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Abstract

We previously discovered microRNAs (miRNAs) in cerebrospinal fluid (CSF) that differentiate 

Alzheimer’s disease (AD) patients from Controls. Here we examined the performance of 37 

candidate AD miRNA biomarkers in a new and independent cohort of CSF from 47 AD patients 

and 71 Controls on custom TaqMan® arrays. We employed a consensus ranking approach to 

provide an overall priority score for each miRNA, then used multimarker models to assess the 

relative contributions of the top-ranking miRNAs to differentiate AD from Controls. We assessed 

classification performance of the top-ranking miRNAs when combined with apolipoprotein E4 

(APOE4) genotype status or CSF amyloid-β42 (Aβ42):total tau (T-tau) measures. We also assessed 

whether miRNAs that ranked higher as AD markers correlate with Mini-Mental State Examination 

(MMSE) scores. We show that of 37 miRNAs brought forth from the discovery study, 26 miRNAs 

remained viable as candidate biomarkers for AD in the validation study. We found that 

combinations of 6–7 miRNAs work better to identify AD than subsets of fewer miRNAs. Of 26 

miRNAs that contribute most to the multimarker models, 14 have higher potential than the others 

*Correspondence to: Dr. Julie A. Saugstad, Department of Anesthesiology & Perioperative Medicine, Oregon Health & Science 
University, 3181 SW Sam Jackson Park Road, L459 Portland, OR 97239-3098, USA. Tel.: +1 503 494 4926; Fax: +1 503 494 3092; 
saugstad@ohsu.edu. 
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to predict AD. Addition of these 14 miRNAs to APOE4 status or CSF Aβ42:T-tau measures 

significantly improved classification performance for AD. We further show that individual 

miRNAs that ranked higher as AD markers correlate more strongly with changes in MMSE scores. 

Our studies validate that a set of CSF miRNAs serve as biomarkers for AD, and support their 

advancement toward development as biomarkers in the clinical setting.

Keywords

Alzheimer’s disease; amyloid-β42; apolipoprotein E; biomarkers; cerebrospinal fluid; microRNA; 
Mini-Mental State Examination; total tau

INTRODUCTION

Alzheimer’s disease (AD) is the most common form of dementia and the sixth-leading cause 

of death in the United States [1]. Total costs for health care, long-term care, and hospice for 

people with AD and other dementias were ~$259 billion in 2017 [2]. There is tremendous 

effort by many investigators to discover preventative therapies for AD, and to develop 

biomarkers that identify presymptomatic or preclinical cases of AD and monitor disease 

progression. Cerebrospinal fluid (CSF) serves as an excellent biofluid for biomarker studies 

in neuropathological diseases [3]. The most extensively studied CSF biomarkers include 

amyloid-β42 (Aβ42), total tau (T-tau), and phospho-tau, which are diagnostically useful, but 

do not track progression in the context of clinical trials [4]. However, the existence of 

extracellular RNAs (exRNAs) in virtually all biofluids has offered new potential for 

identifying diagnostic and/or prognostic markers for multiple human diseases [5].

ExRNAs have been described in the literature for over 40 years. In 1978, Stroun et al. 

showed that both DNA- and a pure RNA-nucleoprotein complex were released by human 

and frog cultured cells, and the exRNA release was an active mechanism that is unrelated to 

cell death [6]. The authors commented “whether exRNA is involved in intercellular transfer 

of specific information or has only an unspecific stimulating function cannot be answered at 

this stage”[6]. A decade later Benner proposed that “RNA as a short distance-short time 

messenger seems to be a good match of chemistry and biological function” [7]. Benner’s 

hypothesis arose from studies showing biological effects on extracellular actions by certain 

ribonuclease homologs, which “implied that the substrate for extracellular RNases, exRNA, 

must play a biological role in angiogenesis, neurological development, and other biological 

processes” [7]. In 1999, Kopreski et al. found tyrosinase mRNA in the serum of patients 

with malignant melanoma, even after the serum was filtered, indicating that the mRNA was 

extracellular and that “exRNA in plasma from cancer patients associates with or is protected 

in a multiparticle complex” [8]. Thus, exRNAs have great promise as biomarkers for 

diseases, including neurodegenerative diseases [9].

We previously reported that miRNAs in CSF from living donors can serve as candidate 

biomarkers for AD [10]. We identified a novel subset of 37 CSF miRNAs that were able to 

distinguish AD patients from Controls in a discovery cohort, based on n = 1 technical 

replicate/probe on the miRNA array. The 37 miRNAs include 20 that were verified by array 

in our laboratory and 17 additional miRNAs that were brought forth as candidate markers. 
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The validation studies were performed using a custom TaqMan Low Density qPCR array 

comprised of n = 3 technical replicates/probe, in order to assess miRNA performance in a 

new and independent cohort of CSF donors. We generated miRNA profiles for all cohort 

samples, then used rigorous statistical approaches to rank the AD miRNA candidates. Our 

studies validated that 26 of the 37 CSF miRNAs identified in the discovery studies can 

differentiate AD patients from Controls, and combinations of miR-NAs increases 

classification performance for AD. We identified 14 of the 26 miRNAs as high-ranking 

markers. We then examined classification performance when the 14 miRNAs are added to 

current AD markers, apolipoprotein E4 (APOE4) genotype status and CSF Aβ42:T-tau 

measures. The validation of these CSF miRNAs in a new and independent cohort now 

advances their consideration for development as biomarkers in the clinical setting, and for 

their use in bioinformatic studies to identify potential novel gene targets relevant to AD.

