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K
s/d
1 Simplification in the calculations of the tunneling length [V]

k, k1,2,3 Wave vector of the 1D wavefunction Ψ along the x-axis [cm−1]
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r Radius [cm]
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TGR Tunneling generation rate [s−1cm−3]
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tch Channel thickness of the TFET device [nm]

tox Gate oxide/insulator thickness [nm]
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U
s/d
bar Tunneling energy barrier height in the AE WKB approach [J]

∆U Energy difference [J]
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Vds Drain-source voltage [V]
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us/c Normalized surface/center potential value [−]

u′ Integration variable along the u-axis [cm]

v imaginary part of the complex variable / function w̄ [cm] / [TBD]

W Width of a rectangular energy barrier [cm]

w̄ Complex variable in w̄-plane / Complex function [cm] / [TBD]

w̄s/d Mapping function for the source/drain related case [−]

wch Channel width of the TFET device [nm]

x Cartesian coordinate [cm]

x
s/d
i x values for the compact potential approximation [nm]

x
s/d
t Specific x-position at which the tunneling length is derived [cm]

x
s/d
t,1,2 Integration limits of the B2B tunneling generation rate [cm]

x
s/d
B2B/TAT,max x-position of the maximum TGR value (B2B/TAT) [cm]

y Cartesian coordinate [cm]

z Cartesian coordinate [cm]

z̄ Complex variable in z̄-plane [cm]

Greek Alphabet

Symbol Description Unit

Γs/d Approximated field-effect enhancement factor in the compact
model

[−]

Γe/h Field-effect enhancement factor for electrons/holes [−]

γ Body factor [
√
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γ Phase angle of the longitudinal wave vector ~kρ [rad]

γi Phase angle of the Schwarz-Christoffel transformation [−]

∆ Laplace operator [−]

∆E
s/d
g Band gap difference due to band gap narrowing [J]

δy Exponent of the compact potential along the y-axis [−]

ε Permittivity [A s V−1 cm−1]

ηs/d Standard deviation of the compact current density approxi-
mation, adjustable parameter

[cm]

Θ(x) Amplitude function of the 1D wavefunction Ψ [1/
√

cm]

ϑ1 Simplification in the calculation of xs/dB2B,max [V2]

ϑ2 Simplification in the calculation of xs/dB2B,max [cm3]
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ϑ3 Simplification in the calculation of xs/dB2B,max [cm2]

κs/d
TAT Fitting parameter to adjust the slope of the TAT current part [−]

ζ Electric flux [A s]

λ Wavelength [cm]

λ
s/d
fit Adjustable parameter to tune the screening length [−]

λ
s/d
ln,fit Adjustable parameter to tune the influence of inversion charges

on the potential solution
[−]

λ, λ̃s/d Screening length at source/drain-to-channel junction [cm]

Ξ Electric flux function [V cm−1]

% Space charge [As/cm3]

σ
s/d
B2B Standard deviation of B2B TGR approximation, adjustable

parameter
[cm]

σL,1,2,3 Parameter of the potential solution for a piecewise linear
boundary

[V]

σL,4 Parameter of the potential solution for a piecewise linear
boundary

[cm2]

σ
s/d
TAT Standard deviation of TAT TGR approximation, adjustable

parameter
[cm]

ςe/h Electron/hole generation lifetime [s]

τ
s/d
TAT Capture cross section [cm2]

Φ Electrostatic potential [V]

Φ
s/d
bi Built-in potential of the source/drain region [V]

Φ
s/d
bi,eff Effective built-in potential at the source/drain-to-channel junc-

tion
[V]

Φ
s/d
C Constant boundary condition of the 2D channel potential [V]

Φ
s/d
cen Compact potential in the channel center for any x-position [V]

Φ
s/d
L Linear boundary condition of the 2D channel potential [V]

Φ
s/d
P Parabolic boundary condition of the 2D channel potential [V]

Φ
s/d
sur Compact potential at the channel surface for any x-position [V]

φ Phase function of the 1D wavefunction Ψ [−]

φ Phase angle [rad]

φiC,L,P Potential solution for a piecewise constant, linear, parabolic
boundary

[V]
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ϕC,L,P 2D electrostatic solution for a constant, linear, parabolic
boundary condition

[V]

ϕ1Dc 1D channel center potential [V]

ϕ1Ds 1D channel surface potential [V]

ϕ1Ds,dep/inv 1D channel surface potential in depletion/inversion mode [V]

ϕ
s/ch/d
x Compact potential solution along the x-axis [V]

ϕy Compact potential solution along the y-axis [V]

ϕch2D 2D closed-form channel potential solution [V]

χ Electron affinity [J]

Ψ 1D wavefunction [1/
√
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Other

Symbol Description Unit

∇ Nabla operator [−]

∂ Partial differential operator [−]
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CHAPTER 1

Introduction

Looking back at the last five decades of the development in the semiconductor industry, one
can see an outstanding technical improvement in all kinds of electronic devices. At the same
time, society’s demands for these electronic devices have increased over the years. In modern
daily life it is totally usual to have a computer, laptop, smartphone or various consumer
electronic products at home and use them several times a day. This rapid development is due
to the efforts of the entire scientific community around the world. At the moment, the metal-
oxide-semiconductor field-effect transistor (MOSFET) is the technologically most advanced
semiconductor device and is the most common transistor in digital and analog circuits. Due to
the growing demands regarding the speed of the chips, efficiency and size, the transistor density
on a chip also increases, which means the single transistor size decreases. Concerning the
shrinking size of a transistor, the MOSFET technology is going to reach its physical limitations.
Consequently, the scientific community is looking for an alternative to the MOSFET technology
having a steeper switching behavior, a smaller supply voltage or a lower off-current. One
promising candidate that offers all these advantages is the tunnel field-effect transistor (TFET).
For this reason, a compact DC TFET current model is introduced in this work.

The following sections give a brief overview of the history of semiconductor devices (Sec. 1.1)
and the technological evolution from the MOSFETs to the current TFETs in Sec. 1.2. Fur-
thermore, the relevance of device simulation and the importance of compact modeling in the
semiconductor development are introduced in Sec. 1.3. A state-of-the-art overview of the
compact TFET models reported in the literature is presented in Sec. 1.4, followed by the
challenges and outline of this dissertation in Sec. 1.5.

1
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2 1. Introduction

1.1 History of Semiconductor Devices

The first innovation in electronic devices was made by Julius Edgar Lilienfeld in 1926, when he
introduced the first patents that describe the working principle of a transistor [1, 2]. In his
patents he described a three terminal electric device in which two contacts were connected
with a compound of copper and sulfur. The third contact was used to apply an electrostatic
potential between the other two contacts that controls or influences the resulting current. It
is to say that this device was in the broadest sense comparable to certain today’s field-effect
transistors like the metal-semiconductor field-effect transistor (MESFET). In the time of his
patent invention, it was not feasible to manufacture or implement such a device.

In 1934, the German physicist Oskar Heil developed the first semiconductor field-effect
transistor (FET) having an insulated gate contact [3]. Four years later, Boris Davydov [4],
Nevill Mott [5] and Walter Schottky [6] independently rectified the work of Oskar Heil. After
the detection of the p–n junction by Russel Ohls in 1940, the first concepts of bipolar transistors,
so-called point-contact transistors, were invented by the researchers of the Bell Telephone
Laboratories William Shockley, John Bardeen and Walter Brattain [7–10]. In 1951, only three
years later, the first bipolar junction (p-n) transistors were introduced by Shockley [11]. The
first integrated circuit was developed by Jack Kilby of Texas Instruments in 1958 [12]. It was a
flip-flop, based on two bipolar transistors.

In the same year, Leo Esaki invented the tunneling diode during his PhD studies in 1958
[13], which was based on the theory of Zener reported in 1934 [14]. The tunneling diode is
essentially a p-n junction with a highly n- and p-doped region and a sharp doping transition.
The doping concentration must be so high that both regions are in degeneration [15, 16]. In
1973 he was awarded with the Nobel Prize in Physics for the experimental demonstration of
the quantum mechanical effect of electron tunneling in solids. The tunneling diode and thus
the band-to-band (B2B) tunneling effect was first used commercially in the year 1976 [16].

The today’s most important device, the MOSFET, was firstly invented by the Bell Telephone
Laboratories engineers Dawon Kahng and Mohamed Atalla in 1959. They developed an electric
field controlled semiconductor device that was also the first FET with an insulated gate [17].
Based on different doping processes (nMOS and pMOS), Frank Wanlass and Chih-Tang Sah
from Fairchild Semiconductor published the idea of a complementary-MOS (CMOS) technology
in 1963 [18]. The CMOS technology enables a low standby power consumption [19] and has
become the state-of-the-art in circuit design which is still used.

In 1965 Gordon E. Moore established the theory that the transistor count in fixed-size ICs
will increase exponentially [20]. Moore’s law predicts that the transistor count on an IC would
double every 12 months. Ten years later he rectified his theory and said that the transistor
count would double in a time period of two years [21]. Moore’s law predicted this development
very well but today, considering this law is coming to its end, innovations in terms of device
structure and materials are required [22, 23].

With the invention of the CMOS logic in 1963, it was only a matter of time before the first

UNIVERSITAT ROVIRA I VIRGILI  
COMPACT DC MODELING OF TUNNEL-FETS 
Fabian Horst 



1.2. From MOSFET to TFET Technology 3

microprocessor was developed. The first commercially available microprocessor was introduced
in November 1971 by Intel. It was the Intel 4004, a 4-Bit-processor with a transistor amount of
2300 and a maximum CPU clock frequency of 740 kHz [24].

In the following years more and more complex ICs were developed, which became smaller
and smaller in size with a simultaneously increasing number of transistors on them. As a result,
the transistors had to become continuously smaller and therefore some challenges arose in the
MOSFET technology that had to be considered in the MOSFET and circuit design. These
challenges are accounted in the following section.

1.2 From MOSFET to TFET Technology

The first conventional MOSFET circuits like the Intel 4004 were based on the planar man-
ufacturing process, which was invented by Jean Hoerni in 1959 [25, 26]. Based on Moore’s
statement, the count of transistors in ICs increased exponentially and thus, the transistor size
shrank with the increasing count. The so-called transistor scaling based on Silicon went on for
about 30 years and ended at the beginning of the 2000s with the 70 nm node [27]. From this
point, the leakage current of the transistors reached an unsustainable amount and negatively
affected the switching behavior of the devices. This problem was solved by changing the gate
insulator material from SiO2 to high-κ materials and also using strained Silicon technology [28],
so the planar transistor scaling continued for several more years.

Simultaneously to the scaling process, researchers were looking for alternative transistor
structures to improve the behavior of the devices. They introduced transistors with more than
one gate, the so-called multiple-gate FETs (MuGFETs), in order to enhance the electrostatic
control of the transistor channel region and thus to reduce the leakage current [29, 30]. It is to
say that MuGFETs are good candidates to reduce the parasitic effects occurring in transistors
with a channel length below 100 nm. These parasitic impacts are called short-channel effects
(SCEs) [31]. Two examples of SCEs are the threshold voltage roll-off and the drain-induced
barrier lowering (DIBL). The first one describes the channel length dependent reduction of the
threshold voltage Vth. The DIBL characterizes the reduction of the energy barrier within the
channel region of the MOSFET in dependency of the drain voltage and therefore, a reduced
threshold voltage Vth. It should be noted that the reduction of Vth causes an unwanted increased
off-current [32].

A revolutionary invention was presented by Intel in 2011: The 22 nm tri-gate MOSFET [33].
This was the first commercially available 3D device and due to its three gates, SCEs were
reduced, the subthreshold slope was improved and the transistor could operate at lower supply
voltages which results in reduced power consumption. By introducing the 14 nm process
technology in 2014, Intel was able to improve its transistor technology again [34–37]. Based on
these technologically improved devices, in 2015 the community of the international technology
roadmap for semiconductors (ITRS) tried to predict future technologies in 2015 and intends to
lead industry and the research community in this direction. In the ITRS roadmap, a future
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4 1. Introduction

with the combination of 3D devices with low power devices has been predicted and has been
called “3D Power Scaling” [38]. Nevertheless, Intel continued with research and presented
the 3rd FinFET generation with a 10 nm node [39, 40], which is scheduled to go into series
production by the end of 2019. In April 2019, Samsung announced that they have successfully
completed their EUV development for the 5 nm FinFET process technology and is ready for
costumers’ samples [41].

There is going to be a big dilemma in the future in terms of the MOSFET scalability.
As the devices are further minimized and the supply voltage is reduced due to lower power
consumption, additional parasitic effects occur. The first group is atomic structure related
effects like random dopants [42, 43] or gate line edge roughness [44] that negatively influence
the transistor behavior. The quantum mechanical effects are the second group that affects the
MOSFET performance. When it comes to very thin device thicknesses, quantum confinement
negatively influences the threshold voltage Vth [45]. For a channel length less than lch < 10 nm,
source-to-drain (SD) tunneling starts to worsen the resulting off-state current and the threshold
voltage Vth [46–48].

Even before the quantum mechanical effects have been observed in fabricated MOSFET
technology, researchers tried to take advantage of these parasitic effects. The reason for this
is that in the CMOS technology the minimum subthreshold slope Sth is physically limited to
60 mV/dec at room temperature due to the thermionic-emission based current transport [49].
Regarding the low power applications in CMOS technology, which means a reduction of the
supply voltage, the leakage current in MOSFETs increases due to the DIBL effect and therefore
worsens the Ion/Ioff ratio. In order to avoid these effects, the community looked for a device
whose switching steepness is not affected by a supply voltage reduction. These transistors are
called steep slope devices, since they make it possible to obtain resulting subthreshold slopes
< 60 mV/dec. One of these devices is the TFET [50–53].

After the commercialization of the Esaki tunneling diode, in 1987 first attempts were made
to use the B2B tunneling effect in a MOS capacitor acting like a three terminal tunneling
device [54]. The tunneling current between the drain and the substrate was controlled by
a gate contact. The TFET, which is basically a gated p-i-n diode, was firstly fabricated
and reported independently by two research groups in 2004. The first one was published by
Wang from TU Munich, which was based on the planar technology [55] and the second one
introduced by Appenzeller of IBM had a carbon nanotube channel and a resulting subthreshold
slope of 40 mV/dec [56]. Based on these ideas, the TFET became more attractive and some
research groups like IBM, CEA-LETI, IMEC, Forschungszentrum Jülich and the university of
Tokyo started to focus on this device. Silicon and SiGe TFETs based on various fabrication
technologies and with a subthreshold slope < 60 mV/dec were reported between 2007 and
2013 [57]. For example, IBM reported in 2008 a fabricated Silicon nanowire with a resulting
subthreshold slope of 100 mV/dec and an Ion/Ioff ratio of about six decades [58, 59]. An other
example was shown by Knoll of the Forschungszentrum Jülich in 2013. He reported a fabricated
complementary TFET inverter based on Strained Silicon with a smallest Sth of 30 mV/dec at
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1.3. Device Simulation and the Importance of Compact Modeling 5

room temperature and on-currents Ion > 10 µA/µm at Vds = 0.5 V [60, 61].
Considering the feasibility to exceed the subthreshold slope limit of 60 mV/dec at room

temperature and the full CMOS compatibility, the TFETs are handled as a successor of the
conventional MOSFET technology [50, 62]. In general, the TFET is a good candidate for
low power applications, but there are still some challenges to be solved. The first one is
obtaining an acceptably high Ion, secondly a low Sth over several decades and thirdly a low
Ioff [63]. A possible way to enhance the TFET performance is the choice of the transistor
material. By using heterostructures, which means a different material in the source than in the
channel and drain region, all three problems can be improved. One possibility is a combination
of a small effective band gap at the source-to-channel junction to obtain a high Ion with a
high effective band gap at the drain-to-channel junction to reduce Ioff [63]. In 2011, Dewey
from Intel published a III-V heterostructure TFET with a high Ion and a subthreshold slope
< 60 mV/dec in the range of two decades [64]. Researchers from IBM published in 2016 two
different complementary III-V heterostructure TFETs, which unfortunately show a relatively
high Sth ≈ 70 mV/dec, but an on-current of 4 µA/µm in the p-type device [65, 66].

Nonetheless, in these presented TFETs the Ioff was too high and therefore, the parasitic
effect of trap-assisted tunneling (TAT) could be seen. The TAT effect occurs mainly in the
TFET off-state and causes an Ioff and subthreshold slope degradation [67–69]. To this day,
many attempts have been made to eliminate this effect and improve the TFET performance.
Some possibilities are switching to 2D materials [70, 71], using dopant pockets at the source-to-
channel junction [63, 72] or line tunneling [73–75]. In addition, it is possible to combine the
advantages of the TFET technology with for instance the negative capacitance (NC) FET as it
is shown in [76]. In conclusion, it can be said that the development of the TFET technology is
still in its early stages and that further improvements in the technology could make the TFET
a very promising candidate in the field of low power applications.

1.3 Device Simulation and the Importance of Compact Modeling

To this day the complexity of ICs has steadily increased and therefore the transistor count on a
single chip. Looking back at the first commercialized microprocessor, the Intel 4004 with a
transistor count of 2300 [24], it was a big challenge for the engineers to design this chip by hand.
In the today’s chip design with a transistor density of 37.22 MT/mm2 (Million transistors per
square millimeter) in the 14 nm node of Intel [39] or a density of 100.76 MT/mm2 in the 10 nm
node of Intel [77], it is totally impossible to design a new chip manually. For this reason, it is
indispensable to design the chips with the help of a computer-aided program. This was already
recognized at the end of the 1960s and therefore, the first computer-aided automatic design
program was introduced in [78]. This tool reduced the design errors and the design time.

Due to the high transistor density on a chip and the associated high fabrication costs,
nowadays a new chip design is simulated and tested for its functionality before production.
For this simulation purpose, compact models are required to describe the behavior of the
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6 1. Introduction

used transistors and other components. Compact models are simple mathematical or physical
equations for a very time-saving simulation of e.g. novel transistors. Numerical finite element
method (FEM) simulations of the novel device are performed to verify the compact models.
These numerical simulations also provide an insight into the physical behavior of the device.
After a positive evaluation of the device performance in FEM simulations, first device samples
can be fabricated to validate and refine the compact models or device simulations. Hence, it
can be seen that the development of a compact model is an iterative process and takes some
time before it can be commercially utilized.

Device Simulation

In order to improve the performance of existing semiconductor devices or to develop new
devices, it is now widely practiced to perform FEM simulations before the novel devices are
manufactured. The main advantage of simulating with the FEM method is that the physical
behavior of the semiconductor device can be investigated and evaluated before fabrication.
Considering the fact that producing novel devices is very expensive, device simulation is a very
useful tool to avoid extra costs, in case of a inoperable device, and also helps to save time in
the development process.

The device simulation is commonly done in Technology Computer Aided Design (TCAD)
programs, like TCAD Sentaurus [79], Silvaco Atlas [80], NDS from Global TCAD solutions [81],
DEVSIM TCAD [82] or Cogenda Visual TCAD [83]. In these device simulation tools, the user
is able to generate a virtual 2D or 3D device containing the information about geometrical
parameters, materials and doping, which is afterwards meshed into small grid points, where
within a single grid point all physical quantities are assumed to be constant. After the meshing
of the device, every single grid point is iteratively solved with the help of partial differential
equation solvers. The simulations of a single device can last from minutes to several days or
weeks, depending strongly on the resulting mesh grid and thus the accuracy and the applied
physical models. Once the simulation is done, it is possible to investigate for instance the
electrostatic potential, electric field or current density within the device. This allows the
possible weaknesses such as leakage currents of the device to be detected in the simulation
results and by readjusting the device geometry or parameters, the device performance can be
enhanced. Considering the fact that the simulations are accurate but very time-consuming,
these tools are not suitable to perform complex circuit simulations.

Compact Modeling

In the design of novel semiconductor chips, the engineers are not interested in the detailed
device physics as it can be investigated in single device simulations, they rather prefer a simple
model that characterizes the DC, AC and transient device behavior very time-efficiently and as
accurately as possible. This type of device description is known as the compact model and
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1.3. Device Simulation and the Importance of Compact Modeling 7

bridges the gap between the single device simulation and the simulation of complex electronic
circuits.

The computer-aided circuit design and simulation using compact models has become an
essential tool for several reasons [31]:

• Designers can reduce errors in the chip design of complex circuits.

• Designers are able to simulate their chips under worst case conditions to consider deviations
in the chip fabrication. To do so, they can give a proper statement whether the chip will
work or not.

• With the help of the simulations, designers are able to predict the circuit performance
and even optimize or enhance the performance.

Some established simulation tools are for instance SPICE [84] from the UC Berkeley, the
Quite Universal Circuit Simulator (Qucs) [85] from Mike Brinson’s research group or Cadence
Virtuoso [86]. A useful tool to extract the compact model parameters is IC-Characterization
and Analysis Program (IC-CAP) form Keysight Technologies [87].

Since the compact models are used to predict the behavior of a novel circuit before fabrication,
there are some requirements that a compact model has to satisfy [31, 88]:

• A compact model has to reproduce the device terminal current-voltage (I-V) characteristics
over all regions of operation of interest accurately and quickly.

• A compact model should include accurate descriptions of the capacitance-voltage (C-
V) characteristics, since the model will be used in both static and dynamic circuits
simulations.

• In transient simulations, the compact model is probably executed thousands of times and
therefore, it is mandatory that the compact model is both computationally efficient and
accurate. In addition, it should be as simple as possible but at the same time as accurate
as possible. There is always a trade-off between accuracy and simplicity.

• The compact modeling equations should be derived in a form that they can easily be
implemented into a SPICE engine or in the hardware description language Verilog-A
[89, 90].

• An accuracy of about 5% between the current and capacitance measurements and the
compact model is sufficient for use in circuit simulations.

• The device behavior should be described with the help of mathematical equations that
are continuous, with continuous first derivatives, although not necessarily in a strictly
mathematical sense. The degree of discontinuity must be so small that the resulting
errors can be captured by the overall error tolerances of the simulator.
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8 1. Introduction

• A compact model should be scalable in terms of device dimensions and doping concentra-
tions.

Basically, it is possible to distinguish between the following three categories of compact
models [31, 88, 91]:

1. Physics-based analytical models: In the physics-based models, all modeling equations are
derived analytically on the basis of physical laws. In addition, the modeling equations
are related to physical parameters of the device such as geometry or doping. However,
it should be noted that the model equations must not cover only a certain bias range,
rather they have to be continuous from e.g. a MOSFET’s subthreshold to above threshold
regime. It is also important that a physics-based model behaves “decently” for bias
conditions far away from the practical working region of the device, since the compact
model may be confronted with unrealistic and impractical conditions during the iteration
process of the simulator and this must not endanger the convergence.

The main advantages of this model type are the feasibility to forecast the electrical device
behavior for varying parameters in the physical process, which is very helpful in the
parameter extraction and in the circuit design. Furthermore, the rules of geometrical
scaling can be confidently applied. The drawbacks of physics-based models are that they
are technology dependent and it takes a lot of time (∼years) to develop novel models.
Moreover, new devices or alternative structures often require major model modifications
or even new modeling approaches.

2. Table lookup models: In table lookup models the I-V and C-V characteristics are discretely
stored in a database for different bias points and device geometries. The table can be
filled with measurements or simulation data obtained by FEM or TCAD simulations. If
the table model is executed, the simulator searches for the handover bias point and if this
bias point is not included in the table, a spline interpolation between the adjacent points
is conducted. The main advantage of a table lookup model over the physics-based model
is that they are technology independent and can be developed in relatively short time.
The disadvantages are that there is no possibility to get a physical insight into the device
physics and the table model is only valid in the measured or simulated bias range. The
interpolations outside this range are uncertain and if accuracy is one of the requirements,
memory storage size will lead to problems.

3. Empirical behavior models: In the empirical behavior model, the derived analytical
modeling equations have no relation to the device physics. This model is often used to fit
the discrete data in lookup tables in order to eliminate the spline interpolations. The main
advantage is the reduced development time in comparison to the physics-based models
and the reduced data storage with respect to the table lookup model. The disadvantage
is that this model type is not technologically independent to predict changes in the
geometrical scaling and the correct correlation between parameters.
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1.4. State of the Art in TFET Compact Modeling 9

In the simulations of a novel circuit it is advantageous to use a physics-based analytical
model, if one is available, due to its flexibility in predicting changes in the device parameters.
On the other hand, if no physics-based model of a novel device is developed yet, it is more
time-efficient to use a table lookup or an empirical behavioral model.

1.4 State of the Art in TFET Compact Modeling

Since the TFET is of interest as a possible successor of the MOSFET technology, many
researchers have started to focus on the compact modeling of TFETs. The fundamentals for the
mathematical and physical description of the tunneling effect in semiconductors were introduced
by E. Kane in 1960 [92, 93]. In 1973, the so-called Tsu-Esaki formula was introduced which
describes the tunneling in a superlattice [94], whereby this approach was originally proposed by
Duke in 1969 [95]. Most of the today’s TFET compact models are based on these approaches.

Because most of the TFET compact model presented in the following are derived for a special
device geometry and are not yet suitable for circuit simulations, some research groups used
table lookup TFET models [96, 97] or empirical models [98] in order to simulate TFET-based
circuits.

In 2008, a research group from IMEC in Belgium published an analytical DC model for a
double-gate (DG) TFET considering point and line B2B tunneling and extended the model for
single-gate and gate-all-around (GAA) TFETs in 2010 and 2011, respectively [99–101]. Their
modeling approach is based on Kane’s model, the effect of inversion charges on the potential is
neglected and SCEs are not considered in the calculations. Bardon, also part of IMEC, published
in 2010 a pseudo-two-dimensional DC model for DG TFETs, which additionally considers the
source and drain depletion regions [102]. The electrostatics were solved analytically in two
dimensions, where the resulting DC current was obtained by numerical calculations which
forbids a usage in circuit simulations. This is also the case in the aforementioned papers.

A surface potential based DC model for a planar TFET was reported in 2011 by Wan et
al. [103]. Bhushan et al. presented in 2012 a physics-based analytical model for a planar SOI
TFET which includes both the AC and DC behavior of the TFET [104]. The 1D calculations
were based on Landauer’s tunneling approach and included the parasitic TAT effect as well
as SCEs, whereby the ambipolar behavior was not included in the approach. Due to the
characterization of the AC and DC behavior, the model would be suitable for circuit simulations,
but the authors did not show any simulation results.

In 2012, a generalized scaling theory for DG interband TFETs was reported by Liu et
al. [105]. The B2B tunneling current calculations were based on a 2D analytical potential
solution. SCEs are included but inversion charges are neglected, which led to inaccuracies in
the above threshold regime of the TFET. In the same year, Gnani et al. presented an analytical
DC model for the drain-conductance optimization in nanowire (NW) TFETs [106, 107]. The
calculations were based on Landauer’s tunneling formula and a simplified band diagram model.

From 2012 to 2014, Zhang et al. from HKUST published several modeling parts of a DG
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10 1. Introduction

TFET, which were combined to an overall TFET model implemented in SPICE [108, 109].
The model includes both the AC and DC behavior of the TFET and first simulations of basic
TFET circuits were performed. The presented model provided a good accuracy in terms of the
potential and B2B tunneling current. However, the 1D modeling approach did not consider the
influence of TAT and the ambipolar behavior as well as SCEs. Nevertheless, this modeling
approach was extended for the consideration of hetero-junctions in 2016 by Dong [110] and the
influence of a gate-drain underlap on the B2B tunneling current by Xu in 2017 [111].

Gholizadeh et al. presented a 2D analytical model for DG TFETs in 2014, which incorporated
the source and drain depletion regions but neglected the ambipolar-state of the TFET [112].
In the same year, Vishnoi et al. introduced a compact analytical DC model for dual material
gate SOI TFETs, based on a surface potential modeling approach [113]. This approach was
extended by the consideration of band gap narrowing and non-abrupt doping profiles [114] and
the considerations of inversion charges [115]. In addition, the model was transferred to a GAA
structure [116] and to a DG TFET considering the source and drain depletion regions and the
ambipolar behavior of the TFET [117]. Unfortunately, no circuit simulations were performed
to demonstrate the model capabilities.

In 2015, several modeling approaches were reported in literature. A simple analytical TFET
model for circuit simulations was introduced by Lu et al. in [118]. Taur et al. introduced a
hetero-junction DG TFET model [119] and Wu et al. presented an analytical model to consider
SCEs in DG TFETs [120]. A Verilog-A implemented AC and DC DG TFET compact model was
introduced in the same year by Biswas et al. [121], which was based on the approaches presented
in [122, 123]. The depletion regions in source and drain are neglected in the calculations of the
1D surface potential, which limits the model to homo-junction devices. However, it was possible
to perform basic TFET circuit simulations in the sense of a benchmarking of homo-junction
NW TFETs for basic analog functions [124]. Here, the model was calibrated with measurements
of fabricated TFETs.

An analytical DC model of GAA hetero-junction TFETs was reported by Guan et al. in
2018 [125], which is partly based on the work of Vishnoi.

Our workgroup started to focus on the modeling of DG TFETs in 2013. Graef et al.
introduced a DC DG TFET model, which was based on an analytical closed-form potential
solution and a numerical calculation of the B2B tunneling and TAT current [126–131]. The
potential calculations included the depletion regions in source and drain and Gaussian shaped
doping profiles of the source and drain regions, but inversion charges were not taken into
account. The model also included the consideration of hetero-junctions. Due to the numerical
calculations of the device current, circuit simulations were not possible. In 2017, Hosenfeld
et al. presented an alternative non-iterative non-equilibrium Green’s function (NEGF) based
model for the B2B tunneling current in DG TFETs [132].

The model of Graef was transferred to a compact DC model in 2016, where the impact
of inversion charges on the electrostatics was considered in the compact model [133]. This
compact model opens the possibility to perform the first DC circuit simulations in terms of
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1.5. Challenges and Outline of the Thesis 11

a single-stage TFET inverter [133] and an TFET-based SRAM cell [134]. The compact DC
model was extended by an area equivalent WKB approach to calculate the B2B tunneling
current more time-efficiently [135], the consideration of hetero-junctions [136] and the TAT
effect [137]. In parallel to the development of the DC model, a compact modeling approach of
the intrinsic capacitances in DG TFETs was introduced by Farokhnejad et al. [138, 139]. The
combination of both model parts AC and DC allowed for the transient simulation and analysis
of basic TFET circuits [140, 141].

1.5 Challenges and Outline of the Thesis

This dissertation introduces an innovative 2D compact model for the device current calculation
in n-type DG TFETs. The aim of the modeling approach is to find a closed-form equation
package, which is based on an analytical-numerical modeling approach presented in [129, 131].
Thus, the following scientific objectives are defined:

1. Derivation of a compact 2D potential solution for the entire device and all operation
regimes of the TFET. The calculations of the potential should be done using an existing
2D closed-form solution of the electrostatics in a DG TFET. In addition, the effect of
inversion charges and their influence on the electrostatics should be taken into account.

2. The potential solution should be used to derive compact expressions for the band diagram.
The considerations of band gap narrowing and of hetero-junctions should be included in
the calculations.

3. Deriving a compact expression for the current density in the DG TFET, which includes
a closed-form calculation of the tunneling length and tunneling probability. These
calculations should include 2D effects.

4. Finding a compact and closed-form integration of the current density to obtain the
resulting device current. The device current should include the effect of B2B tunneling
and TAT.

5. All modeling equations should be implemented in the hardware description language
Verilog-A for a usage in circuit simulations.

6. The compact model should be verified by TCAD Sentaurus simulations and measurement
data of fabricated TFETs to identify possible fields of application.

7. The continuity and numerical stability of the compact model should be demonstrated in
terms of simulations of basic TFET circuits.

In order to capture all these scientific objectives, the outline of the thesis is presented in
the following. After the introduction showing the scientific field in which this work can be
classified, the used mathematical and physical preliminaries are introduced in Chap. 2. In this
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12 1. Introduction

chapter, Poisson’s and Laplace’s equation, the complex potential theory and the conformal
mapping technique are explained in detail. These techniques are very useful to solve arbitrary
electrostatic problems.

In order to get a solid grasp of the TFET, the fundamentals of this semiconductor device
are outlined in Chap. 3. Within this chapter, the quantum mechanical effect of tunneling is
introduced and the various tunneling events occurring in semiconductor devices are explained.
The investigated device geometry and the working principle of the TFET are also considered
in this chapter.

Chapter 4 reviews and also extends the existing 2D closed-form electrostatic potential of the
DG TFET [128]. The existing potential solution is derived by solving Laplace’s equation with
the help of the conformal mapping technique and is therefore only valid in the subthreshold
regime of the TFET. In order to extend the model for the above threshold regime of the TFET,
the effect of inversion charges is considered in the 2D calculations of the potential. The validity
of the model extension and the entire 2D closed-form potential solution is determined with the
help of TCAD Sentaurus simulations at the end of this chapter.

In Chap. 5, the compact DC modeling approach is presented. At first, a compact description
of the potential within the device is derived in terms of approximations with mathematical
functions. The characteristic points and properties of these functions are calculated by means of
the 2D potential solution from Chap. 4. After that, the band diagram and a compact equation
for the electric field are determined. The compact current density derivation is separated into
two parts: In the first part, the compact current density derivation for the B2B tunneling
effect is explained in detail. Secondly, the TAT current density expression part is presented.
The derivation of a compact equation for the device current including 2D effects finishes this
chapter.

The verification of the compact modeling approach is presented in Chap. 6. Firstly, TCAD
simulations of the DG TFET are performed to verify the electrostatic potential, band diagram,
electric field, tunneling barrier and tunneling generation rate as a part of the modeling approach.
The device current is then validated for various device parameter setups. In a second step, the
compact model is verified by measurements of fabricated complementary NW GAA TFETs.

In order to demonstrate the numerical robustness and flexibility of the modeling approach,
basic TFET circuit simulations are performed in Chap. 7. In this chapter, the compact DC
model is used to simulate a single-stage TFET inverter and a TFET-based SRAM cell. The
combination of the DC model with an AC model opens up the possibility of performing a
transient simulation of an 11-stage ring oscillator.

Chapter 8 concludes and reflects the presented dissertation and presents an outlook on
research perspectives in order to further improve the compact model in the future.

UNIVERSITAT ROVIRA I VIRGILI  
COMPACT DC MODELING OF TUNNEL-FETS 
Fabian Horst 



CHAPTER 2

Mathematical and Physical Preliminaries

In order to calculate the tunneling current of TFETs, it is essential to have an accurate
electrostatic solution. In this chapter the mathematical and physical basics are introduced, which
are used in characterizing the electrostatics of a TFET. The Poisson and the Laplace equation
are presented in Sec. 2.1, which are well-known equations to describe electrostatic problems.
Subsequently, the complex potential theory is introduced in Sec. 2.2, which characterizes a way
to describe Laplace’s equation in a 2D complex plane. In order to simplify finding a closed-form
electrostatic solution within a 2D plane, the conformal mapping technique is detailed in Sec. 2.3.

2.1 Poisson’s and Laplace’s Equation

The solution of a potential for a given electrostatic problem can be found by solving a partial
differential equation on the basis of Maxwell’s equations. One of Maxwell’s equations is the
so-called Gaussian law that relates the electric field ~E to the charge density %:

∇ · ~E(r) = %(r)
ε
, (2.1)

where ε represents the constant permittivity of the homogeneous material [142, 143]. The
electric field and the potential have also a divergence relationship as follows:

~E(r) = − grad
(
Φ(r)

)
= −∇Φ(r). (2.2)

A combination of Eq. (2.1) and Eq. (2.2) leads to the so-called Poisson equation which defines
the correlation between the electrostatic potential and the charge density [143]:

∆Φ(r) = −%(r)
ε
, (2.3)

13
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14 2. Mathematical and Physical Preliminaries

whereby ∆ describes the Laplace operator. The electrostatic problems in this thesis are 2D or
3D problems and for this reason the Laplace operator is written in Cartesian coordinates [142]:

∆ = ∇ · ∇ = ∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2 , (2.4)

so the Poisson equation in Cartesian coordinates yields:

∆Φ(x,y,z) = −%(x,y,z)
ε

. (2.5)

In the special case that there is no space charge existing (% = 0), Poisson’s equation is called
the Laplace equation [143]:

∆Φ(x,y,z) = 0. (2.6)

Laplace’s equation is a very important special case because it is quite easy to solve electrostatic
problems analytically.

Poisson’s and Laplace’s equation have in general an infinite count of solutions. In order to
solve Laplace’s equation (Eq. (2.6)), the potential Φ(x,y,z) must have continuous second-order
derivatives in x, y and z and needs to satisfy the Laplace equation. The solutions of Laplace’s
equation are called harmonic functions and hold the principle of superposition [143]. The
general solution together with some specific boundary conditions yield to a particular solution
of the electrostatic problem. The boundary conditions are distinguished between the Dirichlet
condition and the Neumann condition [142]:

1. Dirichlet condition (Boundary value problem of the first kind): The harmonic function
Φ(x,y,z) in an enclosed area A, reaches predetermined values ΦA at the boundary of A. This
boundary value problem is -if at all- clearly solvable.

2. Neumann condition (Boundary value problem of the second kind): The harmonic function
Φ(x,y,z) in an enclosed area A, reaches a predetermined normal derivative ∂Φ/∂~n|A, where ~n
defines the normal vector. This boundary value problem is -if at all- clearly solvable except
of one single constant.

In principle, a mixture of both boundary conditions is possible, where one part of the boundary
is determined by Dirichlet conditions and the other part of the boundary is defined by Neumann
conditions.

