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Efficient Simulation Tool to Characterize the Radar Cross Section
of a Pedestrian in Near Field
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Abstract—A simulation tool to characterize the radar cross section of a pedestrian in near field is
presented in the paper. The tool has been developed in order to predict and optimize the performance
of the short-range radar systems employed in autonomous vehicle operations. It is based on an analytical
model which joins the modeling of the human body with the theory of the physical optics. Our studies
first focused on the implementation of the electromagnetic code where the human body, the radiation
properties of the antenna, and the scenario to be analyzed have been analytically expressed. Then,
the proposed model has been validated in terms of accuracy comparing simulated, theoretical, and
experimental data regarding the radar cross section of metal and lossy spheres and of an adult, in the
frequency range 23–28 GHz. In the end, an evaluation of the performance in terms of required computer
memory and execution time has been carried out, comparing the proposed simulation tool with other
numerical computational methods.

1. INTRODUCTION

In recent years, the development of autonomous emergency breaking (AEB) systems has increased in
the automotive industry. These technologies are largely deployed to improve road safety levels and ease
the driver’s workload [1]. The AEB systems installed in numerous vehicles [2] use the combination of
camera sensors and radar sensors to identify potential pedestrian collision ahead of the car. Cameras
are the main sensors for detecting pedestrians. Radars are employed for measuring the distance and the
occupying area of the subject [3–5]. Ultra-Wide Band (UWB) radar system, for instance, is a technology
widely used for human tracking due to its advantages in poor visibility and mainly for the employed
wide bandwidth signals which enable high-resolution in ranging and localization [6–8].

The assessment of the performance of the radars makes the analysis of the radar cross section (RCS)
of the human body a topic of a great interest [9–11]. Fortuny-Guasch has presented the results of an
extensive series of RCS measurements on pedestrian dummies and humans, analyzing the influence of
their dimensions and the effect of clothing in the 24 GHz and 77 GHz bands [15].

Since the postures and shapes of the pedestrians are endless, the numerical modeling of the RCS
of a human body proves more suitable for the performance analysis of the radar systems. Le and
Dogaru [16, 18] have simulated the radar cross section of standing men in the UHF-band (0.3–0.5 GHz),
L-band (1.2–1.5 GHz), Ku-band (15.2–18.3 GHz), and Ka-band (33.4–38.6 GHz). The Finite-Difference
Time Domain (FDTD) and Xpatch have been used as electromagnetic (EM) modeling codes for their
studies. FDTD is an exact technique but computationally intensive; therefore, it has been run in
the lower frequency bands (UHF and L). Xpatch combines the theory of the ray tracing with the
theory of the physical optics, and it proves to be suitable for the high frequency analysis and for
the modeling of scenarios involving large problem space. The approximate solver provides accurate

Received 27 November 2019, Accepted 5 March 2020, Scheduled 11 March 2020
* Corresponding author: Giovanni Manfredi (giovanni.manfredi@centralesupelec.fr).
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results in considerably less time than the FDTD algorithm [18], but it computes the backscattered field
using a plane-wave (PW) excitation. The frequency bands for the radar applications devoted to the
collision avoidance and to the adaptive cruise control are 24–24.25 GHz and 77–81 GHz, respectively [19].
Hamdane et al. have shown in [20] that the pedestrians are located by the radars less than 20 m from the
front of the vehicle. This distance identifies a near field region, considering the high working frequencies
and the dimension of the human targets [21–24], where the PW condition is not verified. It follows
that the implementation of the antenna is needed at the numerical modeling stage for the evaluation of
the RCS. It allows the designer to analyze the influence of the radar parameters such as the radiation
pattern, the operating frequencies, and the distance between the radar and the monitored target on the
calculated RCS.