MATERIALS AND METHODS

Analytic pipeline

Figure 1 illustrates the analytic pipeline flow for the AD miRNA biomarker validation 

studies. The analytic pipeline included quality control processing of the miRNA array qPCR 

data, followed by statistical analysis of the miRNAs to evaluate their ability to correctly 

identify AD CSF in miRNA multimarker models, in combination with APOE4 genotype 

status, and in combination with CSF Aβ42:T-tau measures. Further, we evaluated how the 

miRNA markers correlate with disease severity as represented by Mini-Mental State 

Examination (MMSE) scores.

Participants

The CSF samples used for the validation studies were obtained from the University of 

California, San Diego (UCSD) Alzheimer’s Disease Research Center (ADRC). All donor 

procedures were approved by the UCSD Institutional Review Board (IRB 80012). All 

participants provided written informed consent and underwent detailed evaluations 

consisting of medical history, physical and neurological examinations, laboratory tests, and 

neuropsychological assessments. Healthy Control subjects were recruited from the 

community through public lectures, newsletters, and word of mouth. Some participants were 

motivated by a family or spouse history of dementia, but others were simply motivated to 

contribute to research, and we have previously reported that research lumbar punctures are 

well tolerated and accepted even among healthy adults [11]. Cognitive health of the healthy 

volunteers was ascertained with MMSE [12] and clinical interview, and the absence of 

neurologic disease was confirmed by history and neurologic examination by a board-

certified neurologist. The donors were matched by age and sex, to the extent possible.

CSF collection

CSF was collected from donors using protocols established by ADRCs. Lumbar punctures 

were done in the morning under fasting conditions, in the lateral decubitus position with a 

24-gauge Sprotte spinal needle. The first 2 mL of CSF collected was used for clinical tests; 

samples with > 500 Red Blood Cells/microliter were excluded from the study. Subsequent 

10–20 mL of CSF is collected from each donor and gently mixed. The CSF samples were 
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centrifuged at 2000 g for 10 min at room temperature, then aliquoted into polypropylene 

tubes that include a subject number, but no other identifying information. The CSF aliquots 

were flash frozen on dry ice and stored at −80°C.

APOE genotyping

APOE genotyping was performed at the UCSD ADRC using PCR restriction fragment 

length polymorphism analysis, as described [13]. Genomic DNA was extracted and 

amplified using forward primer: 5′-ACGCGGGCACGGCTGTCCAAGGA-3′; and reverse 

primer: 5′-GCGGGCCCCGGCCTGGTACAC-3′. PCR products were Hha1 digested, 

ethidium bromide stained, electrophoresed, and visualized by UV illumination.

CSF Aβ42 and T-tau measures

Measurements of CSF Aβ42 and T-tau levels were performed at the UCSD ADRC using 

enzyme-linked immunosorbent assays (ELISAs) as previously reported [14]. CSF Aβ 1−42 

was measured using the Euroimmun ELISA kit (EQ 6521–9601-L, ADx Neurosciences, 

Ghent, Belgium). CSF T-tau was measured using the ELISA kit (EQ 6531–9601-L, ADx 

Neurosciences).

RNA isolation and qPCR

We instituted safeguards to improve quality control of both the RNA isolations and the 

qPCR arrays based on our AD miRNA discovery studies [10]. First, we included a pooled 

CSF reference sample (RefStd) as a constant throughout the entire period of the qPCR 

studies. The RefStd was comprised of CSF donated from healthy community volunteers that 

was collected, pooled, and stored in 0.5 mL aliquots, as per the CSF collection protocol. 

RefStds were included in batches of RNA isolations and run together with patient CSF 

samples on the qPCR arrays to estimate and eliminate variance across processing batches 

and individual array cards. Cost considerations precluded placement of a RefStd on every 

card, so 13 RefStd samples were staggered at approximately even intervals throughout the 

66-card study. Second, we included multiple miRNA controls on the arrays. Positive 

controls (miRNAs unchanged between AD and Controls) were combined to form a complex 

normalizer, while negative controls (miRNAs not found in CSF) were used to check the 

validity of each array card. In our initial AD discovery studies, we used only U6 small 

nuclear RNA (U6 snRNA) as a normalizer for the qPCR arrays [10]. For the validation 

studies presented here, each custom array card contained 51 RNA probes: 37 candidate AD 

miRNA biomarkers, 9 positive miRNA controls, U6 snRNA, and 4 miR-NAs not detected in 

CSF (Supplementary Table 1A) at n = 3 technical replicates/miRNA probe in order to add 

robustness to this study. Third, we imposed strict uniformity over the reagent manufacturing 

lots: all kit and reagent lots were matched, with only two exceptions: one change in a lot of 

RNA Clean & Concentrator kit™-5 (R1016, Zymo Research, Irvine, CA), and one change in 

a lot of Reverse Transcriptase enzyme.

Total RNA was extracted from 0.5 mL of CSF using the mirVana™ PARIS™ Kit (AM1556, 

(Thermo Fisher Scientific, Waltham, MA) as described [10]. The RNA samples were 

concentrated using RNA Clean & Concentrator kit™-5 (R1016, Zymo Research). The 

concentrated RNA samples were reverse transcribed using a custom MiRNA RT pool 
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(4459652, Thermo Fisher Scientific) and TaqMan® MicroRNA Reverse Transcription Kit 

(4366596, Thermo Fisher Scientific), then preamplified using a custom MiRNA PreAmp 

pool (4459660, Thermo Fisher Scientific) and TaqMan® PreAmp Master Mix w/QRC 

(4391128, Thermo Fisher Scientific). The pre-amplification products were diluted 1:4 in 

RNase/DNase-free water, then 18 μL of diluted samples were mixed with TaqMan® 

Universal PCR Master Mix II, no UNG (4440040, Thermo Fisher Scientific) and RNase/

DNase-free water to a final volume of 450 μL, loaded onto a custom TaqMan® Array Card 

(4449140, Thermo Fisher Scientific) and amplified on a QuantStudio™ 12K Flex Real-Time 

PCR instrument (4471089, Thermo Fisher Scientific) using QuantStudio™ 12K Flex 

Software v1.2.2 (Thermo Fisher Scientific).

