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A New Products’ Anti-Counterfeiting Blockchain
Using a Truly Decentralized, Dynamic Consensus

Protocol

Naif Alzahrani, nalza2@pdx.edu
Nirupama Bulusu, nbulusu@pdx.edu

Abstract

The growth of counterfeit goods has plagued the international com-

munity for decades. Nowadays, the battle against counterfeiting remains

a significant challenge. Most of the current anti-counterfeiting systems

are centralized. Motivated by the evolution of blockchain technology, we

propose (Block-Supply), a decentralized anti-counterfeiting supply chain

that exploits NFC and blockchain technologies.

This paper, also, proposes a new truly decentralized consensus pro-

tocol that, unlike most of the existing protocols, does not require PoW

and randomly employs a di↵erent set of di↵erent size of validators each

time a new block is proposed. Our protocol utilizes a game theoretical

model to analyze the risk likelihood of the block’s proposing nodes. This

risk likelihood is used to determine the number of validators involved in

the consensus process. Additionally, the game model enforces the hon-

est consensus nodes’ behavior by rewarding honest players and penalizing

dishonest ones.

Our protocol utilizes a novel, decentralized, dynamic mapping between

the nodes that participate in the consensus process. This mapping ensures

that the interaction between these nodes is executed anonymously and

blindly. This way of mapping withstands many attacks that require know-

ing the identities of the participating nodes in advance, such as DDoS,

Bribery, and Eclipse attacks.

1 Introduction

1.1 Motivation

Explosive growth in pharmaceuticals and other products across the world has
led to growth in large, globalized, digital supply chains [1]. The structure of
modern supply chains is mostly centralized, in which central authority stores
and manages products’ authentication records. In this typical structure, each
node authenticates a product upon its arrival. This authentication is carried
out by executing authentication protocols between a supply chain node and an
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authentication server. Track-and-trace based supply chains function similarly,
where a centralized tracking server tracks the physical locations of products and
updates their records.

Recently, blockchain technology has emerged as a proper solution for many
di↵erent industries beyond cryptocurrency [2]. Blockchain o↵ers better trans-
parency, security, global peer-to-peer interaction, and decentralization [3]. Pri-
marily, a blockchain is a distributed public ledger, which contains chained blocks.
Each block consists of several transactions. The blocks are validated globally
and transparently by some selected nodes in the network to assure security [1].

Despite the potential of blockchain technology to better establish supply
chain provenance, there have only been a few projects that examine leveraging
blockchain technology in anti-counterfeiting supply chains. In a recent review
published in 2017 [1], Mackey and Nayyar state that ”we were only able to ex-
tract a single 2016 IEEE non-research article that summarized a few blockchain
projects initiated by di↵erent organizations and explored it as a potential solu-
tion for fake medicines among other healthcare problems.” This has motivated
us to utilize this promising technology to battle counterfeit goods by transform-
ing our previous centralized supply chain [4] to a decentralized Block-Supply
chain.

Blockchain was introduced to solve the problem of reaching agreements on a
state among distributed nodes without a coordinating third party. These nodes
are trustless and may contain faulty nodes (e.g., malicious, crashed). Reaching
a consensus on a proposed block in the presence of faulty nodes requires a
consensus protocol executed by some selected nodes called validators or miners.
In response to this, many research has been conducted to come up with robust
yet e�cient consensus protocols that guarantee consensus in the blockchain.

Consensus protocols ensure that all nodes in the blockchain network agree
on the validity of a block to be included in the public ledger. It also guarantees
that all nodes have the same order of blocks in their blockchains. This is of
significance because blockchains are trustless distributed nodes which need a
way to synchronize their copies of stored data. Hence, a consensus protocol is
designed to accomplish the reliability of a network that has multiple unreliable
nodes [5].

Over the last few years, a considerable number of consensus protocols have
been proposed. Nonetheless, not all of them guarantee true decentralization, in
which the blocks’ validation is executed by anonymous, variable sets of valida-
tors to strengthen the protocol’s robustness. Instead, they rely on fixed, known
validators selected at the genesis state. This opens the door for various risk
threats, which will be discussed shortly. Additionally, most of the current con-
sensus protocols do not take the number of validators or how to select them into
consideration. Motivated by this argument, we aim in this paper to introduce
a new consensus protocol which enjoys the true decentralization features and
o↵ers high e�ciency.
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1.2 Problems