The deeper understanding of the interaction between the EM waves and the human body also
requires 3D models that match real subjects with a high degree of accuracy. Many phantoms have been
developed with different geometries, number of tissues, dielectric properties, and voxel precision [25–
28]. Chen et al. [32] performed a numerical RCS analysis at 76–77 GHz of a pedestrian modelled by
using the software Pozer 9. A correction for the overlapped meshes has been carried out to improve
the simulation speed of the EM software FEKOTM. Van Dorp and Groen [29] and Mohamed et al. [30]
presented a simplification of the human shape by using cylinders of various sizes to compose the body
parts. However, to our knowledge, very few studies have been done to assess the features and accuracy
of the presented 3D models used in scattering problems. They are not always compatible with the EM
codes and with the dimensions or postures of the human target that has to be analyzed. Furthermore,
the meshes, discretizing the exterior shell of the body, are built, either automatically by the EM
simulators [16, 17] or by using an external software package [31]. These represent relevant constraints
for the radar designer who is limited in reaching the best trade-off between required computational
resources and EM code accuracy [32, 33].

The authors present in the paper an EM code that includes, in a single simulation tool, the analytical
modeling of the human body, of the antenna, and of the characterization of the back scattered field.
The aim is to release a tool sufficiently accurate, fast, and light from the point of view of computational
burden, which makes feasible the modeling of scenarios involving large problem space, without the need
of high performance computing (HPC) systems. In detail, the human body is modeled by canonical
geometries by using the cuboid equation, making the model suitable for all dimensions and postures
of any target that has to be analyzed. The incident field is radiated by whatever antenna can be
implemented both to reproduce a real scenario and to analyze its influence in the propagation and
reflection phenomenon. The backscattered response of the body is provided by an EM algorithm based
on the theory of the physical optics.

The calculation of the RCS of metal and lossy spheres and of a potential pedestrian has been carried
out in the frequency range 23–28 GHz in order to establish the accuracy of the EM code. To this purpose,
the simulated results have been compared with the theoretical ones based on the Mie theory [12–14]
and with the measured data provided by the European Commission Joint Research Centre [15]. Then,
a performance assessment of the proposed simulation tool has been performed and compared with those
of FEKOTM by using the FDTD and Multilevel Fast Multipole Method (MLFMM) solutions.

The paper is organized as follows. The analytical model founded on the generation of the human
body model, on the geometric typesetting of the real scenario under observation and on the computation
of the total fields scattered by the target, is analyzed in Section 2. The simulated and experimental
data relative to the characterization of the RCS of the spheres and of the human target are compared
and commented in Section 3. The performance assessment is shown in Section 4. The conclusions are
presented in Section 5. In the end, the details concerning the computation based on the theory of the
physical optics are provided in the Appendix.

2. EM CODE FOR THE PEDESTRIAN RCS CHARACTERIZATION

In this section, the human body and the geometry of the scenario of interest are defined. Then,
the procedure to characterize the scattered field by a real target is presented. All the quantities are
analytically determined and implemented in MATLAB R© software.
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2.1. Human Body Model

Previous works [34, 35] have pointed out that the accurate representation of external details of the body,
such as the nose, mouth, ears, and fingers, can be neglected for the evaluation of the scattered field.
This means that the human body parts (head, chest, arms, and legs) can be modeled as a collection of
canonical geometries by using the following function:

f (x, y, z) =
(

x − xg

a

)m

+
(

y − yg

b

)n

+
(

z − zg

c

)p

= 1 (1)

Equation (1) represents the surface of a cuboid in a 3D space, where xg, yg, zg are coordinates of the
center of the geometric shape; a, b, c are the semi-length, semi-width, and semi-height, respectively,
of the geometric shape; and m,n, p are coefficients which define the curvature of the surface for each
axis. By means of the proper choice of parameters a, b, c,m, n, p listed in Table 1, a human model has
been modelled as having 13 body parts, reproduced by the combination of a sphere, cylinders, and a
parallelepiped. The chosen dimensions are equivalent to the average human body size [24]. In addition,
rotation matrices have been implemented in order to simulate movements and variations of the body
postures, as shown in Fig. 1. Moreover, starting from 18 GHz and moving to higher frequencies, the

Table 1. Human model parameters.