Preprocessing of Ct values

The miRNA amplification data was then subjected to quality control filtering of the Ct 

values using ExpressionSuite Software v.1.0.3 (Thermo Fisher Scientific). All further 

processing and statistical analyses were conducted using Stata version 15.1 (StataCorp LLC, 

College Station, Texas) and R version 3.4.1 (R Foundation for Statistical Computing; http://

www.r-project.org) software tools. We implemented biomarker acceptability rules to enable 

go or no-go decisions for each candidate miRNA before assessing its predictive performance 

in samples. First, we excluded miRNAs that did not amplify in at least 20% of the samples 

to ensure that candidates had at least some biomarker potential. The 20% cutoff was 

chosenbecause80%censoringwitha1:1case:control ratio means specificity can never exceed 

40%, even with perfect sensitivity. We believed this would be a lower bound of usefulness 

for a potential biomarker. Second, 2 of the 3 technical replicates/miRNA probe included on 

the array needed to successfully amplify in the sample. Third, the data was filtered to ensure 

good quality detection and to avoid false positives. Thus, we included amplifications with 

median Ct values < 34, a cutoff chosen based on high replicate standard deviations for Cts > 

34. Further, the amplifications had to have an AmpScore ≥1.0 and a CqConf ≥ 0.9. The 

AmpScore indicates, for a given well, the rate of amplification in the linear region of the 

response curve. The CqConf indicates the calculated confidence (between 0 and 1) for the 

Cq/Ct value of the well. Thus, miRNAs that met these quality control standards were 

considered for further analysis. We also required at least 90% attestation (the fraction of 

samples that show evidence of expression for a given miRNA via their Ct values) across the 

positive control miRNAs since these were used for normalization. Under these rules, we 

retained 7 of the 10 positive controls, and 26 of the 37 possible miRNA biomarker 

candidates (Fig. 1 and Table 2) identified in the discovery study for further analysis in this 

validation study. All of the miRNA qPCR array data and donor-specific metadata have been 

reposited in the exRNA Atlas [15] dataset Validation Study for Candidate AD miRNA 
Biomarkers in Human CSF, #EXR-JSAUG1UH3001-ST that can be accessed via the 

Datasets link at http://exrna-atlas.org/.

Batch correction and normalization

Since the CSF samples were measured over the course of many weeks, variation in ambient 

temperature, machine calibration, and other minor, but uncontrolled and imperceptible 

factors may arise. Thus, there is a need to ensure that card-to-card batch variations are 

removed prior to analysis. To accomplish this, within each card, the Ct values for a sample 
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were taken as the median of the miRNA values in the triplicate wells (n = 3 technical 

replicates/miRNA probe); miRNAs with median value of 34 or larger were censored at 34, 

which means that any miRNA with a Ct > 34 was considered to have expression too low for 

reliable detection in the assay. These miRNAs were included in the analysis with an assigned 

expression value of zero. The median Ct values were then corrected for day-to-day variance 

in technical processing. Positive controls for the RefStds were treated as anchors and used to 

align the array cards. With 13 RefStd samples included over the processing of 66 array 

cards, and not appearing on every array card, we had to interpolate batch corrections for 

cards that did not include a RefStd. These plausible card corrections were made by 

averaging predictions from 5 models of batch differences: 1) the median of all probes; 2) the 

mean of all positive control probes; 3) the mean and variance of the distribution of all 

probes; 4) a linear trend to connect one RefStd anchor to the next in run-order sequence; and 

5) a card median representing a random deflection from the sample mean of all card 

medians. We then averaged these prediction values to align Ct values across all 66 cards.

Following batch correction, there is a need to normalize the Ct values by the overall miRNA 

content of the sample, in order to ensure comparability of expression measurements. The 

aligned Ct values were normalized relative to the mean of 7 “non-changing” positive 

controls included on the arrays: 6 miRNAs (miR-1290, −204–5p, −30e-3p, −574–3p, −638, 

−92a-3p), plus U6 snRNA (Supplementary Table 1). The normalization was done by 

calculating a CSF sample-specific Ct value offset from a grand mean (i.e., the “subject 

effect”) using a crossed random effects mixed model [16], and then subtracting this offset 

from the measured Ct values for the sample. Similar to our discovery studies, we then 

transformed the normalized Ct values onto an expression scale so that higher values indicate 

relatively greater quantities of miRNA expression (the transformation is expression = 

Ctnormmax –Ctnorm, where Ctnormmax is the largest non-censored normalized Ct value in 

the data, rounded up to the nearest integer). Censored Ct values were assigned a value of 

zero on this expression scale and included in the final analysis [10].

Biomarker relevance

We assessed the global relevance of the biomarker candidates by computing the multivariate 

distance between observations using Mahalanobis distance. Mahalanobis distance is a way 

of measuring the separation between a data point and the center of a group of data points 

with respect to many variables, while accounting for their mutual correlations [17]. Thus, 

samples similar in overall expression lie as close points in the space defined by the 26 

miRNA values, while samples dissimilar in expression are widely separated in this space. 