1.2.1 Centralization of Current Anti-Counterfeiting Supply Chains

Current anti-counterfeiting supply chains aim to mitigate counterfeiting attacks.
Lehtonen et al. [6] define three kinds of product counterfeiting attacks. First,
the modification attack, in which an adversary modifies a product’s details on
a tag, such as changing the expiration date. Second, the cloning attack, where
an adversary clones a genuine product’s details to use on counterfeit products.
The third attack is the tag reapplication attack, in which the legitimate tag is
removed from a genuine product and reapplied to a counterfeit product. Sev-
eral approaches have been proposed; however, none currently detect all of these
attacks. In other words, the tag reapplication attack remains a threat in
many product authentication systems [6], and requires a manual complex ver-
ification to detect it [7]. In addition, most of the existing anti-counterfeiting
supply chains are centralized and depend on a central authority to au-
thenticate products. Despite their potential to detect counterfeit products, their
centralization dependency introduces many problems. First, there is an enor-
mous processing burden on the server, since significant numbers of products
flood through the supply chain nodes. Second, substantial storage is required
to store authentication records for all products. Third, as with centralized sys-
tems, traditional supply chains inherently have the problem of a single point of
failure. Additionally, they do not o↵er transparency as they do not allow supply
chain nodes to verify the authenticity of a product’s data.

1.2.2 Non-True Decentralization of Current Consensus Protocols

One of the fundamental characteristics of blockchain technology is the consen-
sus protocol. The nodes responsible for validating the blocks and executing
consensus protocols are the validators (or miners in some blockchains). There
exist a considerable number of existing consensus protocols. Nevertheless, not
all of them guarantee true decentralization, and they are PoW (Proof of
Work) based, or fixed-validators based. PoW requires massive computational
e↵ort, which results in high energy and computing resources consumption. Al-
ternatively, fixed-validators’ protocols rely on fixed, static validators responsible
for validating all newly proposed blocks, which opens the door for adversaries
to launch several attacks such as DDoS, bribery, and eclipse attacks on these
validators. In contrast, a truly decentralized protocol ensures that the blocks’
validations are executed by anonymous, variable sets of validators, which results
in greater security.

Another issue with the current consensus protocols is that most of them
do not take the number of validators or how to select them into con-
sideration. The number of validators in a blockchain influences its security
substantially. The optimal number of validators, which achieves the optimal
security, would be all nodes in the network except the proposing node (i.e., the
node which creates and proposes the new block). However, this choice results
in: (1) substantial validating work as of O(n) for each validation event, (2)
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high communication overhead to reach consensus with O(n2) in protocols like
PBFT [8] (Practical Byzantine Fault Tolerance) and Tendermint [5], and (3)
large block size due to including each validator’s signature as an evidence of its
validity.

An alternative choice to the n� 1 validators is to rely on a fixed static num-
ber of validators chosen at the genesis state (e.g., Tendermint and Hyperledger
Fabric [9]). Although the fixed-validators approach is e�cient, it has several
limitations. First, it relies on an extreme trust assumption that the majority
of validators are honest; nevertheless, it is possible for a powerful adversary to
corrupt or bribe most of them over time [10]. Second, a fixed committee of
validators is vulnerable to adversarial attacks, since they are known and fixed.
For example, an adversary can launch a DoS attack against the validators, pre-
venting them from validating new blocks or receiving messages from each other.
Third, the validators are selected based on their voting power. In a network
where the nodes have equal voting power, this approach does not guarantee
the fairness of selection. Fourth, although this approach is e�cient, utilizing a
relatively small number of validators in a large network with a massive amount
of transactions or blocks can bottleneck the performance.

1.3 Contributions

The contribution of this paper is of threefold.

1.3.1 Block-Supply Chain

To overcome the problem discussed in Section 1.2.1 (i.e., current centralization
anti-counterfeiting supply chains), we propose the Block-Supply chain. Block-
Supply is a decentralized supply chain that exploits blockchain technology. In
this chain, each node maintains a blockchain for each product. This blockchain
is comprised of chained blocks where each is an authentication event. A new
block is proposed to the network by the node that currently has the product
(i.e., the proposing node). This newly proposed block is then validated by a
number of other nodes we call validators, to ensure that the new block is valid.
Upon successful validation, all nodes in the Block-Supply chain network add
this block to their copies of the blockchain.

Block-Supply chain eliminates the need for a centralized authentication server
utilized in most existing supply chains. Instead, it involves the nodes in the sup-
ply chain to do the authentication. Additionally, it can trace-and-track products
without a centralized tracking server. Moreover, it detects the three counter-
feiting attacks (modification, cloning, and tag reapplication) by involving the
supply chain nodes transparently.