Human Element a (cm) b (cm) c (cm) m n p Shape
Head (H) 10 10 10 2 2 2 Sphere
Neck (N) 5.5 5.5 6 2 2 10 Cylinder-like
Torso (T ) 16 8 23 15 15 15 Ellipsoid-like

Upper Arm (UA) 6 6 15 2 2 20 Cylinder-like
Lower Arm (LA) 5 5 15 2 2 20 Cylinder-like
Upper Leg (UL) 7 7 24 2 2 20 Cylinder-like
Lower Leg (LL) 6 6 22 2 2 20 Cylinder-like

Feet (F ) 4.5 15.5 2 2 2 20 Cylinder-like

Figure 1. Human body model analytically expressed and implemented in MATLAB R© in several
positions. The triangular meshes adopted to discretize the body surface are also shown.
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field penetration depth is lower than 1.5 mm [36, 37]. Consequently, only the skin dielectric parameters
to model the interaction between the body and EM fields are considered.

2.2. Geometry of the Scenario under Observation

The EM model consists of evaluating a proper equivalent surface current distribution from which the
scattered field is calculated [38, 39]. In order to represent the fields involved in the problem, the geometry
of the scenario to describe the interaction between the body and the wave front is first of all defined.
Fig. 2 depicts the antenna A, represented by an aperture antenna, the fixed Cartesian system (O,x, y, z)
centered on the aperture, and the scattering surface element S. The subarea is a triangular patch surface
mesh, which discretizes the radiated body parts. Its dimensions are inferior to λ/10 at the highest work
frequency, to obtain an accurate solution.

A

Figure 2. Geometry representation of the scenario involved in the interaction between the body surface
element S (triangular patch) and the antenna.

2.3. Incident and Scattered Fields Computation

The field radiated by the antenna and impinging on the body is obtained by the auxiliary electric
potential vector �F [40], assuming a known distribution of the aperture antenna field

�EA = E0 cos
(

πx

AW

)
ŷ (2)

AW represents the width of the aperture antenna. E0 denotes the maximum intensity of the aperture
electric field, and it is calculated by the knowledge of the radiated power. Equation (2) refers to the
specific problem approached in this paper, but the formulation is quite general because the field radiated
by any antenna can be considered as incident field. It is worth noting that the analytical formulation of
the phantom surfaces in Eq. (1) allows us to express all the geometrical parameters involved in the EM
formulation in closed analytical form, which makes the algorithm very efficient from a computational
point of view.

The calculation of the electric field reflected by the human body requires a preliminary analysis of
the near and far field regions around the target. The field regions have been calculated for a human
subject of 1.76 m at 23 GHz and 28 GHz, respectively. The results are listed in Table 2. The human
target reflects the EM fields in far field starting from around 486 m and 591 m, at 23 GHz and 28 GHz,
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Table 2. Near field and far field regions around a human target of size 1.76 m, analyzed at 23 GHz and
at 28 GHz.

Frequency Wavelength Near field region Far field region
f (GHz) λ (m) 0.62

√
D3/λ (m) 2D2/λ (m)

23 0.013 12.68 474.96
28 0.011 13.98 578.21

respectively. The proposed EM tool has the aim to reproduce real scenes for detecting pedestrians,
where the distances involved are less than 20 m [20]. Therefore, triangular patch surface meshes have
been used to discretize the human body elements, representing each of them the equivalent sources for
the scattered fields. Their sizes (Δx,Δz ≤ λ/10) are chosen so that the scattering surface element S
is small enough to consider the currents uniform throughout, and the reflected field Es

n radiates in far
field towards the antennas. Es

n is defined as

�Es
n =

∇∇ · �A

j2πfεμ
− j2πf �A − 1

ε
∇∧ �F (3)

with �A and �F denoting the electric and magnetic potential vectors [40], and μ and ε the permeability
and permittivity of the analyzed body at the surface S. The total electric field scattered by the whole
body is evaluated as superimposition of the radiation of each triangular patch [41].

�Es =
N∑

n=1

�Es
n (4)

The computational details pertaining the approached problem based on the theory of the physical optics
are reported in Appendix A.

3. RCS OF METAL AND LOSSY SPHERES AND OF A PEDESTRIAN IN THE
K-BAND

The RCS of metal and lossy spheres and of a human target have been calculated in the frequency range
23–28 GHz. The objective is twofold: to determine the accuracy of the proposed simulation tool; to
validate the our analytical approach for the RCS evaluation in the near field region. The simulated data
have been compared with the experimental tests presented and discussed in [15] and with the theoretical
results based on the Mie theory [12–14].