We calculated the distances of each of the AD and Control samples from the center of the 

Controls using the covariance of the Controls as the scale in order to measure each sample’s 

similarity to a typical Control sample. This same approach was used to verify 

appropriateness of the positive control miRNAs as normalizers.

Biomarker importance ranking

The decision that a biomarker is important should be robust, so for greater assurance it is 

essential to judge their importance in many different ways. To assess each candidate miRNA 

as an AD biomarker, we examined: 1) the association between miRNA expression and AD 
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status; 2) clear separation of miRNA expression between the AD and Control CSF; and 3) 

complementarity of information when combined with other AD markers. Importantly, (1) 

and (2) are complementary information about an individual marker, and (3) evaluates 

miRNA value as members of larger biomarker groups that may provide synergistic 

information regarding the disease state. Biomarker importance was assessed by 1) log-rank 

tests [18] to account for censoring, 2) receiver operating characteristic (ROC) curves [19], 

and 3) variable importance in random-forest classifiers using 4 different decision-tree 

generation rules (CART [20], CFOREST [21], CHAID [22], BOOST [23]) to mitigate bias 

in the importance estimate due to a particular decision rule.

Prioritization of AD miRNA biomarkers

We designed our analytical approach to elicit consensus across statistical methods and 

prioritize candidate miRNAs as potential AD biomarkers. Each testing procedure generated 

a ranking of the 26 validated miRNAs: different “judging” methods sorted the candidates 

from best (1) to worst (26). Moreover, we incorporated information from our discovery 

study in order to give due weight to our prior knowledge that certain candidates were likely 

to fare better than others in validation testing. We did this by ranking the complete set of 

candidates prior to doing any testing in the validation cohort, and we included this prior 

ranking as a separate judge. Each judge independently ranks the miRNA markers, and then 

the ranks for each miRNA marker are summed. This rank sum reflects our statistical 

consensus opinion of a miRNA marker’s value. Significance of differences in rank sum were 

assessed via permutation testing of the Skillings-Mack statistic [24].

Multimarker classification performance

Although ranking and prioritization of individual miRNAs is an important first step in 

understanding how the miRNAs may relate to AD status and progression, our ultimate goal 

is to develop an AD classifier using the best available miRNA information. To be useful this 

classifier needs to incorporate several different miRNAs into a “multimarker” model because 

no single miRNA contains enough information about AD to enable reliable prediction. Thus, 

assessing which miRNAs work well together and in what combinations is of key 

importance. Multimarker classification performance was assessed by evaluating linear 

combinations of all possible 1-, 2-, 3-, and 4-marker subsets of the 26 validated miRNAs. 

We also carefully examined selected combinations of 5-, 6-, and 7-markers based on 

performance in smaller sized subsets and/or rank sum. To benchmark classification 

performance, we used a stepwise Bayesian model-averaging [23] procedure on the full set of 

26 markers and selected 9 markers demonstrating robust contribution to all of the 

multimarker models. The model-averaged area under the ROC curve (AUC) of this 9-marker 

set (0.716) was used as a benchmark that any proposed model must beat. The subsets 

described above yielded 76,867 unique models, whose classification (AUC) and model fit 

(Akaike information criterion [AIC]) were calculated using logistic regression. We plotted 

AIC versus AUC, denoting number of markers per model, and then superimposed a 

nonlinear regression of AUC on AIC onto this plot to select top-performing combinations in 

terms of classification, calibration, and parsimony. The combinations with highest AUC and 

lowest AIC that rose above the benchmark were selected. The individual contribution to the 

set of 93 top-performing models (which equated to the top 0.12% of the 76,867 models 
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tested) was assessed for each miRNA by calculating the fraction of these models that the 

miRNA was included in, and the size of the miRNA’s model-averaged coefficient.

Performance of AD miRNAs plus APOE4 genotype or CSF Aβ42:T-tau measures

Performance of the AD miRNA biomarkers was compared to the performance of the APOE4 

genotype status and to the performance CSF Aβ42:T-tau measurements in the validation 

cohort. Donors who were missing APOE4 genotype data (n = 5 Control, n = 2 AD) or 

Aβ42:T-tau measures (n = 4 Control, n = 1 AD) were not included in this analysis so that all 

models could be directly comparable on the same donor cohort (n = 60 Control, n = 41 AD). 

We compared miRNA classification performance alone to miRNA performance after 

combining APOE4 genotype or Aβ42:T-tau ratios with the miRNAs. We formed a k-nearest-

neighbor classifier (k = 3) so that all of the miRNA information would be used without 

imposing any assumptions about either the relationships among the miRNAs or how they 

contribute to AD classification. The k-nearest-neighbor classifier (k = 3) was based on 

Canberra distance [25] between Mahalanobis-scaled miRNA expression values, setting prior 

probabilities proportional to the AD and Control group sizes and breaking ties randomly.

Correlation of MMSE with higher-ranked miRNAs

We examined whether the correlation between MMSE scores and individual miRNA 

expression levels would be larger for miRNAs that ranked higher as AD markers. 

Correlation with MMSE was measured as the partial R2 statistic from a linear regression of 

the individual miRNA expression on the MMSE score, adjusting for age and sex. The partial 

R2 values were then compared to miRNA ranks using Spearman correlation.