2.2 Complex Potential Theory

With the help of the 2D complex potential theory it is possible to find analytical solutions for
given 2D field problems more straightforward. The aim of this theory is to find an expression
for a complex function in a 2D plane. This function has to fulfill Poisson’s or Laplace’s equation
in the real and imaginary part to obtain an electrostatic solution for given boundary conditions.
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In case of the Laplace equation, the derivation starts with the electric field in a region free
of space charges in Cartesian coordinates which is given by:

∇ · ~E = ∂Ex
∂x

+ ∂Ey
∂y

= 0, (2.7)

where the z component of the electric field is constant in space region and thus, not of interest.
The electric field components can also be described by the potential, which leads to [144]:

Ex = −∂Φ
∂x

, Ey = −∂Φ
∂y
→ E = −∇Φ. (2.8)

In addition, the components of the electric field are also expressible by an electric flux function
Ξ as follows:

Ex = −∂Ξ
∂y

, Ey = ∂Ξ

∂x
→ E = −∇× (Ξ · ~ez). (2.9)

The electrostatic potential Φ and the electric flux function Ξ describe the same electric field.
Both terms are dependent from each other, they are linked by the so-called Cauchy-Riemann
differential equations:

∂Φ

∂x
= ∂Ξ

∂y
,

∂Φ

∂y
= −∂Ξ

∂x
. (2.10)

With the electric flux function, the dielectric flux ξ in z-direction can be determined between
two points 1 and 2 as follows:

ξ = ε

∫

A

E dA = −ε ·∆z · (ξ1 − ξ2). (2.11)

Since the potential Φ(x,y) and the electric flux function Ξ(x,y) are both dependent on x
and y, the following complex variable can be introduced as:

z̄ = x+ jy, (2.12)

which characterizes an arbitrary point P in the complex z̄-plane1 as it is depicted in Fig. 2.1(a).
Since complex numbers form a closed number system, it is possible to interpret any function
f(z̄) = w̄ again as covering a plane with w̄ = u+ jv. In this case, any point P ′(u,v) in w̄-plane
is then the image of the point P (x,y) within z̄-plane, as it is illustrated in Fig. 2.1(b). The
following function introduces a complex combination of two real functions, where each function
depends on the real variables x and y [143]:

w̄ = w̄(z̄) = u(x,y) + jv(x,y). (2.13)

The complex function must be regular and analytic, which means it requires single valuedness,
continuity and differentiability within the region of interest. The continuity requires that a

1 z̄ is not related to the Cartesian coordinate z in the following.
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(a) (b)

Figure 2.1.: Schematic illustration of a function of a complex variable (a) in z̄-plane and (b)
the image of the complex function in w̄(z̄)-plane.

change in z̄-plane ∆z̄ is clearly and uniquely related to a change ∆w̄ in w̄-plane. On the other
hand, differentiability implies that the first partial derivatives of u and v exist, with respect to
x and y, and are also continuous. Furthermore the expression dw̄/dz̄ must exist. This derivative
is obtained by:

dw̄
dz̄ = lim

∆z̄→0

w̄(z̄ +∆z̄)− w̄(z̄)
∆z̄

= lim
∆x,∆y→0

(
∂u
∂x

+ j ∂v
∂x

)
·∆x+ j

(
−j ∂u

∂y
+ ∂v

∂y

)
·∆y

∆x+ j∆y , (2.14)

wherein only if the this derivative is independent from the direction of ∆z̄, then the function is
unique. Defining ∆y = α∆x [144], then α identifies the ∆z̄ direction and the derivative yields:

dw̄
dz̄ = lim

∆x→0

(
∂u
∂x

+ j ∂v
∂x

)
+ j
(
−j ∂u

∂y
+ ∂v

∂y

)
α

1 + jα , (2.15)

where dw̄/dz̄ is only independent from α if the terms in the parentheses in the numerator are
equal:

∂u

∂x
+ j∂v

∂x
= −j∂u

∂y
+ ∂v

∂y
. (2.16)

Rearranging Eq. (2.16) leads again to the Cauchy-Riemann differential equations [144]:

∂u

∂x
= ∂v

∂y
,

∂u

∂y
= −∂v

∂x
. (2.17)

The complex function w̄(z̄) is called analytical if the Cauchy-Riemann conditions are fulfilled
and furthermore, the derivation at singular points fulfills the conditions dw̄/dz̄ 6= 0 and dw̄/dz̄ 6=∞.
If w̄ is analytical, then the real and imaginary part of the complex function fulfill Laplace’s
equation, which can be proven by taking the derivative of the Cauchy-Riemann conditions in
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2.3. Conformal Mapping Technique 17

Eq. (2.17) with respect to x and y. It follows:

∂2u

∂x2 = ∂2v

∂x∂y
,

∂2u

∂y2 = ∂2v

∂x∂y
(2.18)

and eliminating the mixed derivatives regarding x and y, yields:

∂2u

∂x2 + ∂2u

∂y2 = 0 , ∂2v

∂x2 + ∂2v

∂y2 = 0. (2.19)

Both functions u and v can represent the potential solution of a 2D electrostatic problem. If u
is the potential, then v represents the electric flux function and vice versa. The electric field is
then directly obtained by the complex function w̄, which is also called complex potential. The
complex electric field in general is written as:

Ē = Ex + jEy (2.20)

and rewriting Eq. (2.13) in terms of the potential function and electric flux function leads to:

w̄(z̄) = Φ(x,y) + jΞ(x,y). (2.21)

In the case that u is the potential function (u = Φ), the electric field is determined by:

Ē = −∂Φ
∂x
− j∂Φ

∂y
= −

(
∂Φ

∂x
− j∂Ξ

∂x

)
= −

(dw̄
dz̄

)∗
, (2.22)

where w̄∗ is the complex conjugate value of w̄.

2.3 Conformal Mapping Technique

The conformal mapping is a transformation technique, which allows to transfer a potential
problem of a geometry in the complex z̄-plane into the complex w̄-plane and vice versa
using an analytic function w̄ = f(z̄). If the field lines Φ in z̄-plane are perpendicular to the
equipotential lines Ξ (see Fig. 2.2(a)), the field lines Φ′ in w̄-plane must also be orthogonal to
the equipotential lines Ξ ′ (see Fig. 2.2(b)), otherwise the transformation is not analytic and
therefore not conformal.

The conformal mapping simplifies finding a closed-form solution of the complex potential
problem in w̄-plane, by transforming the complex geometrical problem in z̄-plane into a much
easier problem in w̄-plane [143]:

P̄ (w̄) = Φ′(u,v) + jΞ ′(u,v), (2.23)

where the real part Φ′ and the imaginary part Ξ ′ both are still harmonic functions and fulfill
the Laplace equation as it is mentioned in the complex potential theory (see Sec. 2.2). Since
Laplace’s equation is invariant to conformal mapping, the electric field in w̄-plane is required
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18 2. Mathematical and Physical Preliminaries

(a) (b)

Figure 2.2.: Complex potential problem within (a) the z̄-plane that is imaged with the help
of the mapping function w̄ = f(z̄) into w̄-plane shown in (b).

to be scaled with respect to the geometry to obtain the electric field in z̄-plane [143]:

| ~E|(z̄) = | ~E|(w̄) ·
∣∣∣dw̄dz̄

∣∣∣ . (2.24)

When considering Poisson’s equation, the space charge % also needs to be scaled by:

%(z̄) = %(w̄) ·
∣∣∣dw̄dz̄

∣∣∣
−2

(2.25)

since Poisson’s equation must be invariant regarding the conformal mapping [143].

2.3.1 Mapping of a Closed Polygon

In a 2D potential problem the geometry of a transistor can be specified by a closed polygon
in the complex z̄-plane as it is illustrated in Fig. 2.3(a). In order to simplify the solution of
Poisson’s or Laplace’s equation, the Schwarz-Christoffel transformation maps the boundary
value problem in z̄-plane into the upper half of the complex w̄-plane. The Schwarz-Christoffel
transformation is defined by [143]:

dz̄
dw̄ = C1 · (w̄ − w̄1)−γ1 · (w̄ − w̄2)−γ2 . . . (w̄ − w̄n)−γn = C1 ·

n∏

i=1

(w̄ − w̄i)−γi (2.26)

and maps the real u-axis of the w̄-plane (see Fig. 2.3(b)) into the boundary lines of the polygon
in z̄-plane (see Fig. 2.3(a)). The term (w̄ − w̄i) changes its sign at every single point w̄i that
forms the polygon. This causes an angle change in dz̄ by exactly αi = πγi, whereby the
direction is indicated by the sign of γi. The constant C1 describes a factor which includes the
scale and rotation and is determined by the correlation of one of the polygon sides (z̄i − z̄i+1)
with its image (w̄i − w̄i+1). In order to come to the mapping function z̄ = f(w̄) and to solve
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2.3. Conformal Mapping Technique 19

for the constant C1, Eq. (2.26) needs to be integrated. The integration yields to:

z̄(w̄) = C1 ·
∫ n∏

i=1

(w̄ − w̄i)−γi dw̄ + C2, (2.27)

where the integration constant C2 essentially indicates the origin of the z̄-plane. Solving the
integral in Eq. (2.27) for a given boundary value problem, it is possible to map every single
point from the w̄-plane into the complex z̄-plane. In order to find a solution for the boundary
value problem it is necessary to know the function that maps an arbitrary point z̄ from the
z̄-plane into the w̄-plane. This needed expression is obtained by finding the inverse function of
the solution of Eq. (2.27):

w̄(z̄) = f−1(z̄) (2.28)

and is called inverse mapping function.

(a) (b)

Figure 2.3.: Complex potential problem within (a) the z̄-plane that is imaged with the help
of the mapping function w̄ = f(z̄) into w̄-plane shown in (b).

For a practical and easy application of the Schwarz-Christoffel function the following points
should be considered [143]:

1. The order of vertex points in the z̄-plane must be in the same order as in the w̄-plane.

2. The region to be transformed in z̄-plane is at the left of the polygon lines (see Fig. 2.3(a)).

3. All angles γi are counted positive counterclockwise.

4. Three of the vertex images w̄i can be chosen freely by a conformal mapping in the upper
half of the w̄-plane. It is to say, that the vertex images should be set that Eq. (2.27) is
solvable as easy as possible.

5. The vertex image w̄ = ±∞ does not occur in Eq. (2.26).

6. An angle of γk = +1 represents a vertex at z̄k =∞ or an intersection of two parallel lines.
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20 2. Mathematical and Physical Preliminaries

The distance between these two parallel lines is then defined by:

z̄′′k − z̄′k = −jπC1 ·

[∏

k 6=i
(w̄k − w̄i)−γi

]
, (2.29)

whereby, if the corresponding vertices in w̄-plane are chosen to be w̄′k = +∞ and w̄′′k = −∞,
Eq. (2.29) is simplified to:

z̄′′k − z̄′k = jπC1. (2.30)

2.3.2 Potential Solution for Boundary Conditions of First Kind

In case of a more general geometry defined by any closed curve or domain without ordinary
double points1, the interior space can be mapped into the interior space of the unit circle (see
Fig. 2.4(a)) in a one-to-one conformal manner. This technique is called Riemann’s fundamental
theorem [143]. In fact it is challenging to find a suitable mapping function for the original
boundary curve, therefore, in practice several mappings or approximations should be performed.

(a) (b)

Figure 2.4.: (a) Complex potential solution of a Dirichlet boundary problem on a unit circle.
(b) Conformal mapped solution of a first kind boundary condition. The unit circle is mapped in
the upper half of the complex w̄-plane.

If a function exists, which maps a general geometry into a unit circle, then it would be
possible to solve any potential problem with Dirichlet boundary conditions given by means of
Poisson’s integral:

Φ = 1
2π ·

2π∫

0

1− r2

1− 2r · cos (φ− φ′) + r2 · Φ(φ′) dφ′, (2.31)

whereby the complex variable in z̄-plane is defined by z̄ = r · exp(jφ) and shows an arbitrary
point P within the unit circle (see Fig. 2.4(a)) and φ′ describes a point P ′ on the unit circle

1 It means that the curve does not intersects itself.
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2.3. Conformal Mapping Technique 21

with r = 1.
Using the complex potential function of Schwarz for an application in z̄-plane leads to:

P̄ = 1
2π ·

2π∫

0

exp(jφ′) + z̄

exp(jφ′)− z̄ · Φ(φ′) dφ′ ≡ Φ+ jΞ, (2.32)

where the real part Φ is defined by Eq. (2.31).
For the most mapping problems it is easier to map in the upper half of the w̄-plane than

mapping upon the unit circle. Therefore, the unit circle is mapped into the upper half w̄ with
the help of the following function:

w̄(z̄) = j1− z̄1 + z̄
. (2.33)

The complex potential solution of Schwarz can be rearranged by applying:

z̄ = − w̄ − j
w̄ + j , exp(jφ′) = −u

′ − j
u′ + j , dφ′ = 2du′

1 + u′2
, (2.34)

which results in:

P̄ = j
π
·
∞∫

−∞

1 + u′w̄

(1 + u′2) · (w̄ − u′)Φ(u′) du′ = Φ+ jΞ. (2.35)

This is the general solution of a Dirichlet boundary problem in the upper half of the w̄-plane.
The term u′ describes the integration variable along the u-axis and w̄ is an arbitrary point
where the potential P̄ exists. The real part of Eq. (2.35) leads to the equivalent representation
of Poisson’s integral on the unit circle (see Eq. (2.31)):

Φ = 1
π
·

+∞∫

−∞

v

(u− u′)2 + v2 · Φ(u′) du′, (2.36)

thereby the term Φ(u′) describes the conformal mapped boundary condition in the area of
interest by using the inverse mapping function (see Eq. (2.28)):

Φ(u′) = Φ
(
f−1(z̄′)

)
. (2.37)
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CHAPTER 3

Fundamentals of the TFET

This chapter presents the fundamentals and the physical basics of TFETs. Regarding the fact
that the current transport in TFETs is based on tunneling, firstly the quantum mechanical effect
of tunneling through an energy barrier is considered. After that, the TFET device geometry is
introduced and followed by its working principle. The working principle is explained in detail
by presenting its three operation regimes and the occurring quantum mechanical effects.

3.1 Tunneling Effect

The tunneling effect can be described by highlighting the differences of classical mechanics and
quantum physics. In this case a simple potential well is considered. Starting with classical
mechanics, electrons with lower energy than the energy barrier are completely confined by the
potential walls. The electrons that overcome the energy barrier of the potential wall are able
to escape and contribute to the resulting current. This effect is called thermionic emission. In
contrast to that, quantum mechanics opens the possibility that a carrier can penetrate into
and through an energy barrier. This phenomenon is called quantum mechanical tunneling or
tunneling effect. The effect is described by the fundamental statement that a carrier penetration
through a barrier with a finite width and height has a nonzero tunneling probability [32, 145].
For this reason, the calculation of the tunneling probability is introduced in the following
section for two basic exemplary energy barriers.

3.1.1 Tunneling Probability

In order to find a solution for the tunneling probability, the wavefunction Ψ has to be determined
with the help of the 1D time-independent Schrödinger equation:

− ~2

2m∗ ·
d2 Ψ(x)
dx2 + U(x) · Ψ(x) = E · Ψ(x), (3.1)
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24 3. Fundamentals of the TFET

where U(x) characterizes a general energy barrier, E defines the considered energy level of the
carrier, ~ is the reduced Planck’s constant and m∗ is the effective carrier mass [145].

The determination of the wavefunction Ψ is derived for a rectangular and a triangular
energy barrier in the following.

Rectangular Energy Barrier

At first a rectangular energy barrier with a height of U0 and a width of W as it is shown in
Fig. 3.1(a) is investigated. The carrier in Region I with its wavefunction ΨI incidents the energy
barrier at the position x1, penetrates into and tunnels through it and comes out at the position
x2. Due to the fact that a part of the incoming wave is reflected at x1, the wavefunction coming
out in Region II has a reduced amplitude.

The term describing the energy barrier U(x) is defined by:

U(x) =





0, x < x1

U0, x1 ≤ x ≤ x2

0, x > x2

. (3.2)

(a) (b)

Figure 3.1.: (a) Wavefunctions illustrating carrier tunneling through a rectangular energy
barrier [32]. (b) Wavefunction components [145].

As it can be seen in Fig. 3.1(b) the wavefunction ΨI consists of a linear superposition of
two parts, the incoming wavefunction Ψ i

I and the reflected wavefunction Ψ r
I . Therefore, the

wavefunction ΨI in Region I results in the general solution of Schrödinger’s equation for a free
particle [145]:

ΨI(x) = Ψ i
I(x) + Ψ r

I (x) = A · exp(+jk1 ·x) +B · exp(−jk1 ·x), (3.3)
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3.1. Tunneling Effect 25

where A and B are complex constants. The wave vector k1 is given by:

k1 =
√

2m∗ · E
~2 . (3.4)

Schrödinger’s equation within the energy barrier (I→ II) using Eq. (3.1) is written as:

~2

2m∗ ·
d2 ΨI→II(x)

dx2 =
(
U(x)− E

)
· ΨI→II(x) (3.5)

and by assuming that the considered energy of the carrier is smaller than the barrier height
(i.e. E < U0), the solution of the wavefunction is given by:

ΨI→II(x) = C · exp(k2 ·x) +D · exp(−k2 ·x). (3.6)

The parameters C and D are complex constants and the wave vector k2 is defined by:

k2 =

√
2m∗ · (U0 − E)

~2 . (3.7)

In Region II, the wavefunction of the transmitted carrier can be solved by using Schrödinger’s
equation for a free particle again and since the carrier only has a positive momentum, the
solution yields:

ΨII(x) = Ψ t
II(x) = F · exp(+jk1 ·x), (3.8)

where F is a complex constant and k1 is the wave vector defined in Eq. (3.4).
Now the wavefunctions of the three regions can be combined to:

Ψ(x) =





Ψ i
I(x) + Ψ r

I (x), x < x1

ΨI→II(x), x1 ≤ x ≤ x2

Ψ t
II(x), x > x2.

(3.9)

The complex constants A, B, C, D and F of the wavefunction Ψ(x) are solved by defining
specific boundary conditions at the positions x = x1 and x = x2, assuming continuity and
differentiability of the wavefunctions. Applying the first boundary condition at the position
x = x1 leads to:

ΨI(x1) = ΨI→II(x1)

A · exp(+jk1 ·x1) +B · exp(−jk1 ·x1) = C · exp(+k2 ·x1) +D · exp(−k2 ·x1) (3.10)

and the differentiability results in the second one:

dΨI(x1)
dx = dΨI→II(x1)

dx
jk1 ·
(
A·exp(+jk1 ·x1)−B ·exp(−jk1 ·x1)

)
= k2 ·

(
C ·exp(+k2 ·x1)−D ·exp(−k2 ·x1)

)
. (3.11)
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26 3. Fundamentals of the TFET

At the x = x2, the first boundary condition reads as follows:

ΨI→II(x2) = ΨII(x2)

C · exp(+k2 ·x2) +D · exp(−k2 ·x2) = F · exp(+jk1 ·x2). (3.12)

The second boundary condition at x = x2 is defined by:

dΨI→II(x2)
dx = dΨII(x2)

dx
k2 ·
(
C · exp(+k2 ·x2)−D · exp(−k2 ·x2)

)
= jk1 ·F · exp(+jk1 ·x2). (3.13)

To solve the five unknown parameters one more boundary condition is considered by the
ratio of the probability density of the incoming carrier |Ψ i

I |2 and the transmitted carrier |Ψ t
II|2.

The probability density ratio characterizes the tunneling probability:

Ttun = |Ψ
t
II|2

|Ψ i
I |2

= |F · exp(+jk1 ·x)|2

|A · exp(+jk1 ·x)|2 = |F |
2

|A|2 , (3.14)

which is simultaneously the ratio of squared amplitudes of the incoming and transmitted carrier
wavefunction.

A solution for Ttun is found by applying the boundary conditions of Eq. (3.10) – (3.13) to
Eq. (3.14) [145–147]. For the case E < U0 follows:

Ttun = 1

1 +
(
k2

1+k2
2

2k1k2

)2
· sinh2(k2 · (x2 − x1))

= 1

1 + U2
0

4E·(U0−E) · sinh2
(
W
~ ·
√

2m∗ · (U0 − E)
) (3.15)

and for E > U0:

Ttun = 1

1 +
(
k2

1+k2
2

−2k1k2

)2
· sin2(−k2 · (x2 − x1))

= 1

1 + U2
0

4E·(U0−E) · sin
2
(
W
~ ·
√

2m∗ · (U0 − E)
) , (3.16)

whereby in the case E > U0, Ttun describes the transmission coefficient, which is well known as
thermionic emission.

Triangular Energy Barrier

The rectangular energy barrier is introduced as an initial example to understand the basics of
tunneling. The most of the energy barriers do not have a rectangular shape, which means that
the barrier shape U(x) varies along the x-axis. Since the band diagram in a TFET is more
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3.1. Tunneling Effect 27

similar to a triangle than to a rectangular, the tunneling of carriers through a triangular shaped
energy barrier is examined in this part. A schematic sketch of such a barrier is illustrated
in Fig. 3.2. The solution of Schrödinger’s equation for a varying U is mathematically very
challenging, which brings us to the method developed by Wentzel [148], Kramers [149] and
Brillouin [150], the so-called WKB approximation [151].

Figure 3.2.: Illustration of a carrier’s wavefunction tunneling through a triangular energy
barrier [146].

The essential idea of the WKB approach is that a carrier moves through a region with a
“constant” external voltage U(x), which is not constant. But if U(x) varies only slowly in the
distance of the wavelength λ = 2π/k, then many full wavelengths are contained over a region and
thus the potential is essentially constant and the solution remains practically exponential [151].
For the case that E < U(x) the wavefunction Ψ is exponential within the energy barrier:

Ψ(x) = Θ(x) · exp(±k3(x)), (3.17)

with:

k3(x) =

√
2m∗ · (U(x)− E)

~2 (3.18)

and if U(x) is not constant, but varies slowly in comparison with 1/k3(x), the solution of the
wavefunction stays practically exponential. Under this condition, both terms Θ(x) and k3(x)
are a slowly varying functions in dependency of x.

The approach begins with rearranging Eq. (3.1) as:

d2Ψ(x)
dx2 =

(
k3(x)

)2 · Ψ(x) (3.19)

and rewriting the wavefunction in terms of its magnitude and phase:

Ψ(x) = Θ(x) · exp
(
jφ(x)

)
, (3.20)
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where Θ(x) and φ(x) are both real functions of x. Substituting Eq. (3.20) in Eq. (3.19) yields:

d2Θ

dx2 + 2j · dΘdx ·
dφ
dx + jΘ · d

2φ

dx2 −Θ ·
(dφ
dx

)2
= k2

3 ·Θ, (3.21)

which is equivalent to two real equations describing the real and imaginary part separately:

d2Θ

dx2 −Θ ·
(dφ
dx

)2
= k2

3 ·Θ ⇒ d2Θ

dx2 = Θ ·
[(dφ

dx

)2
+ k2

3

]
(3.22)

and
2j · dΘdx ·

dφ
dx + jΘ · d

2φ

dx2 = 0 ⇒ d
dx

(
Θ2 · dφdx

)
= 0. (3.23)

Solving Eq. (3.23) results in the relation between the amplitude Θ and the phase φ of the
wavefunction Ψ shown in Eq. (3.20):

Θ2 · dφdx = C2 ⇒ Θ = C√∣∣dφ
dx

∣∣
, (3.24)

whereby C is a real constant. Equation (3.22) has no general solution and from this point of the
derivation the approximation is introduced. Assuming that the amplitude Θ(x) varies slowly
with x and for this reason the term d2Θ/dx2 is approximately equal to zero. Hence, Eq. (3.22)
is rewritten as: (

dφ(x)
dx

)2

= −k2
3. (3.25)

The phase is solved as follows:

φ(x) = ± j
∫
|k3(x)|dx (3.26)

and by using this solution as well as Eq. (3.20) and Eq. (3.24), the wavefunction results in:

Ψ(x) ∼=
C√
|k3(x)|

· exp
(
±
∫
|k3(x)|dx

)
. (3.27)

By applying this solution, the wavefunction within the energy barrier (see Fig. 3.2) is given
by:

ΨI→II(x) ∼=
C√
|k3(x)|

· exp


+

∫

x

|k3(x)|dx


+ D√

|k3(x)|
· exp


−

∫

x

|k3(x)| dx


 , (3.28)

where C is the amplitude of the incoming wave component and D is the amplitude of the
reflected wave component.

The tunneling probability is defined by the ratio of the probability density of the incident
wave and the transmitted part |F |2/|A|2 (see Eq. (3.14)). By assuming an energy barrier with
either a large barrier height or a large width, which is the case in most practical situations,
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3.1. Tunneling Effect 29

the wavefunction within the barrier is shaped like it is depicted in Fig. 3.3. Consequently,
the increasing exponential term in Eq. (3.28), which is presented by the constant C, must be
small in comparison to D. Thus, the amplitude ratio of the incoming and transmitted wave is
determined by the decreasing term of Eq. (3.28) within the energy barrier:

|F |
|A| ∝ exp


−

x2∫

x1

|k3(x)|dx


 . (3.29)

Figure 3.3.: Schematic wavefunction tunneling through a high or/and broad energy barrier,
located between x1 and x2 [151].

Applying the preliminary considerations in Eq. (3.29) leads to the tunneling probability:

Ttun = |F |
2

|A|2
∼= exp


−2 ·

x2∫

x1

|k3(x)|dx




= exp


−2 ·

x2∫

x1

∣∣∣∣∣

√
2m∗ · (U(x)− E)

~2

∣∣∣∣∣ dx


 . (3.30)

Up to this point the tunneling probability is derived for a energy barrier U(x), that varies
slowly along the x-axis. Now, considering a triangular energy barrier (see Fig. 3.2) represented
by a linear function U(x) between x1 and x2, the tunneling probability is given by:

Ttun = exp


−2 ·

x2∫

x1

∣∣∣∣∣

√
2m∗
~2 ·

([
−U(x1)− E

x2 − x1
· x+ E

]
− E

)∣∣∣∣∣ dx




= exp

(
−4

3 ·
√

2m∗
~2 ·

U(x1)− E
x1 − x2

·
(
x

3/2
2 − x3/2

1

))
. (3.31)
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30 3. Fundamentals of the TFET

3.1.2 Landauer’s Tunneling Formula

Landauer’s tunneling formula [152] connects the quantum mechanical effect of carrier tunneling
with the classical mechanics, i.e. the band structure and material. This approach allows for a
calculation of the current in a system.

The basic idea of this approach is that carriers can only move from Region I to Region II
and vice versa if there is an energy difference between the two regions. That means that there
are empty states available in the opposite region. For the case that the Fermi energy of both
regions are on the same level (Fig. 3.4(a)), no empty states are available and thus, no carriers
are able to tunnel into the other region. In Fig. 3.4(b) the Fermi energy of Region II is lower
than Region I , which in this case allows an electron to tunnel from Region I into an empty
state in Region II .

(a) (b)

Figure 3.4.: Regions divided by an energy barrier U(x). (a) Fermi energy of Region I and
Region II are in equilibrium (EI

f = EII
f ). In Region II there are no empty states to which

e.g. an electron could tunnel. (b) Fermi energy difference between Region I and Region II
(EI

f > EII
f ), which opens the possibility for an electron to tunnel from Region I in an empty

state of Region II [145].

In order to use Landauer’s tunneling equation in compact models some necessary assumptions
are made in the following derivation [153]:

• One constant effective mass m∗ instead different masses corresponding to the band
diagram.

• The dispersion relation in the semiconductor is approximated by parabolic bands:

E = ~2 · ~k2

2m∗ =
~2 · (k2

x + k2
y + k2

z)
2m∗ , (3.32)

with the wave vector ~k = kx~ex + ky~ey + kz~ez.

• Only transitions along the x-axis are considered, therefore the parallel wave vector
~kρ = ky~ey + kz~ez is not changed by the tunneling process.

The net tunneling current density from Region I to Region II is defined as the difference

UNIVERSITAT ROVIRA I VIRGILI  
COMPACT DC MODELING OF TUNNEL-FETS 
Fabian Horst 



3.1. Tunneling Effect 31

between the current density flowing from Region I to Region II and vice versa [94, 153]:

Jtun = J I→II
tun − J II→I

tun . (3.33)

The tunneling current density of the two regions depends on the vertical element of the
wave vector kx, the tunneling probability Ttun, the vertical carrier velocity vx, the density of
states gI/II as well as the Fermi-Dirac distribution fI/II in both regions. Now the changes in
the current density are defined by:

dJ I→II
tun = q · Ttun(kx) · vx · gI(kx) · fI(E) · (1− fII(E)) dkx (3.34)

dJ II→I
tun = q · Ttun(kx) · vx · gII(kx) · fII(E) · (1− fI(E)) dkx. (3.35)

The density of states only depends on the x component of the wave vector which leads to:

gI/II(kx) =
∞∫

0

∞∫

0

g(kx,ky,kz) dky dkz, (3.36)

with the 3D density of states in momentum space g(kx,ky, kz). By considering the quantized
wave vector components within a cube having a length of L:

∆kx = 2π
L
, ∆ky = 2π

L
, ∆kz = 2π

L
, (3.37)

the 3D density of states within a cube is given by:

gI/II(kx) = 2 · 1
∆kx∆ky∆kz

· 1
L3 = 1

4π3 , (3.38)

where the factor 2 is caused by the spin degeneracy. The velocity as well as the energy
components in the direction of tunneling are obtained from Eq. (3.32):

vx = 1
~
· dEdkx

= ~ · kx
m∗

, Ex = ~2 · k2
x

2 ·m∗ , vx dkx = 1
~
· dEx. (3.39)

Now, Eq. (3.34) and (3.35) are written as:

dJ I→II
tun = q

4π3 · ~ · Ttun(Ex) dEx ·
∞∫

0

∞∫

0

fI(E) · (1− fII(E)) dky dkz, (3.40)

dJ II→I
tun = q

4π3 · ~ · Ttun(Ex) dEx ·
∞∫

0

∞∫

0

fII(E) · (1− fI(E)) dky dkz. (3.41)
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32 3. Fundamentals of the TFET

By rewriting the parallel wave components in polar coordinates:

ky = kρ · cos(γ), kz = kρ · sin(γ), (3.42)

kρ =
√
k2
y + k2

z , γ = arctan
(
kz
ky

)
, (3.43)

dky dkz = kρ · dkρ dγ (3.44)

and splitting the total energy E into its longitudinal Eρ and its transversal component Ex:

Eρ =
~2 · (k2

y + k2
z)

2m∗ =
~2 · k2

ρ

2m∗ , dEρ = ~2 · kρ
m∗

· dkρ, Ex = ~2 · k2
x

2m∗ , (3.45)

the current density J I→II
tun is written as:

J I→II
tun = q

4π3 ·~ ·
∫

Ex

Ttun(Ex) dEx ·
∞∫

0

2π∫

0

fI(E) · (1− fII(E)) · kρ · dγ dkρ

= q

4π3 ·~ ·
∫

Ex

Ttun(Ex) dEx · 2π ·
∞∫

0

fI(E) · (1− fII(E)) · kρ ·
dEρ
dEρ

dkρ

J I→II
tun = q ·m∗

2π2 ·~3 ·
∫

Ex

Ttun(Ex) dEx ·
∞∫

0

fI(E) · (1− fII(E)) dEρ. (3.46)

Similarly, for J II→I
tun follows:

J II→I
tun = q ·m∗

2π2 ·~3 ·
∫

Ex

Ttun(Ex) dEx ·
∞∫

0

fII(E) · (1− fI(E)) dEρ. (3.47)

Evaluating Eq. (3.33) leads to the net tunneling current density:

Jtun(Ex) = q ·m∗

2π2 ·~3 ·

Emax∫

Emin

Ttun(Ex) dEx ·
∞∫

0

(
fI(E)− fII(E)

)
dEρ

Jtun(Ex) = q ·m∗

2π2 ·~3 ·

Emax∫

Emin

Ttun(Ex) · N (Ex) dEx, (3.48)

where N (Ex) is the supply function depending on Ex and for this reason it is written inside the
integral over Ex. The supply function using the Fermi-Dirac distribution is defined by [153]:

N (Ex) =
∞∫

0

(
fI(E)− fII(E)

)
dEρ = kbT · ln




1 + exp
(
−Ex−E

I
f

kbT

)

1 + exp
(
−Ex−E

II
f

kbT

)


 . (3.49)
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3.1. Tunneling Effect 33

The values for Emin and Emax as well as the Fermi-Dirac distribution depend on the considered
tunneling process:

• In case of electron tunneling Emin is defined by the lowest conduction band (ConB) energy
in Region II EII

c |min and the highest valence band (ValB) edge in Region I EI
v|max. The

Fermi-Dirac distribution is calculated for electrons.

• On the other hand, for hole tunneling the energy integration limits are defined as for
electrons, whereby the sign of the integration is changed. Furthermore, the Fermi-Dirac
distribution is calculated for hole carriers.

3.1.3 Tunneling Events

Regarding the tunneling effect, a distinction between two types of tunneling is made. The first
one is the so-called single-band (SB) tunneling and the second one is the band-to-band (B2B)
tunneling.

SB tunneling occurs for example at a Schottky barrier or a Silicon-Insulator-Silicon structure
as it is shown in Fig. 3.5(a). In the SB tunneling process there are three different types of
tunneling: Fowler-Nordheim (F-N) tunneling [32], direct tunneling [32] and trap-assisted
tunneling (TAT) [154].

(a) (b)

Figure 3.5.: (a) Tunneling events in a Silicon-Insulator-Silicon structure [153]. (b) Tunneling
processes at a n++/p++ - Silicon junction, which characterize the current transport in TFETs.

The F-N tunneling is defined by the carrier tunneling through a triangular shaped energy
barrier, whereby the carrier tunnels only through a part of the insulator layer. The triangular
part of the barrier in Fig. 3.5(a) is mainly affected by the electric field and less by the thickness
of the insulator layer. The insulator thickness only indirectly affects the tunneling process by
influencing the electric field. F-N tunneling can occur in thick insulator layers, i.e. > 5 nm [32].
The tunneling probability in this case is calculated with the help of the WKB approximation.
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34 3. Fundamentals of the TFET

The phenomenon of direct tunneling comes into play for insulator thicknesses ≤ 5 nm. Even
for low electric fields, carriers are able to tunnel directly through the insulator [32]. In addition
to direct tunneling, the effect of TAT occurs in this kind of structure. Traps are defined as
defects within the band gap of the material, which are caused by the fabrication process or
repeated voltage stress [153]. TAT can be separated into three different types: the elastic TAT
event, where a carrier tunnels to a trap within the insulator at the same energy and then has
the chance to tunnel through the insulator without losing energy. Second, the carrier occupies
a trap, loses energy by phonons emission and then tunnels through the insulator. This is known
as inelastic TAT. The third one happens in an insulator with a high defect or trap density.
In this case carriers are able to hop from trap to trap and subsequently tunnel through the
insulator [153].

In case of a n++/p++ - Silicon junction the tunneling process is caused by carriers that
tunnel from either the ValB to the ConB or vice versa. The tunneling event is called B2B
tunneling if a carrier tunnels directly from one band to the other. This effect describes the
main current transport mechanism in a TFET device. The B2B tunneling current is influenced
by the band gap and the effective carrier mass of the chosen device material as well as by
the externally applied bias. For instance, if the bias at the p++ side increases the resulting
tunneling distance decreases which causes an increase of the B2B tunneling current. Beside
the advantageous B2B tunneling current, in highly doped junctions the TAT effect has to be
taken into account. Since in highly doped junctions the depletion layer thickness is very small,
the tunneling distance is also very small and thus the tunneling probability in the off-state
increases to non negligible values [154, 155]. The TAT current determines the off current of a
TFET and as a consequence directly influences the resulting subthreshold slope [50].

3.2 Device Geometry

In the following the TFET device geometry is introduced which is under investigation in the
entire thesis. Figure 3.6 illustrates the 3D DG TFET device, whereby a distinction is made
between the n-type TFET (see Fig. 3.6(a)) and the p-type device (see Fig. 3.6(b)). The source,
channel and drain region are out of Silicon, except it is mentioned. The device can also be built
up by hetero-junction materials to enhance the device performance. The insulator is chosen
to be a high-κ material (HfO2 or Ta2O5) in order to improve the electrostatic control of the
channel region. The gate contact is made of metal.

Regarding the n-type device, the source region is highly p-doped, the channel stays intrinsic
and the drain region is highly n-doped. In general, the n-type TFET is a gated p-i-n diode. In
case of the p-type device, the source is highly n-doped and the drain is highly p-doped, so the
p-type TFET is a gated n-i-p diode.
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3.3. Working Principle 35

 

(a) n-type

 

(b) p-type

Figure 3.6.: 3D Schematic of (a) an n-type and (b) a p-type DG TFET structure. The struc-
tural parameters are defined as follows: lch – channel length, tch – channel thickness, wch –
channel width, tox – gate insulator (oxide) thickness, lsd – length of source (S)/drain (D) re-
gion.

In literature various kinds of TFET geometries can be found, e.g. gate-all-around or
nanowires, which are all 3D multiple-gate devices. Using multiple gate structures enhances
the performance of TFETs. The DG structure represents a good candidate, in order to find a
reasonable trade-off between the complexity of the device and the mathematical practicability.

3.3 Working Principle

The basic working principle of an n-type TFET is detailed in the following. Except for the
different polarity of the charge carriers, p-type and n-type TFETs work in the same way.

Regarding the TFET and its structure, there are three different operation states. These
states are called the off-, the on- and the ambipolar-state. These three states are successively
introduced with the help of the band diagram along the x-axis within the TFET cross section
(see Fig. 3.7(a)). The selected x-cutline is directly below the gate insulator, since at this position
the gates have the biggest electrostatic influence on the channel region. For this reason, the
current has its highest density at this y-position. Furthermore, the applied gate bias determines
the state of the TFET, whereby these distinctions are explained in the next three subsections.

Subsequently, the effect of the channel potential pinning and the influence of the drain
voltage Vds on the device behavior are investigated. The typical unidirectionality of the TFET
current and its effect on the current characteristics is also discussed at the end of this section.
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36 3. Fundamentals of the TFET

 

(a) x-cutline within the TFET cross section (b) off-state

(c) on-state (d) ambipolar-state

Figure 3.7.: (a) Cross section of the 3D n-type TFET geometry to illustrate the TFET work-
ing principle using the cutline along the x-axis. (b) off-state of the TFET, only TAT current
occurs at the channel junctions. In (c) the on-state and (d) the ambipolar-state B2B tunnel-
ing occurs at the source-to-channel and the drain-to-channel junction, respectively. In these
cases, the B2B tunneling current dominates, but the TAT current is still present. Dark red
arrows: TAT. Green arrows: B2B.

3.3.1 Off-State

Considering the schematic band diagram illustrated in Fig. 3.7(b), the TFET is in the off-state
when all of the following conditions are fulfilled:

1. A positive drain-source voltage Vds > 0 V is applied,

2. the ConB in channel, determined by the applied gate bias Vgs, and the ValB in source do
not overlap and
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3.3. Working Principle 37

3. the ConB in drain does not overlap the ValB in the channel region.

In this case, there are no empty states within the channel region available that would allow for
B2B tunneling.

On the other hand, carriers are able to hop into an empty trap at the channel junctions
by thermionic emission and from there tunnel to an empty state within the channel. So, the
off-state current is determined by the TAT current, whereby the TAT current is a compound
of TATon, occurring at the source-to-channel junction and TATamb appearing at the drain-to-
channel junction. The current part TATon occurring at the source-to-channel junction for a
higher Vgs is determined electrons. By reducing the gate bias, the TATon decreases and goes
over into a hole based current TATamb at the drain-to-channel junction.