3.1. Simulation Setup

The RCS measurements have been performed in an anechoic chamber of the European Microwave
Signature Laboratory (EMSL) by the European Commission Joint Research Centre [15]. The
characteristics of the measurement setup and measurement site have been replicated in the simulation
tool. The setup used in the RCS simulations is shown in Fig. 3.

The horn antennas (gain G = 20 dB at the center frequency) have been simulated by means of two
rectangular apertures with dimensions AW and AH of 3.5 cm and 2.5 cm, respectively. The Tx and Rx
antennas have been placed in quasi-monostatic configuration, with horizontal separation of about 15 cm
between them. The polarization is vertical both for Tx and Rx antennas. The range distance between
the antenna apertures to the rotation axis of the turntable is 3.4 m. The antennas have been placed at
1.1 m above the ground, as shown in Fig. 3.

3.2. RCS of Metal and Lossy Spheres

The first test focuses on the evaluation of the RCS of a perfectly conducting sphere. The result,
provided by the proposed simulation tool, has been compared with the measured result presented in
the report [15].
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Figure 3. Setup for the evaluation of the RCS of a human target, reproduced in MATLABR© software.

A metal sphere with a radius 3.81 cm has been used for the test and placed at 3.4 m away the
antennas. The sphere has been generated in the analytical model according to Equation (1), whereas
the relative permittivity εr = 1 and conductivity σ = 107 S/m have been chosen for the metallic surface.
The RCS of the sphere has been defined as follows

RCSsphere = 4πR2 | �Es |
| �Ei | (5)

�Ei and �Es in Eq. (4) denote, respectively, the incident and reflected electric fields, and R is the distance
between the antennas and analyzed sphere. The results are shown in Fig. 4. The simulated RCS,

23 23.5 24 24.5 25 25.5 26 26.5 27 27.5 28
-30

-25
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-15

frequency (GHz)

d
B

sm

Simulated result

Measured result

Figure 4. Comparison between the simulated (continuous line) and measured (dashed line) results
relative to the RCS of a metal sphere in the frequency range 23–28 GHz.
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continuous line, exhibits a monotonic increasing behavior from −23.5 dBsm to −22.5 dBsm, compared
to a slightly oscillatory profile of the measured RCS, represented by the dashed line. Nevertheless, the
response predicted by the proposed model can be considered in good agreement with the measurement,
despite that a difference of approximately 2 dBsm is observed in the sub-band 24–26 GHz. In order to
verify whether the discrepancy is due to the uncertainty of the measurement or an error in the proposed
model, further tests have been performed to assess its accuracy.

In detail, the RCS of a metal and lossy sphere of radius 3.81 cm have been calculated and compared
with the theoretical ones obtained by using the Mie series [12–14]. The dielectric properties of the lossy
sphere correspond to those of the dry skin in the frequency band 23–28 GHz [37], whose values are
listed in Table 3. The results are shown in Fig. 5. The simulated (continuous line) and theoretical
(dotted line) radar cross sections of the PEC sphere vary approximately between −23.75 dBsm and
−23 dBsm, and between −26.75 dBsm and −26.5 dBsm for the lossy sphere, as shown in Fig. 5(a) and
Fig. 5(b), respectively. The results provided by our EM tool and those calculated by using the Mie
series are in total agreement, observing at most a difference less than 0.3 dBsm for the PEC sphere and
less than 0.25 dBsm for the lossy one. In the end, the accuracy of our simulation model has been tested
analyzing the RCS of a PEC and lossy sphere of radius 10 cm. The spheres have been placed at 3.4 m
and 25 m from the antennas. The two distances denote a near field and far field regions considering
the diameter of the sphere the largest dimension of the chosen system. The simulated and theoretical
results are depicted in Fig. 6. They exhibit a sinusoidal oscillation, ranging between −15.25 dBsm
and −14.75 dBsm for the PEC sphere (Fig. 6(a)) and between −18.5 dBsm and 18 dBsm for the lossy
sphere (Fig. 6(b)). The simulated RCS is in accordance with the RCS calculated by the Mie series,

Table 3. Dielectric properties of the dry skin in the frequency band 23–28 GHz.