RESULTS

Donor characteristics

The characteristics for the 71 Controls and 47 AD CSF donors evaluated in this validation 

study are shown in Table 1. The donors were matched by sex to the extent possible, but there 

was a somewhat higher percentage of females in the Control group (24 males:47 females; 

33.8% males:66.2% females) compared to the AD patients (26 males:21 females; 55.3% 

males:44.7% females). The donors were matched by age: mean age of healthy Controls was 

72.72 ± 5.91, mean age of the AD patients was 73.13 ± 9.22. Controls were in good health 

with a mean MMSE score of 29.13 ± 1.31, Clinical Dementia Rating (CDR) [26, 27] scores 

of 0, and no evidence or history of cognitive or functional decline. AD patients were 

diagnosed with probable AD according to the National Institute of Neurological Disorders 

and Stroke–Alzheimer’s Disease and Related Disorders Association (NINDS-ADRDA) 

criteria [28, 29], with a mean MMSE score of 22.06 ± 3.47, and CDR scores of 1–2. Of note, 

the mean MMSE of the AD patients in the validation study (22.06 ± 3.47) was 4 points 

higher than the mean MMSE in the discovery study (18.28 ± 6.4) [10], indicating that the 

validation cohort reported here had milder dementia than the previously reported discovery 

cohort. APOE genotyping was available for 111/118 donors (66 Controls and 45 AD): the 

Control group had 62.12% with 0, 30.30% with 1, and 7.58% with 2 APOE4 alleles, while 

the AD group had 35.56% with 0, 42.22% with 1, and 22.22% with 2 APOE4 alleles. As 

expected, APOE4 genotype was over-represented in the AD group [30]. Most donors in the 
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0 or 1 category of the APOE4 alleles had an APOE3 genotype, while only three donors had 

an APOE 2,4 genotype (2 normal control males, 1 AD male). CSF Aβ42 and T-tau measures 

were available for 106 of the 118 donors (64 Controls and 42 AD). The ratio of Aβ42:T-tau 

in the Control group is 1.5 ± 0.8, while the AD group had a ratio of 0.6 ± 0.5. Thus, as 

expected, the Aβ42:T-tau ratio decreased in the AD group [31].

Measures for validated AD miRNAs

Table 2 lists the 37 candidate AD miRNA biomarkers tested in this validation study, and 

shows the quantitative and statistical measures of the 26 miR-NAs that remained viable as 

candidate biomarkers under our acceptability rules (Methods), as indicated by “Yes” in the 

‘Viable’ column. Our analytic strategies focused on assessing these 26 viable miRNAs in 

multimarker combinations, and we demonstrate that these miRNAs work together very well 

to differentiate AD from Controls. First, we determined how well all 26 miRNAs can jointly 

separate/classify AD from Control samples. Figure 2A plots the Mahalanobis distances of 

AD and Control samples, showing how far each is from the center of the Controls in the 

miRNA expression space. The individual Control samples (gray points) fall mostly at small 

distances from the center (bottom of plot), while the AD samples (black points) fall mostly 

at large distances (higher up the plot). Few Control samples are above the 80th percentile 

(dashed) line, and few AD samples are below it. Using the Mahalanobis distance as a 

classification index we attain AUC of 0.84, a value that serves as an estimate of the 

maximum performance of the 26 viable miRNAs in this cohort. In contrast, the classification 

potential of the positive control miRNAs in this cohort (Fig. 2B) shows that Control (gray) 

and AD (black) samples are intermixed, and samples at larger distances come from both 

groups. The 99.9th percentile (dashed) line contains nearly all samples and the AUC for the 

positive control miRNAs is 0.54. This highlights the overall informativeness of the 26 

miRNA candidates as AD biomarkers, as compared to steady-state positive control miRNAs.

Rankings of validated miRNAs

We used seven independent “judges”, or statistical assessment criteria (described in 

Materials and Methods) to characterize how well each of the 26 miRNAs work alone or in 

combinations to correctly identify a CSF sample as AD or Control. Figure 3 shows the ranks 

and rank sums of each of the 26 miRNAs according to these statistical assessments, 

including the ranking based on prioritization in the discovery study [10]. Higher ranks are 

indicated by smaller numbers, so that more highly ranked markers across all criteria have 

lower rank sums. Two of the criteria (LogRank, ROC) assessed performance of individual 

markers, while the remainder assessed classification performance of miRNAs in 

combination. As shown via color-coding (red), miR-193a-5p, −597–5p, −195–5p, and 

−378a-3p performed best and were also among the top discovery study performers. In 

contrast, miR-484 and −584–5p were lower in the discovery prioritization, but performed 

well here. However, our top discovery study performer, miR-142–3p, did not perform well 

here. The latter two outcomes may reflect the difference in the average MMSE score 

between the discovery and validation cohorts (4 points lower in the discovery cohort). For 

example, miR-142–3p may preferentially signal laterstage AD and be an indicator of disease 

progression.
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MiRNA combinations increase classification performance

Most biomarkers reveal complementary information, and even modest miRNA combinations 

showed greatly improved classification accuracy for AD compared to single miRNAs in our 

discovery study [10]. As the best miRNA-based classifiers will necessarily be multimarker 

combinations, we fit 76,867 multimarker models (described above), and selected 93 top-

performing models for pairing good predictive power (high AUC) with good calibration (low 

AIC). Figure 4 presents the ROC curves for all 93 top models, color-coded by size of the 

model. Averages of ROC curves within each color are presented in bold. Combinations 

consisting of 7 miRNAs (mean AUC = 0.796) are incrementally better at identifying AD 

samples than combinations that consist of fewer miRNAs. Further, examples that contain as 

few as 4 miRNAs attain a mean AUC > 0.72, the value we predicted in our prior study [10]. 