1.3.2 True Decentralized Consensus Protocol

To overcome the problem discussed in Section 1.2.1 (i.e., non-true decentralized
consensus protocols), we propose a truly decentralized consensus protocol that
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does not require PoW and which randomly employs a di↵erent set of validators
on each block’s proposal.

In our proposed protocol, at the genesis state, the blockchain initiator ran-
domly maps each proposing node to four validation-leader nodes. The validation-
leaders are responsible for randomly selecting the validator nodes for this par-
ticular proposer. The selected validators are responsible for validating the block
proposed by the proposer. Our protocol achieves true decentralization by anony-
mous mapping between the proposers and their leaders. In other words, no
proposer knows its leaders, nor does the leader know its proposer or its other
peer leaders. They, however, communicate with each other via private secrets
assigned to them at the geniuses state. This way, their identities remain anony-
mous, preventing powerful attackers from launching attacks such as DDoS and
eclipse, since the attackers do not know these nodes in advance. Each leader
randomly selects a portion of the validators without any communication with
the other leaders. The set of selected validators are di↵erent for each proposed
block due to exploiting the randomness. More on this in Section 4.4.

Our proposed protocol is based on Tendermint, but it deals with the the
number of selected validators issue by randomly selecting a relatively small
number of validators proportional to the total number of nodes in the network.
This way, we avoid employing all nodes in the system as validators. As men-
tioned in Section 1.2.2, using all nodes as validators yields optimal security,
since every node participates in the validating of new blocks. Nevertheless, this
choice degrades the consensus e�ciency (performance) regarding the time taken
to reach a consensus on a proposed block. This is due to the validation work
performed by every node and the communication overhead between validators
to reach the consensus. Tendermint is a fixed-validators decentralized protocol,
which as mentioned earlier may su↵er from attacks such as DDoS, eclipse, and
validators bribing (these attacks will be discussed in detail in Section 6.3). To
overcome the issue of the number of selected validators and how to se-
lect them, we integrate a game theoretical model to our protocol which can
determine the risk likelihood (risk) of each proposing node dynamically. The
number of selected validators is proportional to this risk. Hence, in a less hostile
network environment, fewer validators are employed.

1.3.3 Dynamic Anonymous Proposers-Leaders Mapping

In this paper, we propose a novel dynamic anonymous proposers-leaders map-
ping mechanism. We mentioned in the previous section that the blockchain
initiator anonymously maps each proposer to four leaders (i.e., static mapping).
However, this mapping is valid only for one proposing round. That is when a
proposer needs to repropose again, the identities of its leaders are revealed and,
hence, they could be exposed to the previously mentioned attacks. To overcome
such an issue, we introduce a new dynamic mapping approach that does not
rely on the blockchain initiator and guarantees the anonymous mapping.

In our dynamic mapping approach, a new mapping is created every time a
new block is proposed. This new mapping is utilized once in one of the next
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round’s proposing slot (i.e., one slot represents one new proposed block). Our
approach uses secret nodes’ identities to anonymize the mapping.

2 Related Work

The related literature is of threefold: (1) existing anti-counterfeiting approaches ,

(2) works that integrate blockchain and supply chain technologies, (3) the cur-
rent widely used consensus protocols.

2.1 Anti-Counterfeiting Approaches

The current anti-counterfeiting works falls into two general camps: (1)
works that track-and-trace products to mitigate counterfeiting, and (2)
works that utilize cryptography to detect counterfeiting attacks.

2.1.1 Track-and-Trace Approaches

This kind of approach uses Radio-Frequency Identification (RFID) tags
to track the physical locations of a product, which are then stored in a
centralized database. Koh et al. [11] proposed one of the first track-and-
trace approaches, which uses Electronic Product Codes (EPC) to uniquely
identify and track products in pharmaceutical supply chains. This approach
can detect cloning attacks because the EPC of a counterfeit product will
appear at least twice in the database. For example, a product with an EPC
registered in Switzerland for sale cannot be registered in America at the
same time. Nevertheless, the problem with Koh et al.’s approach is that it
cannot detect tag reapplication attacks.

In 2007, the EPCglobal and US Federal Drug Administration (FDA)
designated the drug e-Pedigree to be used in securing pharmaceutical sup-
ply chains in the USA [12]. Each product is linked to an RFID tag that
has a unique EPC. e-Pedigree is an electronic certified record that con-
tains the product information (e.g., serial number, name, expiration date),
manufacturer information, transaction information (e.g., transaction ID,
time, location), distributor information, recipient information, and signa-
tures. Products’ e-Pedigrees are stored in a central database accessible to
the supply chain nodes. In this track-and-trace approach, the product’s
manufacturer performs the following:

• Creates an e-Pedigree for the product, which has the product and
manufacturer information.