Frequency (GHz) εr σ (S/m)
23 19.7 22
24 19 22.8
25 18.3 23.6
26 17.7 24.4
27 17.1 25.1
28 16.6 25.8
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Figure 5. Comparison between the simulated (continuous line) and the theoretical (dotted line) results
relative to the RCS of a sphere of radius 3.81 cm, analyzed in the frequency band 23–28 GHz: (a) PEC
sphere, (b) lossy sphere.
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Figure 6. Comparison between the simulated (continuous line) and the theoretical (dotted line) results
relative to the RCS of a sphere of radius 10 cm, analyzed in the frequency band 23–28 GHz: (a) PEC
sphere, (b) lossy sphere.

whatever chosen material and distance, observing a negligible error less than 0.25 dBsm. Thus, the tests
highlight that the proposed model proves to be adequate for an accurate RCS evaluation of PEC and
lossy homogeneous objects.

3.3. RCS of a Human Standing

The calculation of the RCS of a human subject has been carried out as a further test to assess the
accuracy of the EM tool. The simulated results have been compared with the measured results presented
in [15]. The sizes of the volunteer have not been provided in [15]. Therefore, a 3D human body with a
total height of 1.76 m has been implemented. The human body parts have been modelled as described
in Section 2 and their sizes, listed in Table 1, have been chosen to be equivalent to the average human
body sizes [21–24]. The distance between the human 3D model and the antennas is 3.4 m, which
identifies a near field region considering the chosen dimensions of the body and the frequency range.
The measurements [15] have highlighted a negligible impact of the clothing on the RCS signature of
the observed pedestrian. Consequently, they have not been taken into account in the simulations. The
relative permittivity εr and conductivity σ listed in Table 3 have been assumed to simulate the dielectric
properties of the dry skin in the frequency band 23–28 GHz [37].

The simulation tool collects the RCS pattern of 360 azimuth positions by rotating the human
standing at step size of 1 degree. The comparison between the simulated and measured results has
been carried out, evaluating within five sub-bands the global frequency azimuth average of the RCS,
expressed as follows

Ravg
i-band =

1
M

M∑
k=1

Rφ-avg
i-band (φk) (6)

M is the number of observed azimuth positions and Rφ-avg
i-band(φk) the frequency average of the back

scattered RCS. Rφ-avg
i-band(φk) is defined as follows

Rφ-avg
i-band [φ] =

1
N

N∑
j=1

| RCS (fj) | (7)

where N denotes the total number of frequency points in the i-th sub-band spanning 1 GHz. RCS(fj)
is given by

RCS (f) =
S2

21 (f) (4π)3 R4

G2 (f)λ2 (f)
(8)
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G is the gain of the Tx and Rx antennas, λ the wavelength relative to each frequency sample, and R
the distance between the antennas and the target. S21 is the S-parameter of the system defined as

S21 =
�Es√
2η0Pt

AW AH

(9)

where η0 represents the characteristic impedance of free space and Pt the transmitting power
corresponding to 0 dBm. �Es in Eq. (4) is the total electric field reflected by the human body, calculated
as the sum of the electric fields scattered by each triangular patch �Es

n in Eq. (3). �Es
n is radiated toward

the antennas in far field region considering the size of the mesh the largest dimension of the chosen
sub-system. In addition, the real distance between the center of the triangular patch and the center of
the antenna aperture is considered for the evaluation of each field contribution �Es

n. This allows to take
into account the correct phase and amplitude of the field.

Table 4 shows the results provided by the EM tool and by the experimental tests presented in [15].
The results computed by the simulation tool and experimental data are in a quite good agreement,
observing at most a difference of 1.5 dB in the analyzed sub-bands.

Table 4. Global frequency azimuth average of the simulated and measured RCS of a human standing.

Sub-band Start Freq. Stop Freq. Measured [15] Simulated
(GHz) (GHz) (dBsm) (dBsm)

1st 23.0 24.0 −4.37 −5.67
2nd 24.0 25.0 −3.89 −5.52
3rd 25.0 26.0 −4.15 −5.32
4th 26.0 27.0 −3.75 −5.27
5th 27.0 28.0 −3.78 −5.49

The longitudinal and lateral positions of a pedestrian relative to an approaching vehicle influence
the detection performed by the short-range radar systems [20]. Therefore, the RCS pattern has been
further analyzed considering the main look angles of the potential pedestrian relative to the radars, in
the band 23–28 GHz. The regions of the observation angles are labelled in Fig. 7. The simulated and
measured results are shown in Fig. 8. The average values corresponding to the front, rear, and side
viewing angles are listed in Table 5.