Some combinations of 6 and 7 miRNAs attain AUCs exceeding 0.80 (faint blue and orange 

lines). Recalling that the classifier based on Mahalanobis distance in the complete 26-marker 

space showed an AUC of 0.84 (Fig. 1A), we note that models comprising as few as one-

fourth of the markers approach that performance level. These values far exceed the best 

performing individual miRNAs, underscoring the need for a multimarker-based approach to 

AD prediction using miRNAs.

Top contributors to miRNA-based AD classifiers

After we identified the top-performing multimarker models, we next sought to determine 

which of the 26 miRNAs contribute the most to performance in these models. In Fig. 5, we 

plotted the percent contribution to the top 93 multimarker models (from Fig. 4) against the 

consensus rank of each of the 26 validated miRNAs in the screening assessments (shown in 

Fig. 3). Marker size is proportional to the magnitude of the model-averaged coefficient 

estimate from the Bayesian model-averaging procedure (Materials and Methods, 

Multimarker classification performance). The highest-ranked miRNAs markers tend to be, 

but are not always, the most important contributors to the multimarker models. Our 

exhaustive assessment of classification performance revealed that 14 of the 26 AD 

biomarker candidates contributed strongly and in a mutually complementary and additive 

manner to AD prediction across a broad range of model scenarios. These top 14 contributors 

to miRNA-based classifiers are listed in Table 4.

APOE4 status improves miRNA classification performance

The APOE4 allele is a risk-factor gene as it increases a person’s risk of developing AD; 

however, having an APOE4 allele does not guarantee that one will develop AD. Thus, many 

researchers believe that APOE testing is useful for studying AD in large groups, but not for 

determining an individual’s risk for AD. That said, given the known strong association 

between APOE genotype and AD risk, we examined whether the genotype status was 

redundant with the miRNA expression values, or whether it could add power to a general 

miRNA-based classifier. We found that addition of APOE4 genotype status to the best 14 

miRNAs (Table 4) increased the classification performance of the nearest-neighbor AD 

classifier, particularly in the high-specificity range (Fig. 6). The AUC for the best 14 

miRNAs independent of APOE4 is 0.820, but when APOE4 was added the AUC increased 

to 0.856, a 4 point increase similar to that observed for parsimonious models in our 
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discovery study [10]. It is worth noting that the AUC for APOE4 only is 0.637 in this cohort, 

which is lower than the reported APOE4 performance (~0.67 [32]) and considerably lower 

than performance in our discovery cohort (0.73). This is indicative of potential latent AD 

cases among the current cohort Controls. Yet even in this low-powered setting, adding 

APOE4 to the classifier yielded the same level of improvement, suggesting that the miRNA 

expression phenotypes are not simply reflecting genetic risk; they also provide independent 

power to differentiate AD from Controls.

Aβ42:T-tau improves miRNA classification performance

The CSF markers Aβ42 and tau (total and phospho) reflect AD pathology, and have high 

accuracy to diagnose AD with dementia and prodromal AD in mild cognitive impairment 

cases [33]. Therefore, we examined the performance of Aβ42 and T-tau, alone and in 

combination with the miRNA biomarkers. Table 3 shows the diagnostic performance of CSF 

Aβ42 and T-tau for 106 donors with available data, as well as the odds ratio for APOE4 

positive status given a 1-standard-deviation change in the CSF marker (in the direction of 

higher probability of AD) for the donors where both the Aβ42 and T-tau measures, and 

APOE4 genotype status, were known. As expected [31], we found that both Aβ42 and T-tau 

are good AD predictors of AD (AUC = 0.78, on par with any of the miRNA models), but the 

Aβ42:T-tau ratio is dramatically better than either marker alone (AUC = 0.86) (Table 3). We 

assessed the AUC of a full-information classifier using the top-contributing 14 miRNAs 

(Table 4), which increased from 0.820 without Aβ42:T-tau to 0.903 with Aβ42:T-tau 

(ΔAUC=0.08) (Fig. 7). Together, these data show that similar to the APOE4 results, the 

miRNA information is not redundant with the Aβ42:T-tau ratio, but that it provides 

independent power to differentiate AD from Controls. This finding importantly reveals that 

CSF protein and miRNA measures provide complementary information about AD status.

CSF miRNAs and AD severity

Given that this validation cohort had diminished severity of dementia and somewhat reduced 

classification performance of the miRNA panel compared to the discovery cohort, we 

evaluated how the miRNA markers correlate with disease severity as represented by the 

MMSE scores (Table 1). We found that the association (as measured by partial R2) between 

MMSE scores and miRNA expression became stronger in higher-ranked miRNAs. For 

example, our higher-ranked miRNAs, such as miR-193a-5p, have expression levels that 

correlate more strongly with MMSE scores than our lower-ranked miRNAs, such as 

miR-331–3p, which tend to show only weak correlation with MMSE at best. As shown in 

Fig. 8, in general, the association between MMSE score and miRNA expression levels is 

increasingly strengthened by an improvement in rank order, suggesting that these miRNAs 

may also be able to signal disease progression in AD patients.

DISCUSSION

We previously discovered that CSF miRNAs can differentiate AD from Controls and 

potentially serve as new biomarkers for AD [10]. Here we report results of validation studies 

performed on 37 miRNAs identified in the discovery study, based on n = 1 technical 

replicate/probe on the miRNA array. For the validation studies we assessed 37 miRNAs; 20 
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that were verified by array in our laboratory, 17 additional that were brought forth as 

candidate markers. The validation studies were performed using a custom array comprised 

of n = 3 technical replicates/probe on the miRNA array, in order to assess miRNA 

performance in a new and independent cohort of CSF donors. Our studies validate that 26 of 

the previously identified CSF miRNAs continue to differentiate AD patients from Controls. 