• Digitally signs the e-Pedigree using the manufacturer’s private key.

• Stores the e-Pedigree along with its digital signature in the central
database.
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As the product moves through the supply chain, each node performs
the following:

• Uses the EPC of the product’s tag to query the central database about
the product’s e-Pedigree.

• Verifies the signature of the e-Pedigree.

• If valid, updates the e-Pedigree by adding the node information (dis-
tributor information), the transaction information, and the recipient
information.

• Digitally signs the updated e-Pedigree using the node’s private key.

• Stores the updated e-Pedigree along with its digital signature in the
central database.

The benefit of e-Pedigree is to quickly track products through the sup-
ply chain and make counterfeiting more di�cult [13]. This approach can
detect cloning attacks by tracking and tracing the product with a complete
product e-Pedigree as the product moves from the manufacturer to retail-
ers [14]. In addition, it can detect modification attacks by using digital
signatures. However, tag reapplication attacks remain a challenge for e-
Pedigree-based approaches. This is because if a counterfeiter removes a tag
from a genuine product and reapplies it to a counterfeit one, the e-Pedigree
will remain valid, and the system therefore will not detect this attack.

2.1.2 Cryptographic Approaches

Cryptographic approaches use public or private key cryptography to au-
thenticate products. Saeed et al. [15, 16] propose an o✏ine approach
that uses NFC tags and is based on public key cryptography. This ap-
proach allows customers to check the authenticity of products using their
cell phones and does not require access to a database. Their approach as-
signs each instance of a product a unique public/private key pair, and uses
a challenge-response protocol between the customer’s phone and the tag on
the product. The tag contains the private key in a secure location that is ac-
cessible only to the tag’s processor. The corresponding public key is stored
on the tag too, but can be obtained by the customer’s phone. The main
benefit of this approach is that it involves customers in product authenti-
cation. However, this approach does not detect tag reapplication attacks,
and requires expensive NFC tags that have processors, secure storage, and
support encryption.

Recently, TagPrint [17], an o✏ine cryptographic approach, was pro-
posed by Yang et al. to detect counterfeit products using RIFD. According
to the authors, TagPrint is the first RFID-based o✏ine approach in exist-
ing anti-counterfeiting systems. This approach involves three parties: a tag
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provider, a product manufacturer, and a customer. First, the tags provider
fingerprints its RFID tags by extracting some physical layer information to
identify each tag. The tags and their fingerprints are o↵ered to the product
manufacturer. Second, the manufacturer attaches a group of tags (at least
four) to each product in randomized geometric locations. The manufac-
turer encrypts the tags’ fingerprints and geometric relationships and stores
them in the tags’ memories. Third, the customer employs an RFID tag’s
reader, which contains the manufacturer’s public key. The reader reads and
decrypts the encrypted fingerprints and geometric relationships from the
tags’ memories. After that, the reader obtains new tags’ fingerprints and
geometric relationships and compares them to the decrypted ones to check
if they are the same and hence determine the authenticity of the product.
TagPrint can detect modification and cloning attacks using passive low-
cost RFID tags and can be executed o✏ine. However, as acknowledged by
the authors, TagPrint cannot detect tag reapplication attacks. In addition,
TagPrint is based on RFID tags, that require specialized readers, making
this approach unsuitable for ordinary consumers.

2.2 Block and Supply Chains

In this section, we only present the works that have integrated blockchain tech-
nology into supply chains. Although blockchain technology has gained consider-
able attention from the computer science community, the use of this technology
in products’ supply chains is limited [1].

Tian [18] proposed a conceptual framework of an agri-food supply chain,
which uses RFID tags and blockchain technology. The proposed supply chain
is designed to trace agri-food ”from farm to fork.” The author analyzed the
advantages of using blockchains and stated that is it can be used to fight fake
products.

Saveen et al. [19] discussed the potential benefits of using blockchain tech-
nology in manufacturing supply chains. They presented a structure for a manu-
facturing supply chain for cardboard boxes. This structure involves blockchain
as a platform to collect, store and manage product details of each product
throughout its life cycle. The work showed a general overview of replacing the
centralized system with a decentralized one using blockchain.