The off-state current has a direct influence on the resulting subthreshold slope. That
means, the more defects or midgap traps are located at the channel junctions, the higher the
TAT current is and therefore the subthreshold slope worsens.

3.3.2 On-State

Figure 3.7(c) depicts the on-state of the TFET. The applied drain-source voltage is positive
Vds > 0 V. From a certain gate bias when the ConB in the channel starts to overlap the ValB
in source (Ech

c < Es
v), the TFET is in the on-state. With regards to Landauer’s tunneling

formula (see Sec. 3.1.2), empty states are available in the channel and electrons are able to
tunnel directly from source into the channel. The higher Vgs, the larger the tunneling area
becomes, simultaneously the tunneling distance decreases and thus, the amount of the on-state
B2B tunneling current B2Bon increases. The tunneling area is defined by the ValB edge in
source and the ConB edge in the channel.

The TAT current that characterizes the off-state current is still present in the on-state.
For an increasing Vgs, the TATon part becomes several orders of magnitude smaller than the
B2B part and thus does not significantly influence the resulting tunneling current. The TAT
current at the drain-to-channel junction TATamb decreases for an increasing Vgs and therefore
is negligible.

3.3.3 Ambipolar-State

The TFET is in the ambipolar-state when the applied drain-source voltage is greater than zero
(Vds > 0 V) and the ValB in the channel region starts to overlap the ConB edge in the drain
region. A schematic band diagram showing the ambipolar-state is given in Fig. 3.7(d). The
ambipolar-state takes place when the gate bias Vgs is decreased to small or rather to negative
values. In this operation regime, hole tunneling occurs at the drain-to-channel junction. For
this reason, B2Bamb is a hole based tunneling current part. By further reduction in Vgs, the
tunneling area is increased, the tunneling distance is reduced and hence, the B2Bamb current
part is also increased.
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38 3. Fundamentals of the TFET

The TAT current part TATamb also occurs in the ambipolar-state. For reduced or negative
Vgs values it is still possible, that a hole can hop on an empty trap and tunnel from the junction
into the channel. But TATamb has a minor impact on the total tunneling current as it is
mentioned in the previous subsection.

3.3.4 Channel Potential Pinning

The channel potential pinning in the on-state of the TFET takes place when the gate bias
Vgs is increased above the applied drain-source voltage (Vgs > Vds). For that case, an electron
inversion charge layer begins to form within the channel region that effectively shortens the
channel length. Hence, the channel potential saturates approximately to the applied Vds or in
other words, the channel potential is “pinned” to the drain-source voltage [145].

Figure 3.8(a) illustrates this effect for three various gate-source voltages, where Vgs,1 < Vds <

Vgs,2 < Vgs,3. In the first case, Vgs,1 is smaller than Vds and for this reason, the channel potential
follows Vgs so it is not pinned. Here, the depletion region at the drain-to-channel-junction
allows a steeper tunneling current. In the second case, it can be seen that the channel potential
pinning approximately starts from the point (Vgs,2 ≈ Vds). In the third case the gate bias Vgs,3
is greater than Vds and the channel potential does not follow Vgs any more. It is pinned due
to the inversion charge layer. In general, the channel potential increases only slightly for an
increasing Vgs and thus the tunneling current. Nevertheless, the tunneling current still increases
for higher Vgs due to the steeper gradient and therefore a smaller tunneling distance at the
source-to-channel junction. As it can be seen in Fig. 3.9(b), the slope of the current transfer
curve worsens in the on-state when the channel potential pinning (Vgs > Vds) comes into play
and the depletion region at the drain-to-channel junction disappears.

The effect of the channel potential pinning also occurs in the ambipolar-state as it is
depicted in Fig. 3.8(b). By decreasing Vgs to small or negative values, the channel potential is
pinned to the voltage in source region Vs in the same way that is mentioned in the previous
paragraph. Figure 3.8(b) presents a schematic band diagram for three gate biases, where
Vgs,1 > Vs > Vgs,2 > Vgs,3. In the first case, the channel potential follows Vgs,1, where the
depletion region at the source-to-channel junction leads to a steep tunneling current. In the
second scenario (Vgs,2 ≈ Vs), the potential in the channel starts to be pinned to the source
voltage. Lastly, the channel potential loses its control by Vgs when Vgs,3 falls below Vs and thus,
the tunneling current only rises by the increasing potential gradient and the subsequent decrease
of the tunneling distance at the drain-to-channel junction. The current transfer curve slope also
decreases in the ambipolar-state if the gate-source voltage falls below the source potential (see
Fig. 3.9(b)). At the source-to-channel junction, the depletion region has disappeared, which
causes a nearly constant voltage and thus a negligible resistance and also a worsening of the
current gradient.
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3.3. Working Principle 39

(a) Channel potential pinning: on-state (b) Channel potential pinning: ambipolar-
state

Figure 3.8.: Schematic band diagram to point out the effect of the channel potential pinning
caused by inversion charges in (a) the on-state and (b) the ambipolar-state of the TFET.
on-state: Vgs,1 < Vds < Vgs,2 < Vgs,3. ambipolar-state: Vgs,1 > Vs > Vgs,2 > Vgs,3.

3.3.5 Drain-Source Voltage Influence

A variation of the drain-source voltage effectively influences the behavior of the TFET device.
In the on-state of the TFET, two different cases can occur for a Vds variation. In the first
case when Vds,1 > Vgs, as shown in Fig. 3.9(a), the channel potential pinning does not take
place and therefore the existing depletion region at the drain-to-channel junction allows for
a nearly unrestricted electron current flow. So, a high Vds value offers a wide Vgs range with
no channel potential pinning and therefore a steeper tunneling current. This case can be seen
in the current transfer curve in Fig. 3.9(b). In the second case when Vds,3 < Vds,2 < Vgs (see
Fig. 3.9(a)), the channel potential pinning occurs and reduces the gradient of the tunneling
current. The effect can be seen better in the current transfer curve (see Fig. 3.9(b)). In case of
channel potential pinning in the on-state, a smaller Vds causes a degradation of the tunneling
current slope. On the other hand if Vds > Vgs, no channel potential pinning occurs and hence,
the resulting subthreshold slope of the tunneling current, occurring at the source-to-channel
junction, is nearly not affected by Vds.

The influence of a drain voltage variation can be seen better in the ambipolar-state. Here,
the tunneling process is located at the drain-to-channel junction. An increase of Vds causes a
downshift of the energy bands in the drain region, thus, the resulting tunneling area is increased,
the tunneling distance is decreased and the tunneling current increases. The influence can
be seen well in the current transfer curve as it is shown in Fig. 3.9(b). By applying a higher
drain voltage Vds,1, the ambipolar-state current in the transfer curve shifts along the Vgs-axis
in the direction of the on-state. In case of a smaller Vds = Vds,3, the ambipolar tunneling
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40 3. Fundamentals of the TFET

(a) Vds > 0 V (b) Current transfer curve

Figure 3.9.: Illustration of a drain voltage variation on the device behavior in (a) the band
diagram and (b) the current transfer curve, showing Ids in logarithmic scale. In both plots:
Vds > 0 V and Vds,1 > Vds,2 > Vds,3. (b) Gray dashed lines: transition to channel potential
pinning.

current part is shifted leftwards along the Vgs-axis and the ambipolar behavior is reduced.
The resulting subthreshold slope is not affected by a change in Vds, since channel potential
pinning is not yet taking place.

3.3.6 Unidirectional Behavior of the Current

Beside the drain-induced shift of the ambipolar-state tunneling current, there is another
phenomenon occurring in TFETs. It is the unidirectional current behavior. This effect appears
by applying negative drain voltages, whereby the considered gate-source voltage Vgs is not
relevant.

In order to explain the unidirectional behavior, Fig. 3.10(a) illustrates the band diagram for
various Vds. It can be seen that at Vds,1 = 0 V the bands at the source-to-channel junction have
an overlap but due to Landauer’s tunneling formula the resulting tunneling current equals zero.
By reducing Vds to a small negative value Vds,2, the channel potential is also shifted upwards
due to the potential pinning and the band overlap still causes a small negative tunneling current.
This negative current only appears in a small Vds range and decreases quickly to zero. By
further reduction of Vds to Vds,3 the band overlap disappears and thus the tunneling current
turns to zero, which can be seen in the current output curve in Fig. 3.10(b). But in case of Vds,4
the energy barrier between source and drain is reduced so much, that a negative thermionic
emission based current can flow. So the TFET turns into a parasitic p/n diode, which has to
taken into account in the design of logic circuits [156, 157]. The unidirectionality of the device
is also characterized by the ambipolar-state current in the output curve (see Fig. 3.10(b)). For
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negative Vgs and an increasing Vds the current increases exponentially with the same polarity
as the on-state current.

(a) Vds ≤ 0 V (b) Current output curve

Figure 3.10.: Visualization of the effect of the current unidirectionality in (a) the band dia-
gram (Vds,1 = 0 V > Vds,2 > Vds,3 > Vds,3) and (b) the current output curve. (b) Black solid
lines: on-state, Vgs > 0 V. Blue dashed lines: ambipolar-state, Vgs < 0 V.
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CHAPTER 4

2D Electrostatic Potential Solution

In this chapter, a closed-form 2D analytical electrostatic potential solution for the DG TFET is
derived. The potential solution forms the basis of the band diagram calculation, and since the
tunneling probability is calculated as a function of the band diagram, an accurate electrostatic
solution is essential to properly calculating the tunneling current of a DG TFET. In order to
solve the device electrostatics in the channel region, some preliminary considerations are made
in Sec. 4.1, from which 2D potential solution is derived in Sec. 4.2. The verification of the
derived potential model is done in Sec. 4.3, where the modeling results are compared with
TCAD Sentaurus simulation data.

4.1 Preliminary Modeling Considerations

Before the closed-form 2D electrostatic potential solution is derived some preliminaries are
considered to keep mathematics as simple as possible and to obtain a stable potential model.
Firstly, the Laplace equation is introduced in Sec. 4.1.1. The influence of inversion charges
on the electrostatics is detailed in Sec. 4.1.2, followed by the scaling of the gate insulator in
Sec. 4.1.3. The decomposition and the boundary conditions of the DG device are explained in
Sec. 4.1.4, where the conformal mapping of the device structure is derived in Sec. 4.1.5.

4.1.1 Laplace’s Equation

Solving an electrostatic potential problem in general needs for a solution of Poisson’s equation as
it is shown in Eq. (2.3). Finding a closed-form solution of Poisson’s equation is very challenging
and a numerical solution is not suitable for a usage in compact models. Due to the intrinsic
channel of the DG TFET the neglect of inversion charges is acceptable. Then, the Poisson
equation reduces to Laplace’s equation:

∆Φ(x,y) = −%(x,y)
εch

→ ∆Φ(x,y) u 0. (4.1)

43
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44 4. 2D Electrostatic Potential Solution

Since neglecting inversion charges in the electrostatics is only valid in the off-state of the
TFET, a modeling approach to consider inversion charges in the on- and ambipolar-state is
introduced in Sec. 4.1.2

4.1.2 Inversion Charges

The consideration of inversion charges and their influence on the device electrostatics is a very
important issue. As it was mentioned in Sec. 3.3.4 and 3.3.5, the channel potential is pinned
to the applied drain-source voltage Vds or the applied gate-source voltage Vgs. The channel
potential pinning effect has a direct impact on the resulting tunneling current.

In order to capture the effect of inversion charges on the device behavior, a 1D surface
potential model for planar TFETs is introduced in the following, which has been reported
in [158]. This 1D potential at the surface of the channel is analytically solved, but it is not
sufficient for an adaption in the 2D electrostatic solution of a DG TFET. For this reason, a DG
TFET surface potential denoted as Vgs,eff in the following and including 2D effects is derived
based on the 1D potential solution in the surface and the center of the TFET.

1D Surface Potential Solution

The 1D surface potential to screen the gate modulation can be calculated by [158]:

Φ1 = kbT

q
· ln
(
Nch ·Ninv

n2
i

)
, (4.2)

with the intrinsic electron concentration in Silicon ni, the channel doping concentration Nch

and Ninv is the inversion charge density which is empirically set to 1.6 · 1018cm−3.
In the case when the 1D surface potential is in the Vgs-control regime which is qualitatively

shown in Fig. 4.1(a), the influence of inversion charges and the drain voltage are negligible and
ϕ1Ds in depletion region reads as:

ϕ1Ds,dep =

(√
Vgs − Vfb + γ2

4 −
γ

2

)2

, (4.3)

where Vfb is the flat band voltage and the term γ characterizes the body factor and is calculated
by:

γ =
√

2 · εch · q ·Nch

C′ox
, (4.4)

with the gate oxide capacitance per gate area C′ox = εox/tox.
Inversion charges come into play when Vgs reaches or overcomes the applied drain-source

voltage Vds, as can be seen qualitatively in Fig. 4.1(b) denoted as Vds-control. In this case, the
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1D surface potential is calculated in dependency of Vgs and Vds as follows [158]:

ϕ1Ds,inv = (Vds + Φ1) + kbT

q
· ln
{

q

kbT
·
[
kbT

q
+

√
Vds + Φ1√

Vds + Φ1 + γ
· (Vgs − Vfb − Vds − Φ1)

+1
2 ·
(

Vds + Φ1

(
√
Vds + Φ1 + γ)2

− γ · (Vds + Φ1 − 2)
2 · (
√
Vds + Φ1 + γ)3

)
· (Vgs − Vfb − Vds − Φ1)2

]}
. (4.5)

In order to find a closed-form expression for the 1D surface potential, a continuous function
has to be found which connects the depletion with the inversion regime. The following function
changes smoothly from ϕ1Ds,dep to the transition point Vds + Φ1:

Fϕs = 1
2 ·
(
Vds + Φ1 + ϕ1Ds,dep −

√
(ϕ1Ds,dep − Vds − Φ1)2 + δ2

)
, (4.6)

where δ is a constant term for a smooth transition. With the help of this connection function,
the surface potential is calculated by:

ϕ1Ds (Vgs,Vds) = Fϕs + kbT

q
· ln

{
q

kbT
·

[
kbT

q
+

√
Fϕs√

Fϕs + γ
· (Vgs − Vfb − Fϕs)

+1
2 ·

(
Fϕs

(
√
Fϕs + γ)2

− γ · (Fϕs − 2)
2 · (
√
Fϕs + γ)3

)
· (Vgs − Vfb − Fϕs)

2

]}
. (4.7)

1D Center Potential Solution

The 1D potential in the center of the TFET can be adapted from the center potential of DG
MOSFET with an undoped body. The 1D center potential follows approximately the applied
gate-source voltage Vgs and saturates to a constant value when the effect of inversion charges
come into play. The constant saturation voltage is dependent from the applied drain-voltage
Vds and is defined by [159]:

ϕc,sat(Vds) = kbT

q
· ln
(

2π2 · εch · kbT
q2 ·Nch · t2ch

)
+ Vds. (4.8)

The smoothing function presented in [160] is used for a continuous transition of the linear
Vgs dependency and the constant saturation voltage ϕc,sat of the 1D center potential. It follows:

ϕ1Dc (Vgs,Vds) = ϕc,sat ·
[

1− 1
ln(1 + exp(15)) · ln

(
1 + exp

(
15 ·

(
1− Vgs − Vfb

ϕc,sat

)))]
. (4.9)
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46 4. 2D Electrostatic Potential Solution

Surface Potential Including 2D Effects

The DG TFET surface potential including 2D effects is derived hereinafter and is named as
the effective gate voltage Vgs,eff in the following. It should be noted that the consideration
of 2D effects means to take into account the potential change along the y-axis. The TFET
surface potential is obtained by solving the 1D Poisson equation in y-direction at x = lch/2 with
Fermi-Dirac statistics as follows [109]:

d2u

dy2 =
(

1
2 ·

2q2 · ni
εch · kbT

)
·
F1/2

(
u− vch −

Ech
g

2·kbT

)

F1/2
(
− Ech

g
2·kbT

) , (4.10)

whereby F1/2 is the Fermi-Dirac integral1 of order 1/2, u is the normalized potential by kbT/q,
vch is the normalized quasi-Fermi potential and Ech

g is the band gap of the channel material.
An integration of Eq. (4.10) results in the vertical electric field at the surface as follows:

du
dy

∣∣∣∣
y=0

=
√

2q2 · ni
εch · kbT

·

√√√√√√
2
3 ·
F3/2

(
u− Ech

g
2·kbT

)∣∣∣
us

uc

F1/2
(
− Ech

g
2·kbT

) , (4.11)

with the Fermi-Dirac integral F3/2 of order 3/2. The normalized surface potential us and the
normalized center potential uc are calculated by applying Eq. (4.7) and (4.9) as follows:

us = ϕ1Ds ·
q

kbT
, (4.12)

uc = ϕ1Dc ·
q

kbT
. (4.13)

The normalized surface potential us in dependency of the applied Vgs can also be expressed
by the following expression [109]:

(Vgs − Vfb) · q

kbT
− us = εch

C′ox
· dudy

∣∣∣∣
y=0

. (4.14)

Since this equation has no closed form solution, a first order Newton correction is performed to
improve accuracy. The function for the Newton method reads as:

f(us) = (Vgs−Vfb)· q

kbT
−us−

εch
C′ox
·
√

2q2 · ni
εch · kbT

·

√√√√√2
3 ·
F3/2

(
us −

Ech
g

2·kbT

)
−F3/2

(
uc −

Ech
g

2·kbT

)

F1/2
(
− Ech

g
2·kbT

)

(4.15)

1 A Verilog-A suitable approximation of the Fermi-Dirac integral is presented in App. B.1
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and for the derivative follows:

f ′(us) = −1− εch
C′ox
·
√

2q2 · ni
εch · kbT

·

√√√√
2

3 · F1/2
(
− Ech

g
2·kbT

)

×
3 · F1/2

(
us −

Ech
g

2·kbT

)

4 ·
√
F3/2

(
us −

Ech
g

2·kbT

)
−F3/2

(
uc −

Ech
g

2·kbT

) . (4.16)

Now, the normalized surface potential is calculated by:

us,n = us,n-1 −
f(us,n-1)
f ′(us,n-1) , (n = 1, 2, 3), (4.17)

using the normalized 1D surface potential solution us shown in Eq. (4.12) as an initial guess
for us,1 in the Newton method. After three iterations, the surface potential us is obtained with
a sufficient accuracy and can be used in the further calculations, where it is denoted as the
effective gate-source voltage Vgs,eff in the following:

Vgs,eff(Vgs,Vds) = kbT

q
· us,3. (4.18)

A schematic shape of Vgs,eff in dependency of Vgs for various Vds is shown in Fig. 4.1(a).
It can be seen that the smaller Vds the smaller is the range where Vgs,eff follows Vgs. In the
Vds control regime, the effective gate-source voltage follows the drain-source voltage. If Vgs
falls below the source voltage Vs, Vgs,eff is under control of Vs. Figure 4.1(b) illustrates the
Vds dependency on Vgs,eff, where it can be seen that in the control regime of Vds the effective
gate-source voltage follows the applied Vds and in the Vgs control regime Vgs,eff saturates to the
applied gate-source voltage.

(a) (b)

Figure 4.1.: Schematic shape of the effective gate-source voltage Vgs,eff in dependency of (a)
the gate-source voltage Vgs and (b) the drain-source voltage Vds. In (a): Vds,1 > Vds,2 > Vds,3.
In (b): Vgs,1 > Vgs,2 > Vgs,3.
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48 4. 2D Electrostatic Potential Solution

The verification of the effective gate-source voltage Vgs,eff and the channel potential ϕ1Dc is
presented in Sec. 4.3.1.

4.1.3 Scaling of the Gate Insulator

The second simplification is made because of the different dielectric permittivities of the gate
insulator (εox) and the channel material (εch) as it is shown in Fig. 4.2(a). The different
permittivities lead to discontinuities of the electric field at the channel-insulator interface
which complicate the conformal mapping technique and should be avoided. It is to say that
the conformal mapping technique needs a homogeneous permittivity in the area of interest.
Assuming a constant electric field across gate insulator, which means that the potential drop is
linear, the normal component of the dielectric displacement is described by:

Dox = ε0 · εch · E0 = ε0 · εox · Eox = ε0 · εox ·
Vox
tox

, (4.19)

with the voltage drop over the insulator Vox, the normal component of the electric field in the
channel E0 and the electric field across the insulator Eox.

To avoid discontinuities in the electric field the gate insulator or oxide thickness tox is scaled
as follows (see Fig. 4.2(b)):

t̃ox = εch
εox
· tox (4.20)

and Dox yields:
Dox = ε0 · εch ·

Vox

t̃ox
. (4.21)

(a) (b)

Figure 4.2.: (a) Default device structure with a gate insulator thickness of tox and two differ-
ent permittivities ε for the channel and the gate insulator. (b) Adapted device structure with a
scaled gate insulator thickness t̃ox and a uniform permittivity εch.

It should be noticed that this assumption is only valid if the channel length is much bigger
than the gate insulator thickness lch � tox [161] and if inversion charges are negligible.

For the case that inversion charges come into play, the gate insulator thickness has to be
scaled in dependency of the effective gate-source voltage Vgs,eff. At first, the screening length
at the channel surface that characterizes the potential bending in x-direction is expressed in
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terms of Vgs,eff:

λ̃s/d(Vgs,eff) =λ(Vds=0) +
(
λ0 − λ(Vds=0)

)

×
(

1− exp
[
− ln

(
Vds

|Vgs − Vgs,eff|
+ 1 + λ

s/d
ln,fit

)])
, (4.22)

whereby λs/dln,fit is a fitting parameter to tune the influence of the inversion charges and the
screening length at Vds = 0 is given by [122, 162]:

λ(Vds=0) =

√(
1
λ0

+ 8 · 2 · C′ox · [Vgs − Vgs,eff(Vds = 0)]
εch · tch · Vgs,eff(Vds = 0)

)−1

. (4.23)

The factor 8 in this expression is taken from [162], the factor 2 accounts for the DG structure
in comparison to a SG device in the calculations of C′ox. The natural screening length at the
channel surface is defined by [163]:

λ0 =
√
εch · tch · tox

2 · εox
. (4.24)

Now, the gate insulator thickness tox can be expressed in terms of λ̃s/d:

tox(Vgs,eff) = 2 ·
(
λ̃s/d(Vgs,eff)

)2 · εox
tch · εch

. (4.25)

By inserting Eq. (4.25) in Eq. (4.20), the scaled gate insulator thickness t̃ox is expressed in
terms of Vgs,eff:

t̃ox(Vgs,eff) = 2 ·
(
λ̃s/d(Vgs,eff)

)2
tch

. (4.26)

The obtained expression is suitable for all operation regimes of the DG TFET and is used in
the further calculations.

4.1.4 Decomposition of the Device Structure and Boundary Conditions

The device channel electrostatics of the DG TFET is a 4-corner problem as it is depicted
in Fig. 4.3(a). Solving for the potential solution of the 4-corner structure is mathematically
very challenging and often no closed-form solutions are found. For this reason, the device is
decomposed into 2-corner structures to simplify finding a potential solution. This approximation
is suitable if the channel length is bigger than the channel thickness (lch > tch) [164].

Regarding the boundaries of the DG TFET channel and gate insulator region, there is a
constant boundary condition at the gate insulator interfaces Vgs,eff (see Fig. 4.3(a)). At the
source-to-channel and drain-to-channel junction are parabolic boundaries which are denoted as
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50 4. 2D Electrostatic Potential Solution

the effective built-in potentials Φs/d
bi,eff (see Fig. 4.3(a)) and are given by [128, 165]:

Φ
s/d
bi,eff(y) = Φ

s/d
bi + Vs/d ±∆Φs/d

bi,eff(y), (4.27)

with:

∆Φ
s/d
bi,eff(y) =

∣∣∣Vgs,eff − Φs/d
bi − Vs/d

∣∣∣+
q · λ2

s/d(y)
εs/d ·Ns/d

×


1−

√√√√
1 +

2·εs/d ·
∣∣∣Vgs,eff − Φs/d

bi − Vs/d
∣∣∣

λ2
s/d(y) · q ·Ns/d


 , (4.28)

using the source/drain doping concentration Ns/d, the permittivity of the source/drain region
εs/d, the built-in potentials of source/drain Φs/d

bi and the source/drain bias Vs/d. The sign of
∆Φ

s/d
bi,eff in Eq. (4.27) is negative when (Φs/d

bi + Vs/d) > Vgs,eff and positive for all other cases.
The screening length λs/d characterizes the potential bending along the x-axis and is defined
by [128, 166]:

λs/d(y) = λ
s/d
fit ·

√
εch · t̃ox · tch

2 · εox
·
(

1 + εox

εch · t̃ox
· y − εox

εch · t̃ox · tch
· y2
)
, (4.29)

whereby λs/dfit is an adjustable parameter. The built-in potential Φs/d
bi is calculated as follows:

Φ
s/d
bi = ∓1

q
·
(
Es/d + E

s/d
g

2

)
. (4.30)

The term Es/d describes the difference of the S/D Fermi energy level and the ValB/ConB at
the source/drain edge, whose values are listed in Tab. 5.1 for various Ns/d. This difference is
caused by the high doping concentrations of the S and D region and is called degeneration.

Based on this equations, the 4-corner structure in Fig. 4.3(a) is decomposed in six 2-corner
structures. This simplification can be done since the method of superposition is valid. The
boundary condition at the source-to-channel junction is separated into a constant boundary
Φs
bi,eff(0) (see Fig. 4.3(b)) and a parabolic one ∆Φs

bi,eff(y) as it is shown in Fig. 4.3(d). The
constant boundary condition at the gate insulator interface Vgs,eff is applied in the 2-corner
problem in Fig. 4.3(b). Regarding the drain-to-channel junction, the boundary condition is
also separated into a constant one (Φd

bi,eff(0)− Vgs,eff) and a parabolic one ∆Φd
bi,eff(y) which

are depicted in Fig. 4.3(c) and 4.3(e).
The boundary condition across the gate insulator is assumed to be linear and is also

separated into a source (see Fig. 4.3(f)) and drain related case as it can be seen in Fig. 4.3(g).
The linear boundary can be expressed in terms of the electric field along the gate insulator
interface as follows [167]:

Φ
s/d
L (z̄) = Eox · x. (4.31)
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(a)

(b) (c)

(d) (e)

(f) (g)

Figure 4.3.: Decomposition of the DG structure to simplify the conformal mapping and to
separate the boundary conditions. (a) DG 4-corner structure with its original boundary condi-
tions, that are a mixture of parabolic and constant boundaries. (b) Constant boundary for the
source related case and (c) drain related case. (d) Parabolic boundary condition for the source
related case and (e) drain related case. (f) Linear boundary condition across the gate insulator
for the source related case and (g). (b)-(g): For a better overview, only the various boundary
conditions at the source and drain end of the channel are illustrated. However, the constant
boundary condition along the gate insulator is still valid.
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52 4. 2D Electrostatic Potential Solution

4.1.5 Mapping of the Device Structure

In order to find an analytical solution of the 2D electrostatic potential of the TFET, the device
structure is conformally mapped from the complex z̄-plane into the upper half of the w̄-plane.
Since the DG TFET structure can be characterized by two closed polygons as it is depicted in
Fig. 4.4, the Schwarz-Christoffel transformation (see Eq. (2.26)) is used to conformally map
the given geometry.

(a) (b)

Figure 4.4.: (a) Source related and (b) drain related polygon to map the DG structure from
the complex z̄ into the upper half of the w̄-plane.

Applying the vertices defined in Tab. 4.1 and using Eq. (2.26), the conformal mapping
function yields:

dz̄
dw̄ = C1 · (w̄ − 1)−

1
2 · (w̄ + 1)−

1
2 = C1√

w̄ − 1 ·
√
w̄ + 1

. (4.32)

Table 4.1.: Definition of the vertices to map the DG structure.

i wi zi αi = πγi γi

1′′ −∞ ∞+ j(2t̃ox + tch) +π +1

2 −1 0 + j(2t̃ox + tch) +π/2 +1/2

3 — 0 + j(t̃ox + tch) 0 0

4 — 0 + jt̃ox 0 0

5 +1 0 + j0 +π/2 +1/2

1′ +∞ +∞+ j0 +π +1

An integration of Eq. (4.32) leads to:

z̄(w̄) = C1 · ln
(∣∣∣w̄ +

√
w̄2 − 1

∣∣∣
)

+ C2 = C1 · cosh−1(w̄) + C2, (4.33)

where the integration constant C2 defines the origin of the z̄-plane. Since the origin is defined
by the vertex 5, the integration constant results in: C2 = 0+j0. The scale and rotation constant
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C1 is calculated in terms of Eq. (2.30) since the vertices 1′ and 1′′ in Fig. 4.4 are parallel lines:

z̄1′′ − z̄1′ = jπC1 = lim
zRe→∞

(
zRe + j(2t̃ox + tch)− (zRe + j0)

)
= j(2t̃ox + tch)

⇒ C1 = 2t̃ox + tch
π

= ∆y

π
, (4.34)

with the channel thickness tch (see Fig. 3.6) and the scaled gate insulator thickness t̃ox as it is
shown in Eq. (4.26). Now, the final function to map a point in w̄-plane into z̄-plane is defined
by:

z̄(w̄) = ∆y

π
· cosh−1(w̄). (4.35)

With the help of the inverse function of Eq. (4.35), the DG structure is mapped from the z̄-
into the upper half of the w̄-plane as follows:

w̄(z̄) = f−1(z̄) = cosh
(
π

∆y
· z̄
)

= cosh
(
π

∆y
· (x+ jy)

)
. (4.36)

Equation (4.36) can be applied in order to map an arbitrary point P s
z̄ within the channel (see

Fig. 4.4(a)) of the source related case into w̄-plane by:

w̄s(z̄) = cosh
(
π

∆y
· (x+ jy)

)
. (4.37)

On the other hand, in the drain related case (see Fig. 4.4(b)) an arbitrary point in the channel
P d
z̄ is mapped into w̄-plane by:

w̄d(z̄) = cosh
(
π

∆y
· (lch − x+ jy)

)
, (4.38)

which is the solution for the source related case mirrored on the y-axis.
By using the inverse mapping function (see Eq. (4.36)) the vertices of the 2-corner structure

in z̄-plane are mapped onto the real u-axis of the w̄-plane. In order to represent both points
1′′, 1′, whose real values are lying in infinity, the x-values are chosen to be three times the
value of the channel length lch [167]. Mapping the vertices in Tab. 4.1 for the source and drain
related case yields:

u′1′′ = cosh
(
π

∆y
·
[
3 · lch + j(2t̃ox + tch)

])
, u′2 = cosh

(
π

∆y
·
[
0 + j(2t̃ox + tch)

])
= −1,

u′3 = cosh
(
π

∆y
·
[
0 + j(t̃ox + tch)

])
, u′4 = cosh

(
π

∆y
·
[
0 + jt̃ox

])
,

u′5 = cosh
(
π

∆y
·
[
0 + j0

])
= +1, u′1′ = cosh

(
π

∆y
·
[
3 · lch + j0

])
. (4.39)
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4.2 Closed-Form Potential Solution for the Channel Region

The closed-form potential solution within the channel region of a DG TFET is introduced in
the following. The electrostatic solutions for the various boundary conditions mentioned in
Sec. 4.1.4 are presented separately.

The 2D channel potential ϕch2D is obtained by solving Poisson’s integral in the complex
w̄-plane and superposing the electrostatic solutions ϕC,P,L for constant boundary conditions
ΦC, parabolic ones ΦP and linear boundary conditions ΦL:

ϕch2D
(
w̄s/d(z̄)

)
= ϕC

(
w̄s/d(z̄)

)
+ ϕP

(
w̄s/d(z̄)

)
+ ϕL

(
w̄s/d(z̄)

)
, (4.40)

where z̄ = x+ jy defines an arbitrary point within the channel region of the DG TFET.

4.2.1 Solution for a Piecewise Constant Boundary

A solution for a piecewise constant boundary condition ΦC in an interval between two arbitrary
points u′a and u′b is found by solving Poisson’s integral (see Eq. (2.36)) in the complex w̄-plane
as follows:

φC
(
w̄s/d(z̄)

)
= 1
π
·

u′b∫

u′a

v

(u− u′)2 + v2 · ΦC du′ = −ΦC

π
· arctan

(
u− u′

v

)∣∣∣∣
u′b

u′a

. (4.41)

The potential solutions for the piecewise constant boundary conditions φC are obtained by
applying the parameter listed in Tab. 4.2 to Eq. (4.41). It should be noted that the potential
solutions φs,1C and φs,3C are part of the linear boundary conditions (see Fig. 4.3(f) and 4.3(g))
and describe the constant offset of the linear potential solution. Now, the potential solution for
piecewise constant boundary conditions is obtained by superposition:

ϕC
(
w̄s/d(z̄)

)
= φg,1C + φg,2C + φs,1C + φs,2C + φs,3C + φdC. (4.42)

Table 4.2.: Potential solutions for the piecewise constant boundaries between the points u′a
and u′b.

φC w̄s/d(z̄) ΦC u′a u′b

φg,1
C w̄s(z̄) Vgs,eff u′1′′ u′2

φg,2
C w̄s(z̄) Vgs,eff u′5 u′1′

φs,1
C w̄s(z̄) Vgs,eff u′2 u′3

φs,2
C w̄s(z̄) Φs

bi,eff(0) u′3 u′4

φs,3
C w̄s(z̄) Vgs,eff u′4 u′5

φd
C w̄d(z̄) Φd

bi,eff(0)− Vgs,eff u′3 u′4
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4.2.2 Solution for a Piecewise Parabolic Boundary

The parabolic boundary problem is solved by using Poisson’s integral and applying the geometry
dependent boundary condition. The parabolic shaped boundary problem in z̄-plane needs to
be mapped in w̄-plane, which is approximated by an elliptical shape [168]:

ΦP(u′) = ∆ΦP ·
√

1− (u′)2, (4.43)

where this approximation is valid for lch � tch [168]. ∆ΦP is the difference of the effective
built-in potentials and is given by:

∆Φ
s/d
P = Φ

s/d
bi,eff(y = tch/2)− Φs/d

bi,eff(y = 0). (4.44)

Now, solving Poisson’s integral leads to the potential solution for a parabolic boundary condition:

φP
(
w̄s/d(z̄)

)
= 1
π
·

1∫

−1

v

(u− u′)2 + v2 ·∆ΦP ·
√

1− (u′)2 du′

= ∆ΦP ·
[1

2 ·
(√

1− (u− jv)2 +
√

1− (u+ jv)2
)
− v
]
. (4.45)

Since there is a source and drain related case of the parabolic boundary condition (see Fig. 4.3(d)
and (e)), Eq. (4.45) is calculated for both cases as follows:

φsP
(
w̄s(z̄)

)
= ∆Φs

P ·
[1

2 ·
(√

1− (u− jv)2 +
√

1− (u+ jv)2
)
− v
]

(4.46)

φdP
(
w̄d(z̄)

)
= ∆Φd

P ·
[1

2 ·
(√

1− (u− jv)2 +
√

1− (u+ jv)2
)
− v
]

(4.47)

Finally, the potential solution for a piecewise boundary condition yields:

ϕP
(
w̄s/d(z̄)

)
= φsP + φdP. (4.48)

4.2.3 Solution for a Piecewise Linear Boundary

The potential drop across the gate insulator is assumed to be linear as it is depicted in Fig. 4.3(f)
and (g). In order to solve Poisson’s integral, the linear boundary condition in Eq. (4.31) is
mapped in w̄-plane [167]:

ΦL(u′) = Eox ·
tox
π
· cosh−1(u′). (4.49)

The Poisson integral is rewritten as:

φL
(
w̄s/d(z̄)

)
= 1
π
·

u′b∫

u′a

v

(u− u′)2 + v2 · Eox ·
tox
π
· cosh−1(u′) du′, (4.50)

UNIVERSITAT ROVIRA I VIRGILI  
COMPACT DC MODELING OF TUNNEL-FETS 
Fabian Horst 
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where this expression has no analytical solution. For this reason, the boundary condition is
approximated by a square root function:

Eox ·
tox
π
· cosh−1(u′) u ±

√
u′ − bL
aL

(4.51)

and inserted into Poisson’s integral which leads to:

φL
(
w̄s/d(z̄)

)
= 1
π
·

u′b∫

u′a

v

(u− u′)2 + v2 · ±
√
u′ − bL
aL

du′

=± j
π

[
σL,3 · arctan

(
aL ·u·σL,1 ·σL,3 − aL ·bL ·σL,1 ·σL,3 + j·aL ·v ·σL,1 ·σL,3

σL,4

)

+ σL,2 · arctan
(
aL ·bL ·σL,1 ·σL,2 − aL ·u·σL,1 ·σL,2 + j·aL ·v ·σL,1 ·σL,2

σL,4

)]∣∣∣∣
u′b

u′a

, (4.52)

with:

σL,1 =
√
− bL − u

′

aL
, σL,2 =

√
bL − u− jv

aL
, σL,3 =

√
bL − u+ jv

aL
,

σL,4 = b2L − 2 · bL · u+ u2 + v2. (4.53)

The sign of the square root is determined by the boundary potentials ΦL,1 and ΦL,2. The sign is
positive when ΦL,1 ≤ ΦL,2 and negative for ΦL,1 > ΦL,2. The parameter aL is defined by [167]:

aL =
u′step − bL

(ΦL,2 − ΦL,1)2 . (4.54)

For a detailed derivation of the potential solution for a piecewise linear boundary condition the
reader is kindly asked to refer to [167].

Table 4.3.: Potential solutions and applied parameters for the piecewise linear boundary
conditions between the points u′a and u′b.

φL w̄s/d(z̄) u′step bL ΦL,1 ΦL,2 u′a u′b

φs,1
L w̄s(z̄) u′3 u′2 Vgs,eff Φs

bi,eff(y = 0) u′2 u′3

φs,2
L w̄s(z̄) u′4 u′5 Vgs,eff Φs

bi,eff(y = 0) u′4 u′5

φd,1
L w̄d(z̄) u′3 u′2 0 Φd

bi,eff(y = 0)− Vgs,eff u′2 u′3

φd,2
L w̄d(z̄) u′4 u′5 0 Φd

bi,eff(y = 0)− Vgs,eff u′4 u′5

The linear potential solution φL at an arbitrary point z̄ is now calculated with the help of
the parameters listed in Tab. 4.3 applied to Eq. (4.52):

ϕL
(
w̄s/d(z̄)

)
= φs,1L + φs,2L + φd,1L + φd,2L . (4.55)
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4.3 Potential Model Verification

The verification of the derived potential model is done with the help of numerical TCAD
Sentaurus simulation data [79]. TCAD simulations are performed with the configuration
described in Sec. 6.1. At first, the effective gate-source voltage Vgs,eff and the center potential
ϕ1Dc are verified in Sec. 4.3.1. The 2D channel potential solution verification is presented in
Sec. 4.3.2.