Further, combinations of miRNAs increases classification performance for AD. Based on 

our multimarker modeling we identified 14 miRNAs that contributed strongly and in a 

mutually complementary and additive manner to AD prediction (Table 4). In addition, we 

confirm that a combination of new (miRNA) and existing (APOE4, Aβ42:T-tau) markers 

increased classification performance, as we previously observed for APOE4 in our discovery 

study [10]. In line with our results, hsalet-7b has been shown to work in combination with 

either Aβ40 and Aβ42, or T-tau and p-tau, to increase the AUC relative to the independent 

markers [34]. These findings strongly support that CSF miRNAs are not redundant with 

APOE4 and Aβ42:T-tau, but instead offer additional diagnostic information. We also 

demonstrate that our highest-ranked AD miR-NAs correlate with MMSE scores in AD, 

which suggests these miRNAs have the potential to track disease progression and 

consequently be of use in clinical trials.

Previous multi-center AD biomarker studies have identified confounding factors including 

sex, age, center of origin, and sample centrifugation status, which negated the utility of the 

miRNAs to differentiate AD from controls [35]. To mitigate these effects, we selected sex- 

and age-matched CSF samples and intentionally locked in the parameters for the validation 

studies. The decision to maintain one technological methodology throughout our biomarker 

studies was based on evidence of diminished reproducibility of results between expression 

platforms, even when using the identical RNA for each platform [36]. This finding was also 

consistent with our CSF analytic studies [37]. Thus, to maximize consistency within these 

studies, we used the same vendor and the same miRNA probes throughout the discovery and 

validation phases. Further, we enforced the use of identical manufacturing lots for kits and 

reagents used throughout the experiments to minimize variation from sources unrelated to 

the question of differentiating AD from controls. In doing so, we safeguard against spurious 

associations due to measurement errors and batch effects, which is a strength of our study 

that adds validity to the results.

Here we have validated that parsimonious combinations of 26 of the discovery miRNAs 

continue to differentiate AD patients from controls. However, the performance of each 

miRNA is not an exact match between the discovery and validation studies. There are two 

experimental parameters that may account for this difference. First, U6 snRNA was used as 

a normalizer for the discovery studies, but a combination of non-changing miRNAs 

(including U6) served as a better normalizer for the validation studies. Second, donors in the 

discovery cohort had more advanced dementia (MMSE: 18) relative to the validation cohort 

(MMSE: 22), with a mean MMSE score 4 points lower in the discovery cohort. Thus, some 

miRNAs may signal better in more advanced stages of AD.

Seven out of these 26 miRNAs (miR-125b-5p, −146a-5p, −146b-5p, −15b-5p, −195–5p, 

−30a-3p, −328–3p) were previously identified by others as candidate biomarkers for AD 

[38–41]. A previous study identified miR-27a-3p as a candidate biomarker that is decreased 
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in the CSF of AD patients [42]; however, the miR-27a-3p finding was not replicated in our 

studies. This difference is likely due to the use of different vendors and platforms 

(TaqMan™ TLDAs versus Exiqon SYBR Green miRCURY LNA arrays) which can lead to 

inconsistencies in results even when profiling an identical pool of RNA [36].

Our multimarker modeling identified certain miR-NAs that on their own are not interesting 

as AD biomarkers and would likely have been excluded from earlier studies, but in the 

proper context they strengthen a combined biomarker classifier (e.g., miR-331). In line with 

our results, other studies show that multimarker modeling has strengths over single markers. 

For example, a recent study of miR-NAs isolated from CSF extracellular vesicles found that 

linear combinations of a subset of differentiating miRNAs (miR-16–5p, −125–5p, −451a, 

−605–5p) increased classification performance between Controls and either young- or late-

onset AD [43]. Two of these four miRNAs (miR-16–5p, −125–5p) were identified in our 

discovery phase [10] and validated here (Table 2), supporting our observations that 

measurable differences in AD patient miRNAs have utility as clinical biomarkers, and 

miRNA combinations increase sensitivity and specificity compared to single miRNAs.

Our initial experiments with AD miRNA biomarkers focused on CSF, which directly bathes 

the brain. We recognize that plasma is a more accessible biofluid, and we are encouraged by 

pilot studies indicating that AD miRNA biomarkers are robustly detected in plasma, but 

extensive plasma studies are beyond the scope of this report. We are currently designing 

experiments to assess the performance of the AD miRNAs in a statistically powered study in 

plasma samples that match this validation cohort.

In summary, the validation studies presented here provide further, confirmatory evidence 

that miRNA expression in CSF from living donors can distinguish AD patients from 

Controls. Of 37 miRNAs from the discovery study, 26 miRNAs continue to differentiate AD 

patients from Controls. Our exhaustive classification performance revealed that 14 of the 26 

AD biomarker candidates contribute strongly and in a mutually complementary and additive 

manner to AD prediction across a broad range of model scenarios. The miRNAs validated in 

this study form a robust set of biomarkers that will now be further evaluated for use as 

clinical biomarkers for AD. It is still premature to recommend a final list of miRNAs for 

clinical practice. The miRNAs need to be evaluated for their performance in classifying mild 

cognitive impairment and their presence in plasma (both discussed above); and we are 

currently undertaking those studies. They will also be evaluated as to their specificity for AD 

versus related neurodegenerative disorders and non-degenerative dementia, and examined in 

longitudinal studies in individual patients to determine their efficacy as prognostic indicators 

of AD. Moreover, we are studying the functional relationships between miRNAs and AD, 

along the lines of recent reports investigating the role of miR-146a in inflammatory 

pathways in brain [44] human brain cells [45], and AD transgenic mouse models [46]. The 

validated miRNAs can serve to identify novel proteins and pathways linked to AD, and may 

reveal novel targets for the diagnosis and/or treatment of AD. Thus, our validation of the 

