Solar radiation pressure 10-7 0.6 
Gravity anomalies 10-8 0.06 
All other forces 10-8 0.06 
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velocities and accelerations). The vector of state is 
transmitted every 30 minutes and is in use in 
GLONASS, GAGAN and EGNOS25. In this work, the 
author analysed changes of data transmitted in GPS 
broadcast messages (Table 3). 

The parameters presented in Table 3 allow the 
coordinates of the satellite in the ECEF coordinate 
system to be computed27, and the details of the 
computation have already been widely described in 
the literature, e.g. Beutler et al.15, Ogaza28, Li29, and 
Hugentobler & Montenbruck30. 
 
Results and discussion 

In this paper, six elements of Keplerian orbit and 
six correction element changes were analysed. These 
values were collected from GPS navigational 
messages between 1064 and 1616 GPS week (years 
2000-2010, 552 weeks, almost 10.6 years) of GPS 
satellite PRN 10. An analysis was conducted for three 
different periods: 
 

 9 days with a 2-hour interval (1 - 9 Sep 2010) 
 1 year with a 1-day int. (Jan - Dec 2010) 
 10 years with a 5-day int. (May 2000 - Dec 2010) 
 

Figure 2 presents the behaviour of Keplerian 
elements in 2-hour intervals with 9-day coverage. 
Short-periodic perturbations dominate the semi-major 
axis 𝑎, eccentricity 𝑒 and argument of perigee 𝜔 with 
a polynomial trend for the entire analysed period. In 
the case of the mean anomaly of reference time 𝑀 , 
there is clearly seen a repeatable, sawtooth pattern 
with a close to 12-hour long period (half a sidereal 
day – GPS satellite evolution period). An analysis of 
the year-long time-series with a 1-day interval shows 
similar, periodical fluctuations for the same parameters 

Table 3 — Ephemeris data definitions26. 

Notation Data description 

M  Mean anomaly of reference time 
∆n Mean motion difference from computed value 
e Eccentricity 

√a Square root of the semi-major axis 

Ω  
Longitude of ascending node of orbit plane at 
weekly epoch 

i  Inclination angle at reference time 
ω Argument of perigee 

Ω Rate of right ascension 

idot Rate of inclination angle 

C  
Amplitude of the cosine harmonic correction term 
to the argument of latitude 

C  
Amplitude of the sine harmonic correction term to 
the argument of latitude 

C  
Amplitude of the cosine harmonic correction term 
to the orbit radius  

C  
Amplitude of the sine harmonic correction term to 
the orbit radius 

C  
Amplitude of the cosine harmonic correction term 
to the angle of inclination 

C  
Amplitude of the sine harmonic correction term to 
the angle of inclination 

t  Reference time ephemeris 
IODE Issue of data (ephemeris) 
 

 
 

Fig. 2 — Time-series of Keplerian elements in 2 hours intervals. 
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presented in Figure 3. In the case of the semi-major axis 
and longitude of the ascending node 𝛺 , the patterns 
have a linear trend with single pitches. In the case of 
three parameters (𝑖, 𝜔, 𝑒), there is a long-term 
polynomial trend and the mean anomaly of reference 
time 𝑀  pattern has a random changes ranging from -3 
to 3. Figure 4 presents the behaviour of Keplerian 
elements in 5-day intervals covering 10 years of 
observations. The time-series of three elements (𝑖, 𝜔, 𝑒) 

present polynomial behaviour with imposed sinusoidal 
fluctuations with annual (𝜔, 𝑒) and semi-annual (𝑖) 
period oscillations. In the case of the semi-major axis 𝑎 
and longitude of the ascending node 𝛺 , the time-series 
demonstrates a sawtooth graph plot with an annual 
period. In the case of the mean anomaly of reference 
time 𝑀 , the graph oscillates within a range of -3 to 3 
with a random-like, close to annual period. The 
behaviour of correction coefficients is presented in 

 
 

Fig. 3 — Time-series of Keplerian elements in daily intervals 
 

 
 

Fig. 4 — Time-series of Keplerian elements in 5 days intervals 
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Figures 5-7. Each coefficient has periodical sinusoidal 
fluctuations with half a sidereal day. An analysis of 
annual graphs of four coefficient 𝐶 , 𝐶 , 𝐶 , 𝐶  time 
series presents periodical fluctuations with a nearly 13.5-
day period. The coefficients 𝐶 , 𝐶  time series present a 
pseudorandom noise course both for the year period (1-
day interval) and for 10 years (5-day interval). The 
coefficients 𝐶 , 𝐶 , 𝐶 , 𝐶  time series in the 10-year 
period have a sinusoidal course with a 175-day period, 
which is very close to half of a draconitic year. 
 

Conclusion 
The paper discusses the orbits of GPS satellites and 

the author looks at the Keplerian element changes 
based on the navigational message. There is an 
analysis of six Keplerian elements and six correction 
coefficient time series in three different intervals: 2 

hours, 1 day and 5 days. The analysis shows the 
varying behaviour of the analysed time series both in 
short- and long-time periods, the majority of which is 
characterised by seasonal, repetitive changes. Short-
term sinusoidal fluctuations are imposed on long-term 
close to annual, semi-annual and even draconitic 
periods, which can be extrapolated and whose values 
may be anticipated. 
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