4.3.1 Verification of the Effective Gate-Source Voltage & Center Potential

The effective gate-source voltage Vgs,eff is applied as a boundary condition in the 2D potential
solution in order to consider the effect of inversion charges in the potential calculations. For
this reason, Vgs,eff is verified by TCAD simulations to ensure a correct modeling approach. It
should be kept in mind that the effective gate-source voltage Vgs,eff denotes the surface potential
of the TFET in the middle of the channel (x = lch/2). Since Vgs,eff is calculated in dependency
of ϕ1Dc , the center potential is also verified. The TCAD potential values for Vgs,eff and ϕ1Dc are
extracted at the positions as it is depicted in Fig. 4.5.

Figure 4.5.: DG TFET channel region sketch which highlights the positions from which the
effective gate-source voltage and the center potential is extracted. Both values are taken from
the position x = lch/2, where Vgs,eff is extracted directly under the gate insulators (y = 0 nm)
and ϕ1Dc at (y = tch/2).

At first, the effective gate-source voltage Vgs,eff is simulated in dependency of Vgs for various
fixed drain-source voltages Vds. The modeling results of Vgs,eff vs. Vgs are shown in Fig. 4.6(a)
by applying a flat band voltage of Vfb = −0.54 V. The effective gate-source voltage matches
well in comparison with TCAD simulations for various Vds. It can be seen that Vgs,eff follows
the applied gate-source voltage when the TFET is in the Vgs-control regime as it is depicted
in Fig. 4.1(a). At a drain-source voltage of Vds = 0 V the TFET is under Vgs-control in the
range from Vgs = −1.1 V to 0 V and by increasing Vds to 0.7 V the Vgs-control range expands
to [−1.1 V ≤ Vgs ≤ 0.7 V]. If the gate-source voltage overcomes the applied Vds, Vgs,eff is under
control of the drain-source voltage (see Fig. 4.1(a)). For a gate-source voltage Vgs < −1.1 V,
Vgs,eff is under control of Vs.

Figure 4.6(b) presents the modeling results of Vgs,eff vs. Vds for various fixed gate-source
voltages Vgs. It can be seen that the effective gate-source voltage follows the drain-source
voltage when Vds < Vgs, so Vgs,eff is in the Vds-control regime (see Fig. 4.1(b)). For instance at
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58 4. 2D Electrostatic Potential Solution

Vgs = 0.5 V, the effective gate-source voltage switches at Vds = 0.4 V from Vds-control to the
Vgs-control regime. It can be seen that the Vgs,eff modeling approach shows a good fit compared
to the TCAD simulations with some small deviations occurring for negative Vds values. These
deviations are acceptable since the n-type TFET is driven for positive Vds.

In a next step, the potential in the center of the channel ϕ1Dc is verified in dependency of
the gate-source voltage for drain-source voltages from Vds = 0 V to 0.7 V. The modeling results
are depicted in Fig. 4.7(a) and it can be seen that the modeling approach fits well for various
Vds values compared with TCAD data. Finally, the drain-source voltage Vds is used as the
sweep variable for different fixed Vgs values. The results are depicted in Fig. 4.7(b) and show a
good match in comparison to the TCAD data for a gate-source voltage range from Vgs = 0.5 V
to 1.2 V.

UNIVERSITAT ROVIRA I VIRGILI  
COMPACT DC MODELING OF TUNNEL-FETS 
Fabian Horst 



4.3. Potential Model Verification 59

-0.5

0.0

0.5

1.0

V
gs

,e
ff

[V
]

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5
Vgs [V]

Vgs,eff(Vgs, Vds)
TCAD

Vds = 0.0...0.7 V,
Step = 0.1 V
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(b) Vgs,eff vs. Vds for various Vgs.

Figure 4.6.: Model results of the effective gate-source voltage Vgs,eff, where in (a) Vgs is used
as the sweep variable and Vds is fixed. In (b) Vds is used as the sweep variable and Vgs is fixed
for different values. The results of Eq. (4.18) are illustrated in blue solid lines and TCAD simu-
lation results are highlighted in black dashed lines.
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(a) ϕ1Dc vs. Vgs for various Vds.
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Figure 4.7.: Center potential ϕ1Dc in dependency of (a) the gate-source voltage Vgs and var-
ious fixed Vds values and (b) the drain-source voltage Vds and different fixed Vgs values. The
modeling results are calculated by Eq. (4.9) and shown in blue solid lines. TCAD data are
plotted in black dashed lines.
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4.3.2 Verification of the 2D Channel Potential Solution

The closed-form 2D potential solution within the channel region of the DG TFET is also
verified by TCAD Sentaurus simulation data. The 2D electrostatic potential is calculated
along the x-axis at two characteristic y-positions, the surface (y = 0 nm) and the center of
the channel region as it is illustrated in Fig. 4.8. Simulations are performed for gate-source
voltages from Vgs = −1.5 V to 1.5 V in order to verify the potential solution in the on-, off-
and ambipolar-state at Vds = 0.1 V and 0.7 V. The adjustable parameters for all simulations
are as follows: δ = 0 V, Vfb = −0.54 V, λs/dln,fit = 0.2 and λs/dfit = 1.0.

Figure 4.8.: Sketch of the DG TFET channel region where the 2D electrostatic potential is
solved. The cutlines show the surface (y = 0 nm) and center (y = tch/2) of the channel region.

The modeling results at the channel surface are shown in Fig. 4.9(a) and the results in the
center of the channel are depicted in Fig. 4.9(b). In both cases simulations are performed at a
drain-source voltage Vds = 0.7 V in the aforementioned gate-source voltage range.

In Fig. 4.9(a) it can be seen that the surface potential matches well in comparison to the
TCAD simulations from Vgs = −1 V to 1 V with some small deviations occurring at the channel
junctions. These deviations could be avoided by decreasing the parameter λs/dfit , whereby the
decrease of λs/dfit would increase the deviations of the potential solution at the junctions in the
channel center. Thus, the chose of λs/dfit = 1 represents a good compromise. At the gate-source
voltages Vgs = −1.5 V and 1.5 V one can see that the channel potential pinning occurs. For
Vgs = 1.5 V (on-state) some inaccuracies occur between x = 0 nm and 5 nm and at Vgs = −1.5 V
(ambipolar-state) there are some deviations in the range of x = 15 nm and 22 nm, which are
caused by the parameter λs/dln,fit. Increasing this parameter would improve the fit at these biases
but on the other hand worsens the potential solutions for Vgs < 1.5 V and > −1.5 V.

Figure 4.9(b) presents the results of the center potential and it can be seen that the modeling
approach shows a good fit compared to the TCAD simulation data. Some small deviations
occur at the channel junction due to the chosen value of λs/dfit as it is mentioned in the previous
paragraph. The channel potential pinning comes into play for Vgs > 1 V and Vgs < −1 V and
some small inaccuracies occur in the range of x = 4 nm to 18 nm. These deviations are to
explain by solving Laplace’s equation instead of Poisson’s equation and using the effective
gate-source voltage Vgs,eff to consider inversion charges. This simplification causes the biggest
error in the channel center and decreases towards the channel surface.

The results of the potential solution at the channel surface for Vds = 0.1 V are illustrated in

UNIVERSITAT ROVIRA I VIRGILI  
COMPACT DC MODELING OF TUNNEL-FETS 
Fabian Horst 



62 4. 2D Electrostatic Potential Solution

Fig. 4.10(a). The comparison with TCAD data shows a good agreement in the whole applied
Vgs range. At this Vds value it can be seen that the potential pinning in the on-state occurs
already from Vgs = 0.5 V as it has been shown in Fig. 4.6(a). The potential solution in the
ambipolar-state, i.e. Vgs ≤ −0.5 V, is not affected by the potential pinning effect. Regarding
the channel junctions some small deviations can be seen which are to explain by the choice of
the parameter λs/dfit as it is mentioned in the last paragraph.

Finally, the potential solution in the center of the channel (y = tch/2) is verified for
Vds = 0.1 V. The modeling results compared to numerical TCAD data are depicted in
Fig. 4.10(b), where the 2D potential solutions correlate well with the TCAD simulations. In
the on-state one can see the potential pinning effect again for Vgs ≥ 0.5 V. The occurring
inaccuracies can be ascribed to λs/dfit = 1 as it has been described in the paragraphs before.
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Figure 4.9.: 2D closed-form potential modeling results for Vds = 0.7 V at (a) the surface of
the channel and (b) the channel center. The 2D potential solution (blue solid lines) is com-
pared to TCAD simulation data (black dashed lines).
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Figure 4.10.: Modeling results of the 2D closed-form potential at (a) the surface of the chan-
nel and (b) the channel center for a drain-source voltage Vds = 0.1 V and compared to TCAD
data. 2D potential solution: blue solid lines. TCAD simulations: black dashed lines.
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CHAPTER 5

Compact DC Model

The direct current (DC) in the DG TFET between the source and drain contact (see Fig. 5.1)
is composed of the B2B tunneling and the TAT effect. For this reason, it is required to have an
accurate and simultaneously a numerically efficient electrostatic potential solution, which is
introduced in Sec. 5.1. The compact potential solution is used to estimate the device band
diagram in Sec. 5.2. Based on the potential solution, a compact expression for the electric field
is derived in Sec. 5.3. A compact description of the B2B tunneling current density is detailed
in Sec. 5.4, where an expression for the TAT current density is introduced in Sec. 5.5. Finally,
the total tunneling current of the DG TFET is presented in Sec. 5.6.

All derived compact model equations are in closed-form and are suitable for an implemen-
tation in the hardware description language Verilog-A. Altogether, this chapter connects all
single modeling parts that has been published in [133, 135–137, 169].

 

Figure 5.1.: 2D sketch of the n-type DG TFET device geometry, showing the channel thick-
ness tch, the channel length lch, the gate oxide thickness tox and the length of the S/D region
lsd. Source (S) and drain (D) region are highly p/n-doped with a doping concentration Ns/d.

5.1 Compact Electrostatic Potential Solution

The compact electrostatic potential solution of the DG TFET device is introduced in the
following. Compact expressions are derived separately for the S, D and Ch region, whereby the
channel potential is divided in an expression which characterizes the source-to-channel junction

65
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66 5. Compact DC Model

(on-state) and an expression to define the ambipolar-state addressed at the drain-to-channel
junction. A schematic potential shape along the x-axis is depicted in Fig. 5.2. The on- and the

Figure 5.2.: Schematic electrostatic potential ϕx of the DG TFET along the x-axis for an ar-
bitrary y-position. The compact potential within S and D region is characterized by a parabolic
function (∝ x2). A compact expression to define the potential within Ch region is found by
a rational function ∝ 1/x. The compact potential expressions are derived by applying the
characteristic points P s/d

i .

ambipolar-state compact potential are modeled separately. The expressions are based on the
characteristic potential points P s/d

i (see Fig. 5.2), which are calculated by the 2D electrostatic
potential solution presented in Chap. 4. For a Verilog-A implementation of this 2D complex
potential solution, it is necessary to separate the real and imaginary part, since Verilog-A is not
able to handle complex values. The separation of the complex electrostatic solution is detailed
in App. A.

In the calculations of the compact electric field it is necessary to include the y component of
the potential. For this reason, a compact modeling approach of the potential along the y-axis
is introduced in Sec. 5.1.3.

5.1.1 On-State Compact Potential

The main part of tunneling in the on-state occurs at the source-to-channel junction and
therefore, the compact electrostatic potential along the x-axis for any y-position is characterized
within two separate intervals. In the first interval the source potential is approximated and in
the second one the potential in the channel is defined, which are derived in the following.

Source Potential

The potential in the S region can be described in the interval [−xs1(y) ≤ x < 0 nm] by a
parabola as follows:

ϕsx(x,y) = as(y) · x2 + bs(y) · x+ cs(y). (5.1)
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The unknown parameters as, bs and cs are determined with the help of the potential points P s
1

and P s
2 (see Fig. 5.2) and the first derivative at P s

1 , which read as:

P s
1(y) =

(
xs1(y), Φs

bi
)
, (5.2)

P s
2(y) =

(
xs2, Φ

s
bi,eff(y)

)
, (5.3)

dϕsx
(
xs1(y)

)

dx = 0, (5.4)

whereby xs2 describes the x-position of the source-to-channel junction and is therefore set to
zero. The x-value xs1 characterizes the x-position, where the potential bending equals zero [128]:

xs1(y) = λs(y)−
√
λ2s (y)±

2 · εs · (Φs
bi + Vs − Vgs,eff)
q ·Ns

, (5.5)

using the screening length λs at the source-to-channel junction (see Eq. (4.29)), the source
built-in potential Φs

bi, the permittivity εs in S, the source voltage Vs, the doping concentration
Ns in S region and the effective gate-source voltage Vgs,eff. To ensure only positive values in the
argument of the square root, the sign in front of the fraction within the square root is positive
if (Φs

bi + Vs) > Vgs,eff and negative for the other case.
By applying Eqs. (5.2)–(5.4), a linear equation system is set up to solve for the needed

parameters as, bs and cs:
∣∣∣∣∣∣∣

Φs
bi = as(y) · (xs1)2 + bs(y) · xs1 + cs(y)

Φs
bi,eff(y) = as(y) · (xs2)2 + bs(y) · xs2 + cs(y)

0 = 2 · as(y) · xs1 + bs(y)

∣∣∣∣∣∣∣
. (5.6)

Solving the linear equation system results in:

as(y) =
Φs
bi,eff(y)− Φs

bi(
xs2 − xs1(y)

)2 , (5.7)

bs(y) = −
2 · xs1(y) ·

(
Φs
bi,eff(y)− Φs

bi
)

(
xs2 − xs1(y)

)2 , (5.8)

cs(y) = Φs
bi + xs1(y) ·

Φs
bi,eff(y)− Φs

bi(
xs2 − xs1(y)

)2 . (5.9)

Channel Potential (Source Related)

After investigating the potential shape in TCAD simulation results, the compact potential in
the channel at the source-to-channel junction is approximated by a rational function. So, the
potential in the interval [0 ≤ x ≤ lch/2] is defined by:

ϕch,sx (x,y) = ks(y)
x− ls(y) +ms(y). (5.10)
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The three unknown parameters ks, ls and ms are solved with the help of three characteristic
potential points P s

i in the first half of the channel. The points are chosen to be (see Fig. 5.2):

P s
2(y) =

(
xs2, Φ

s
bi,eff(y)

)
, (5.11)

P s
3(y) =

(
xs3, ϕ

ch
2D(xs3, y)

)
, (5.12)

P
s/d
4 (y) =

(
x
s/d
4 , ϕch2D(xs/d4 , y)

)
, (5.13)

where xs/d4 is set to lch/2. In order to consider the influence of the gate insulator thickness tox
and the channel length lch on the electrostatics, the x-value of P s

3 is empirically defined by:

xs3 = 2 · tox ·
(

lch
22 nm

)3
, (5.14)

using a channel length of 22 nm as a reference. That means, for a smaller lch the value of xs3
decreases to cover the potential drop at the source-to-channel junction. The potential values
in P s

3 and P
s/d
4 are calculated with the help of the 2D electrostatic potential solution (see

Eq. (4.40)).
With the help of these three potential points the following linear equation system can be

defined to solve for the unknown parameters:
∣∣∣∣∣∣∣∣

Φs
bi,eff(y) = ks(y)

xs2−ls(y) + ms(y)
ϕch2D(xs3, y) = ks(y)

xs3−ls(y) + ms(y)
ϕch2D(xs/d4 , y) = ks(y)

x
s/d
4 −ls(y)

+ ms(y)

∣∣∣∣∣∣∣∣
. (5.15)

The first unknown parameter ls results in:

ls(y) = −
D13 ·

(
xs2 + x

s/d
4
)
−D12 · (xs2 + xs3)

2 · (D12 −D13) (5.16)

±

√√√√
(
−
D13 ·

(
xs2 + x

s/d
4
)
−D12 · (xs2 + xs3)

2 · (D12 −D13)

)2

− xs2 ·
D12 · xs3 −D13 · xs/d4

D12 −D13
,

with:

D12(y) =
ϕch2D(xs3, y)− Φs

bi,eff(y)
xs2 − xs3

, D13(y) =
ϕch2D(xs/d4 , y)− Φs

bi,eff(y)
xs2 − x

s/d
4

. (5.17)

It should be noted that the parameter ls must be negative and therefore, the sign of the
square root in Eq. (5.16) must also be negative. The y-dependency of ls is obtained by the
y-dependency of the potential values considered in D12 and D13. Now, solving for the next
unknown parameter yields:

ks(y) =
ϕch2D(xs3, y)− Φs

bi,eff(y)
1

xs3−ls(y) −
1

xs2−ls(y)
(5.18)
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and the last one is given by:

ms(y) = Φs
bi,eff(y)− ks(y)

xs2 − ls(y) . (5.19)

Now, the compact potential solution at the source-to-channel junction can be calculated in
dependency of x and y and the applied bias Vgs and Vds.

5.1.2 Ambipolar-State Compact Potential

In contrast to the on-state, the tunneling events in the ambipolar-state occur at the drain-to-
channel junction. For this reason, the electrostatic potential along the x-axis for an arbitrary
y-position is characterized by an approximation in the drain region and one in the channel
region. These approximations are done in the same way as in the on-state and are introduced
in the following.

Drain Potential

The electrostatic potential in the D region follows approximately a parabolic shape and therefore
the potential in the interval [lch < x ≤ xd1(y)] is defined as:

ϕdx(x,y) = ad(y) · x2 + bd(y) · x+ cd(y), (5.20)

where xd1 defines the x-position at which the potential bending equals zero [128]:

xd1(y) = lch − λd(y) +
√
λ2
d(y)±

2 · εd · (Φd
bi + Vds − Vgs,eff)
q ·Nd

. (5.21)

In this equation λd is the screening length at the drain-to-channel junction (see Eq. (4.29)),
Φd
bi shows the built-in potential , Nd represents the doping concentration of the drain and εd is

the dielectric permittivity of the D region. The sign before the fraction within the square root
is positive for the case (Φd

bi + Vds) > Vgs,eff and negative in the other case.
Similar to the source potential approximation, the unknown parameters ad, bd and cd are

specified by the potential points P d
1 and P d

2 as follows:

P d
1 =

(
xd1(y), Φd

bi
)
, (5.22)

P d
2 =

(
xd2 , Φ

d
bi,eff(y)

)
, (5.23)

dϕdx
(
xd1(y)

)

dx = 0. (5.24)

The x-value xd2 is located at the drain-to-channel junction and therefore is equal to the channel
length lch.

With the help of these three boundary conditions, similar to Eq. (5.6) a linear equation
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system is set up to determine the unknown parameters which results in:

ad(y) =
Φd
bi,eff(y)− Φd

bi(
xd2 − xd1(y)

)2 , (5.25)

bd(y) = −
2 · xd1(y) ·

(
Φd
bi,eff(y)− Φd

bi
)

(
xd2 − xd1(y)

)2 , (5.26)

cd(y) = Φd
bi + xd1(y) ·

Φd
bi,eff(y)− Φd

bi(
xd2 − xd1(y)

)2 . (5.27)

Channel Potential (Drain Related)

The channel potential for the ambipolar-state at the drain-to-channel junction in the interval
[lch/2 < x ≤ lch] is approximated by a rational function (∝ 1/x) as it is shown in Fig. 5.2:

ϕch,dx (x,y) = kd(y)
x− ld(y) +md. (5.28)

In order to solve the three unknown parameters kd, ld and md, three potential points P d
i in

the second half of the channel are applied, which are defined as follows:

P d
2 (y) =

(
xd2 , Φ

d
bi,eff(y)

)
, (5.29)

P d
3 (y) =

(
xd3 , ϕ

ch
2D(xd3 , y)

)
, (5.30)

P
s/d
4 (y) =

(
x
s/d
4 , ϕch2D(xs/d2 , y)

)
, (5.31)

thereby xd3 is defined by lch − xs3 (see Eq. (5.14)) and xs/d4 = lch/2. The associated potential
values of P d

3 and P d
4 are calculated in terms of the 2D electrostatic potential solution presented

in Eq. (4.40).
A linear equation system is set up to determine the three unknown parameters in the same

way as it is done in Eq. (5.15). The first unknown parameter is given by:

ld(y) = −
D13 ·

(
xd2 + x

s/d
4
)
−D12 · (xd2 + xd3)

2 · (D12 −D13) (5.32)

±

√√√√
(
−
D13 ·

(
xd2 + x

s/d
4
)
−D12 · (xd2 + xd3)

2 · (D12 −D13)

)2

− xd2 ·
D12 · xd3 −D13 · xs/d4

D12 −D13
,

using:

D12(y) =
ϕch2D(xd3 , y)− Φd

bi,eff(y)
xd2 − xd3

, D13(y) =
ϕch2D(xs/d4 , y)− Φd

bi,eff(y)
xd2 − x

s/d
4

. (5.33)

In this case, the parameter ld > lch and therefore the sign of the square root in Eq. (5.32) must
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be positive. The next parameter is determined as follows:

kd(y) =
ϕch2D(xd3 , y)− Φd

bi,eff(y)
1

xd3−ld(y) −
1

xd2−ld(y)
. (5.34)

Solving for the last parameter results in:

md(y) = Φd
bi,eff(y)− kd(y)

xd2 − ld(y)
. (5.35)

5.1.3 Compact Potential Solution Along the y-Axis

A compact description of the potential along the y-axis is needed to find a compact expression
for the electric field in y direction. The shape of the potential along the y-axis has been
investigated in TCAD Sentaurus simulations at several x-positions. The results show that the
potential in the on-state is schematically shaped as it is shown in Fig. 5.3. The potential shape
in the ambipolar-state looks similar to that in the on-state, with the difference that in this
case Φsur < Φcen. In the regime of Vgs-control, the surface potential or the effective gate-source
voltage Vgs,eff is under the control of the applied gate-source voltage. In this state, the TFET
channel is in depletion region and the potential along the y-axis follows nearly a parabolic
shape (∝ y2), as it is illustrated in terms of the black curve in Fig. 5.3. When inversion charges
come into play, the shape of the potential changes. The potential at the surface as well as
the gradient around the surface increases. The center potential stays constant and the slope
around the center potential decreases.

Figure 5.3.: Sketch of the potential shape ϕy along the y-axis showing the influence of an
increasing Vgs and therefore the existence of inversion charges on the curve shape of ϕy. In
depletion region (black solid line) the potential follows nearly a parabola. In inversion mode
(blue and red dashed lines) the potential is proportional to yδy .

The influence of inversion charges on the potential shape is modeled by the following
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expression:

ϕs/dy (x,y) = Φ
s/d
sur (x)− Φs/d

cen(x)
(tch/2)δy

· (y − tch/2)δy + Φs/d
cen(x), (5.36)

in which the potential values Φs/d
sur and Φs/d

cen are respectively calculated for a specific x-position at
the channel surface (y = 0 nm) and center (y = tch/2), using the compact potential expressions
derived in Sec. 5.1. The exponent in Eq. (5.36) takes empirically into account the influence of
inversion charges on the potential shape and is defined by:

δy = 2 + 2 · (Vgs − Vgs,eff)
1 V . (5.37)

In this equation, when inversion charges come into play, the difference between the applied
gate-source voltage Vgs and the effective gate-source voltage Vgs,eff increases and hence, the
exponent δy also increases and the resulting potential tends the expected curve shape.

5.2 Compact Band Diagram

In order to derive the tunneling probability Ttun, a compact description of the device band
diagram is necessary. The calculation of the band diagram is based on the compact potential
solution ϕx (see Sec. 5.1) and the material parameters electron affinity χ and band gap Eg.
It should be noticed that due to the high doping concentration of S/D, the effect of band
gap narrowing (BGN) has to be taken into account. A schematic band diagram of the DG
TFET along the x-axis is depicted in Fig. 5.4. The band diagram including the consideration
of hetero-junctions is calculated as follows:

Es
c(x,y) = −q · ϕsx(x,y) +

Es
g

2 , (5.38)

Es
v(x,y) = −q · ϕsx(x,y)−

Es
g

2 , (5.39)

Ech,s
c (x,y) = −q · ϕch,sx (x,y) + χs − χch +

Ech
g

2 , (5.40)

Ech,s
v (x,y) = −q · ϕch,sx (x,y) + χs − χch −

Ech
g

2 , (5.41)

Ech,d
c (x,y) = −q · ϕch,dx (x,y) + χs − χch +

Ech
g

2 , (5.42)

Ech,d
v (x,y) = −q · ϕch,dx (x,y) + χs − χch −

Ech
g

2 , (5.43)

Ed
c (x,y) = −q · ϕdx(x,y) + χs − χd +

Ed
g

2 , (5.44)

Ed
c (x,y) = −q · ϕdx(x,y) + χs − χd −

Ed
g

2 , (5.45)

with the electron affinity in source χs, in the channel χch and in drain χd. The band gap
considering BGN in source Es

g, channel Ech
g and drain region Ed

g .
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Figure 5.4.: Schematic band diagram of the n-type DG TFET along the x-axis for an ar-
bitrary y-position, which is based on the compact potential solution ϕx. The plot shows the
Fermi energy Ef, the ConB Ec, the ValB Ev and the device material parameters. The kink at
the source-to-channel junction indicates a hetero-junction.

The BGN effect in the p-doped S region is considered in terms of the model of Slotboom [170],
which characterizes the band gap reduction in dependency of the acceptor (source) doping
concentration Ns. For the band gap in source follows:

Es
g = Es,0

g −∆Es,0
g , (5.46)

with the intrinsic band gap of source Es,0
g at the considered temperature T and:

∆Es,0
g = 6.72 · 10−3eV ·

[
ln
(

Ns

1.3 · 1017cm−3

)
+

√(
ln
(

Ns

1.3 · 1017cm−3

))2
+ 1

2

]
. (5.47)

Due to the high n-doping concentration Nd, the BGN effect in D region is calculated by the
model of Del Alamo [171]:

Ed
g = Ed,0

g −∆Ed,0
g , (5.48)

using the intrinsic band gap in D region Ed,0
g at the considered temperature T and the band

gap difference, which is defined by:

∆Ed,0
g =

{
18.7 · 10−3eV · ln

(
Nd

7.0·1017cm−3

)
, Nd ≥ 7.0 · 1017cm−3

0 eV , otherwise.
(5.49)

In the calculations of the built-in potentials Φs/d
bi (see Eq. (4.30)), it is important to know
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the difference between the Fermi level and the ValB/ConB at the S/D edge. This energy
difference is denoted as Es/d. Due to the high doping concentrations, the semiconductor is
degenerated which needs to be taken into account. The values are extracted from TCAD
Sentaurus simulation results for various doping concentrations Ns/d and are listed in Tab. 5.1.

Table 5.1.: Energy difference Es/d in dependency of the doping concentration Ns/d. Es/d is
applied in Eq. (4.30).

Ns [cm−3] (p-type) Es [meV] Nd [cm−3] (n-type) Ed [meV]

1.0 · 1019 −29.289 1.0 · 1019 −27.150

3.0 · 1019 −0.886 3.0 · 1019 1.253

5.0 · 1019 12.320 5.0 · 1019 14.459

7.0 · 1019 21.018 7.0 · 1019 23.157

9.0 · 1019 27.515 9.0 · 1019 29.654

1.0 · 1020 30.239 1.0 · 1020 32.378

1.1 · 1020 32.703 1.1 · 1020 34.842

1.2 · 1020 34.952 1.2 · 1020 37.091

1.5 · 1020 40.721 1.5 · 1020 42.860

5.3 Compact Electric Field Solution

The compact electric field solution which is introduced in the following, is based on the potential
solution presented in Sec. 5.1. The electric field is needed in the calculations of the tunneling
current density, which is defined within the channel region [0 ≤ x ≤ lch] and therefore, the
electric field is also defined in this interval. By taking advantage of the electrostatic potential
solution in the channel along the x-axis (see Eq. (5.10) and (5.28)), the x component of the
electric field reads as:

Es/d
x (x,y) = −dϕch,s/dx (x,y)

dx = − d
dx

(
ks/d(y)

x− ls/d(y) +ms/d(y)
)

= −
ks/d(y)(

x− ls/d(y)
)2 . (5.50)

The y component of the electric field is obtained by deriving Eq. (5.36), which results in:

Es/d
y (x,y) = −dϕs/dy (x,y)

dy = − d
dy

(
Φ
s/d
sur (x)− Φs/d

cen(x)
(tch/2)δy

· (y − tch/2)δy + Φs/d
cen(x)

)

= −Φ
s/d
sur (x)− Φs/d

cen(x)
(tch/2)δy

· δy ·
(
|y − tch/2|

)δy−1
, (5.51)

with the surface potential Φsur and center potential Φcen at the considered x-position, calculated
separately for the on- and ambipolar-state with the help of Eq. (5.10) and (5.28).

The absolute value of the electric field, considering the x and y component, is calculated as
follows:

| ~Es/d(x,y)| =
√(

E
s/d
x

)2 +
(
E
s/d
y

)2
. (5.52)
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5.4 Band-to-Band Tunneling Current Density

The B2B tunneling current density along the transversal energy component Ex can be expressed
in terms of the Tsu-Esaki formula [94, 153], which was originally proposed by Duke [95]. It
follows from Eq. (3.48):

Jtun(Ex) = q ·m∗

2π2 ·~3 ·

Emax∫

Emin

Ttun(Ex) · N (Ex) dEx. (5.53)

Since the calculations of the electrostatics are derived in dependency of x and y, the
integration over energy Ex in Eq. (5.53), which indicates the energy shape in x direction, is
replaced by an integration along the x-axis. The current density is rewritten as follows:

Jtun(Ex) = q ·

Emax∫

Emin

m∗

2π2 ·~3 · Ttun(Ex) · N (Ex) dEx ·
dx
dx

= q ·

x2∫

x1

m∗

2π2 ·~3 · Ttun
(
E(x,y)

)
· N
(
E(x,y)

)
· dExdx dx, with: dExdx = −q · dϕdx = q ·| ~Es/d|

Jtun(y) = q ·

x2∫

x1

m∗

2π2 ·~3 · Ttun
(
E(x,y)

)
· N
(
E(x,y)

)
· q · | ~Es/d(x,y)|dx, (5.54)

whereby the integration limits x1(Emin) and x2(Emax) substitute the minimum and maximum
energy Emin and Emax, respectively. The electric field | ~Es/d| is calculated with the help of
Eq. (5.52). The expression N defines the supply function (see Eq. (3.49)), whereby a compact
expression for the tunneling probability Ttun is derived in the following. Both expressions are
now dependent on the band diagram, which is on the other hand dependent on specific x and y
coordinates.

5.4.1 Tunneling Length (B2B)

In order to estimate the B2B tunneling probability TB2B
tun , it is essential to know the tunneling

length ltun in the on- and the ambipolar-state of the DG TFET. The estimation of the
tunneling length is done in terms of the device band diagram as it is depicted in Fig. 5.5.
The tunneling length represents the distance between the overlapping energy bands at one
specific x-position. The derivation of lB2Btun is separately presented for the on-state and the
ambipolar-state in the following.
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(a) B2B tunneling length in the on-state. (b) B2B tunneling length in the ambipolar-
state.

Figure 5.5.: Schematic band diagram of (a) source-to-channel junction (on-state) showing
the B2B tunneling length lB2B,stun and (b) the drain-to-channel junction to illustrate the B2B
tunneling length lB2B,dtun in the ambipolar-state.

On-State

The tunneling length in the on-state of the device, which is located at the source-to-channel
junction, consists of two parts as it is shown in Fig. 5.5(a). The tunneling length is derived
at a specific x-position xst, on which the tunneling event takes place. The first part describes
the distance from the ValB in source, which is on the same energy level as the ConB in the
channel, to source-to-channel junction. By forming the inverse function of Es

v one obtains:

x(Es
v) = f−1(Es

v
)

= f−1
(
−q · ϕsx(x,y)−

Es
g

2

)
= f−1

(
−q ·

(
as · x2 + bs · x+ cs

)
−
Es
g

2

)

= − bs
2as
±

√
1
as
·
(
−E

sv

q
+ b2s

4as
− cs −

Esg

2q

)
. (5.55)

The first part of lB2B,stun is given by assuming Es
v = Ech,s

c (xst). It follows:

ls→j
tun (xst,y) = − bs

2as
+

√
1
as
·
(
−E

ch,s
c (xst)
q

+ b2s
4as
− cs −

Esg

2q

)
(5.56)
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and by applying Eq. (5.40) together with Eq. (5.10) yields:

ls→j
tun (xst,y) = − bs

2as
+

√√√√√
1
as
·
(

ks
xst − ls

+ms + b2s
4as
− cs + χch − χs

q
−
Ech
g + Es

g

2q︸ ︷︷ ︸
Ks

1

)

= − bs
2as

+

√
1
as
·
(

ks
xst − ls

+ms +Ks
1

)
, (5.57)

whereby the needed distance is contained in the positive square root and xst ∈ {0 . . . lch/2}.
The second part of the tunneling length at the source-to-channel junction is defined by the

specific x-position xst since it refers to the distance from the origin to the chosen position. The
second term is given by:

lj→ch
tun (xst) = xst. (5.58)

By adding these two values and considering an arbitrary x-value as xst one receives a
closed-form expression, which describes the resulting tunneling length in the on-state:

lB2B,stun (x,y) = −ls→j
tun (x,y) + lj→ch

tun (x)

= x+ bs
2as
−
√

1
as
·
(

ks
x− ls

+ms +Ks
1

)
, (5.59)

here it should be noted that the first part is negated to obtain a positive tunneling distance.
The reason for that is that Eq. (5.57) defines the x-value at the ValB edge and is always
negative.

Ambipolar-State

The tunneling length at the drain-to-channel junction is derived in a similar way as lB2B,stun in
the on-state. Figure 5.5(b) illustrates a sketch of the band diagram at the considered junction
showing the tunneling length lB2B,dtun . It also consists of two parts, the distance between the
ConB in D region and the junction (x = lch) and the distance between the junction and the
ValB in the channel.

The first tunneling length part is derived by finding the inverse function of the ConB in D
region:

x(Ed
c ) = f−1(Ed

c
)

= f−1
(
−q · ϕdx(x,y) +

Ed
g

2 + χs − χd
)

= f−1
(
−q · (ad · x2 + bd · x+ cd) +

Ed
g

2 + χs − χd
)

= − bd
2ad
±

√
1
ad
·
(
−E

dc

q
+

b2d
4ad
− cd + Edg

2q + χs − χd
q

)
(5.60)
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and assuming an equal energy level (Ed
c = Ech

v (xdt )) at the specific x-position xdt , where
tunneling length is calculated, yields:

lj→d
tun (xdt ,y) = − bd

2ad
−

√
1
ad
·
(
−E

chv (xdt )
q

+
b2d

4ad
− cd + Edg

2q + χs − χd
q

)
− lch, (5.61)

in which the required distance is obtained by using the negative square root and subtracting the
channel length lch. Inserting Eq. (5.43) and (5.28) into Eq. (5.61) leads to the final expression:

lj→d
tun (xdt ,y) = − bd

2ad
−

√√√√√
1
ad
·
(

kd
xdt − ld

+md + b2d
4ad
− cd + χch − χd

q
+
Ech
g + Ed

g

2q︸ ︷︷ ︸
Kd

1

)
− lch

= − bd
2ad
−

√
1
ad
·
(

kd
xdt − ld

+md +Kd
1

)
− lch, (5.62)

with xdt ∈ {lch/2 . . . lch}.
The second part of the tunneling length lB2B,dtun at the drain-to-channel junction is given by

the distance to the junction and the specific x-value xdt :

lch→j
tun (xdt ) = lch − xdt . (5.63)

A summation of Eq. (5.62) and (5.63) and considering an arbitrary x-position lead to the
final expression for the tunneling length in the ambipolar-state:

lB2B,dtun (x,y) = lj→d
tun (x,y) + lch→j

tun (x)

= −x− bd
2ad
−

√
1
ad
·
(

kd
xdt − ld

+md +Kd
1

)
. (5.64)

5.4.2 Tunneling Probability (B2B)

The B2B tunneling probability is calculated with the help of an area-equivalent (AE) WKB
approach, which has been proposed in [135, 136]. The main goal of this approach is to define
the triangular energy barrier shape used in the WKB approximation with the help of an area
equivalence of the triangle area and the area of the energy barrier formed by the band diagram.
Looking back to Sec. 3.1.1, the general equation to calculate the transmission coefficient using
the WKB is defined by (see Eq. (3.30)):

Ttun ≈ exp


−2 ·

x2∫

x1

∣∣∣∣∣

√
2 ·m∗
~2 · [U(x)− E]

∣∣∣∣∣ dx


 . (5.65)
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In the following, the tunneling energy barrier shape U(x), that defines the tunneling barrier
of the DG TFET in the on- and ambipolar-state, is expressed in terms of the area of the
tunneling barrier. In addition, the term (∝

√
U(x)) must be solvable in a closed-form to obtain

a compact expression for the tunneling probability TB2B
tun . Figure 5.6(a) illustrates a sketch

of the band diagram at the source-to-channel junction showing the tunneling energy barrier
at one specific x-position xst in the on-state of the TFET. On the other hand the tunneling
energy barrier at a chosen x-value xdt in the ambipolar-state at the drain-to-channel junction
is depicted in Fig. 5.6(b). In both cases the area of the tunneling barrier is highlighted by red
solid lines (hatched areas As

1 and Ad
1).

(a) (b)

Figure 5.6.: Band diagram sketch of (a) the source-to-channel junction and (b) drain-to-
channel junction, showing the shape of the tunneling barrier (red solid lines) of the DG TFET
at x = x

s/d
t for an arbitrary y-position. The enclosed area As/d

1 (red hatched area) as well as
the AE triangle (blue dashed area As/d

2 ) with its energy barrier height Us/d
bar and the tunneling

length lB2B,s/dtun are illustrated for both cases.