Table 5. Simulated and measured average values of the the pedestrian look angles.

Look angles Measured [15] Simulated
(dBsm) (dBsm)

Front −5.47 −5.26
Rear −2.19 −5.49

Right side −3.90 −5.53
Left side −4.97 −5.36

The simulated data prove to be in good agreement with those measured concerning the front and
left view angles of the target, observing at most a difference of 0.38 dBsm. The differences occur instead
analyzing the rear and right look angles as highlighted in Table 5. In detail, a difference in average of
1.6 dBsm with a maximum value of 3.2 dBsm is observed between the measured and simulated results
in the interval 115◦–260◦, as shown in Fig. 8. However, in the authors’ opinion, a comparison between
simulated and measured RCS values for each angular sample is not particularly significant, as the
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Figure 7. Reference of the standing pedestrian look angles.
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Figure 8. Simulated (continuous line) and measured [15] (dashed line) RCS pattern of a human
standing in the frequency band 23–28 GHz.

measurements are affected by many random errors. This can be easily verified observing, for example,
that no symmetry can be found in the experimental data, even if a human body shows a left side/right
side symmetry. The differences may be associated with the involuntary movements of the human subject
during the rotation of the turntable, which affect the experimental evaluation and cannot be predicted
in the simulation. The position changes of the subject have also been observed by Lemmen et al. in [43].

To highlight this aspect, further simulations have been carried out to evaluate the influence of
involuntary displacements of the human target on the RCS signature. In detail, in the range 115◦–
260◦, the 3D human model has been placed at different distances respect to the antennas in order to
simulate involuntary movements. Then, a full 360 degree RCS pattern has been calculated by the EM
tool. The results from varying the standing position of a human are depicted by markers in Fig. 9
and superimposed to the measured and simulated results already observed in Fig. 8. The agreement
between the experimental data and those provided by the proposed EM tool is improved. Nevertheless,
a difference between the measured result and simulated data is still detected in the azimuth positions
120◦–170◦ and 200◦–240◦. It is worth noting that involuntary oscillations of the target determine
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large fluctuations in the received power due to the use of millimeter waves. Small changes of the
position of the body with respect to the incident wave cause an uncertainty on the retrieved RCS of
several dB. These displacements are unpredictable at the numerical modeling stage, and consequently
a punctual comparison between the simulated and measured RCS patterns becomes a difficult task.
Proper knowledge of the sizes of the target and of its placement in the observed scenario could improve
the accuracy of the data provided by the simulation tool.
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Figure 9. Comparison between measured and simulated RCS of a human target, in the frequency band
23–28 GHz. Measured result [15] (dashed line), simulated results of a human placed at 3.4 m away the
antennas (continuous line), and at different positions (markers).

4. PERFORMANCE ASSESSMENT

The performance of the proposed EM tool has been assessed and compared with those of two numerical
solutions, FDTD and MLFMM, available in the commercial simulation tool FEKOTM. To this purpose,
the RCS of a perfectly conductive sphere has been analyzed at 24 GHz. A diameter of 20 cm has been
chosen close to the average size of a human head [21–24]. A coarse meshing (λ/8) has been used to model
the sphere in FEKOTM, representing a good tradeoff between the simulation accuracy and simulation
speed. The meshing type has also been adopted on the proposed model. The simulations have been
carried out by using a computer whose feature are: processor Intel Xeon CPU E3-1270 v6 (clock rate
3.8 GHz), 64 GByte RAM DDR4, graphics card INVIDIA QUADRO M2000 4 GByte GDDR5.

The number of meshes, the CPU time, the memory usage demanded by the used numerical solutions,
and the RCS values of the metal sphere at 24 GHz are shown in Table 6. The result provided by the our
model agrees with those calculated by using the MLFMM and FDTD methods with a negligible error
of 0.33 dBsm. The calculation of the RCS of the sphere has required 30 s and 1.55 GByte of memory.
Therefore, the EM tool proves to be both sufficiently accurate and efficient from the point of view of
the computational burden compared with the numerical solutions available in FEKOTM.
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Table 6. Computational demands on analyzing the RCS of a metal sphere at 24 GHz, by using FDTD
method, MLFMM and a PO-based EM tool.