CSF miRNAs as biomarkers for AD in a new and independent cohort now supports their 

advancement toward development and refinement as biomarkers in the clinical setting.
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Fig. 1. 
Analytic pipeline for the AD miRNA biomarker validation studies. The analytic pipeline 

included quality control processing of the miRNA qPCR data, followed by statistical 

analysis of the miRNAs. First, we aligned and normalized the data, and then evaluated the 

classification performance of miRNA expression values in multimarker models, in 

combination with APOE4 genotype status and CSF Aβ42:T-tau measures. Further, we 

examined the correlation of MMSE with miRNA expression values by miRNA rank.
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Fig. 2. 
A) Overall classification potential of biomarker candidate miRNAs. Mahalanobis distances 

of AD and non-AD (Control) samples from the center of the Controls in the miRNA 

expression space show that the Control (gray) points fall mostly at small distances from the 

center (bottom of the plot area), while the AD (black) points fall mostly at large distances 

(higher up in the plot). Using the distances to classify samples gives an AUC of 0.84. B) 

Overall classification potential of positive control miRNAs. Mahalanobis distances 

calculated from the center of the Control group with respect to the positive control miRNAs 

show that the Control (gray) and AD (black) samples are randomly intermixed, and samples 

at larger distances come from both groups. Using these distances to classify samples gives 

an AUC of only 0.54. For the Mahalanobis distance calculations, we imputed values > 34 Ct 

for censored observations using predictions from a tobit regression model [47] in order to 

jitter the censored values appropriately. %ile, percentile.
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Fig. 3. 
Rank plot of the 26 validated AD miRNA biomarkers. The plot shows the ranks and rank 

sums of each of the 26 miRNAs according to seven independent “judges”: six statistical 

assessment criteria, plus the rank of the miRNA in the prior discovery study [10]. The ranks 

of the individual table cells are color-coded along a red-blue color ramp to visually assess 

consistency of rankings and to identify higher ranking “hot” (red) and lower ranking “cool” 

(blue) miRNA candidates.
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Fig. 4. 
Classification accuracy for miRNA combinations. The plot depicts the average receiver 

operating characteristics (ROC) for the 93 best multimarker models of the validated 

miRNAs. The faint lines are the individual ROC curves for the top-multimarker models 

(color coded based on the number of miRNAs that contributed to the model). Bold solid 

lines are the empirical averages of the individual ROC curves. Dashed curves are binormal 

estimates of the average. The mean area under the curve (AUC) for the averaged ROC 

curves are presented. Note that some of the individual ROC curves generated from 6 

miRNAs (faint orange lines) or 7 miRNAs (faint blue lines) have AUCs that exceed 0.80.
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Fig. 5. 
MiRNA percent contribution to the top multimarker models against the consensus rank. The 

figure shows how our statistical consensus ranking relates to marker contribution in 

multimarker models. For each of the 26 miRNAs the percent contribution to a multimarker 

model is plotted against the consensus rank in the screening assessments. Contribution 

percentage is based on presence in the top 0.12% (93/76867) of multimarker models. Marker 

size is proportional to the magnitude of the marker’s model-averaged coefficient estimate.
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Fig. 6. 
APOE4 plus miRNAs improves classification performance over the best-possible miRNAs-

only model. The plot depicts the receiver operating characteristics (ROC) curves for a 

multimarker model that includes the best miRNAs (dashed line), APOE4 only (dark gray 

line), and all 14 miRNAs plus APOE4 (solid line). The area under the curve (AUC) for the 

best 14 miRNAs increases from 0.820 without APOE4 to 0.856 with APOE4 (ΔAUC=0.04). 

The AUC estimates are based on k-nearest-neighbor nonparametric classifiers that 

incorporate information from the top 14 miRNAs found to contribute to the best multimarker 

models (Table 4).

Wiedrick et al. Page 22

J Alzheimers Dis. Author manuscript; available in PMC 2019 August 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 7. 
Aβ42:T-tau plus miRNAs dramatically improves classification performance over the best-

possible miRNAs-only model. The plot depicts the receiver operating characteristics (ROC) 

curves for a multimarker model that includes the “best” (i.e., top-contributing) 14 miRNAs 

(dashed line), Aβ42:T-tau only (dark gray line), and the best 14 miRNAs plus Aβ42:T-tau 

(solid line). Area under the curve (AUC) increases from 0.820 for the miR-NAs without 

Aβ42:T-tau to 0.903 with Aβ42:T-tau (ΔAUC = 0.08). The AUC estimates are based on k-

nearest-neighbor nonparametric classifiers that incorporate information from the top 14 

miRNAs found to contribute to the best multimarker models (Table 4).
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Fig. 8. 
Correlation of MMSE with top 14 miRNAs found to contribute to the best multimarker 

models. The X-axis is the rank order of the 14 higher-ranked miRNAs, and their respective 

single-marker AUCs are shown in the labels. The Y-axis is the squared partial correlation 

(i.e., partial R2) of MMSE with the miRNA expression in patients, adjusted for age and sex. 

The figure shows that individual miRNAs that ranked higher as AD markers (Table 4) 

correlate more strongly with changes in MMSE score. The Spearman correlation between 

partial R2 and miRNA rank was 0.82.
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