In order to come to a numerically robust modeling approach, the energy barrier height U s/d
bar

is calculated in terms of an AE derivation. In Fig. 5.6, it can be seen that the tunneling barrier
(red hatched area As/d

1 ), which is formed by the band diagram, equals the area of a triangle
(blue dashed area As/d

2 ). In the first step, the area of the energy triangle is described by:

A
s/d
2 (x,y) =

U
s/d
bar · l

B2B,s/d
tun (x,y)

2 . (5.66)

Now, assuming an area equivalence A1 = A2, the area As/d
1 has to be determined in order

to replace As/d
2 in Eq. (5.66). The area As

1 (see Fig. 5.6(a)) of the tunneling barrier in the
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on-state is formed by the ConB and is calculated by:

As
1(Ec) =

xst∫

xst−l
B2B,s
tun

(
Ec(x,y)− Ech,s

c (xst,y)
)
dx

=
0∫

xst−l
B2B,s
tun

Es
c(x,y) dx+

xst∫

0

Ech,s
c (x,y) dx−

xst∫

xst−l
B2B,s
tun

Ech,s
c (xst,y) dx, (5.67)

the Ech,s
c (xst,y) defines an ConB offset at the specific x-position xst for a correct area calculation

under the curves and to avoid negative area values. Inserting the compact band diagram
expressions (see Eqs. (5.38) and (5.40)) in Eq. (5.67) leads to:

As
1(x,y) = q ·

[
as
3 ·
(
xst − lB2B,stun

)3 + bs
2 ·
(
xst − lB2B,stun

)2 +
(
cs −

Es
g

2q

)
·
(
xst − lB2B,stun

)

+ ks · ln
(

ls
ls − xst

)
+
(
−ms +

Ech
g

2q + χs − χch
q

)
· xst

]
− Ech,s

c (xst,y) · lB2B,stun ,

(5.68)

where the tunneling length is calculated with the help of Eq. (5.59).
The tunneling energy barrier in the ambipolar-state is formed by the ValB as it is shown

in Fig. 5.6(b). The area Ad
2 is defined by:

Ad
1(Ev) =

xdt +lB2B,dtun∫

xdt

(
Ev(x,y)− Ech,d

v (xdt ,y)
)
dx

=

lch∫

xdt

Ech,d
v (x,y) dx+

xdt +lB2B,dtun∫

lch

Ed
v (x,y) dx−

xdt +lB2B,dtun∫

xdt

Ech,d
v (xdt ,y) dx. (5.69)

The last term Ech,d
v (xdt ,y) is used to compensate the ValB offset at the position xdt to obtain

the correct tunneling area. Solving the integrals with the help of Eqs. (5.43) and (5.45) leads
to:

Ad
1(x,y) = q ·

[
kd · ln

(
ld − xdt
ld − lch

)
+
(
−md −

Ech
g

2q + χs − χch
q

)
·
(
lch − xdt

)
(5.70)

+ ad
3 ·
(
l3ch −

(
xdt + lB2B,dtun

)3)+ bd
2 ·
(
l2ch −

(
xdt + lB2B,dtun

)2)

−
(
−cd + χs − χd

q
−
Ed
g

2q

)
·
(
lch −

(
xdt + lB2B,dtun

))
]
− Ech,d

v (xdt ,y) · lB2B,dtun .
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In order to calculate the tunneling length in the ambipolar-state, Eq. (5.64) is used. It should
be noted that Eq. (5.70) results in a negative area and for this reason, the absolute value of Ad

1

is used in the following to ensure the absolute value within the integral in Eq. (5.65).
With the help of the equal areas |As/d

1 | = A
s/d
2 and by rearranging Eq. (5.66), the energy

barrier height is determined as:

U
s/d
bar (x,y) =

2 ·
∣∣As/d

1 (x,y)
∣∣

l
B2B,s/d
tun (x,y)

. (5.71)

In the next step, the energy barrier shape U s/d(x,y) along the x-axis for an arbitrary
y-position is defined by a linear function:

U s/d(x,y) = −
U
s/d
bar (x,y)

l
B2B,s/d
tun (x,y)

· x+ E
ch,s/d
c/v (xs/dt ,y), (5.72)

with the term E
ch,s/d
c/v that represents the energy offset at the position xs/dt .

The linear function in Eq. (5.72) is inserted in the general tunneling probability equation
(see Eq. (5.65)). Now, the transmission coefficient is derived separately for the on- and
ambipolar-state. Firstly, for the on-state follows:

TB2B,s
tun (x,y) = exp


−2 ·

xst∫

xst−l
B2B,s
tun

√
2 ·m∗s
~2 ·

[(
−
U s
bar(x,y)

lB2B,stun (x,y)
· x+ Ech,s

c (xst,y)
)
− Ech,s

c (xst,y)
]
dx




= exp

(
−2 ·

√
2 ·m∗s
~2 ·

[
2
3 · x ·

√
−
U s
bar(x,y)

lB2B,stun (x,y)
· x
]∣∣∣∣
xst

xst−l
B2B,s
tun

)

= exp

(
−4

3 ·
√

2 ·m∗s
~2 · U s

bar(x,y) · lB2B,stun (x,y)

)
, (5.73)

the parameter m∗s describes the effective carrier mass of the S region.
Similar to the on-state expression, the ambipolar-state tunneling probability is calculated

by using the parameters describing the drain-to-channel junction, which results in:

TB2B,d
tun (x,y) = exp


−2 ·

xdt +lB2B,dtun∫

xdt

√
2 ·m∗d
~2 ·

[(
−
Ud
bar(x,y)

lB2B,dtun (x,y)
· x+Ech,d

v (xdt ,y)
)
−Ech,d

v (xdt ,y)
]
dx




= exp


−2 ·

√
2 ·m∗d
~2 ·

[
2
3 · x ·

√
−
Ud
bar(x,y)

lB2B,dtun (x,y)
· x

]∣∣∣∣∣

xdt +lB2B,dtun

xdt




= exp

(
−4

3 ·

√
2 ·m∗d
~2 · Ud

bar(x,y) · lB2B,dtun (x,y)

)
, (5.74)
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82 5. Compact DC Model

with the effective carrier mass m∗d of the drain region.

5.4.3 Tunneling Generation Rate (B2B)

The tunneling generation rate (TGR) defines the number of carriers generated per second and
per volume in the ConB (on-state) or ValB (ambipolar-state) of the channel by tunneling.
The TGR for B2B tunneling is defined by the terms within the integral of Eq. (5.54):

J
s/d
tun,B2B(y) = q ·

x
s/d
t,2∫

x
s/d
t,1

m∗s/d
2π2 · ~3 · T

B2B,s/d
tun (x,y) · N s/d

B2B(x,y) · q · | ~Es/d(x,y)|
︸ ︷︷ ︸

TGRs/d
B2B(x,y)

dx. (5.75)

In this equation, the tunneling probability for the on- and ambipolar-state is calculated by
using Eq. (5.73) and (5.74), respectively. The supply function N has already been introduced
in Eq. (3.49) and by applying the compact band diagram expressions (see Sec. 5.2), the supply
function for the on- and ambipolar-state yields:

N s
B2B(x,y) = kbT · ln




1 + exp
(
−E

ch,s
c (x,y)−Es

f
kbT

)

1 + exp
(
−E

ch,s
c (x,y)−Ed

f
kbT

)


 , (5.76)

N d
B2B(x,y) = kbT · ln




1 + exp
(
E
ch,d
v (x,y)−Ed

f
kbT

)

1 + exp
(
E
ch,d
v (x,y)−Es

f
kbT

)


 , (5.77)

considering the Fermi energy in source and drain, Es
f and Ed

f , respectively.
A schematic sketch of the B2B TGR along the x-axis for an arbitrary y-position is shown

in Fig. 5.7(a). Both, the on-state and the ambipolar-state are illustrated and the maximum
TGR values are highlighted, which are used for a compact description of the TGR in the
following. Figure 5.7(b) shows the corresponding band diagram for the TGR along the x-axis.
In the on-state (Vgs,on), a B2B tunneling area is formed at the source-to-channel junction in
the interval [xst,1 ≤ x ≤ xst,2] and in the ambipolar-state (Vgs,amb) the resulting B2B tunneling
area is located at the drain-to-channel junction defined in the interval [xdt,2 ≤ x ≤ xdt,1].

With the help of Eq. (5.75), it is possible to calculate the TGR in every single point
within the channel region, but this equation is not integrable in a closed-form. This fact
forbids a usage in compact models and therefore, the TGR has to be described by an analytical
function. Considering Fig. 5.7(a), it can be seen that the TGR follows approximately a Gaussian
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5.4. Band-to-Band Tunneling Current Density 83

(a) (b)

Figure 5.7.: (a) Schematic shape of the TGR along the x-axis and an arbitrary y-position,
showing the maximum value of the TGR in the on- and ambipolar-state of the DG TFET.
(b) Band diagram sketch of the on- and ambipolar-state to highlight the B2B tunneling areas
at the channel junctions. The limits of the B2B tunneling areas are denoted as xs/dt,1 and xs/dt,2 .
The x-values, where band bending in S/D region equals zero, are denoted as xs/d1 . In both
plots: Red solid lines: on-state. Blue dashed lines: ambipolar-state.

distribution function, hence a compact (cp) TGR expression is defined as:

TGRs/d
cp,B2B(x,y) = TGRs/d

B2B,max(y) · exp

(
−
(
x− xs/dB2B,max

)2
(
σ
s/d
B2B

)2

)
, (5.78)

by using the variance (σs/dB2B)2 of the Gaussian distribution as an adjustable parameter. The
maximum TGR value is calculated with the help of Eq. (5.75):

TGRs/d
B2B,max(y) = TGRs/d

B2B

(
x
s/d
B2B,max, y

)
, (5.79)

whereby xs/dB2B,max defines the x-position of the maximum TGR value. It is assumed that the
maximum TGR value is found at the x-position, where the tunneling length (see Eq. (5.59)) is
the smallest and hence the first derivative of the tunneling length leads to the required x-value.
For the on-state follows:

d
(
lB2B,stun (x,y)

)

dx = d
dx

(
x+ bs

2 · as
−
√

1
as
·
(

ks
x− ls

+ms +Ks
1

))
!= 0

1 + ks

2 · (x− ls)2 · as ·
√

1
as
·
(

ks
x−ls +ms +Ks

1
)

!= 0. (5.80)
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84 5. Compact DC Model

Solving Eq. (5.80) for x leads to the position of the maximum TGR in the on-state:

xsB2B,max(y) = 1
2 ·

√√√√√
ϑs1

12 · 3√2 · as ·Ks
1

+ 4 · 3√2 · k2s

ϑs1
+ ϑs2

2 ·
√

ϑs1
3√2·as·Ks

1
− 48· 3√2·k2

s
ϑs1

+ 3·k2
s

(Ks
1)2

+ ϑs3

+ 1
4 ·
√

3
·

√
ϑs1

3√2 · as ·Ks
1
− 48 · 3√2 · k2s

ϑs1
+ 3 · k2s

(K1)2 −
ks − 4 ·Ks

1 · ls
4 ·Ks

1
, (5.81)

using the abbreviations:

ϑs1 = − 3
√

432 · a2s · k4s +
√

186624 · a2s · k8s + 442368 · a3s · k6s · (Ks
1)3, (5.82)

ϑs2 =
√

3 ·
(
− (ks − 4 ·Ks

1 · ls)3

(Ks
1)3 + 12 · (2 ·Ks

1 · l2s − ks · ls) · (ks − 4 ·Ks
1 · ls)

(Ks
1)2

−8 · (3 · ks · l2s − 4 ·Ks
1 · l3s )

Ks
1

)
, (5.83)

ϑs3 = as · ks · ls − 2 · as ·Ks
1 · l2s

as ·Ks
1

+ (ks − 4 ·Ks
1 · ls)2

2 · (Ks
1)2 − 3 · (2 ·Ks

1 · l2s − ks · ls)
Ks

1
. (5.84)

The x-position, which refers to the maximum TGR in the ambipolar-state, is derived in a
similar way. The first derivative of the tunneling length (see Eq. (5.64)) at the drain-to-channel
junction yields:

d
(
lB2B,dtun (x,y)

)

dx = d
dx

(
−x− bd

2 · ad
−

√
1
ad
·
(

kd
xdt − ld

+md +Kd
1

))
!= 0

kd

2 · (x− ld)2 · ad ·
√

1
ad
·
(

kd
x−ld +md +Kd

1

) − 1 != 0 (5.85)

and solving for x leads to:

xdB2B,max(y) =

−1
2 ·

√√√√√−
ϑd1

12 · 3√2 · ad ·Kd
1

+
4 · 3√2 · k2

d
ϑd1

− ϑd2

2 ·
√

ϑd1
3√2·ad·Kd

1
− 48· 3√2·k2

d
ϑd1

+ 3·k2
d

(Kd
1 )2

+ ϑd3

− 1
4 ·
√

3
·

√
ϑd1

3√2 · ad ·Kd
1
−

48 · 3√2 · k2
d

ϑd1
+

3 · k2
d

(Kd
1 )2 −

kd − 4 ·Kd
1 · ld

4 ·Kd
1

, (5.86)
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with:

ϑd1 = − 3
√

432 · a2
d · k4

d +
√

186624 · a4
d · k8

d + 442368 · a3
d · k6

d · (Kd
1 )3, (5.87)

ϑd2 =
√

3 ·
(
− (kd − 4 ·Kd

1 · ld)3

(Kd
1 )3 + 12 · (2 ·Kd

1 · l2d − kd · ld) · (kd − 4 ·Kd
1 · ld)

(Kd
1 )2

−8 · (3 · kd · l2d − 4 ·Kd
1 · l3d)

Kd
1

)
, (5.88)

ϑd3 = ad · kd · ld − 2 · ad ·Kd
1 · l2d

ad ·Kd
1

+ (kd − 4 ·Kd
1 · ld)2

2 · (Kd
1 )2 − 3 · (2 ·Kd

1 · l2d − kd · ld)
Kd

1
. (5.89)

5.4.4 Compact Current Density (B2B)

With the help of the closed-form expression for the B2B tunneling generation rate (see Eq. (5.78)),
it is possible to find a compact expression for the B2B current density. An integration of
Eq. (5.78) results in:

Jsy,B2B(y) = q ·

xst,2∫

xst,1

TGRs/d
cp,B2B(x,y) dx

= q ·
√
π · σsB2B · TGRs

B2B,max(y)
2 ·

[
erf
(
x− xsB2B,max

σsB2B

)]∣∣∣∣
xst,2

xst,1

, (5.90)

Jdy,B2B(y) = q ·

xdt,1∫

xdt,2

TGRd
cp,B2B(x,y) dx

= q ·
√
π · σdB2B · TGRd

B2B,max(y)
2 ·

[
erf
(
x− xdB2B,max

σdB2B

)]∣∣∣∣
xdt,1

xdt,2

, (5.91)

whereby the term “erf” describes the error function1. The integration limits in the both cases
are calculated in dependency with the band diagram.

The limit xst,1 in the on-state describes the x-position, where the ValB in source Es
v(xs1, y)

starts to overlap the ConB in the channel Ech,s
c (xst,1, y) as it is depicted in Fig. 5.7(b). Solving

1 A Verilog-A suitable approximation of the error function is presented in App. B.2
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the expression Es
v(xs1, y) = Ech,s

c (xst,1, y) for the needed value xst,1 yields:

Es
v(xs1, y) = Ech,s

c (xst,1, y)

−q · (Φs
bi + Vs)−

Es
g

2 = −q ·
(

ks
xst,1 − ls

+ms

)
+ χs − χch +

Ech
g

2

⇒ xst,1(y) = ls(y) + ks(y)

Φs
bi + Vs −ms(y) + 1

q
·
(
Ech
g +Es

g
2 + χs − χch

) , (5.92)

where the resulting value xst,1 must be greater or equal to parameter ls (xst,1 ≥ ls). If the
resulting x value falls below ls, the integration limit is smoothly set to ls (xst,1 = ls) to avoid
discontinuities.

In the ambipolar-state, the integration limit xdt,1 is determined with the help of the
condition Ed

c (xd1 , y) = Ech,d
v (xdt,1, y). This condition describes the x-position in the channel,

where the ConB in drain starts to overlap the ValB in the channel (see Fig. 5.7(b)). It follows:

Ed
c (xd1 , y) = Ech,d

v (xdt,1, y)

−q ·
(
Φd
bi + Vds

)
+ χs − χd +

Ed
g

2 = −q ·
(

kd
xdt,1 − ld

+md

)
+ χs − χch +

Ech
g

2

⇒ xdt,1(y) = ld(y)− kd(y)

Φd
bi + Vds −md(y)− 1

q
·
(
Ed
g+Ech

g
2 − χd + χch

) . (5.93)

In this expression, the resulting xdt,1 must be smaller or equal to the parameter ld (xdt,1 ≤ ld).
When xdt,1 overcomes the value of ld, it is smoothly set to ld.

The second integration limit is in general set to xs/dt,2 = lch/2 in case of Vgs,on/amb,1 (see
Fig. 5.8), since from this x-position the contribution of the integration to the current density
can be neglected. But in that case that the channel potential pinning or inversion charges come
into play (Vgs,on/amb,2), the integration limit xs/dt,2 shifts. In on-state, if the ConB in the channel
middle falls below the ConB at the drain region edge (Ech,s

c (lch/2, y) < Ed
c (lch + lsd, y)), as it is

shown in Fig. 5.8(a), the limit xst,2 moves to the direction of the source-to-channel junction.
This parameter is determined by the point, where the ConB in the channel equals the ConB at
the drain edge. It follows:

Ed
c (lch + lsd, y) = Ech,s

c (xst,2, y)

−q ·
(
Φd
bi + Vds

)
+ χs − χd +

Ed
g

2 = −q ·
(

ks
xst,2 − ls

+ms

)
+ χs − χch +

Ech
g

2

⇒ xst,2(y) = ls(y) + ks(y)

Φd
bi + Vds −ms(y)− 1

q
·
(
Ed
g−Ech

g
2 + χch − χd

) . (5.94)

In the ambipolar-state, the second integration limit shifts when the ValB in the center
of the channel overcomes the ValB at the S region edge (Ech,d

v (lch/2, y) > Es
v(−lsd, y)). In this
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(a) on-state. (b) ambipolar-state.

Figure 5.8.: Band diagram sketch showing the influence of channel potential pinning or in-
version charges on the second integration limit of the B2B current density in (a) the on-state
(Vgs,on,1 < Vgs,on,2) and (b) the ambipolar-state (Vgs,amb,1 > Vgs,amb,2) of the DG TFET. In
both cases xs/dt,2 moves to the tunneling junction for increasing/decreasing Vgs-values. Solid
lines: No inversion charges and no channel potential pinning. Dashed lines: The effect of inver-
sion charges causes the pinning of the channel potential.

case xdt,2 is given by:

Es
v(−lsd, y) = Ech,s

v (xdt,2, y)

−q · (Φs
bi + Vs)−

Es
g

2 = −q ·
(

kd
xdt,2 − ld

+md

)
+ χs − χch −

Ech
g

2

⇒ xdt,2(y) = ld(y) + kd(y)

Φs
bi + Vs −md(y)− 1

q
·
(
Ech
g −Es

g
2 + χch − χs

) , (5.95)

in the other case, xdt,2 is defined by lch/2.
After deriving the integration limits for the tunneling areas shown in Fig. 5.8, the B2B

tunneling current density can be calculated at any y-position in the channel. In order to
characterize the B2B tunneling current, the current density has to be expressed by an analytical
function that is integrable in closed-form. A schematic shape of the B2B current density is
depicted in Fig. 5.9. It can be seen that Jy,B2B follows approximately a Gaussian distribution
function for both, the on- and ambipolar-state. The maximum of the Gaussian distribution
is assumed to be at the channel surface, since the highest electrostatic control is directly under
the gate insulators. By picking only two points Js/dy,B2B(y1 = 0 nm) and Js/dy,B2B(y2 = tch/2), the
compact B2B current density in the first half of the channel [0 ≤ y ≤ tch/2] is expressed as

UNIVERSITAT ROVIRA I VIRGILI  
COMPACT DC MODELING OF TUNNEL-FETS 
Fabian Horst 



88 5. Compact DC Model

follows:

J
s/d
cp,B2B(y) =

(
J
s/d
y,B2B(y1)− Js/dy,B2B(y2)

)
· exp

(
− (y − y1)2

(ηs/d)2

)
+ J

s/d
y,B2B(y2), (5.96)

where the term J
s/d
y,B2B(y2) compensates the offset in the center of the channel. The variance

(ηs/d)2 of the Gaussian distribution is used as a fitting parameter. Due to the symmetry of the
DG TFET, it is not necessary to model the second half of the channel. With the help of this
compact B2B tunneling current density, it is possible to derive a closed-form expression for the
B2B tunneling current of the DG TFET in Sec. 5.6.

Figure 5.9.: Schematic shape of the B2B current density along the y-axis in the on-state
(red solid lines) and the ambipolar-state (blue dashed lines) obtained after careful TCAD
investigations. The highlighted characteristic points Js/dy,B2B(y1) and Js/dy,B2B(y2) are used for a
compact description of the current density.

5.5 Trap-Assisted Tunneling Current Density

In the calculations of the device current of TFETs, it is absolutely indispensable to consider
the effect of TAT, which worsens the resulting subthreshold slope as well as the on/off-ratio
of the TFET [67, 68]. The following modeling approach was introduced in [137]. In order to
take into account the effect of TAT in FEM device simulation, a generation model has been
introduced by Hurkx [154]. The generation rate formula reads as:

Gt = p · n− n2
i

ςh
1+Γh

· (n+ n1) + ςe
1+Γe · (p+ p1) , (5.97)

n1 = ni · exp
(
∆Efi

kbT

)
, p1 = ni · exp

(
−∆Efi

kbT

)
, (5.98)

with the intrinsic carrier concentration ni, the electron/hole carrier concentration n/p, the
electron/hole generation lifetime ςe/h and the relative position of the trap energy level with
respect to the intrinsic Fermi energy ∆Efi. The parameter Γe/h describes the field-effect
enhancement factor and covers the influence of both the Poole-Frenkel effect and the effect of
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trap-assisted tunneling. This factor is given by [172]:

Γe/h = 1
4 · kbT

·
∫

E

exp
(
±
Ec/v − Ex

kbT

)
· TTAT

tun (Ex) dEx, (5.99)

where Ex is the energy to which an electron or hole is tunneling to and TTAT
tun is the tunneling

probability that a carrier is able to tunnel from a trap state into the ConB/ValB.
By modifying Eq. (5.97), the generation rates for electrons and holes can separately be

expressed as follows [173]:

Ge
t = n1 · (1 + Γe) · ft

ςe
, (5.100)

Gh
t = p1 · (1 + Γh) · (1− ft)

ςh
, (5.101)

using the probability ft that a trap state at the considered energy is occupied. In case that
electrons are dominating the TAT process, which means Γe � Γh, the term ft can approximately
be expressed by the Fermi-Dirac distribution for electrons [173].

In order to characterize the TAT current density along the y-axis similar to the B2B
tunneling case for both the on- and ambipolar-state, Landauer’s tunneling formula (see
Eq. (3.48) and (5.54)) is combined with Hurkx’s TAT generation rate, which leads to [174]:

J
s/d
tun,TAT(y) = q ·

∫

x

m∗s/d
2π2 · ~3 · τ

s/d
TAT ·N

s/d
t (x,y) · N s/d

TAT(x,y) ·
[
1 + Γs/d(x,y)

]
· q · | ~Es/d(x,y)|dx,

= q ·
∫

x

TGRs/d
TAT(x,y), (5.102)

where TGRs/d
TAT defines the TAT generation rate, by considering the capture cross section τ sTAT,

the supply function N s/d
TAT, the enhancement factor Γs/d including the tunneling probability

TTAT
tun and the electric field | ~Es/d|. The trap density N s/d

t is used in order to replace the carrier
concentration n1/p1 in Eq. (5.100) and (5.101) and is introduced in the next section.

5.5.1 Interface Trap Density

The interface traps or midgap traps at the channel junctions determine the off-state current
of the TFET as it is introduced in Sec. 3.3.1. The traps are a consequence of the high doping
concentration of the S and D region and are assumed to be exponentially distributed along the
junctions with respect to the energy as it is shown in Fig. 5.10.

Due to the high p-doping concentration of the S region, the maximum value of the exponential
trap density is located at the ValB edge of the junction, which is shown in Fig. 5.10(a). In
this case, the electrons can hop from the ValB onto an empty trap at the junction and from
there they can tunnel into the ConB of the channel. On the other hand, Fig. 5.10(b) shows the
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(a) on-state. (b) ambipolar-state.

Figure 5.10.: Schematic band diagram to show the working principle of the TAT process
at the channel junctions. (a) Electrons are able to hop on an empty state at the source-to-
channel junction and tunnel into the channel ConB. (b) Holes can hop on an empty state at
the drain-to-channel junction and penetrate into the ValB of the channel. In both cases traps,
are exponentially distributed regarding energy.

drain-to-channel junction, where due to the high n-doping concentration of the D region the
maximum trap density is located at the ConB edge of the junction. Here, a hole is able to hop
from the ConB onto an empty state at the junction and tunnel through the energy barrier into
the ValB of the channel region. The trap density over energy is defined by:

N
s/d
t (x,y) = N0

t · exp
(
−∆E

s/d(x,y)
κs/d
TAT · kbT

)
, (5.103)

by using the maximum trap density N0
t and the adjustable parameter κs/d

TAT to tune the resulting
slope of the TAT current, whose influence is shown in the model verification (see Chap. 6). The
energy differences ∆E are given by:

∆Es(x,y) = Ech,s
c (x,y)− Ech,s

v (0,y), (5.104)

∆Ed(x,y) = Ech,d
c (lch,y)− Ech,d

v (x,y). (5.105)

5.5.2 Field-Effect Enhancement Factor and Tunneling Probability (TAT)

The field-effect enhancement factor characterizes the influence of tunneling in Eq. (5.97). If the
enhancement factor is small (Γ � 1), e.g. for weak electric fields, Eq. (5.97) reduces to the
well-known SRH generation formula [154].

The tunneling probability that a carrier is able to tunnel from a trap to the ConB/ValB
in the channel is calculated by using the AE WKB approach presented in Sec. 5.4.2. In case
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of TAT, the tunneling length is adapted because here, the tunneling process starts from the
channel junctions and ends in the channel. Hence, the part of the tunneling distance within the
S/D region is equal to zero and therefore the tunneling length in Eq. (5.59) and (5.64) reduces
to:

lTAT,stun (x) = x, lTAT,dtun (x) = lch − x. (5.106)

So, the tunneling probability at the source-to-channel junction (on-state) is calculated by
replacing the lB2B,stun in Eq. (5.73) as follows:

TTAT,s
tun (x,y) = exp

(
−4

3 ·
√

2 ·m∗s
~2 · U s

bar(x,y) · lTAT,stun (x)

)
. (5.107)

In the ambipolar-state, TTAT
tun is obtained by replacing the tunneling length in Eq. (5.74):

TTAT,d
tun (x,y) = exp

(
−4

3 ·

√
2 ·m∗d
~2 · Ud

bar(x,y) · lTAT,dtun (x)

)
. (5.108)

Regarding Eq. (5.99) and inserting the compact expression for the TAT tunneling probability
TTAT
tun , it is not possible to find a closed-form solution for the integral over the energy. For this

reason, it is necessary to approximate the enhancement factor. After some investigations using
a numerical solution of Eq. (5.99), the enhancement factor along the x-axis in the on-state
follows approximately the expression:

Γs(x,y) u exp
(
− ∆Es(x,y)
κs
TAT · kbT

)
· TTAT,s

tun (x,y), (5.109)

whereby for the ambipolar-state yields:

Γd(x,y) u exp
(
− ∆Ed(x,y)
κd
TAT · kbT

)
· TTAT,d

tun (x,y), (5.110)

where the parameters ∆Es/d and κs/d
TAT are used in the same manner as in the calculations of

the interface trap density.

5.5.3 Tunneling Generation Rate (TAT)

The number of carriers that are generated per second and volume by TAT are called TAT
generation rate and can be determined by Eq. (5.102). A schematic sketch of the TGR along
the x-axis is shown in Fig. 5.11(a) and the related band diagram, which addresses the tunneling
areas for the on- and ambipolar-state TAT current parts, is depicted in Fig. 5.11(b). With
the help of the interface trap density, the field-effect enhancement factor and by considering the
integration limits of the TAT process (see Fig. 5.11), Eq. (5.102) is rewritten for the on-state
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as follows:

Jstun,TAT(y) = q ·

lch
2∫

0

m∗s
2π2 · ~3 · τ

s
TAT ·N s

t (x,y) · N s
TAT(x,y) · [1 + Γs(x,y)] · q · | ~Es(x,y)|dx

Jstun,TAT(y) = q ·

lch
2∫

0

TGRs
TAT(x,y) dx. (5.111)

For the ambipolar-state Eq. (5.102) leads to:

Jdtun,TAT(y) = q ·

lch∫

lch
2

m∗d
2π2 · ~3 · τ

d
TAT ·Nd

t (x,y) · N d
TAT(x,y) ·

[
1 + Γd(x,y)

]
· q · | ~Ed(x,y)|dx,

Jdtun,TAT(y) = q ·

lch∫

lch
2

TGRd
TAT(x,y) dx, (5.112)

whereby it should be noted that an integration over the half of the channel length is sufficient,
since the tunneling length at bigger (on-state) or smaller (ambipolar-state) x-positions
increases and thus the tunneling probability TTAT

tun is almost equal to zero (see Fig. 5.11(b)).

(a) (b)

Figure 5.11.: (a) Sketch of the TAT generation rate along the x-axis for any y-position.
The maximum TGR values for the on- and ambipolar-state are separately illustrated. (b)
Schematic band diagram to illustrate the areas, where TAT can occur are highlighted. In both
figures: Red lines: on-state. Blue lines: ambipolar-state.
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The supply function N has been introduced in Sec. 5.4.3 and is adapted for the TAT model.
It follows:

N s
TAT(x,y) = kbT · ln




1 + exp
(
−E

ch,s
c (x,y)−Es

f
κsTAT·kbT

)

1 + exp
(
−E

ch,s
c (x,y)−Ed

f
κsTAT·kbT

)


 , (5.113)

N d
TAT(x,y) = kbT · ln




1 + exp
(
E
ch,d
v (x,y)−Ed

f
κdTAT·kbT

)

1 + exp
(
E
ch,d
v (x,y)−Es

f
κdTAT·kbT

)


 , (5.114)

using the compact band diagram expressions for the ConB in the channel Ech,s
c (see Eq. (5.40))

and the channel ValB Ech,d
v (see Eq. (5.43)). The parameter κs/d

TAT is used to adapt the resulting
slope of the TAT current as it has been mentioned in the previous section. Now, the generation
rate due to TAT can be calculated at every x and y-position within the channel region.

In order to solve the integral of the current density in closed-form, it is necessary to
approximate the TGRTAT along the x-axis for any y-positions in the channel.

After investigating the curve shape within the integral of Eq. (5.111) and (5.112), the
TGRTAT can be approximated by a Gaussian distribution function (see Fig. 5.11(a)), which
leads to the following compact expression:

TGRs/d
cp,TAT(x,y) = TGRs/d

TAT,max(y) · exp

(
−

(x− xs/dTAT,max)2

(
σ
s/d
TAT

)2

)
, (5.115)

whereby the variance (σs/dTAT)2 of the Gaussian distribution and the position of the maximum
TGR value xsTAT,max in the on-state are used as adjustable parameters. This x-position in the
ambipolar-state is defined by:

xdTAT,max = lch − xsTAT,max (5.116)

and the maximum TGR value is given by Eqs. (5.111) and (5.112):

TGRs/d
TAT,max(y) = TGRs/d

TAT

(
x
s/d
TAT,max, y

)
. (5.117)
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94 5. Compact DC Model

5.5.4 Compact Current Density (TAT)

The TAT current density along the y-axis is now obtained by integrating the compact TAT
generation rate (see Eqs. (5.111) and (5.112)). The integrals read as:

Jsy,TAT(y) = q ·

lch
2∫

0

TGRs
cp,TAT(x,y) dx

= q ·
√
π · σsTAT · TGRs

TAT,max(y)
2 · erf

(
x− xsTAT,max

σsTAT

)∣∣∣∣

lch
2

0
, (5.118)

Jdy,TAT(y) = q ·

lch∫

lch
2

TGRd
cp,TAT(x,y) dx

= q ·
√
π · σdTAT · TGRd

TAT,max(y)
2 · erf

(
x− xdTAT,max

σdTAT

)∣∣∣∣
lch

lch
2

, (5.119)

with the error function erf. Due to the symmetry of the error function and by taking advantage
of the dependency of xdTAT,max on xsTAT,max, Eqs. (5.118) and (5.119) are rewritten as:

J
s/d
y,TAT(y) = q ·

√
π · σs/dTAT · TGRs/d

TAT,max(y)
2 · erf

(
x− xsTAT,max

σ
s/d
TAT

)∣∣∣∣

lch
2

0

. (5.120)

Figure 5.12.: Sketch of the TAT current density shape along the y-axis. The on-state
is shown in solid red lines and ambipolar-state in dashed blue lines. The shown points
J
s/d
y,TAT(y1) and Js/dy,TAT(y2) are used for the compact current density expression.

In the next step, a closed-form expression for the TAT current density has to be found in
the same way as it is mentioned in Sec. 5.4.4. The shape of the TAT current density along
the y-axis is schematically shown in Fig. 5.12. That is to see, that the current density follows
approximately a Gaussian distribution. For this reason, the compact TAT current density in
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the first half of the channel [0 ≤ y ≤ tch/2] is defined by:

J
s/d
cp,TAT(y) =

(
J
s/d
y,TAT(y1)− Js/dy,TAT(y2)

)
· exp

(
− (y − y1)2
(
ηs/d

)2

)
+ J

s/d
y,TAT(y2), (5.121)

using two points of the TAT current density calculated by Eq. (5.120). The first value is
calculated at the channel surface (y1 = 0 nm) and the second one is determined in the center of
the channel at y2 = tch/2. The maximum of the Gaussian distribution is located at the channel
surface due to the highest electrostatic control of the gate electrodes. The center TAT current
density is used to compensate the offset in the middle of the channel. The variance (ηs/d)2 of
the Gaussian distribution is used as a fitting parameter and has the same value as the variance
of the B2B tunneling current density shown in Eq. (5.96).

5.6 Tunneling Current

In the final step of the compact DC model, an expression for the total device current Ids is
derived. The device current considers the B2B tunneling as well as the parasitic TAT current
part and is determined with help of the compact current density expressions for B2B tunneling
(see Eq. (5.96)) and TAT (see Eq. (5.121)). In addition, due to the symmetry of the DG TFET,
it is sufficient to calculate Ids only for one half of the channel, which means an integration in
the interval [0 ≤ y ≤ tch/2], and multiplying the resulting current by the factor 2. The device
current is obtained by integrating the current densities and defined by:

Ids = Ids,B2B + Ids,TAT (5.122)

= 2 · wch ·

tch
2∫

0

(
Jscp,B2B(y) + Jdcp,B2B(y)

)
+
(
Jscp,TAT(y) + Jdcp,TAT(y)

)
dy, (5.123)

with the channel width wch. The integration results in:

Ids = 2 · wch

×

[√
π · ηs ·

(
Jsy,B2B(y1)− Jsy,B2B(y2)

)

2 · erf
(
y − y1

ηs

)
+ Jsy,B2B(y2) · y

+
√
π · ηd ·

(
Jdy,B2B(y1)− Jdy,B2B(y2)

)

2 · erf
(
y − y1

ηd

)
+ Jdy,B2B(y2) · y

+
√
π · ηs ·

(
Jsy,TAT(y1)− Jsy,TAT(y2)

)

2 · erf
(
y − y1

ηs

)
+ Jsy,TAT(y2) · y

+
√
π · ηd ·

(
Jdy,TAT(y1)− Jdy,TAT(y2)

)

2 · erf
(
y − y1

ηd

)
+ Jdy,TAT(y2) · y

]∣∣∣∣∣

tch
2

0

. (5.124)
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96 5. Compact DC Model

It should be noted that the hardware description language Verilog-A does not have an
implementation of the error function and therefore, a Verilog-A suitable approximation of the
error function is introduced in App. B.2.

Furthermore, it should be noted that in order to ensure a decent model behavior for bias
conditions far away from the practical working region of the TFET, the terminal voltages Vds
and Vgs are smoothly saturated to constant values. The smooth limitation of the terminal
input voltages improves the convergence of the compact model during the simulation iterations
and is presented in App. C.

In the case that the device is biased with negative drain-source voltages Vds < 0 V, the
TFET turns into a parasitic forward-biased p/n diode (see Sec. 3.3.6), which is not considered
in the compact modeling approach. In order to incorporate this effect, a simple equation to
calculate the diode current is applied. It follows:

Idiode = −Jdiode · wch ·
[
exp
(
− q · Vds,in
ndiode · kbT

)
− 1
]
, (5.125)

with the reverse bias saturation current density Jdiode ≈ 10−18A/µm, the input terminal
drain-source voltage Vds,in and the quality factor ndiode of the diode. The resulting diode
current is added to the compact tunneling current Ids and ensures the model continuity for
negative Vds values.

The compact equations and expression of the tunneling current Ids are derived for an n-type
DG TFET, but are not limited to this type of device. The p-type TFET can simply be emulated
from the equations of the n-type modeling approach.
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CHAPTER 6

Modeling Results & Verification

The verification of the compact model derived in Chap. 5 is done in the following. First of all,
the compact model is validated in Sec. 6.1 with the help of TCAD Sentaurus simulation data.
Beside the resulting device current, partial results like electrostatics or tunneling generation
rate are examined and verified. After the verification by TCAD simulations, the device current
is validated by measurement data of complementary NW GAA TFETs in Sec. 6.2. The compact
model simulations of the partial results are calculated in MATLAB [175]. The simulations of
the I-V characteristics and their derivatives are performed with a Verilog-A implementation
of the compact model equations in the IC-Characterization and Analysis Program (IC-CAP)
from Keysight Technologies [87] and Cadence Virtuoso [86].

6.1 Verification by TCAD Sentaurus Simulation Data

In this section the compact modeling approach presented in Chap. 5 is verified with the help of
2D TCAD Sentaurus simulations of the n-type DG TFET shown in Fig. 6.1.

 

Figure 6.1.: 2D sketch of the n-type DG TFET device geometry, showing the channel thick-
ness tch, the channel length lch, the gate oxide thickness tox and the length of the S/D region
lsd. Source and drain region are highly p/n-doped with a doping concentration Ns/d.

For verification a standard Silicon device (Si TFET) is defined with the geometrical
dimensions and the doping concentrations listed in Tab. 6.1, where a homogeneous distribution
of current density along the channel width wch is assumed. Furthermore, the standard device is
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98 6. Modeling Results & Verification

made of Silicon, the gate insulator is HfO2 and the gate contacts consist of Aluminum, unless
otherwise is stated. TCAD simulations are performed by applying a non-local B2B tunneling
model and the TAT model of Hurkx with a maximum interface trap density N0

t to consider the
influence of the parasitic TAT effect [79, 154]. The values of the carrier rest masses m∗e/h,TCAD
are also listed in Tab. 6.1, since the tunneling processes strongly depend on these masses. Due
to the high doping concentration of the source and drain region, it is essential to consider the
BGN effect in the numerical simulations of the DG TFET. The model of Slotboom is applied
in TCAD simulations to capture the BGN effect in the highly p-doped source region [170],
whereas the model of Del Alamo BGN is considered in the highly n-doped drain region [171].
The doping profiles at the channel junctions have a slight Gaussian shape with a standard
deviation of 0.5 nm, thus they are almost abrupt. The effect of quantum confinement can be
neglected in the numerical simulations due to the chosen channel thickness of tch ≥ 10 nm [45].
Beside the Si TFET, further simulations are performed for various device dimensions, gate
insulators and source materials to investigate the influence of varying device parameters on the
TFET behavior. The corresponding values, e.g. dielectric permittivity ε, are also contained in
Tab. 6.1.