EM solvers Meshes CPU time (HH:MM:SS) Used RAM RCS
FDTD (FEKOTM) 35611289 01:17.15 4.25 Gbyte −15.36 dBsm

MLFMM (FEKOTM) 313860 13:22:43 2.73 GByte −15.13 dBsm
Proposed EM tool 154256 00:00:30 1.55 Gbyte −15.03 dBsm

vskip0.05in

5. CONCLUSION

The paper presents the development of a simulation tool based on a human body model analytically
described and the technique of PO theory, to characterize the scattered field in K-band. The algorithm
has been implemented in MATLAB R© software, generating a simulation tool, which presents three main
strengths. The EM tool includes the modeling of the human body, analytically expressed, avoiding the
use of external software packages. The use of elementary shapes allows one to develop a 3D human model
with a good resolution and without any significant distortion of the back-scattered waveform. The field
radiated by any antenna can be considered as incident field, allowing a more faithful modelling of the
observed scene, compared to the use of a plane wave source. The tool allows one to analyze scenarios
involving a large problem space, without the need of HPC systems.

The comparison between the experimental and numerical data verifies the validity of the proposed
EM tool, for both the evaluation of the RCS of PEC and lossy homogeneous dielectric shapes. The
simulation tool proves to be light from the point of view of computational burden, and more efficient
than widely used numerical tools, which usually face the huge computation time involved in detailed
modeling of the human body.

In the end, the EM model proves to be suitable for the analysis of different pedestrian scenarios.
For instance, the analysis of the RCS of a pedestrian performing a physical activity such as running or
walking can be carried out. Moreover, the influence of metal accessories, such as a watch or a bracelet
worn by the pedestrian, on the RCS signature can also be assessed.
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APPENDIX A.

The detailed procedures to calculate TE and TM components of the electric and magnetic fields
tangential to the surface S are provided in the following section.

A.1. TE and TM Components

The evaluation of the field scattered by the equivalent source requires the knowledge of the incident
electric �Ei and magnetic �H i fields, radiated by the antenna in far field conditions. �Ei and �H i are
orthogonal to r̂ and represented in TE and TM components to evaluate their interaction with the
body. The reflected fields are calculated on each mesh [42], considering the oblique incidence of a
plane-wave on the interface air/skin, as depicted in Fig. A1.

The total electric field, tangential to the surface S and due to the TE components, is given by
�ETE

tan =
(
1 + ρTE

) (
�Ei · v̂

)
v̂ (A1)

And the TM component is
�ETM

tan =
(
1 − ρTM

) [(
�Ei − �ETE

)
· τ̂

]
τ̂ (A2)
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Figure A1. Oblique incidence of electric and magnetic fields.

Similarly, the TM magnetic field component is

�HTM
tan =

(
1 + ρTM

) (
�H i · v̂

)
v̂ (A3)

and the �HTE component is
�HTE

tan =
(
1 − ρTE

) [(
�H i − �HTM

)
· τ̂

]
τ̂ (A4)

where

ρTE =

cos θi −
√(

εr − jσ

ωε0

)
− 1 + cos θi

2

cos θi +

√(
εr − jσ

ωε0

)
− 1 + cos θi

2

(A5)

ρTM =

√(
εr − jσ

ωε0

)
− 1 + cos θi

2 −
(

εr − jσ

ωε0

)
cos θi√(

εr − jσ

ωε0

)
− 1 + cos θi

2 +
(

εr − jσ

ωε0

)
cos θi

(A6)

cos θi = −n̂i · r̂i (A7)

ρTE and ρTM are the reflection coefficients, and θi is the incidence angle. εr and σ represent the relative
permittivity and conductivity of the analyzed body at the surface S. The knowledge of the electric and
magnetic fields on S allows one to determine the equivalent electric �J and magnetic �M surface current
densities for the evaluation of the scattered field.

�J = n̂ ∧
(

�HTE
tan + �HTM

tan

)
(A8)

�M =
(

�ETE
tan + �ETM

tan

)
∧ n̂ (A9)
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