Table 6.1.: TCAD Sentaurus simulation parameter set for simulating the n-type DG TFET.

Parameter Value Parameter Value

lch 22 nm tox 2 nm

lsd 20 nm tch 10 nm

wch 1 µm Ns 1020cm−3
(
p++
)

Drain Material Silicon Nd 1020cm−3
(
n++
)

Channel Material Silicon N0
t 1012cm−2

Insulator Material εox [A s/V cm] Insulator Material εox [A s/V cm]

Y2O3 15 · ε0 La2O3 30 · ε0

HfO2 22 · ε0 TiO2 80 · ε0

Ta2O5 26 · ε0 — —

Source Material m∗e,TCAD [kg] m∗h,TCAD [kg] εs [A s/V cm] χs [eV] Es,0
g [eV]

Silicon 0.26·m0 0.36·m0 11.70·ε0 4.05 1.124

Germanium 0.15·m0 0.17·m0 16.20·ε0 4.00 0.664

SiGe 0.18·m0 0.20·m0 13.95·ε0 4.04 0.830

GaAs 0.065·m0 0.30·m0 13.18·ε0 4.07 1.620

The compact model simulations are performed by applying the same device parameters
as in the TCAD setup except for the carrier rest mass m∗s/d, which is used as an adjustable
parameter. Despite the fact that the compact model equations are derived in closed-form, the
usage of a handful of adjustable parameters is unavoidable. A list of the used fitting parameters
is presented in Tab. 6.2, where it should be noted that the listed parameters are extracted to
obtain a correct device current. In order to be able to carry out a parameter extraction, the
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6.1. Verification by TCAD Sentaurus Simulation Data 99

used adjustable parameters are explained in detail below:

• The parameters λsfit and λdfit can be used to tune the resulting screening length at the
source-to-channel and drain-to-channel junction in the electrostatic potential model in weak
inversion mode of the TFET. The screening length λs/d is calculated by Eq. (4.29). The
typical range of λs/dfit is from 0.5 to 2.0.

• A smooth transition from weak to strong inversion in the 2D closed-form potential solution
for the channel region is obtained by Eq. (4.22). The parameters λsln,fit and λdln,fit can be
tuned to change the influence of the inversion charges on the resulting potential solution
at the channel junctions. The parameters are defined in the interval [0.2 ≤ λ

s/d
ln,fit ≤ ∞).

The smaller the value of λs/dln,fit, the higher is the influence of the inversion charges on the
electrostatics.

• The effective carrier masses m∗s and m∗d have a linear and an exponential impact on the
TGR and therefore on the resulting B2B tunneling and TAT current. The TGR is linearly
dependent on m∗s/d and Ttun (see Eq. (5.75)), where the exponential dependency comes from.
The effective carrier masses should be chosen in the range from 0.05·m0 to 0.7·m0.

• The variance (ηs/d)2 of the B2B tunneling and TAT current density along the y-axis in the
on- and ambipolar-state occurs in the Eqs. (5.96), (5.121) and (5.124) and has a linear
dependency on the device current and an inverse proportionality to the error function term
in the current calculation. Since the error function saturates to the value 1, the linear
dependency dominates in the calculations of the current. The value of the variance should
be chosen to be (ηs/d)2 ≤ t2ch, otherwise the influence on the current disappears.

• The variance (σs/dB2B)2 of the B2B TGR along the x-axis occurs in Eq. (5.78) and has nearly
the same influence on the resulting tunneling current in the on- and ambipolar-state as
the variance (ηs/d)2 of the current density along the y-axis, but in this case only the B2B
tunneling current part is tuned. The difference between (σs/dB2B)2 and (ηs/d)2 is how they
affect the device current in the presence of the inversion charges. When these charges come
into play and a too high value for (σs/dB2B)2 is chosen, the B2B current saturates. Thus, the
variance should be smaller than (lch/4)2.

• The parameter (σs/dTAT)2 is the variance of the TAT generation rate approximation along
the x-axis in Eq. (5.115). The influence is the same as in the parameter (ηs/d)2, with the
difference that only the TAT current part is tuned. The value should be smaller than
((lch/4)2.

• The fitting parameter κs/d
TAT can be used to tune the resulting slope of the TAT current part,

separately for the on- and ambipolar-state. The smaller the value of κs/d
TAT, the steeper the

resulting slope, whereby the amount of the TAT current has to be adapted by the parameter
τ
s/d
TAT afterwards. This parameter is used in the Eqs. (5.103), (5.109), (5.110), (5.113) and

(5.114). The parameter κs/d
TAT is in the range from 1.0 to 100.
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100 6. Modeling Results & Verification

• The capture cross section τ s/dTAT is used as a linear adjustable factor in the Eqs. (5.111) and
(5.112). The amount of τ s/dTAT has to be positive and is typically in the range from 10−23cm2

to 10−18cm2.

• The flat band voltage Vfb is used to shift the applied gate-source voltage Vgs in order to
consider a change in the work function of the gate contact material. A negative Vfb causes
an increase of the applied Vgs and hence a shift to the left in n-type devices of the resulting
Ids in the current transfer curve. In p-type device the influence is vice versa. The flatband
voltage is used in the calculations of the effective gate-source voltage in Sec. 4.1.2.

• The last adjustable parameter xsTAT,max is the x-position of the TAT generation rate maximum
and is valid in the range [0 < xsTAT,max < lch/2]. The influence of this parameter is as follows:
If xsTAT,max is increased starting from zero, then the TAT current increases up to the position
where the TGRTAT in Eq. (5.111) has its maximum. After that, the TAT current decreases
again.

The influence of these adjustable parameters on the transfer I-V characteristics is qualitatively
demonstrated in App. D.

Table 6.2.: Adjustable parameters of the DG TFET compact model for the Silicon TFET (SI
TFET) and TFETs with various source materials (Mat. S).

Parameter Unit Si TFET Mat. S: Ge Mat. S: SiGe Mat. S: GaAs

λs
fit [–] 1.47 1.20 1.35 1.40

λd
fit [–] 1.39 1.25 1.25 1.13

λs
ln,fit [–] 0.76 0.60 0.20 0.50

λd
ln,fit [–] 0.25 0.40 0.40 0.40

m∗s [kg] 0.26·m0 0.30·m0 0.24·m0 0.18·m0

m∗d [kg] 0.30·m0 0.30·m0 0.28·m0 0.30·m0

(ηs)2 [cm2] 3.65·10−16 1.20·10−14 5.90·10−16 3.80·10−16
(
ηd
)2

[cm2] 3.50·10−16 4.00·10−16 6.50·10−16 5.60·10−16

(σs
B2B)2 [cm2] 2.00·10−14 3.00·10−15 6.80·10−14 4.80·10−14

(
σd
B2B

)2
[cm2] 2.40·10−14 3.30·10−14 1.10·10−14 5.20·10−14

(σs
TAT)2 [cm2] 1.00·10−14 5.00·10−15 8.00·10−15 1.80·10−14

(
σd
TAT

)2
[cm2] 1.00·10−15 1.00·10−15 1.00·10−15 1.00·10−15

κs
TAT [–] 10.0 3.2 5.5 4.5

κd
TAT [–] 10.0 6.0 8.0 7.3

τ sTAT [cm2] 3.00·10−21 7.52·10−18 9.00·10−19 1.62·10−18

τdTAT [cm2] 4.30·10−21 8.08·10−20 1.00·10−20 2.25·10−20

Vfb [V] −0.54 −0.54 −0.56 −0.50

xsTAT,max [nm] 3.0 3.0 3.0 3.0

After introducing the applied fitting parameters, the compact modeling verification by
TCAD data is presented in the following sections. At first, the compact electrostatic potential
solution, the band diagram and the electric field results are verified in Sec. 6.1.1. Based on
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6.1. Verification by TCAD Sentaurus Simulation Data 101

the band diagram results, the verification of the AE WKB approach is presented in Sec. 6.1.2.
The validity of the B2B TGR for different source materials is proven in Sec. 6.1.3. In the last
part of the TCAD verification, the current characteristics of the DG TFET are investigated for
various simulation setups like various terminal voltages or device parameters. The compact
model is validated by numerical simulations in Sec. 6.1.4.

6.1.1 Electrostatic Potential, Band Diagram and Electric Field

The electrostatic potential forms the base of all further calculations of the device current
Ids and therefore, the compact modeling results of the potential solution are presented first.
Since the current density Js/dy,B2B/TAT is only needed at the surface (y = 0 nm) and the center
(y = tch/2) of the DG TFET as it has been introduced in Eq. (5.96) and (5.121), the potential
along the x-axis is also only solved at these y-positions (see Fig. 6.2). The band diagram is
then estimated at the same y-positions based on the potential solution. Since the potential
solution in y direction is needed to calculate the electric field, the solution of ϕs/dy is verified at
the x-positions x = 0 nm, lch/2 and lch. After this step, the electric field along the x-axis at
the two y-positions is compared to numerical simulations. In all cases, the needed data are
extracted exactly at the positions shown in Fig. 6.2.

Figure 6.2.: Sketch of the DG TFET channel region, where the compact potential, band
diagram and electric field along the x-axis are solved. The cutlines show the surface (y = 0 nm)
and center (y = tch/2) of the device. In addition, three cutlines in y direction are shown, where
the potential along the y-axis is calculated.

Electrostatic Potential

The potential solution at the source-to-channel junction (on-state) is obtained by applying
Eqs. (5.1) and (5.10) and the potential at the drain-to-channel junction (ambipolar-state) is
calculated with the help of Eqs. (5.20) and (5.28).

The modeling results at a drain-source voltage of Vds = 0.7 V in a Vgs range from −1.2 V to
1.0 V are presented in Fig. 6.3. It should be noted that the potential results for x ≤ lch/2 are
assigned to the on-state and the potential results for x > lch/2 are related to the ambipolar-
state. Figure 6.3(a) shows the potential at the surface of the TFET (y = 0 nm) and it can
be seen that the on-state and the ambipolar-state potential are very well predicted by the
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compact model in comparison to TCAD data. In the case, when inversion charges come into
play in the on-state at Vgs = 1.0 V, the compact potential shows a small deviation compared to
TCAD data in the range of x = 1 nm to 9 nm. A similar deviation can be seen in ambipolar-
state at Vgs = −1.2 V within the distance between x = 13 nm and 21 nm. At this voltage
inversion charges get involved as it can also be seen in Fig. 4.6(a). These, deviations are a
cause of the chosen values for the parameters λs/dfit and λs/dln,fit to obtain a correct device current.

The compact potential results in the channel center y = tch/2 in the same Vgs voltage range
are illustrated in Fig. 6.3(b). It can be seen that the compact model also fits well compared
with the numerical simulations, where the same deviations at Vgs = 1.0 V and −1.2 V occur in
comparison to the channel surface. These deviations are caused by the chosen fitting parameters
λ
s/d
fit and λs/dln,fit to obtain a correct device current.

In a next step, the drain-source voltage is decreased to Vds = 0.1 V. The comparison of the
compact modeling results and the TCAD simulations within the same Vgs range as in the plots
before are depicted in Fig. 6.4. The potential at the device surface is presented in Fig. 6.4(a)
and it can be seen that the compact potential solution fits very well in the voltage range
from Vgs = −1.2 V and 0.4 V in comparison to TCAD simulations. For an applied gate-source
voltage of Vgs > 0.4 V, inversion charges interfere (see Fig. 4.6(a)) and the channel potential
in on- and ambipolar-state is a bit overestimated. The compact potential in the center in
Fig. 6.4(b) shows also a good fit compared to TCAD data, where some small deviations occur
for Vgs > 0.6 V and Vgs < −1.0 V. The inaccuracies are due to the applied aforementioned
adjustable parameters.

Band Diagram

After proving the correctness of the electrostatic potential, the compact band diagram results
are under investigation. The band diagram of the DG TFET is calculated with the help of the
Eqs. (5.38)–(5.45).

For a better overview, the gate-source voltage range is separated into two parts for the
applied Vds. The first range, showing the on-state of the TFET, is depicted in Fig. 6.5 for
applied Vgs values from 0.0 V to 1.0 V and Vds = 0.7 V. The results at the surface y = 0 nm are
illustrated in Fig. 6.5(a) and show a good match in comparison to TCAD. The small kinks
occurring at the channel junctions are caused by applied band gap narrowing models (see
Eqs. (5.46) and (5.48)). Figure 6.5(b) presents the band diagram at y = tch/2 and also shows a
good match to the TCAD data. The occurring deviations at both y-positions are to explain
in the same manner as in the compact potential verification. In the second Vgs range, the
gate-source voltage is varied from −1.2 V to −0.2 V and the results of the band diagram at the
surface and in the center are shown in Fig. 6.6(a) and (b). For the applied voltage values of
Vgs, the TFET is in the ambipolar-state. Again, it is important to note that the parameters
of the compact model are extracted to obtain an accurate device current, and nevertheless, the
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results of the band diagram show a good agreement.

A reduction of the drain-source voltage to Vds = 0.1 V affects the resulting band diagram.
Considering the source-to-channel junction in the on-state of the TFET (see Fig. 6.7), it can
be seen that the area in which the bands overlap is reduced in comparison to the results shown
inFig. 6.5. As a consequence of the Vds reduction, inversion charges intervene and therefore, pin
the channel potential for smaller Vgs values. At the surface band diagram shown in Fig. 6.7(a),
there is still an acceptable overlap area close to the junction with a relatively short tunneling
length. In the center band diagram of the device, which is depicted in Fig. 6.7(b), the potential
does not vary much regarding the applied Vgs range and the overlap area of the bands is
dramatically reduced and thus, the tunneling length results in a relatively high value. In this
case the resulting tunneling probability decreases and the contribution of the center TGR
to the current density shrinks. Concerning the influence of a Vds reduction on the bands in
the ambipolar-state of the TFET, it is to say that the overlap area at the drain-to-channel
junction decreases. This effect is visible in the band diagram results at the surface shown in
Fig. 6.8(a) and in the center shown in Fig. 6.8(b). Furthermore, a reduction in the overlap can
be seen in comparison to the results presented in Fig. 6.6. A main advantage of a Vds reduction
is actually the suppression of the parasitic ambipolar effect of the TFET.

In order to increase the TFET performance, hetero-junctions are a good choice to increase
the resulting device current and subthreshold slope. For this reason, band diagrams for various
source materials are presented in the following. At first, Germanium is applied as the source
material. This material has a reduced band gap in comparison to Silicon. Simulations for
Germanium are performed by adapting the model parameters as it is listed in Tab. 6.2. The
results of the band diagram at the surface for an applied Vds = 0.7 V are shown in Fig. 6.9(a).
The results in the center are illustrated in Fig. 6.9(b). At both y-positions the compact model
predicts the band diagram very well in the applied Vgs range from −0.1 V to 0.9 V. The
characteristic kinks due to the hetero-junction at the source-to-channel junction are also very
well reproduced by the band diagram model equations.

Secondly, the band diagram for a SiGe–Si hetero-junction is presented in Fig. 6.10, where
the modeled results are compared to TCAD data for various Vgs values at Vds = 0.7 V. By
applying the adjustable parameters shown in Tab. 6.2 to the compact model, it is possible
to reproduce the band diagram of this hetero-junction at the surface and in the center in an
accurate way.

After that, the source material is changed to GaAs and the compact model parameters are
tuned to the values listed in Tab. 6.2. The results are presented in Fig. 6.11 and compared
to TCAD simulation results for Vds = 0.7 V, where Vgs is varied from 0.0 V to 1.0 V. At
both y-positions the model shows a good agreement. Due to the higher band gap of GaAs
in comparison to Silicon, a lower tunneling current is expected and therefore a lower device
performance. This influence will be investigated and discussed in Sec. 6.1.4.
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Potential Along the y-Axis

Before the verification of the electric field, the electrostatic potential approximation along the
y-axis is investigated since the electric field is calculated in terms of the potential in x and y
direction. The potential in the direction of the y-axis is calculated with the help of Eq. (5.36)
and is extracted at the three x-positions shown in Fig. 6.2.

The first results are determined at the source-to-channel junction (x = 0 nm) for various
Vgs values at Vds = 0.7 V and are illustrated in Fig. 6.12. At this x-position Φs

sur and Φs
cen

are calculated by Eq. (5.10). It can be seen that the shape of the potential is well predicted,
whereby a mismatch in the amount of the potential can be investigated. This deviation is a
consequence of the chosen fitting parameter λsfit = 1.47 to obtain an accurate device current.
By slightly reducing this parameter, the amount of the potential ϕy would match better.

Figure 6.13 presents the potential modeling results at x = lch/2 for the same applied voltages
as in the previous plot. At this x-position the calculated potential stays in a good agreement
with the TCAD simulations for the whole Vgs range from −1.2 V to 1.0 V. The change in
the sign of the slope of the y potential, which is negative at Vgs = −1.2 V and positive at
Vgs = 1.0 V, is correctly predicted by the compact model.

The third potential in y direction is examined at the drain-to-channel junction (x = lch),
by applying the same voltage setup as before. For this reason the needed potentials Φd

sur and
Φd
cen to characterize ϕy are determined with the help of Eq. (5.28). The compact modeling

results are compared to TCAD simulations and are shown in Fig. 6.14. At this x-position the
shape of the potential in y direction is very well reproduced by the compact model, whereby a
mismatch in the amount can be seen. This mismatch is similar to the one occurring at the
source-to-channel junction and is due to the fitting parameter λdfit = 1.39 that is chosen to
obtain a correct device current Ids. A better accuracy could be achieved by slightly reducing
the value of λdfit.

Electric Field

After the verification of the potential along the x- and y-axis, the accuracy of the electric field
approximation presented in Eq. (5.52) is proven in the following. Figure 6.15 presents the
modeling results in a range of Vgs from −1.2 V to 1.0 V and an applied Vds of 0.7 V. The results
of the absolute value of the electric field at y = 0 nm are depicted in Fig. 6.15(a) and show a
good agreement in comparison to TCAD data in the whole Vgs range for both the on- and the
ambipolar-state. The small deviations occurring from x = 5 nm to 15 nm are negligible since
in the calculations of the TGR the applied x-values xs/dmax,B2B/TAT are always in a range close to
the corresponding junction.

In the center of the channel (see Fig. 6.15(b)), the electric field results show also a match
with the TCAD data. The small inaccuracies that can be seen in the on-state for Vgs ≥ 0.6 V
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and in the ambipolar-state for Vgs ≤ −0.8 V are a consequence of the mismatch in the potential
approximation along the x-axis as it can be seen in Fig. 6.3(b).
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Figure 6.3.: Electrostatic potential ϕx along the x-axis at Vds = 0.7 V of the DG TFET
at (a) the surface and (b) in the center of the device. The modeling results for the on- and
ambipolar-state are separately plotted and compared to TCAD data for various gate-source
voltages Vgs.

UNIVERSITAT ROVIRA I VIRGILI  
COMPACT DC MODELING OF TUNNEL-FETS 
Fabian Horst 



106 6. Modeling Results & Verification

-0.5

0.0

0.5

1.0

1.5
ϕ

x
[V

]

-10 -5 0 5 10 15 20 25 30
x [nm]

Compact Model
TCAD

Vds = 0.1 V,
Vgs = -1.2...1.0 V,
Step = 0.2 V

Mat. S: Si
y = 0 nm

ambipolaron

(a) y = 0 nm.

-0.5

0.0

0.5

1.0

1.5

ϕ
x

[V
]

-10 -5 0 5 10 15 20 25 30
x [nm]

Compact Model
TCAD

Vds = 0.1 V,
Vgs = -1.2...1.0 V,
Step = 0.2 V

Mat. S: Si
y = tch/2

ambipolaron

(b) y = tch/2.

Figure 6.4.: Potential solution along the x-axis of the DG TFET at (a) the surface and (b)
in the channel of the device for an applied Vds of 0.1 V. The compact model is compared to
TCAD simulations for various Vgs values.
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Figure 6.5.: Band diagram modeling results in the on-state at Vds = 0.7 V and various Vgs
values are compared to TCAD simulations, where the results at the surface of the device are
depicted in (a) and the results in the center of the device are illustrated in (b).
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Figure 6.6.: ambipolar-state band diagram for a drain-source voltage of 0.7 V and different
Vgs values. (a) shows the modeling results at the device surface and (b) in the center of the
device. In both cases the model is plotted against TCAD simulation data.
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Figure 6.7.: Band diagram in the TFET on-state for various gate-source voltages and
Vds = 0.1 V at (a) the surface and (b) in the center. The results of the compact model are
shown in comparison to numerical simulation data.
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Figure 6.8.: Compact band diagram at Vds = 0.1 V, where (a) shows the results at the surface
and (b) in the center of the TFET. The applied Vgs values indicate that the TFET is in the
ambipolar-state.

UNIVERSITAT ROVIRA I VIRGILI  
COMPACT DC MODELING OF TUNNEL-FETS 
Fabian Horst 



6.1. Verification by TCAD Sentaurus Simulation Data 111

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5
E

ne
rg

y
[eV

]

-10 -5 0 5 10 15 20 25 30
x [nm]

Compact Model
TCAD

Vds = 0.7 V,
Vgs = -0.1...0.9 V, Step = 0.2 V

Ec

Ev

Mat. S: Ge
y = 0 nm

(a) y = 0 nm.

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

E
ne

rg
y

[eV
]

-10 -5 0 5 10 15 20 25 30
x [nm]

Compact Model
TCAD

Vds = 0.7 V,
Vgs = -0.1...0.9 V, Step = 0.2 V

Ec

Ev

Mat. S: Ge
y = tch/2

(b) y = tch/2.

Figure 6.9.: Band diagram of the Ge–Si hetero source-to-channel junction at (a) the surface
and (b) in the center of the TFET. The modeling results are plotted versus TCAD simulations.
The applied drain-source voltage is 0.7 V.
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Figure 6.10.: Compact model simulation results of a SiGe–Si source-to-channel junction for
various Vgs values and Vds = 0.7 V. The modeling results are plotted against TCAD data. (a)
surface and (b) center of the TFET.
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Figure 6.11.: GaAs–Si hetero-junction band diagram for different Vgs and an applied drain-
source voltage of 0.7 V. The compact model is verified by TCAD simulations, whereby the
band diagram at the surface is shown in (a) and the center band diagram in (b).
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Figure 6.12.: Electrostatic potential along the y-axis at the source-to-channel junction
(x = 0 nm) for Vds = 0.7 V and various Vgs values. The compact model is compared to TCAD
data.
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Figure 6.13.: Compact model results of the potential along the y-axis at x = lch/2 and
Vds = 0.7 V, which are plotted in comparison to TCAD simulations for various Vgs values. In
this case, the needed potential values Φscen and Φssur to define ϕy are calculated with the help of
Eq. (5.10).
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Figure 6.14.: Modeling results of the y potential at the drain-to-channel junction (x = lch) for
an applied Vds of 0.7 V, which are plotted against TCAD simulation data.
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Figure 6.15.: Electric field approximation for various Vgs values and Vds = 0.7 V plotted along
the x-axis. The modeling results at (a) the surface and (b) in the center of the channel are
shown in comparison to TCAD simulations.
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6.1.2 AE WKB Approach

The verification of the tunneling energy barrier can be done after demonstrating the validity of
the compact modeling equations of the band diagram in the previous section. The tunneling
energy barrier is determined by the AE WKB approach, which is derived in Sec. 5.4.2 for the
B2B tunneling and in Sec. 5.5.2 for the TAT current part. Hereinafter, the accuracy of the
tunneling energy barrier for B2B tunneling is examined. In doing so, Eqs. (5.73) and (5.74)
are used to illustrate the approximated triangular energy barrier within the band diagram
of the device at various external voltages. In literature, a quasi-2D approach for the WKB
approximation assuming a triangular energy barrier shape was already published in [129]. In
this approach, the tunneling barrier height Ubar was calculated in dependency of an analytical
closed-form 2D electric field solution ~E2D [176], which is very time-consuming. Due to the
facts that in the calculations of the 2D electric field solution the presence of inversion charges
is neglected and the resulting barrier height depends only on the electric field at one single
point, the quasi-2D approach is very sensitive to any inaccuracies. Therefore, this model is not
appropriate for a robust compact model, but it can be used to demonstrate the advantages of
the AE WKB approach in the following.

The first results for Vds = 0.7 V and y = 0 nm are presented in Fig. 6.16. At a gate-source
voltage of 0.0 V shown in Fig. 6.16(a) it can be seen that the ConB in the channel region starts
to overlap the ValB in source region and for this reason the maximum xsB2B,max of the TGRB2B

approximation has its maximum close to lch/2. The TFET is in the transition from the off-
to the on-state. For this special case, the triangular tunneling barrier shape is not very well
suitable to reproduce the tunneling barrier formed by the band diagram. Nevertheless, in this
case the tunneling length ltun results in a high value and therefore, the tunneling probability
anyhow tends to be very small. So, this occurring error can be accepted in the compact modeling
purpose. By increasing the applied Vgs values to 0.5 V, 1.0 V and 1.5 V (see Fig. 6.16(b)–(d)),
the band overlap area also increases. Now, the x-position xsB2B,max of the maximum TGR value
can be found close to source-to-channel junction, the shape of the tunneling barrier formed
by the band diagram becomes steeper and is very well approximable by the energy triangle of
the AE WKB approach. In these cases, the tunneling energy barrier is reproduced well by the
compact approach, whereby the quasi-2D approach overestimates the tunneling barrier height
Ubar when inversion charges come into play (Vgs ≥ 1 V).

The results in the center of the channel for the same applied voltages as before are shown
in Fig. 6.17. At the transition from the off- to the on-state (Vgs = 0.0 V), it can be seen that
the bands have no overlap region, thus no B2B tunneling can occur and so no tunneling barrier
height can be calculated (U s

bar = 0 eV). In this special case, the AE WKB approach would result
in a wrong T s

tun = 1, hence if the bands have no overlap, the AE WKB approach smoothly sets
the tunneling probability to 0. By increasing Vgs to on-state values (see Fig. 6.17(b)–(d)), the
AE WKB approximation shows a good match in comparison the tunneling barrier defined by
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the band diagram. The quasi-2D WKB approach underestimates the tunneling barrier height
Ubar in all cases, which consequently results in an overestimated tunneling probability.

Figure 6.18 illustrates the tunneling energy barrier at the channel surface for a reduced
Vds of 0.1 V. It can be seen that the AE WKB approach is able to cover the change in the
drain-source voltage. In the TFET on-state (Vgs = 0.5 . . . 1.5 V), the modeled energy barrier
matches well in comparison the tunneling barrier formed by the band diagram. The deviations
at Vgs = 0.0 V are to explain in the same manner than in Fig. 6.16(a).

The resulting tunneling energy barriers in the ambipolar-state of the TFET for various
Vgs and Vds values at y = 0 nm are depicted in Fig. 6.19. Firstly, the validity of the AE WKB
approach is investigated at Vds = 0.7 V, showing the results for Vgs = −0.5 V and −1.0 V in
Fig. 6.19(a) and (b), respectively. For the first gate-source voltage, a mismatch of the tunneling
barrier height can be seen. At this bias, the TFET is at the transition from the off- to the
ambipolar-state and the resulting Ttun tends to small amounts, so this occurring inaccuracy in
the compact modeling approach is acceptable. The tunneling energy barrier is better reproduced
at Vgs = −1.0 V, where the TFET is in the ambipolar-state and the tunneling barrier shape
defined by the band diagram is steeper and thus it can be approximated by a triangle. By
reducing the applied Vds to 0.1 V, the band overlap region at the drain-to-channel junction is
reduced and the ambipolar-state is suppressed (see Sec. 3.3.5). For these reasons, the AE
WKB approach is examined for Vgs = −1.0 V and −1.5 V, shown in Fig. 6.19(c) and (d). Here,
one can see that the transition from off- to ambipolar-state takes place at the gate-source
voltage of −1.0 V and explains the underestimated tunneling barrier height in Fig. 6.19(c). The
reduction of Vgs to −1.5 V causes a better agreement of the modeled tunneling barrier and the
one formed by band diagram.

In order to show the robustness and flexibility of the AE WKB approach, the resulting
tunneling energy barriers in the hetero source-to-channel junctions are presented in Fig. 6.20.
Simulations are performed at the channel surface for Vds = 0.7 V and Vgs = 1.0 V, so the TFET
is in the on-state. The Si TFET is shown in Fig. 6.20(a) as a reference. The tunneling barrier
of the Ge–Si hetero-junction is depicted in Fig. 6.20(b) and it can be seen that the modeled
tunneling barrier matches well in comparison to the barrier formed by the band diagram. Due
to the lower band gap of Germanium and lower effective carrier mass, the resulting tunneling
barrier height is lower than the one in Silicon. As a consequence, the tunneling probability
and the device current increase for the same applied external voltages. A similar result is
achieved in the investigations of a SiGe–Si hetero-junction shown in Fig. 6.20(c). In these two
cases the quasi-2D approach overestimates the resulting tunneling barrier height and therefore
underestimates the tunneling probability. In a last step, the source material is GaAs, which
has a higher band gap Eg in comparison to Silicon. The tunneling energy barrier calculated by
AE WKB approximation is shown in Fig. 6.20(d) and it can be seen that the model predicts
the barrier defined by the bands very well with only a small overestimation of the amount. In
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this case, the quasi-2D approach shows a better match to the tunneling barrier formed by the
band diagram.
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Figure 6.16.: Visualization of the AE WKB approach within the band diagram of the DG
TFET at the surface of the channel region for Vds = 0.7 V. The applied Vgs in (a) is 0.0 V,
(b) 0.5 V, (c) 1.0 V and 1.5 V in (d). In (a) the TFET is at the transition from the off- to the
on-state and in (b)-(d), the TFET is in the on-state. The AE WKB approach is compared to
a quasi-2D WKB approximation and the x-position of the maximum TGRB2B value is high-
lighted by a green cross.
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Figure 6.17.: AE WKB visualization in the center of the channel region (y = tch/2) for the
same simulation setup shown in Fig. 6.16.
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-1.0

-0.5

0.0

0.5

1.0

1.5

E
ne

rg
y

[eV
]

-5 0 5 10
x [nm]

AE WKB
Quasi-2D WKB

Vds = 0.1 V,
Vgs = 1.5 V

Ec

Ev
xs

B2B,max

Mat. S: Si
y = 0 nm

(d) y = 0 nm, Vgs = 1.5 V.

Figure 6.18.: Illustration of the resulting tunneling barrier at the channel surface using the
AE WKB approach, examined for a drain-source voltage of Vds = 0.1 V. The gate-source volt-
age is varied from 0.0 V in (a) to 1.5 V in (d) with a stepping of 0.5 V. The AE WKB approach
is compared to a quasi-2D approximation.
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(c) Vds = 0.1 V, Vgs = −1.0 V.
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Figure 6.19.: ambipolar-state AE WKB modeling results at y = 0 nm, which are compared
to a quasi-2D approach. (a): Vds = 0.7 V and Vgs = −0.5 V. (b): Vds = 0.7 V and Vgs = −1.0 V.
(c): Vds = 0.1 V and Vgs = −1.0 V. (d): Vds = 0.1 V and Vgs = −1.5 V.
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(c) y = 0 nm, Mat. S: SiGe.
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Figure 6.20.: Visualization of the AE WKB approach for various materials of the source
region, simulated at Vds = 0.7 V and Vgs = 1.0 V. The source material in (a) is Si, (b) Ge, (c)
SiGe and GaAs in (d). The resulting tunneling barrier is shown in comparison to a quasi-2D
WKB approach.
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6.1.3 Tunneling Generation Rate

In the next verification step, the tunneling generation rate for the B2B tunneling part is
examined. The calculations of the TGRB2B are done with the help of Eq. (5.75) in order to
show the validity of the derived expression for the current density. Furthermore, the TGR
is used to verify the AE WKB approach shown in previous section by numerical TCAD
simulations, because in TCAD Sentaurus the transmission coefficient cannot be displayed.
The TCAD tunneling generation rate for B2B tunneling is denoted as eBarrierTunneling and
hBarrierTunneling for electrons and holes, respectively. The compact model simulations are
performed with the parameters listed in Tab. 6.2 to obtain a correct device current, thus some
deviations to TCAD data can occur in verification process of the TGR.

Figure 6.21 presents the results of the TGR in the on-state of the TFET for an applied Vds
of 0.7 V and a Vgs range from 0.3 V to 0.6 V. The TGR modeling results at the surface of the
channel are shown in Fig. 6.21(a) in comparison to the extracted eBarrierTunneling values from
TCAD simulations. It can be seen that the shape and the amount of the modeled TGR matches
very well with TCAD data, whereby a horizontal displacement along the x-axis can be observed.
This mismatch can be explained by the inaccuracies in the compact band diagram and thus by
the chosen fitting parameter λsfit. It should be noted that the horizontal displacement has no
influence on the resulting B2B current density, which is obtained by integration. The TGR
in the channel center is shown in Fig. 6.21(b), examined for the same applied voltages as at
the surface. Here, the amount of TGR is significantly underestimated, which is to explain by
the applied adjustable parameter to obtain an accurate Ids. In the verification of the modeled
band structure (see Fig. 6.5(b)) one can see some small deviations that cause an overestimated
value for the tunneling length ltun and hence an underestimated tunneling probability since
Ttun ∝ exp(−ltun). In addition, the inaccuracies of the electric field in the channel center may
cause consequential errors. Nevertheless, the TGR in the center of the channel is three orders
of magnitude smaller than the surface TGR and thus, the contribution to the resulting B2B
current density is small. It is to say that these inaccuracies in the center are tolerable in the
entire current calculations.

The on-state TGR at the surface of the TFET with a reduced applied Vds of 0.1 V and the
same Vgs values as before is illustrated in Fig. 6.22(a). It can be seen that the shape is well
reproduced but a deviation in the amount and x-position can be investigated. As mentioned
before, the horizontal displacement has no influence on the integration to obtain the current
density. The error in the amount is due to the fitting parameter λsfit.

The extracted hBarrierTunneling values from TCAD are compared to the compact model in
order to validate the TGR in the ambipolar-state of the device as it is presented in Fig. 6.22(b).
The comparison shows the modeling results at y = 0 nm and Vds = 0.7 V. In the whole Vgs
range from −0.7 V to −1.0 V the amount of TGR is underestimated which is the cause of the
errors appearing in the calculations of the electric field as well as the band diagram. The chosen
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adjustable parameter λdfit = 1.39 also reduces the amount of the TGR in the ambipolar-state.

In the following, the source material is changed to a combination that forms a hetero-junction
and the validity of the compact model is investigated. In Fig. 6.23, the results of the TGR at
the channel surface of a Ge–Si hetero-junction in the TFET on-state are depicted. It can be
seen that also in this case the amount of the modeled TGR does not match with the TCAD
simulation. The reasons for that can be found in the applied model parameters (see Tab. 6.2).
For instance, the effective electron mass m∗s is increased in comparison with the value m∗e,TCAD
used in TCAD simulations to obtain a correct device current Ids. If the TCAD value had been
applied to the compact model, then the TGR would have resulted in the correct amount, but
in this case it is not possible to achieve a good fit in Ids.

An investigation of the SiGe–Si hetero-junction, which is depicted in Fig. 6.24, shows the
same deviations at y = 0 nm in the amount of the TGR as in the aforementioned results. The
reasons for the underestimated compact model TGR amount is the used effective electron mass
m∗s in combination with the applied parameter λsfit. Nevertheless, using the parameters listed in
Tab. 6.2 leads to a good fit in the current characteristics, which are shown in the next section.

The last examined source material is GaAs. The compact modeling results of this hetero-
junction are presented in Fig. 6.25 and are compared to TCAD simulations. The results are
obtained at the channel surface and the compact model shows a good match in the amount
and x-placement in comparison to numerical data. Only small deviations occur in the part
when the TGR starts to decrease again (x ≥ 2 nm). This is again a consequence of the chosen
value of the parameter λsfit, but in this case has only a minor impact on the resulting tunneling
current density.
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Figure 6.21.: Compact model results of the TGRB2B in the on-state of the TFET at
Vds = 0.7 V and various gate-source voltages. (a) illustrates the results at the surface and (b)
the results in the center of the device in comparison to TCAD data.
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Figure 6.22.: (a) on-state B2B tunneling generation rate at y = 0 nm and Vds = 0.1 V. (b)
TGRB2B in the ambipolar-state simulated at the surface of the TFET and Vds = 0.7 V. Both
result plots are simulated for various Vgs values and compared to numerical simulation results.
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Figure 6.23.: Modeling results of the TGRs
B2B of a Ge–Si hetero-junction at y = 0 nm, an

applied drain-source voltage of 0.7 V and various Vgs values. The compact model is shown in
comparison with TCAD data.
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Figure 6.24.: SiGe–Si source-to-channel junction B2B tunneling generation rate in compari-
son to TCAD simulations. The simulation setup is the same as in Fig. 6.23.
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Figure 6.25.: Resulting B2B tunneling generation rate of the GaAs–Si hetero-junction at the
surface of the channel for Vds = 0.7 V and various Vgs. The compact model is compared to
TCAD simulations.

6.1.4 Tunneling Current

In the last verification step by TCAD simulations, the tunneling current characteristics are
under investigation, which is the most important step from a compact DC modeling point of
view. At first, the current output characteristics and its first two derivatives are studied and
verified by TCAD simulations. After that, the gate-source voltage Vgs is chosen as the sweep
variable in order to prove the accuracy in terms of the current transfer characteristics and its
first two derivatives. Finally, the TFET parameters, e.g. device dimensions, device materials or
doping concentrations are varied to show and verify the flexibility of the compact DC modeling
approach. The compact tunneling current Ids, which considers both the B2B tunneling and
TAT effect, is calculated with the help of Eq. (5.124) and by applying the parameters listed in
Tab. 6.2.

Output I-V Characteristics and Derivatives

The current output curves of the DG TFET are illustrated in Fig. 6.26, where (a) shows the
output I-V curves in the on-state for various positive Vgs values and (b) the results of negative
applied Vgs, where the TFET is in the ambipolar-state. In the on-state output curve, the
compact model stays in good agreement with the TCAD simulations in the shown Vgs range.
The exponential increase of Ids ∝ Ttun, in case when no inversion charges exist, is very well
reproduced by the modeling approach. The current starts to saturate when the inversion

UNIVERSITAT ROVIRA I VIRGILI  
COMPACT DC MODELING OF TUNNEL-FETS 
Fabian Horst 



130 6. Modeling Results & Verification

charges come into play as a consequence of the channel potential pinning (see Sec. 3.3.4).
In the ambipolar-state output curve (see Fig. 6.26(b)), one can see an exponential increase

of Ids over the whole applied Vds range. In this case, B2B tunneling occurs at the drain-to-
channel junction and at a fixed Vgs < 0 no channel potential pinning can occur. Therefore,
the effect of inversion charges does not play a role in this operating area of the TFET. The
comparison to the reference data obtained by TCAD simualtions shows a good agreement.

A very important aspect in the compact modeling is the numerical stability of the device
current Ids and for this reason the first two derivatives of Ids with respect to Vds are examined
in the following. The on-state output conductance gds = ∂Ids/∂Vds is presented in Fig. 6.27(a).
It can be seen that no kinks or any discontinuities appear in the first derivative. In addition,
the compact model derivative shows a good agreement to the derivation extracted from TCAD
data. An equally good match with TCAD simulations is achieved in the output conductance in
the ambipolar-state, which is presented in Eq. (6.27(b)). In this plot, also no discontinuities
occur in the whole Vgs range from −0.4 V to −0.95 V and the first derivative also follows an
exponential shape.

Evaluating the second derivative of the output I-V curve is a next step to demonstrate the
numerical robustness of the compact DC modeling approach. Therefore, the second derivative
in the on-state in the same applied Vgs range is depicted in Fig. 6.28(a). The results of the
compact model show again no discontinuities or any kinks and are very consistent with the
simulated results in TCAD Sentaurus. But at Vds values from 0.3 V to 0.45 V one can see some
extraordinary change in the slope of the curve, which can be interpreted as an inflection point.
Here, the effect of inversion charges comes into play and shows some vulnerabilities of the
modeling approach. This inaccuracy has no impact on simulating basic TFET circuits and is
shown in Chap. 7. Figure 6.28(b) shows the second derivative of Ids with respect to Vds in the
TFET ambipolar-state and one can see that the model is continuous in this operation regime
of the TFET and fits well.

The presented continuity of the compact DC model in terms of the output characteristics is
the first step for a usage of the model in circuit simulations. However, the continuity regarding
the transfer I-V characteristics must still be checked, which is done in the next section.
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Figure 6.26.: Output I-V characteristics of the n-type DG TFET for (a) the on- and (b) the
ambipolar-state of the device. Simulations are performed for various Vgs values and compared
to TCAD Sentaurus simulations.
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Figure 6.27.: Resulting output conductance gds of the DG TFET in comparison to TCAD
data. The on-state is shown in (a), where the ambipolar-state results are illustrated in (b).
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Figure 6.28.: Second derivative of the output I-V curve in a Vgs range from 0.7 V to 1.0 V.
The compact model is verified by TCAD simulations. (a): on-state. (b): ambipolar-state.
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Transfer Characteristics and Derivatives

Before the compact model can be used in circuit simulations, the validity and continuity with
respect to Vgs must be proven. For this reason, the transfer I-V curve in the gate-source voltage
range from −1.5 V to 1.5 V and various Vds values is presented in Fig. 6.29. In order to better
understand the influence of the two current components, the B2B and the TAT current part,
Fig. 6.29(b) illustrates the separated current parts in comparison to TCAD simulations.

The results in Fig. 6.29(a) are plotted in linear and logarithmic scale and both show a
good agreement with the TCAD simulations. It can be seen that an increasing Vds does
not much influence the on-state subthreshold slope Sth and the threshold voltage Vth. For
instance, the inverse slope at Vgs = 0.1 V changes only from Sth(Vds = 0.1 V) = 37.9 mV/dec to
Sth(Vds = 0.7 V) = 37.5 mV/dec. This effect is a consequence of the fact that in the on-state,
the B2B tunneling occurs at the source-to-channel junction and this junction is not affected
by Vds in the subthreshold regime of the TFET. But when the effect of inversion charges or
the channel potential pinning comes into play, the source-to-channel junction is affected by
the applied Vds. At Vds = 0.1 V, this effect becomes visible at Vgs ≈ 0.3 V, where it can be
seen that the slope of the transfer curve decreases and the B2B tunneling current saturates.
For an increased Vds of 0.3 V, the effects of inversion charges affects the transfer I-V curve
starting from Vgs ≈ 0.6 V, whereby the resulting current Ids at Vgs = 1.5 V is ten times higher
in comparison to Vds = 0.1 V. The effects of the slope degradation and current saturation
diminish for an increasing Vds.

In the ambipolar-state the increase of Vds causes a shift to the right along the Vgs-axis in
the amount of the increased Vds, hence the ambipolar threshold voltage Vth is also shifted to
more positive values. This impact is caused by the B2B tunneling occurring at the drain-to-
channel junction, which is strongly influenced by the applied drain-source voltage. The amount
of the ambipolar subthreshold slope is also less affected by the applied Vds as it is observed
in the on-state. The slope at Vds = 0.1 V and Vgs = −1.05 V results in Sth = 38.2 mV/dec
and at Vds = 0.7 V and Vgs = −0.45 V the subthreshold slope yields Sth = 40.8 mV/dec. The
difference in this case is caused by the parasitic TAT current part that has an increasing impact
on the current for an increasing Vds.

The off-state of the DG TFET is determined by the TAT effect and defines the transition
from the on- to the ambipolar-state. The range and the amount of the off-state depends
on the applied Vds as it can be seen in Fig. 6.29(a) and (b). For a drain-source voltage of
0.1 V, the off-state range is from −1.0 V to 0.05 V and the amount of the current is five times
lower in comparison to the amount at Vds = 0.7 V. The reduced amount is caused by the
decreased difference of the Fermi energy levels in source and drain region and therefore by the
reduced electric field. In case of an applied Vds of 0.7 V, the range of the off-state is only
from Vgs = −0.4 V to 0.05 V. It should be noted that the TCAD simulations only consider the
traps at the junction interfaces and the traps within the gate insulator material are neglected.
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Due to this negligence, the TAT off-state current has a very flat steepness and the resulting
subthreshold slope is not affected that much. By taking the gate leakage current into account,
the very steep subthreshold slope would be worsened. But this effect is discussed in Sec. 6.2.

The numerical stability in terms of the transfer characteristics is under investigation in
the following. First of all, the transconductance gm is presented in Fig. 6.30 and in order
to demonstrate the continuity of the modeling approach in all TFET operation regimes, the
transconductance is plotted in linear scale in Fig. 6.30(a) and in logarithmic scale in (b). The
compact modeling results are verified by TCAD data. It can be seen that gm shows no kinks and
discontinuities in linear scale. A small deviation in terms of a change of the curve shape occurs
at Vds = 0.7 V and an applied Vgs < −1.0 V. The reason for that extraordinary slope change is
again that inversion charges come into play and influence the electrostatic potential. In the
transition area from subthreshold to the above threshold regime the compact model shows
some inaccuracies, which are caused by the calculation of the screening length in dependency
of Vgs,eff shown in Eq. (4.22). It should be noted that this small deviation has no impact on
the TFET circuit simulation in Chap. 7. To inspect the continuity of the subthreshold regime
of the TFET, gm is shown logarithmic scale (see Fig. 6.30(b)) and one can see no kinks or
discontinuities in both the on- and ambipolar-state subthreshold regime. In the off-state,
there seems to be a kink at the point, where the TAT current in the ambipolar-state switches
to the on-state TAT current. But looking at the second derivative of Ids with respect to Vgs in
Fig. 6.31(b), one can see that the compact model is continuous at this transition. The model
transconductance shows a good agreement with the data extracted from TCAD simulations in
linear and logarithmic scale for the whole examined Vds and Vgs scope.

The second derivative of the transfer I-V curve is finally used to check the numerical stability
of the compact model. Figure 6.31 presents the results of ∂2Ids/∂2Vgs in (a) linear and (b)
logarithmic scale and demonstrates the continuity of the compact model. In both pictures
one can see that the second derivative of the modeling approach fits well in comparison to
the data extracted from TCAD. Here, the inaccuracies of the screening length calculations
are better visible. The extraordinary change in the curve shape can now even be observed at
Vds = 0.3 V and 0.5 V for an applied Vgs < −1.0 V. However, these extraordinary changes have
no impacts on the simulation of TFET circuits. The kinks that occur in the logarithmic plot at
a gate-source voltage Vgs > 0.8 V are due to the changing sign of the second derivative and are
not caused by compact model.

After stating the continuity of the compact model, the flexibility of the compact model is
demonstrated in terms of device parameter variations in the next section.
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Figure 6.29.: (a) Current transfer characteristics of the DG TFET for various drain-source
voltages Vds. (b) Separated current parts of (a). In (b): Red lines with triangles: B2B current
part. Blue lines with diamond symbols: TAT current part. In both plots: The compact model
current Ids = Ids,B2B + Ids,TAT is shown in comparison to numerical simulation results obtained
by TCAD Sentaurus.
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Figure 6.30.: Transconductance gm of the DG TFET for various Vds values, where (a) shows
the simulation results in linear scale and (b) in logarithmic scale. The compact model is com-
pared to TCAD simulations.
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Figure 6.31.: The second derivative of the compact model transfer curve is shown in linear
scale in (a) and in logarithmic scale in (b). TCAD simulations are used to verify the compact
model.
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Parameter Variation

In the first part of the parameter variation the device dimensions are changed in order to
demonstrate the flexibility of the compact modeling approach in terms of variations in the
fabrication process of TFETs. The values of the geometrical parameters lch, tch and tox are
changed. The length of the S/D region lsd is kept constant, because an influence on the resulting
Ids could only be seen by reducing lsd to a few nanometers. So, from a fabrication point of
view, the investigation of a varied lsd is not necessary. For the device dimension variations
in the compact model, only the related geometric parameters are varied and all other fitting
parameters remain unchanged. Hence, the compact model is executed with the parameters
extracted for the standard device (Si TFET) as shown in Tab. 6.2.

Firstly, the thickness of the gate insulator is varied in the range from tox = 1.0 nm to 3.0 nm.
The resulting transfer I-V curves for Vds = 0.7 V and 0.1 V are depicted in Fig. 6.32. The
compact modeling approach shows a very good match to TCAD simulations for a varying
tox in the applied Vgs and Vds range, thus the influence of the gate insulator thickness on the
device electrostatics is well represented in the modeling approach. A thinner gate insulator
leads to an improved electrostatic control of the TFET channel region and for this reason,
steeper subthreshold slopes and on currents are achievable and for thicker tox values it is vice
versa. At a drain-source voltage of 0.7 V (see Fig. 6.32(a)), the steepest subthreshold slope
for tox = 1.0 nm is extracted at Vgs = 30 mV and yields Sth = 20.1 mV/dec. The increase
of tox to 3.0 nm worsens the steepest subthreshold slope to Sth = 50.7 mV/dec, extracted at
Vgs = 0.13 V. In case of tox = 1.0 nm and Vds = 0.1 V, the compact model underestimates the
device current in both the on- and ambipolar-state, which is due to the model to consider
inversion charges in the electrostatics (see Eq. (4.22)). By slightly increasing the parameter
λ
s/d
ln,fit, these deviations would disappear. The off-state current is less influenced by a tox

variation since the gate leakage current is not considered in the compact model. Here, some
small deviations occur that could easily be adapted by slightly changing the parameter τ s/dTAT.

In the next step, the channel thickness tch of the standard device is varied from 8 nm to
15 nm. The resulting current transfer curves for Vds = 0.7 V is shown in Fig. 6.33(a) and for
Vds = 0.1 V in (b). In both cases, one can see a small increase in Ids for a decreasing channel
thickness, which is well predicted by the compact model and verified by TCAD data. That
is to say, in practice a varying tch in the shown range has only a minor impact on the device
current, neither in the on- nor in the ambipolar or the off-state of the TFET. In addition,
when tch falls below 10 nm, the effect of quantum confinement has to be taken into account [45].
In TCAD simulations and in the compact model, this effect is neglected and may cause the
increasing Ids for tch = 8 nm.

As the last geometric parameter, the channel length lch is varied in the range from 14 nm
to 65 nm and the influence on the device current is examined. The compact model is validated
by TCAD simulation and the results for Vds = 0.7 V and 0.1 V are illustrated in Fig. 6.34(a)
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and (b). For a channel length of 14 nm the resulting on- and ambipolar-state Ids increases.
Furthermore, the off-state current rises and worsens the subthreshold slope. These effects can
be explained as a result of the relatively short lch that opens up the possibility of source-to-drain
tunneling [46]. The deviations of the compact model could be minimized by slightly tuning the
parameter κs/d

TAT to smaller values. The investigations of the channel lengths lch = 32 nm, 45 nm
and 65 nm show a nearly equal resulting Ids, which is a bit higher in comparison to the device
current for lch = 22 nm. In a device with a channel length of 22 nm, the drain-source voltage
has some impact on channel electrostatics that determines the tunneling process. This control
disappears for an increasing channel length and thus, the tunneling process is only determined
by the applied Vgs and hence, the tunneling current is able to increase a little bit [177]. Finally,
it can be seen that the compact model represents the change in the channel length well for the
applied Vds values in comparison to TCAD simulation data.

After the variation of the device dimensions, the influence of a change in the permittivity
εox of the gate insulator material is under examination. The electrostatic control of the channel
region is determined by the ratio of the gate insulator thickness and the permittivity of the
material (tox/εox). Due to this fact, the device performance can be enhanced by increasing
the permittivity εox instead of reducing tox (see Fig. 6.32). The influence of a varying εox is
evaluated for five different insulator materials that are listed in Tab. 6.1 and two drain-source
voltages. The compact modeling results are again validated by TCAD simulations and are
presented in Fig. 6.35. In Fig. 6.35(a), it can be seen that the compact model very well
represents the permittivity change and shows a good match to TCAD data at Vds = 0.7 V in
the whole applied Vgs range, with one exception for εox = 80 · ε0. In this special case, the
compact model underestimates Ids for Vgs < −1.25 V and Vgs > 0.9 V, which is again a cause
of the inversion charge model. By slightly tuning the parameter λs/dln,fit, these deviations would
be improved. This effect can be seen better at a reduced Vds of 0.1 V, which is depicted in
Fig. 6.35(b). Another advantage of an increased insulator permittivity is the improvement
in the resulting subthreshold slope and in the device current. A comparison of the on-state
inverse subthreshold slopes in Fig. 6.35(a) lead to Sth = 15.0 mV/dec at Vgs = 10 mV and
εox = 80 · ε0. Furthermore, the subthreshold slope at Vgs = 0.13 V and εox = 15 · ε0 results in
Sth = 47.0 mV/dec. The on-state current at Vgs = 0.95 V is 16 times higher when comparing
the highest (80 · ε0) and the lowest (15 · ε0) permittivity εox.

In the next variation step, the doping concentration of the source region is changed in the
range from Ns = 1 · 1019cm−3 to 1.5 · 1020cm−3. The transfer I-V curves for Vds = 0.7 V and
0.1 V are depicted in Fig. 6.36(a) and (b), whereby the compact modeling results are shown in
comparison with the results obtained by TCAD simulations. At both applied Vds values one
can see that a reduction of Ns to 1 · 1019cm−3 significantly reduces the on-state current of the
DG TFET and this variation cannot be captured by the compact model without readjusting
the model parameters. Thus, the model parameters are extracted separately for any change
in the source doping concentration and are listed in Tab. 6.3. However, it should be noted
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that by changing Ns, the compact model shows the right trend but results in an error in the
amount and subthreshold slope of the device current. After readjusting the necessary model
parameters, the compact model shows a good match with TCAD data. In practice, the source
doping concentration should be as high as possible in order to obtain a on-state current that is
higher than the Ids in ambipolar-state.

Table 6.3.: Adapted fitting parameters for various doping concentrations of the source and
drain region and various interface trap densities.

Various Source Doping Concentrations Ns

Ns [cm−3] λs
ln,fit [–] m∗s [kg] (ηs)2 [cm2] (σs

B2B)2 [cm2] τ s
TAT [cm2] τ d

TAT [cm2] κs
TAT [–] κd

TAT [–]

1·1019 3.0 0.15·m0 7.0·10−15 9.6·10−14 2.3·10−23 2.0·10−19 50 5

3·1019 1.3 0.19·m0 4.0·10−15 5.6·10−14 8.4·10−23 3.5·10−21 9.5 11

5·1019 0.85 0.237·m0 4.0·10−15 2.7·10−14 1.2·10−22 4.3·10−21 20 10.5

7·1019 0.85 0.253·m0 2.0·10−15 2.0·10−14 8.0·10−22 2.5·10−21 12 12

9·1019 0.55 0.245·m0 2.5·10−16 3.0·10−14 1.4·10−21 3.2·10−21 12 11

1.2·1020 0.69 0.29·m0 3.65·10−16 2.0·10−14 3.2·10−21 2.0·10−21 10 12

1.5·1020 0.70 0.34·m0 3.65·10−16 2.0·10−14 7.6·10−21 2.3·10−21 8 12

Various Drain Doping Concentrations Nd

Nd [cm−3] λd
ln,fit [–] m∗d [kg]

(
ηd
)2

[cm2]
(
σd
B2B

)2
[cm2] τ s

TAT [cm2] τ d
TAT [cm2] κs

TAT [–] κd
TAT [–]

1·1019 0.2 0.16·m0 5.0·10−13 6.0·10−15 1.3·10−19 6.2·10−23 5 50

3·1019 0.34 0.185·m0 4.0·10−14 3.8·10−15 3.5·10−21 1.2·10−22 9.5 11

5·1019 0.27 0.24·m0 4.0·10−14 3.9·10−15 2.5·10−21 3.6·10−22 10.5 10.5

7·1019 0.30 0.265·m0 2.0·10−14 3.2·10−15 1.6·10−21 8.3·10−22 12 12

9·1019 0.40 0.29·m0 7.5·10−15 3.7·10−15 1.9·10−21 1.5·10−21 11 12

1.2·1020 0.48 0.325·m0 3.0·10−15 2.8·10−15 1.4·10−21 2.2·10−21 12 12

1.5·1020 0.48 0.36·m0 2.0·10−15 2.7·10−15 1.8·10−21 3.4·10−21 11 11

Various Interface Trap Densities N0
t

N0
t [cm−2] τ s

TAT [cm2] τ d
TAT [cm2] κs

TAT [–] κd
TAT [–]

1010 1.1·10−20 1.7·10−20 11 11

1011 4.95·10−21 7.3·10−21 11 11

1013 1.4·10−21 2.1·10−21 9.5 9.5

1014 2.3·10−21 3.3·10−21 7 7

1015 2.45·10−21 3.95·10−21 5.7 5.7

1016 9.3·10−22 1.55·10−21 5.6 5.6

1017 1.9·10−22 1.65·10−22 6.4 7.4

1018 1.1·10−23 2.6·10−23 10 10

The TFET working principle is based on asymmetrical doping types of the source and drain
region. For this reason, the TFET shows its typical ambipolar behavior, which is from a
circuit designer’s point of view an undesirable effect and should be suppressed. One possibility
to suppress the ambipolar-state is the reduction of the drain region doping concentration.
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Thus, a variation of the parameter Nd is examined in the following. Figure 6.37 presents
the compact modeling results for Vds = 0.7 V and 0.1 V in a Nd range from 1 · 1019cm−3 to
1.5 · 1020cm−3 in comparison with TCAD Sentaurus simulation data. As it can be seen, the
modeling approach stays in a good agreement with the TCAD data, where it should be kept in
mind that similar to the Ns variation, the model parameters are separately extracted for each
Nd value. The extracted parameter values are shown in Tab. 6.3, whereby not all parameters
had to be adapted. The not mentioned fitting parameters are the same as for the Si TFET
(see Tab. 6.2). At a drain-source voltage of Vds = 0.7 V (see Fig. 6.37(a)), a reduction in
Nd of 1 · 1019cm−3 suppresses the device current Ids at Vgs = −1.5 V by factor 2.7 · 103 in
comparison to the standard device and by further reducing Nd to 1 · 1018cm−3 the resulting
ambipolar-state current would be in the range of the off-state current. In Fig. 6.37(b), one
can see that a reduction in Vds of 0.1 V causes a left shift of the ambipolar-state along the
Vgs-axis. In this case, the ambipolar-state is shifted out of the working area of the TFET. A
combination of the left shift and the Nd reduction to 1 · 1019cm−3 causes a suppression of the
ambipolar-state current by factor 2 · 105 in contrast to the standard TFET. In conclusion,
it can be said that the ambipolar-state can be suppressed by a trade-off of the used doping
concentration Nd and the applied Vds by keeping the standard TFET geometry. Nevertheless,
the ambipolar-state is also suppressible by optimizing the TFET device geometry with e.g. a
reduction of the gate length [178, 179], but this is not investigated in this work.

In order to show the influence of the interface trap density on the resulting transfer I-V
characteristic, N0

t is varied in the range from 1011cm−2 to 1018cm−2. Because a varying trap
density affects the resulting subthreshold slope, the model parameters to characterize the TAT
current are extracted separately for each N0

t and shown in Tab. 6.3. The modeling results
for Vds = 0.7 V and 0.1 V are depicted in Fig. 6.38(a) and (b). The verification is done with
the help of TCAD data. It can be seen that it is possible to capture the change in N0

t by the
compact model and to obtain a good agreement to TCAD data for both drain-source voltages.
The subthreshold slope degradation is well visible at Vds = 0.7 V. The steepest subthreshold
slope for N0

t = 1010cm−2 is achieved at Vgs = 40 mV and yields Sth = 26.0 mV/dec, whereas
the steepest slope for N0

t = 1018cm−2 is Sth = 121.3 mV/dec, extracted at Vgs = 0.26 V. In
addition, the ratio Ion/Ioff is affected by the interface trap density. For a low N0

t of 1010cm−2,
the ratio results in Ion/Ioff = 1.2 · 109, whereby this ratio worsens to Ion/Ioff = 1.7 · 104 by
examining N0

t = 1018cm−2. The current value for Ion is extracted at Vgs = 1.0 V and Ioff at
Vgs = 0.0 V. By reducing Vds to 0.1 V, the Ion/Ioff-ratio is shrunk by the factor 10 for the both
investigated trap densities. So, it can be concluded that the trap density has a higher impact
on the TFET behavior when Vds is reduced.

In the last step of the parameter variation, the source material is modified to enhance the
performance of the DG TFET and to demonstrate the capability of the compact model in
terms of simulating hetero-junctions. The three aforementioned source materials Ge, SiGe
and GaAs are examined. The compact modeling results are obtained by applying the model
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parameters listed in Tab. 6.2. The verification of the model is demonstrated with the help of
TCAD simulations of transfer I-V curves at Vds = 0.7 V and 0.1 V. The comparison between
the compact model and TCAD is presented in Fig. 6.39 and it can be seen that the model shows
a good agreement with the numerical simulations for both applied Vds values. A comparison of
the steepest resulting subthreshold slope Sth at a certain voltage V ′gs and the resulting on-state
current for a drain-source voltage of 0.7 V is shown in Tab. 6.4. The subthreshold slope for
Ge and SiGe results in nearly the same values in comparison to the Si TFET, where in case
of GaAs the slope is 5 mV/dec worse than the subthreshold slope of the standard device. By
applying a source material with a smaller band gap Eg than Si, one would expect a steeper
subthreshold slope, but the TAT effect prevents this improvement. By comparing the on-state
current, it can be seen that the TFET with a Ge source region has the highest gain in Ids

at Vgs = 1.0 V, which is 17 times higher than in the Si TFET. The on-state Ids is SiGe is
little bit lower, but still 5.5 times higher than in the standard device. The chosen source
material GaAs has a wider band gap compared to Si and the current in the on-state is three
times lower than in the standard device. In summary, it is to say that an improvement in the
TFET performance is only achievable by choosing a III-V material as the source material [180].
Another improvement of the TFET performance could be achieved by applying III-V materials
to the whole TFET device. Two possible combinations could be (S: p-GaSb, Ch: i-InAs, D:
n-InAs) [181] or (S: p-AlGaSb, Ch: i-InAs, D: n-InAs) [97].

Table 6.4.: Comparison of the resulting subthreshold slope and on-state current for various
source materials and Vds = 0.7 V. V ′gs indicates the voltage value, where Sth is extracted.

Source Material Sth(V ′gs) [mV/dec] V ′gs [mV] Ids(Vgs = 1.0V) [µA/µm]

Ge 38.6 10 93.6

SiGe 38.7 60 29.4

Si 37.5 100 5.43

GaAs 42.4 100 1.84
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Figure 6.32.: Transfer I-V characteristics at (a) Vds = 0.7 V and (b) Vds = 0.1 V and various
gate insulator thicknesses tox. The compact model is compared to TCAD data.
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Figure 6.33.: Resulting transfer characteristics for a varied channel thickness tch at (a)
Vds = 0.7 V and (b) Vds = 0.1 V. The compact model is shown in comparison to numerical
data extracted from TCAD simulations.
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Figure 6.34.: Transfer characteristics for various channel lengths lch and Vds. (a) shows the
results obtained by the compact model for Vds = 0.7 V and (b) for Vds = 0.1 V in comparison to
TCAD data.
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Figure 6.35.: Transfer curve modeling results for (a) Vds = 0.7 V and (b) Vds = 0.1 V shown
in comparison to TCAD simulation. In addition, the permittivity εox of the gate insulator is
varied.
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Figure 6.36.: Simulation results of transfer I-V curves for various doping concentrations Ns
of the source region for (a) Vds = 0.7 V and (b) 0.1 V. Numerical simulation data are extracted
from TCAD Sentaurus to verify the compact model. The compact model is separately fitted for
every Ns value.
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Figure 6.37.: Transfer curves at (a) Vds = 0.7 V and (b) Vds = 0.1 V and various drain region
doping concentrations Nd. The compact modeling results are verified by TCAD simulations.
For all applied Nd the compact model is separately adjusted.
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Figure 6.38.: Varied interface trap concentration N0
t and its influence on the resulting off-

state current. The validity of compact modeling approach is proven by TCAD data in terms of
the current transfer characteristics. (a): Vds = 0.7 V. (b): Vds = 0.1 V.
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Figure 6.39.: Transfer I-V curves for varied source materials and drain-source voltages. (a)
presents the results for Vds = 0.7 V and (b) shows the resulting curves at Vds = 0.1 V. TCAD
data are used to verify the compact model.
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6.2 Verification by Measurement Data

After verifying the compact model by TCAD simulations of a DG TFET, the adaptability and
flexibility of the modeling approach is demonstrated with the help of fabricated devices. The
examined devices are complementary nanowire (NW) gate-all-around (GAA) TFETs, fabricated
in the Forschungszentrum Jülich [182]. Figure 6.40(a) depicts a 3D sketch of both the n- and
p-type NW GAA TFET, whereby both types consists of 60 parallel NWs per device. The source
and drain region of the TFET consist of NiSi2, whereby the junctions to the channel region are
doped by an implantation process. In case of the n-type device, a high dose of Boron (BF+

2 ) is
implanted into NiSi2 at the source-to-channel junction and the drain-to-channel junction is
implanted with a high dose of Phosphorus (P+). For p-type devices, the implantation process
is done vice versa. The gate contact is TiN, the gate insulator material is HfO2 and the channel
is made of strained Silicon (sSi). A detailed explanation of the fabrication process can be found
in [182].

The cross section within a single NW is illustrated in Fig. 6.40(b), with the implantation
regions S and D highlighted in yellow and green, respectively. A single NW has the following
device dimensions: lch = 350 nm, tch = 5 nm, tox = 3 nm and wch = 40 nm. Regarding the cross
section from gate to gate (cutline along the y-axis), the NW shows a rectangular shape and
since the channel width is much bigger than the channel thickness (wch � tch), the compact
model for a DG TFET can be applied to a single NW of the GAA device. The contributions of
the gates at the front and backside of the NW to the device current are small and thus can be
captured with the model parameter fitting. The total device current of the NW GAA TFET is
obtained by multiplying the resulting current of a single NW by the count of the parallel NW
as follows:

Ids, gaa tfet = 60 · Ids, nw. (6.1)

It should be noted that due to the implantation process of the S/D region, no precise
information about the doping concentrations is available, so that the parameters Ns and Nd

are used as adjustable values in the compact model.

The verification of the n-type NW GAA TFET for a Vds range from 0.1 V to 0.5 V is
presented in Fig. 6.41(a). This figure illustrates the measured device current (black dashed
lines), the measurements of the gate leakage current Imeas

g,leak (red triangles), the compact modeling
results (magenta dashed lines with markers) and the blue solid lines shows the summation of
the compact model Ids and Imeas

g,leak. The compact model is simulated by applying the structural
parameters of a single NW and with the help of the extracted model parameters listed in
Tab. 6.5. The modeling results stay in a good agreement with the measured values for all
applied Vds values. Only a small deviation of the modeled and the measured Ids occurs for
Vds = 0.1 V at the transition from the ambipolar- to the on-state. As it can be seen, this
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(a)

 

(b)

Figure 6.40.: (a) 3D sketch of the strained Si NW GAA TFET, whereby both n- and p-type
TFET devices consist of 60 parallel NWs. (b). Cross section within a single NW, showing the
structural parameters applied in the DG compact model. Material S and D region: NiSi2. Gate
material: Stack of TiN/HfO2. Channel material: Strained Silicon (sSi) [182].

error is a cause of the gate leakage current Imeas
g,leak and this effect is not yet considered in the

compact model.

The results of the p-type device are shown in Fig. 6.41(b) for applied drain-source voltages
from Vds = −0.1 V to −0.5 V. The compact model is executed by using the adjustable
parameters listed in Tab. 6.5. The modeling approach shows a good match to the measured
data in the on- and ambipolar-state of the TFET. Some small inaccuracies occur in the
off-state of the device for Vds = −0.1 V and −0.3 V due to the reasons mentioned in the
n-type verification. Adding the measured gate leakage current Imeas

g,leak to the modeled Ids, the
results show a nearly perfect match. For this reason, a gate leakage current model should be
considered in an extended version of the compact model in the future.
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Table 6.5.: Compact model fitting parameters applied in the simulations of the fabricated
complementary NW GAA TFETs.

Parameter Unit n-type p-type

λs
fit [–] 0.65 0.65

λd
fit [–] 1.25 0.60

λs
ln,fit [–] 0.95 0.90

λd
ln,fit [–] 0.90 0.30

m∗s [kg] 0.50·m0 0.49·m0

m∗d [kg] 0.525·m0 0.54·m0

(ηs)2 [cm2] 1.3·10−14 3.5·10−15
(
ηd
)2

[cm2] 1.4·10−13 5.0·10−15

(σs
B2B)2 [cm2] 6.0·10−14 8.6·10−15

(
σd
B2B

)2
[cm2] 8.6·10−14 3.0·10−14

(σs
TAT)2 [cm2] 9.0·10−16 1.0·10−14

(
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)2
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κs
TAT [–] 3.2 2.8

κd
TAT [–] 2.2 2.8

τ sTAT [cm2] 6.19·10−20 6.11·10−22

τdTAT [cm2] 1.89·10−15 2.02·10−23

Vfb [V] 0.95 0.35

xsTAT,max [nm] 4.0 1.8

N0
t [cm−2] 5·1012 5·1012

Ns [cm−3] 4·1020 3·1020

Nd [cm−3] 2·1020 3·1020
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Figure 6.41.: Transfer I-V characteristic measurements of the (a) n- and (b) p-type NW
GAA TFETs to validate the compact modeling approach for various Vds. Black dashed lines:
Measurements of Ids. Red triangles: Measured gate leakage current Imeas

g,leak. Blue solid lines:
Compact model including Imeas

g,leak. Magenta dashed lines with markers: Compact model results.
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CHAPTER 7

Circuit Simulation & Performance Evaluation

In this chapter, the feasibility of using the Verilog-A compact model in basic TFET circuit
simulations is demonstrated. The aim of this step is to show and prove the numerical stability,
robustness and flexibility of the derived modeling approach. At first, a single-stage inverter is
simulated and verified by measurements in Sec. 7.1. Based on the single-stage inverter, a TFET
SRAM cell is under investigation in Sec. 7.2. Finally, in Sec. 7.3 an 11-stage ring oscillator
simulation is performed to show the capability of the compact model in simulating multiple
connected TFET devices. The circuit simulations are performed in the device modeling software
IC-CAP from Keysight Technologies [87] and Cadence Virtuoso [86].

7.1 Single-Stage TFET Inverter

In [182], a fabricated single-stage inverter based on complementary TFET technology has
been introduced. This is a very good possibility to demonstrate the numerical stability and
robustness of the compact model. A schematic TFET inverter layout is shown in Fig. 7.1(a),
where Fig. 7.1(b) depicts a microscope image of the fabricated inverter. Each of the fabricated
devices, n- and p-type TFET, are verified in terms of the transfer I-V curves in Sec. 6.2.

The available DC measurements of the TFET inverter’s voltage transfer characteristics
(VTC) are used to verify the simulations using the compact model as it is shown in Fig. 7.2.
The simulations are performed in a supply voltage range from Vdd = 0.6 V to 1.0 V. It
can be seen that the simulated results show a good agreement with the measured VTC
for [0.7 V ≤ Vdd ≤ 0.9 V] in the whole input voltage range. At Vdd = 0.6 V, a horizontal
displacement of the inverter’s switching voltage can be seen. This is maybe caused by the
small inaccuracies of the current transfer curves (see Fig. 6.41) and the neglected gate leakage
current in the compact model. However, it can be seen that the switching steepness is predicted
correctly as well as the amount of the output voltage Vout in the high- and low-state of the
inverter. For an applied supply voltage of Vdd = 1.0 V one can see a mismatch in the switching
steepness of the inverter. The simulation results show a steeper switching behavior than the
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T2

T1

Vdd

Vin Vout

(a) (b)

Figure 7.1.: (a) Schematic of the complementary TFET inverter layout, where T1 is the n-
and T2 the p-type TFET. (b) Fabricated inverter layout, built with p- and n-type NW GAA
TFETs with 60 parallel NWs per device. The source of the p-type TFET is connected to the
supply voltage Vdd and the source of the n-type device is connected to ground level (GND).
Both gates are connected to the inverter’s input voltage Vin. The output of the inverter is
marked by Vout [182].

measured VTC. This is caused by an underestimation of the TAT current in the compact model.
In addition, the impact of the ambipolar TFET behavior becomes visible in the inverter’s
VTC in terms of a output voltage degradation in the low-state of the inverter. The output
voltage Vout starts to re-increase when the inverter switches from the high- to the low-state
for all applied Vdd values. In conclusion, it is possible to obtain simulation results with the
compact model that are really close to the measurements of the fabricated TFET inverter.
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Figure 7.2.: Voltage transfer characteristic of the complementary single-stage TFET inverter
for various supply voltages Vdd. The simulation results using the compact model are compared
to measurement data of the fabricated inverter.
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7.2. 8T TFET SRAM Cell 159

7.2 8T TFET SRAM Cell

After the validation of the transfer I-V curves of the fabricated TFETs and the single-stage
TFET inverter, it is possible to simulate a TFET SRAM cell that shows a nearly realistic
behavior. The layout of the SRAM cell is introduced in Sec. 7.2.1. The SRAM cell simulations
and the cell performance evaluation in terms of the static noise margin (SNM) are presented in
Sec. 7.2.2 for various operation regimes of the cell. This study is based on the work published
in [134].

7.2.1 Cell Layout

The examined SRAM cell layout is introduced in this section. The circuit design of an SRAM
cell using complementary TFET technology is a big challenge in the designers’ community,
since TFETs have an unidirectional device current and an ambipolar behavior in the current
characteristics [157]. Due to these TFET properties, the conventional 6T SRAM cell layout
cannot be applied. In [156, 183], an SRAM cell layout consisting of eight complementary
TFETs is reported and successfully simulated. Based on these experiences, the 8T SRAM cell
layout shown in Fig. 7.3 is investigated hereinafter.

The 8T TFET SRAM cell consists of two cross-coupled inverters, which are defined by the
transistors T1 . . .T4. The transistors T1 and T3 are n-type pull-down (PD) TFETs, whereby
T2 and T4 characterize the p-type pull-up (PU) TFETs of the inverters. The two inverters are
biased with the supply voltage Vdd and controlled by the n-type access transistors (AT) T5
and T6. Due to the unidirectional device current of the TFETs, the ATs are outward-faced
and thus enable a robust layout solution for writing operation of the SRAM cell [156]. The
output and negated output of the SRAM cell are labeled Q and QB, respectively. The two
remaining transistors T7 and T8 form the decoupled circuit for read operations and are both
n-type TFETs.

Because of the additional two transistors that form the decoupled read circuit, it is mandatory
to use an additional word- and bit line in comparison to the conventional 6T SRAM cell layout.
The additional word line for read operations is denoted as WLR and the bit line as BLR. The
already existing lines in the conventional layout are used to perform write operations. Therefore,
the word line is marked with WLW, the bit line with BLW and the negated bit line with BLBW.

In the default simulation setup, the cell ratio CR = wpd/wat is set to one. That means, the
access transistors have the same channel width wat as the pull-down transistors wpd. The
reason for choosing a CR = 1 is to achieve simulation results close to the fabricated TFET
devices. Since the n-type and p-type TFETs have the same device geometry parameters, all
transistors T1 . . .T8 have the same device width wx = 40 nm. In order to demonstrate the
impact of the AT’s device width on the resulting SNM, wat is varied by an integer multiple of
the original device width: wat,var = n · wat, with (n = 1, 2, 3, . . .).
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T4
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T2

T1

Vdd

T5
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T8

T7

BLRWLR

QBQ

Figure 7.3.: Layout of the 8T TFET SRAM cell [156]. The cross-coupled inverters are made
up of the TFETs T1 . . .T4. The TFETs T5 and T6 describe the outward-faced access tran-
sistors. The decoupled read circuit is located in the dashed green box and is formed by the
TFETs T7 and T8.

7.2.2 Simulation Setup and SNM Analysis

The first simulation step shows the analysis of the SNM of the SRAM cell for a hold/read
(H/R) operation. In order to simulate a hold operation, at first, the supply voltage Vdd is
applied, then all bit lines (BLW, BLBW & BLR) and word lines (WLW & WLR) are biased
with zero volts. The state of the flip-flop is not of interest here since Q and QB are swept
separately during the SNM analysis. The simulation of a read operation is done by biasing the
word line WLR with Vdd and pre-charging the bit line BLR with Vdd/2 due to the outward-faced
ATs [156], thereby all other lines stay at zero volts.

In order to demonstrate the influence of neighboring SRAM cells on the SNMH/R of the
investigated cell, two additional simulations of a H operation are performed. Since several
SRAM cells are connected in a matrix, the bit lines of all cells in a matrix are interconnected
as well as the word lines. A possible scenario is that one cell is being read out while something
is being written to the cell below. Thus, it can happen that during a read operation of a cell,
the bit line BLW or BLBW is biased. As the word line of this cell is not biased, the values at
the bit lines are not written to the cell. However, it has to be investigated, if the voltages at
the bit lines have an influence on the cell. So, in the first simulation, Vdd is applied and the bit
line BLW is biased with Vdd/2, whereby all other lines stay at zero volts. In the second one, the
negated bit line BLBW is biased with Vdd/2, the cell is supplied with Vdd and all other lines
stay at zero volts.

The simulated butterfly curves of the SRAM cell in H/R operation for a supply voltage of
Vdd = 0.7 V are shown in Fig. 7.4(a). The results for hold and read operation are identical in
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consequence of the decoupled read circuit of the examined SRAM layout. The related H/R
SNM is calculated as introduced in [184] and yields SNMH/R = 121.5 mV. The two additional
hold operation simulations result in the same SNMH = 121.5 mV, so it can be seen that a W
operation to a neighboring SRAM cell does not influence the cell under investigation. It should
be noted that the output voltage degradation of the inverters’ VTC rather reduce the resulting
SNM, but this effect is not considered in the SNM calculation as it has been presented in [184].

In the next step, simulations are done in order to analyze the SNM for a write (W) operation
of the SRAM cell. For this analysis, the inverter curves for writing a logical ‘1’ and a logical
‘0’ are simulated for a supply voltage Vdd = 0.7 V. In order to write a logical ‘1’, the bit line
BLW is pre-charged to Vdd/2, the negated bit line BLBW stays at zero volts, whereafter the
writing word line WLW is biased with Vdd. In the W operation of the SRAM cell the read
lines WLR and BLR stay at zero volts. On the other side, to write a logical ‘0’, the negated bit
line BLBW is pre-charged with Vdd/2, the writing word line is set to WLW = Vdd and all other
lines are biased with zero volts. The simulation results of the W operation of the SRAM cell
are depicted in Fig. 7.4(b), whereby the resulting SNMW = 88.9 mV is calculated in the same
manner as mentioned above. The output voltage degradation of the inverters’ VTC reduces
the resulting SNMW as mentioned above, which is not considered in the SNM calculation.

Based on the simulation setups for hold, read and write operation, the static noise margin
is analyzed for various device widths of the ATs. This is done in order to show the influence of
different wat on the resulting SNM. The simulation results are depicted in Fig. 7.5(a), thereby
wat is varied in an integer multiple as it is mentioned in Sec. 7.2.1. It can be seen that the
SNMH/R stays constant for increasing wat, which is the cause of the decoupled read circuit.
In the W operation, the SNMW rises for an increasing wat/wpd, due to the improved pull-down
behavior of the cross-coupled inverters for a wider AT.

Similar to the previous simulation and analysis, now the supply voltage Vdd of the logic
circuit is varied and the device width of the ATs wat is kept constant. This means that the
simulations are performed with the default SRAM cell layout (wat = wpu = wpd). The influence
of the Vdd variation on the H/R butterfly curve of the SRAM cell is presented in Fig. 7.4(c).
In this figure, the curves for Vdd = 0.6 V and 0.8 V are shown as well as the resulting SNMH/R

squares (1.) and (2.), respectively. The SNMH/R value of square (1.) is 75.8 mV and 163.9 mV
for square (2.). It can be seen, that a smaller supply voltage Vdd causes a reduced area within
the butterfly curves and thus a smaller resulting SNMH/R.

The whole Vdd variation in the range from 0.5 V to 1.0 V and its influence on SNMH/R

and SNMW is presented in Fig. 7.5(b). In Fig. 7.2 and 7.4(c), one can see that a higher
supply voltage causes a higher on/off ratio of the cross-coupled inverters, hence the SNMH/R

increases. The reduction of Vdd results in a smaller SNMW caused by unidirectional device
current of the ATs. This behavior deprives the push-pull action during the write operation
of the SRAM cell [183]. Furthermore, the ambipolar behavior of TFETs causes an output
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voltage degradation of the inverter’s VTC as mentioned before.
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Figure 7.4.: (a) Simulation results of the butterfly curve for the 8T TFET SRAM cell in
hold/read operation and a supply voltage Vdd = 0.7 V. The SNM square is highlighted by the
red box. (b) Resulting inverter curves of the SRAM cell in write operation. The red square il-
lustrates the resulting SNMW. Solid black line: Writing a logical ‘1’. Blue dashed line: Writing
a logical ‘0’. (c) H/R butterfly curves for Vdd = 0.6 V and 0.8 V showing the resulting SNM
squares.
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Figure 7.5.: (a) Simulation results of the SNM for the SRAM cell in hold/read and write
operation for a varying wat/wpd ratio and a supply voltage of Vdd = 0.7 V. Here, the width of
the ATs wat is varied and the width of the PD and PU TFETs stays constant (wpu = wpd).
(b) SNMH/R and SNMW analysis for different supply voltages Vdd and the default SRAM cell
layout (wat = wpu = wpd).
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7.3 Ring Oscillator

In the next simulation, the transient response of an 11-stage TFET ring oscillator is examined.
For this purpose, the presented compact DC model is combined with a compact AC model of
the intrinsic TFET capacitances published in [139]. The transient behavior of a TFET-based
single-stage inverter for various device parameters has been investigated in [140] and has shown
the capability of the combined compact AC and DC model. With the help of these simulation
results it is also possible to simulate a TFET-based 11-stage ring oscillator shown in Fig. 7.6.
The impact of the on-state current on the ring oscillator’s performance has been investigated
in [141].

The results of the transient output voltage Vout and current Iout response are presented
in Fig. 7.7, where it should be noted that the TFETs used in the inverters are single-gate
devices [141]. In the transient simulation result one can see eleven switching processes in the
output current Iout within one period of the output voltage Vout. Thus, every single inverter
switches once within a period of Vout. At the applied supply voltage of Vdd = 0.4 V, the output
voltage period results in T = 15 ns. In addition to numerical stability and flexibility, these
results also show the performance of the compact model when simulating multiple TFET
devices. The transient response of the 11-stage ring oscillator including 22 TFET devices has
been achieved in less than one minute.

· · ·

Vdd
Iout

· · · VoutInv 1 Inv 11

Figure 7.6.: Schematic of the 11-stage TFET ring oscillator showing the output voltage Vout
and current Iout.
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Figure 7.7.: Transient simulation results of the 11-stage TFET ring oscillator. The simulated
inverters are based on single-gate TFETs. Left y-axis: Output voltage Vout (blue line) with a
resulting period of one oscillation of T = 15 ns. Right y-axis: Output current Iout (red line).
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CHAPTER 8

Conclusion

This dissertation presents a compact DC model for DG TFETs considering the B2B tunneling
and the TAT effect in the calculations of the device current. All model equations are analytically
solved, include 2D effects and allow for an implementation in the hardware description language
Verilog-A.

The compact modeling approach is derived on the basis of an analytical-numerical 2D DG
TFET model of our workgroup reported in [128, 129, 131]. It is essential to have an accurate
solution of the electrostatics for the calculations of the device current in TFETs. Hence, the
potential solution in the compact model is derived with the help of the 2D closed-form potential
solution of the analytical-numerical model. However, this closed-form solution is not suitable
for a time-efficient Verilog-A implementation and thus, the device potential in the compact
model is approximated by mathematical functions. After carefully investigating the potential
shape in TCAD Sentaurus simulation results, the potential along the x-axis within the channel
of the TFET is approximated by a rational function ∝ 1/x. The rational function is used to
define the potential in the first and the second half of the channel separately. The potentials
within the source and drain region are approximated by a parabolic function ∝ x2 in order to
take into account the impact of the depletion regions on the resulting B2B tunneling current.
The parameters that define the potential approximation functions are extracted by using seven
potential values of the 2D analytical electrostatic potential solution. Based on the potential
approximation along the x-axis, it is possible to describe the potential along the y-axis, which
points in the direction of the channel thickness, by a polynomial function. The parameters
of this function are determined by picking a potential value at the surface and the center of
the channel and the exponent of the function is calculated considering the effect of inversion
charges. For this reason, the analytical potential solution is extended by taking into account
the effect of inversion charges on the electrostatics. Considering the first derivative of the
potential in x and y direction, it is possible to find a compact description for the absolute value
of the electric field.
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168 8. Conclusion

The band diagram of the TFET is determined by an application of the compact potential
solution. Due to the high doping concentrations of the source and drain region, the effect of
band gap narrowing is taken into account. The compact equations also allow for a calculation
of the consideration in heterostructure TFETs.

The tunneling probability for the B2B tunneling and TAT is calculated with the help
of an area-equivalent WKB approach. In this model part, the tunneling energy barrier is
approximated with the help of a triangular energy profile, which has an equal area as the
energy barrier defined by the band diagram. In the calculations of the area-equivalent triangle,
a compact expression describing the tunneling distance is used, which is derived on the basis of
the band diagram.

Landauer’s tunneling formula is applied to describe the B2B tunneling generation rate
along the x-axis for an arbitrary y-position in the channel region of the DG TFET. A compact
expression is found by approximating the TGR with a Gaussian distribution function, that
allows a closed-form integration in order to obtain the tunneling current density along the
y-axis. In case of TAT, the generation rate formula is rearranged by combining Landauer’s
tunneling formula and the TAT model of Hurkx, where a closed-form expression is obtained
after an approximation by a Gaussian distribution function. The current density along the
y-axis also needs to be approximated since a closed-form integration is not possible. A compact
expression that characterizes the first half of the channel is also found by using a Gaussian
distribution function. An integration of the compact current density results in the tunneling
current of the DG TFET, including both the B2B tunneling and TAT current part in the on-
and ambipolar-state of the device. After finding a compact solution of the device current, the
modeling equations are implemented in Verilog-A.

The compact DC model verification is firstly done with the help of TCAD Sentaurus
simulations of an n-type DG TFET for various simulation parameter setups and secondly
by measurements of complementary fabricated TFETs. The electrostatic potential, the band
diagram and the absolute value of the electric field are extracted from the TCAD simulations
to prove the accuracy of the derived compact potential model, the electric field solution and the
band diagram model for various bias conditions and a varying source material. The comparison
of the modeling results with TCAD data shows a good agreement in dependency of x and y.

After demonstrating the accuracy of the compact band diagram, the area-equivalent WKB
approach is investigated. The resulting triangular tunneling energy barrier is illustrated within
the band diagram in order to highlight the feasibility of this approach. The results shows that
the AE WKB approach is very suitable to reproduce the tunneling energy barrier formed by
the band diagram. Furthermore, the AE WKB approach is compared to a quasi-2D WKB
approximation, where the AE WKB approach offers a better match in terms of the tunneling
barrier height for various applied bias conditions and source materials. In contrast to the quasi-
2D approximation, the AE WKB approach is suitable for a numerically robust implementation
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in Verilog-A. In the next step, the B2B TGR is plotted against the TCAD simulation results
and shows a good match for various bias conditions and materials of the source region.

The I-V characteristics of the DG TFET are used to show the flexibility of the compact DC
model. Firstly, the compact model is verified by TCAD simulation data in terms of the current
output characteristics and its first and second derivative for various applied bias conditions.
In a second step, TCAD simulations of the current transfer curve are performed for different
applied bias conditions and various device parameters, like geometrical dimensions, materials or
doping concentrations. The comparison with TCAD data shows a good agreement even in the
first and second derivative of the transfer I-V curve. In addition, the compact model offers a
good scalability regarding a change in the device dimensions and in the gate insulator material
without readjusting the extracted model parameters. Regarding a change in the source material
to heterostructures, the compact model stays in a good agreement with the simulations in
TCAD.

In order to highlight the feasibility of adapting the model approach to other geometries, the
compact model parameters are readjusted so that a simulation of a nanowire gate-all-around
TFET is possible. Here, the p-type model is emulated from the n-type modeling approach.
With the help of transfer I-V curve measurements of fabricated complementary devices, the
compact model validity is proven. The modeling results for various drain-source voltages shows
a good match with the measured data for both the n- and p-type TFET.

Using the compact model parameters that are extracted for the fabricated TFETs, it is
possible to perform a DC simulation of a single-stage TFET inverter. The simulations results
for various supply voltages are compared to measurements of a fabricated TFET inverter and
offer a good match, even the parasitic effects like TAT or the ambipolar behavior of the TFET
are very well reproduced in the simulations. Furthermore, a DC simulation of a TFET-based
SRAM cell is performed and analyzed in terms of the static noise margin. The simulations
are done with the modeling parameters extracted for the fabricated devices in order to obtain
nearly realistic simulation results. Finally, the DC model is extended by a compact AC model
of the intrinsic capacitances in TFETs, which allows for a transient simulation of an 11-stage
ring oscillator. All the simulations of basic TFET circuits demonstrate the numerical stability,
continuity and flexibility of the compact model.

Finally, in conclusion it is to say that a compact DC model for TFETs is developed which
offers a good possibility to perform TFET-based circuit simulations in a very time-efficient and
accurate way. The modeling approach is derived for a DG TFET but is not limited to this
device structure. Beside the B2B tunneling current model, the approach also considers the
parasitic TAT effect.

UNIVERSITAT ROVIRA I VIRGILI  
COMPACT DC MODELING OF TUNNEL-FETS 
Fabian Horst 



170 8. Conclusion

Regarding the state-of-the-art TFET technology, it is to say that there are a lot of problems
to be solved concerning the enhancement of the on-state current and at the same time the
reduction of the traps at the channel junction. Another important issue is the suppression of
the ambipolar-state current. The research community is still working in the optimization of
the TFET as a possible successor of the conventional MOSFETs and the presented compact
model allows a fast simulation and evaluation of single TFETs and TFET-based circuits.

Due to the fact that some effects influencing the TFET behavior are not included in the
modeling approach, the compact model should be extended in future work. At first, the effect
of the gate leakage current should be taken into account as it was reported in [185]. Secondly,
a possible way to suppress the ambipolar-state of the TFET is to consider a gate underlap at
the drain-to-channel junction as it has been demonstrated by TCAD simulations in [178, 179].
A possible model approach was introduced in [111]. A last possible step to extend the compact
model could be the transformation of the DG structure into arbitrarily shaped structures with
the help of scaling concepts as it was presented for MOSFET devices in [186, 187].
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APPENDIX A

Separation of Real- and Imaginary Parts of the 2D Complex Potential

The compact DC model presented in Chap. 5 is derived in a way that it can easily be
implemented in the hardware description language Verilog-A. For that purpose some complex
equations of the 2D electrostatic potential solution must be rearranged, since Verilog-A is not
able to handle complex expressions. The complex expressions are separated into their real and
imaginary parts in the following, that allows a usage the Verilog-A language.

A.1 Conformal Mapping Function

The function to map an arbitrary point within the complex z̄-plane into the upper half of the
w̄-plane has been introduced in Sec. 4.1.5.

Source Related Case

The mapping function for the source related case is given by (see Eq. (4.37)):

w̄s(z̄) = u+ jv = cosh
(
π

∆y
· (x+ jy)

)
, (A.1)

which can be separated into its real u and imaginary part v as follows:

u(z̄) = Re{w̄} = Re
{

cosh
(
π

∆y
· (x+ jy)

)}
= cosh

(
π · x
∆y

)
· cos

(
π · y
∆y

)
, (A.2)

v(z̄) = Im{w̄} = Im
{

cosh
(
π

∆y
· (x+ jy)

)}
= sinh

(
π · x
∆y

)
· sin

(
π · y
∆y

)
. (A.3)

Drain Related Case

The mapping function for the drain related case is presented in Eq. (4.38):

w̄d(z̄) = cosh
(
π

∆y
· (lch − x+ jy)

)
, (A.4)
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172 A. Separation of Real- and Imaginary Parts of the 2D Complex Potential

where a separation of the real and imaginary part yields:

u(z̄) = Re{w̄} = Re
{

cosh
(
π

∆y
· (lch − x+ jy)

)}

= cosh
(
π · (lch − x)

∆y

)
· cos

(
π · y
∆y

)
, (A.5)

v(z̄) = Im{w̄} = Im
{

cosh
(
π

∆y
· (lch − x+ jy)

)}

= sinh
(
π · (lch − x)

∆y

)
· sin

(
π · y
∆y

)
. (A.6)

A.2 Potential Solution for a Piecewise Parabolic Boundary

The potential solution for a piecewise parabolic boundary condition is introduced in Sec. 4.2.2.
The electrostatic potential solution presented in Eq. (4.45) is separated into its real and
imaginary part in the following. The solution reads as:

φP
(
w̄s/d(z̄)

)
= ∆ΦP ·

[1
2 ·
(√

1− (u− jv)2 +
√

1− (u+ jv)2
)
− v
]
. (A.7)

In the first step, the terms (u± jv)2 within the square roots are rewritten in complex polar
coordinates:

(u± jv)2 =
(√

(u2 + v2)
)2
· exp

(
± 2j · arctan

(
v

u

))

=
(
u2 + v2)
︸ ︷︷ ︸

M

· exp


± 2j · arctan

(
v

u

)

︸ ︷︷ ︸
δ




= M · exp (± 2j · δ) = M · cos(2δ)± jM · sin(2δ). (A.8)

In the next step, the square roots are rearranged. It follows:
√

1− (u∓ jv)2 =
√

1−M · cos(2δ)± jM · sin(2δ) =
√
A± jB (A.9)

= 4
√
A2 +B2 · exp


±1

2 j · arctan
(
B

A

)

︸ ︷︷ ︸
γ


 = 4

√
A2 +B2 · exp

(
±j · γ2

)
.
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In the last step, Eq. (A.9) is applied to the potential solution in Eq. (A.7):

φP
(
w̄s/d(z̄)

)
= ∆ΦP ·




1
2 ·




4
√
A2 +B2 ·

[
exp
(

+j · γ2

)
+ exp

(
−j · γ2

)]

︸ ︷︷ ︸
2·cos( γ2 )


− v




= ∆ΦP ·
[

4
√
A2 +B2 · cos

(
γ

2

)
− v
]

(A.10)

whereby the obtained equation allows for an implementation in Verilog-A.

A.3 Potential Solution for a Piecewise Linear Boundary

The complex solution for a piecewise linear boundary condition (see Eq. (4.52)) is separated
into a real and imaginary part. The solution is given by:

φL
(
w̄s/d(z̄)

)
= ± j

π

[
σL,3 · arctan

(
aL ·u·σL,1 ·σL,3 − aL ·bL ·σL,1 ·σL,3 + j·aL ·v ·σL,1 ·σL,3

σL,4

)

+ σL,2 · arctan
(
aL ·bL ·σL,1 ·σL,2 − aL ·u·σL,1 ·σL,2 + j·aL ·v ·σL,1 ·σL,2

σL,4

)]∣∣∣∣
u′b

u′a

, (A.11)

with:

σL,1 =
√
− bL − u

′

aL
, σL,2 =

√
bL − u− jv

aL
, σL,3 =

√
bL − u+ jv

aL
,

σL,4 = b2L − 2 · bL · u+ u2 + v2. (A.12)

Firstly, the simplifications σL,2 and σL,3 are rewritten in complex polar form with their
magnitude ML and argument θL:

σL,2/3 = 4

√(
bL − u
aL

)2
+
(
v

aL

)2
· exp

(
∓ j 12 · arctan

(
v

bL − u

))

= ML · exp (∓ jθL) . (A.13)

Next, Eq. (A.11) is rewritten as:

φL
(
w̄s/d(z̄)

)
= ± j

π
·
[
σL,3 · arctan (A1 + jB1) + σL,2 · arctan (A2 + jB2)

]∣∣∣
u′b

u′a
, (A.14)
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174 A. Separation of Real- and Imaginary Parts of the 2D Complex Potential

thereby:

A1 = aL ·u·σL,1 ·σL,3 − aL ·bL ·σL,1 ·σL,3
σL,4

= aL · σL,1
σL,4

· σL,3 · (u− bL)

= aL · σL,1
σL,4

·ML · exp (+jθL) · (u− bL)

= aL · σL,1
σL,4

·ML · cos(θL) · (u− bL) + jaL · σL,1
σL,4

·ML · sin(θL) · (u− bL), (A.15)

B1 = aL ·v ·σL,1 ·σL,3
σL,4

= aL · v · σL,1
σL,4

·ML · exp (+jθL)

= aL · v · σL,1
σL,4

·ML · cos(θL) + jaL · v · σL,1
σL,4

·ML · sin(θL), (A.16)

A2 = aL ·bL ·σL,1 ·σL,2 − aL ·u·σL,1 ·σL,2
σL,4

= aL · σL,1
σL,4

· σL,2 · (bL − u)

= aL · σL,1
σL,4

·ML · exp (−jθL) · (bL − u)

= aL · σL,1
σL,4

·ML · cos(θL) · (bL − u)− jaL · σL,1
σL,4

·ML · sin(θL) · (bL − u), (A.17)

and

B2 = aL ·v ·σL,1 ·σL,2
σL,4

= aL · v · σL,1
σL,4

·ML · exp (−jθL)

= aL · v · σL,1
σL,4

·ML · cos(θL)− jaL · v · σL,1
σL,4

·ML · sin(θL). (A.18)

It can be seen that the resulting expressions Eq. (A.15)–(A.18) still consist of complex
values and therefore the expressions are reordered as follows:

A1 + jB1 = aL · σL,1 ·ML

σL,4
·
[
(u− bL) · cos(θL)− v · sin(θL)

]

︸ ︷︷ ︸
C1

+ j aL · σL,1 ·ML

σL,4
·
[
(u− bL) · sin(θL) + v · cos(θL)

]

︸ ︷︷ ︸
D1

, (A.19)

A2 + jB2 = aL · σL,1 ·ML

σL,4
·
[
(bL − u) · cos(θL) + v · sin(θL)

]

︸ ︷︷ ︸
C2

+ j aL · σL,1 ·ML

σL,4
·
[
− (bL − u) · sin(θL) + v · cos(θL)

]

︸ ︷︷ ︸
D2

. (A.20)
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By inserting these expressions in Eq. (A.14) yields:

φL
(
w̄s/d(z̄)

)
= ± j

π
·
[
σL,3 · arctan (C1 + jD1) + σL,2 · arctan (C2 + jD2)

]∣∣∣
u′b

u′a
, (A.21)

whereby in the calculation of the parameters C1 . . . D2 in dependency of σL,1, it is distinguished
between two cases:

Case I (bL−u)/aL ≤ 0:

C1 = aL · σL,1 ·ML

σL,4
·
[
(u− bL) · cos(θL)− v · sin(θL)

]
, (A.22)

D1 = aL · σL,1 ·ML

σL,4
·
[
(u− bL) · sin(θL) + v · cos(θL)

]
, (A.23)

C2 = aL · σL,1 ·ML

σL,4
·
[
(bL − u) · cos(θL) + v · sin(θL)

]
, (A.24)

D2 = aL · σL,1 ·ML

σL,4
·
[
− (bL − u) · sin(θL) + v · cos(θL)

]
. (A.25)

Case II (bL−u)/aL > 0: σL,1 is replaced by:

σ′L,1 =
√
bL − u
aL

(A.26)

and the parameters are calculated by:

C1 = −
aL · σ′L,1 ·ML

σL,4
·
[
(u− bL) · sin(θL) + v · cos(θL)

]
, (A.27)

D1 =
aL · σ′L,1 ·ML

σL,4
·
[
(u− bL) · cos(θL)− v · sin(θL)

]
, (A.28)

C2 =
aL · σ′L,1 ·ML

σL,4
·
[
(bL − u) · sin(θL)− v · cos(θL)

]
, (A.29)

D2 =
aL · σ′L,1 ·ML

σL,4
·
[
(bL − u) · cos(θL) + v · sin(θL)

]
. (A.30)

Next, the arctan has to be solved for a complex value. The solution for the first term is
given by:

arctan(C1 + jD1) = E1 + jF1, (A.31)
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176 A. Separation of Real- and Imaginary Parts of the 2D Complex Potential

with:

E1 = Re{arctan(C1 + jD1)} =





π
4 −

1
2 · arctan

(
1−C2

1−D
2
1

2·C1

)
: C1 > 0

−π4 −
1
2 · arctan

(
1−C2

1−D
2
1

2·C1

)
: C1 > 0

0 : C1 = 0, −1 ≤ D1 ≤ 1
π
2 : C1 = 0, D1 > 1
−π2 : C1 = 0, D1 < 1,

(A.32)

F1 = Im{arctan(C1 + jD1)} = 1
2 · tanh−1

(
2 ·D1

C2
1 +D2

1 + 1

)
. (A.33)

The second term is solved as follows:

arctan(C2 + jD2) = E2 + jF2, (A.34)

whereby:

E2 = Re{arctan(C2 + jD2)} =





π
4 −

1
2 · arctan

(
1−C2

2−D
2
2

2·C2

)
: C2 > 0

−π4 −
1
2 · arctan

(
1−C2

2−D
2
2

2·C2

)
: C2 > 0

0 : C2 = 0, −1 ≤ D2 ≤ 1
π
2 : C2 = 0, D2 > 1
−π2 : C2 = 0, D2 < 1,

(A.35)

F2 = Im{arctan(C2 + jD2)} = 1
2 · tanh−1

(
2 ·D2

C2
2 +D2

2 + 1

)
. (A.36)

By applying these simplifications, Eq. (A.21) reduces to:

φL
(
w̄s/d(z̄)

)
= ± j

π
·
[
σL,3 · (E1 + jF1) + σL,2 · (E2 + jF2)

]∣∣∣
u′b

u′a
. (A.37)
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Now, using the complex polar form of σL,2/3 (see Eq. (A.13)) in Eq. (A.37) leads to:

φL
(
w̄s/d(z̄)

)
=± j

π
·
[
ML · exp (+ jθL) · (E1 + jF1) +ML · exp (− jθL) · (E2 + jF2)

]∣∣∣
u′b

u′a

=±
[
jML

π
·
(

cos(θL) + j sin(θL)
)
· (E1 + jF1)

+ jML

π
·
(

cos(θL)− j sin(θL)
)
· (E2 + jF2)

]∣∣∣
u′b

u′a

φL
(
w̄s/d(z̄)

)
=±

[
ML

π
·
[
(E2 − E1) · sin(θL)− (F1 + F2) · cos(θL)

]

+ jML

π
·
[
(E1 + E2) · cos(θL) + (F2 − F1) · sin(θL)

]]∣∣∣
u′b

u′a
. (A.38)

Finally, applying the complex potential theory (see Sec. 2.2), the potential solution for
a piecewise linear boundary condition between u′a and u′b is determined by the real part of
Eq. (A.38). A separation of this equation into its real and imaginary part results in:

Re
{
φL
(
w̄s/d(z̄)

)}
= ± ML

π
·
[
(E2 − E1) · sin(θL)− (F1 + F2) · cos(θL)

]∣∣∣
u′b

u′a
, (A.39)

Im
{
φL
(
w̄s/d(z̄)

)}
= ± ML

π
·
[
(E1 + E2) · cos(θL) + (F2 − F1) · sin(θL)

]∣∣∣
u′b

u′a
, (A.40)

whereby the sign of the real and imaginary part is determined by the applied boundary
conditions ΦL,1 and ΦL,2 as it is introduced in Sec. 4.2.3.
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APPENDIX B

Verilog-A Suitable Function Approximations

In order to implement the compact DC model (see Chap. 5) in Verilog-A, it is necessary to find a
suitable approximation of the Fermi-Dirac integral and the error function. The approximations
of these two functions are presented hereinafter.

B.1 Fermi-Dirac Integral

In order to consider the effect of inversion charges on the resulting TFET potential (see
Sec. 4.1.2), it is necessary to have a compact description of the Fermi-Dirac integral. In general,
the integral is defined by:

Fj(η) =
∞∫

0

xj

exp (x− η) + 1 dx, (j > −1), (B.1)

with the order j of the Fermi-Dirac integral and the variable η, where the integral is calculated.
There is no closed-form solution of the integral and therefore an analytical approximation has
been introduced by Aymerich-Humet [188]. The Fermi-Dirac integral for the whole range of η
and any real value of j can be approximated by:

Fj(η) u 1
(j+1)·2(j+1)[

b+η+(|η−b|c+ac)
1
c

](j+1) + exp(−η)
Γ (j+1)

, (B.2)

using the gamma function Γ and the unknown parameters are defined by:

a =
√

1 + 15
4 · (j + 1) + 1

40 · (j + 1)2, (B.3)

b = 1.8 + 0.61 · j, (B.4)

c = 2 +
(
2−
√

2
)
· 2−j . (B.5)
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180 B. Verilog-A Suitable Function Approximations

The approximation in Eq. (B.2) is suitable for an implementation of the Fermi-Dirac integral
in Verilog-A.

B.2 Error Function

The error function is needed to calculate the compact tunneling current density in Sec. 5.4.4 and
Sec. 5.5.4 as well as the compact tunneling current in Sec. 5.6. In [189] a closed-form approxi-
mation of the error function has been proposed which is defined in the interval [0 ≤ x ≤ ∞].
The approximation reads as:

erf(x) = 1−
(
a1 · t+ a2 · t2 + a3 · t3

)
· exp

(
−x2) , (B.6)

with the parameters:

t(x) = 1
1 + p · x , (B.7)

p = 0.47047, (B.8)

a1 = 0.3480242, (B.9)

a2 = −0.0958798, (B.10)

a3 = 0.7478556. (B.11)

By using the point reflection of the error function, which means erf(−x) = − erf(x), the
interval of this approximation can be extended to the interval [−∞ ≤ x ≤ ∞]. So, the
approximation in Eq. (B.6) is appropriated for a closed-form implementation in Verilog-A.
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APPENDIX C

Terminal Input Voltage Limitations

In order to ensure the continuity of the compact model for bias conditions far away from
the practical working region of the TFET, the terminal input voltages must be smoothly
saturated to a constant value [91]. The smooth limitation of the terminal voltages improves
the convergence of the compact model during the simulation iterations.

At first, the input drain-source voltage Vds,in is smoothly limited for negative and positive
values. In the case of negative drain-source voltages Vds < −0.1 V, the TFET turns into a
forward biased diode and this effect is not considered in the compact modeling approach. For
this reason, negative Vds values are limited by the following function [31, 160]:

V ∗ds = V
(-)
ds,sat ·

[
1− 1

ln(1 + exp(Asat))
· ln

(
1 + exp

(
Asat ·

(
1− Vds,in

V
(-)
ds,sat

)))]
, (C.1)

where V (-)
ds,sat is set to −0.1 V and the parameter Asat ≈ 10. Vds,in defines the non-saturated

input terminal voltage. The obtained V ∗ds is subsequently saturated for positive values as
follows:

Vds = V
(+)
ds,sat ·

[
1− 1

ln(1 + exp(Asat))
· ln

(
1 + exp

(
Asat ·

(
1− V ∗ds

V
(+)
ds,sat

)))]
(C.2)

and results in the drain-source voltage Vds that is applied to the compact model in Chap. 5.
The positive saturation voltage is set to V (+)

ds,sat = 1.5 V. The smoothly saturated drain-source
voltages V ∗ds and Vds are plotted against the input drain-source voltage Vds,in in Fig. C.1(a).
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182 C. Terminal Input Voltage Limitations

In the next step, the applied input gate-source voltage Vgs,in is smoothly limited for positive
and due to the ambipolar behavior of the TFET also for negative values. The limitation is
done by applying the aforementioned smoothing functions and hence, for negative values it
follows:

V ∗gs = −Vgs,sat ·
[

1− 1
ln(1 + exp(Asat))

· ln
(

1 + exp
(
Asat ·

(
1 + Vgs,in − Vfb

Vgs,sat

)))]
, (C.3)

using the saturation voltage Vgs,sat, the input gate-source voltage Vgs,in and the flat band
voltage Vfb. The resulting value for V ∗gs is then applied to saturate positive applied input
gate-source voltages which leads to:

Vgs = Vgs,sat ·
[

1− 1
ln(1 + exp(Asat))

· ln
(

1 + exp
(
Asat ·

(
1−

V ∗gs
Vgs,sat

)))]
. (C.4)

Here, the saturation voltage is set to Vgs,sat = 2 V. The resulting Vgs is applied to compact
modeling approach in Chap. 5. Figure C.1(b) shows the obtained V ∗gs and Vgs in contrast to
the input gate-source voltage Vgs,in.
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Figure C.1.: Smoothly saturated input terminal voltages, where (a) shows the saturated
voltage for negative values V ∗ds and Vds considers a smooth limitation for both positive and
negative input voltages Vds,in. In (b), the saturated V ∗gs (negative Vgs,in) and Vgs (negative &
positive Vgs,in) are plotted against Vgs,in.
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APPENDIX D

Impact of the Adjustable Model Parameters on the Transfer I-V Curve

In the derivation of the compact DC model several adjustable parameters are introduced that
have differing influence on the TFET behavior. The impact of the adjustable model parameters,
which are listed in Tab. 6.2, on the transfer I-V characteristics of the TFET is qualitatively
presented in this chapter. Figures D.1 to D.8 show the influence of the corresponding parameter
on the on-state of transfer curve in (a), whereby the ambipolar-state influence in each case
is shown in (b). In addition to the qualitative illustration of the parameter influence on
the transfer curve, each parameter is explained in the corresponding figure caption including
suitable parameter ranges.

Impact of the Parameter λs/dfit :

lo
g

(I
ds

)

Vgs

λs
fit ⇑

(a) λsfit: on-state.

lo
g

(I
ds

)

Vgs

λd
fit ⇑

(b) λdfit: ambipolar-state.

Figure D.1.: The parameter λs/dfit is used to tune the resulting screening length λs/d at the
channel junctions in the potential model of the TFET. For an increasing value, the transfer
curve is fanned out and Ids is increased. The typical range of λs/dfit is from 0.5 to 2.0.
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186 D. Impact of the Adjustable Model Parameters on the Transfer I-V Curve

Impact of the Parameter λs/dln,fit:
lo

g
(I

ds
)

Vgs

λs
ln,fit ⇑

(a) λsln,fit: on-state.
lo

g
(I

ds
)

Vgs

λd
ln,fit ⇑

(b) λdln,fit: ambipolar-state.

Figure D.2.: The parameter λs/dln,fit is applied to change the influence of the inversion charges
on the resulting potential solution at the channel junctions. The parameters are defined in
the interval [0.2 ≤ λ

s/d
ln,fit ≤ ∞). The smaller the value of λs/dln,fit, the higher is the influence of

inversion charges on the electrostatics and the transfer curve.

Impact of the Parameter m∗s/d:

lo
g

(I
ds

)

Vgs

m∗
s ⇑

(a) m∗s : on-state.

lo
g

(I
ds

)

Vgs

m∗
d ⇑

(b) m∗d: ambipolar-state.

Figure D.3.: The effective carrier masses m∗s/d have a linear and an exponential impact on
the TGR and therefore on the resulting B2B tunneling and TAT current. The TGR is linearly
dependent on m∗s/d and Ttun is exponentially dependent on m∗s/d. The effective carrier masses
should be chosen in the range from 0.05·m0 to 0.7·m0.
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Impact of the Parameter (ηs/d)2:
lo

g
(I

ds
)

Vgs

(ηs)2 ⇑

(a) (ηs)2:: on-state.

lo
g

(I
ds

)
Vgs

(
ηd

)2 ⇑

(b) (ηd)2: ambipolar-state.

Figure D.4.: The variance (ηs/d)2 occurs in the compact current density calculations along
the y-axis and has a linear dependency on Ids and an inverse proportional dependency in the
error function term in the Ids calculations. The linear dependency dominates in the case, when
the error function saturates to the value 1. (ηs/d)2 is defined in the range [0 < (ηs/d)2 ≤ t2ch].

Impact of the Parameter (σs/dB2B )2:

lo
g

(I
ds

)

Vgs

(σs
B2B)2 ⇑

(a) (σsB2B)2: on-state.

lo
g

(I
ds

)

Vgs

(
σd

B2B

)2 ⇑

(b) (σdB2B)2: ambipolar-state.

Figure D.5.: The variance (σs/dB2B)2 occurs in the calculations of the B2B tunneling generation
rate and has nearly the same influence on B2B tunneling part of Ids as (ηs/d)2. The variance
(σs/dB2B)2 should smaller than (lch/4)2.
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Impact of the Parameter (σs/dTAT )2:
lo

g
(I

ds
)

Vgs

(σs
TAT)2 ⇑

(a) (σsTAT)2: on-state.
lo

g
(I

ds
)

Vgs

(
σd

TAT

)2 ⇑

(b) (σdTAT)2: ambipolar-state.

Figure D.6.: The variance (σs/dTAT)2 is used in the TAT generation rate calculations along the
x-axis and scales the resulting TAT current part in the same way than the variance (σs/dB2B)2 in
the B2B tunneling current calculation (see Fig. D.5).

Impact of the Parameter κs/d
TAT :

lo
g

(I
ds

)

Vgs

κs
TAT ⇑

(a) κs
TAT: on-state.

lo
g

(I
ds

)

Vgs

κd
TAT ⇑

(b) κd
TAT: ambipolar-state.

Figure D.7.: The fitting parameter κs/d
TAT can be used to tune the resulting slope of the TAT

current part. The smaller the value of κs/d
TAT, the steeper the resulting slope, whereby the

amount of the TAT current has to be adapted by the parameter τ s/dTAT afterwards. The typi-
cal range is from 1.0 to 1000.
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Impact of the Parameter τ s/dTAT :
lo

g
(I

ds
)

Vgs

τ s
TAT ⇑

(a) τsTAT: on-state.

lo
g

(I
ds

)
Vgs

τ d
TAT ⇑

(b) τdTAT: ambipolar-state.

Figure D.8.: The capture cross section τ s/dTAT is used as a linear adjustable factor in the TAT
current part calculations. The amount of the parameter has to be positive and has a typical
range from 10−23cm2 to 10−18cm2.

Impact of the Parameters Vfb and xsTAT,max:

lo
g

(I
ds

)

Vgs

Vfb ⇑

(a) Impact of Vfb.

lo
g

(I
ds

)

Vgs

xs
TAT,max ⇑

(b) Impact of xsTAT,max.

Figure D.9.: The flat band voltage Vfb in (a) is used to capture a change in the work function
of the gate contact metal. An increasing Vfb causes a right shift of the transfer I-V curve. The
parameter xsTAT,max determines the x-position of the TGRTAT maximum. Typical range: [0 <
xsTAT,max < lch/2].
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