Korpela et al. [20] conducted a study on integrating blockchain in digital
supply chains. The use of blockchain would provide better access to customers
by sharing information about products e↵ectively. Besides, products and service
deliveries can be tracked to ensure visibility in the supply chain. Their analysis
showed that many of the digital supply chains’ functionalities could be embedded
in blockchain technology. In addition to that, blockchain provides security and
cost-e↵ective transactions in supply chains networks with no central system.
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2.3 Consensus Protocols

In this section, we will examine related existing consensus protocols. The re-
lated literature falls into four general camps: (1) Proof of Work (PoW) based
protocols, (2) Proof of Stake (PoS) protocols, (3) Byzantine Fault Tolerance
(BFT) protocols, and non-Byzantine Fault Tolerance protocols.

2.3.1 Proof of Work (PoW)

In 2009, Satoshi Nakamoto introduced Bitcoin [21]; the first known implemented
blockchain. Bitcoin utilizes the PoW consensus mechanism to reach an agree-
ment on a proposed block. In PoW, transactions are grouped into a block, which
then validated and confirmed by ’miners.’ The miners are required to solve a
challenge by computing cryptographic hashes. They achieve this by making trial
and error computations until a consensus is reached. The way PoW works is
that all miners compete to find a ’nonse,’ so when combined with the proposed
block, the block will hash to a target value determined by the mining di�culty.
The successful miners are then rewarded due to their consumed computational
power.

Blockchains that involve and rely on PoW mining to ensure consensus, such
as Bitcoin, impose the following drawbacks:

1. Time-consuming: confirmation of transactions is slow. For example, it
can take an average of 10 minutes to commit a block in Bitcoin.

2. High consumption of resources: due to the significant computation to solve
a challenge which requires computing cryptographic hashes.

3. High energy consumption: which results in massive expenses.

4. Security: can be di�cult to quantify [22].

5. Specialized hardware: sometimes required to increase the mining power.

2.3.2 Proof of Stake (PoS)

The most common alternative to PoW is Proof of Stake (PoS). In 2012, King
and Nadal [23] introduced PoS to solve the problem of Bitcoin mining’s high
energy and computation consumption. In PoS, mining new blocks depends
on who holds the highest amounts of cryptocurrency, in which a deterministic
algorithm selects nodes according to the number of coins each one has. Hence,
instead of investing in expensive computational power to mine blocks, miners
invest in the currencies of the system. As a result, a miner’s likelihood of being
chosen to create a block depends on the fraction of coins the miner owns in the
system. For example, a miner with 400 coins is four times more likely to be
picked as another miner with 100 coins.

PoS protocols require less energy consumption than PoW and mitigate the
hardware centralization risk [24]. However, some argued that PoS is not ideal for
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blockchains [25]. This is because of a problem called ”nothing at stake,” where
miners have nothing to lose by voting for multiple blocks and claim various sets
of transaction fees, since a participant with nothing to lose has no reason not
to misbehave. This problem prevents the consensus from resolving.

Delegated Proof of Stake (DPoS)

Permissionless/public blockchains that utilize the tradtional PoS often face scal-
ability issues. As a result, Delegated Proof of Stake (DPoS) [26], a variation of
the PoS, was adapted by some blockchains such as Lisk [27], EOS [28], BitShares
[29], and Ark [30] seeking to reach consensus more e�ciently.

In DPoS, nodes vote to select witnesses. A witness is a node that has been
selected (i.e., voted on) to validate transactions. Each node votes for the wit-
nesses, whom it trusts. The top tier of witnesses (i.e., the nodes collected most
of the votes) win the privilege to validate. Moreover, in DPoS, nodes are al-
lowed to delegate their voting power to other nodes that they trust to vote for
witnesses on their behalf. The votes for a witness are weighed based on the size
of every voter’s stake. As a result, a node does not need to have a significant
stake to be in the top tier of witnesses. Instead, votes from nodes with large
stakes can elevate a node, with a small stake, to be a member of the witnesses in
the top tier. The witnesses in the top tier are responsible for validating trans-
actions and creating blocks for these transactions, and as a result, are awarded
the associated fees.

2.3.3 Byzantine Fault Tolerance (BFT)

In this section, we present the most widely used consensus protocols that can
tolerate Byzantine faults. These protocols are known to reach consensus and
maintain liveness even in the presence of Byzantine faults (nodes’ crashes, or
malicious nods). Our proposed protocol falls into this category.

PBFT (Practical Byzantine Fault Tolerance)

PBFT [8] is a replication algorithm that can tolerate Byzantine faults. PBFT
was first introduced in 1999, after many Byzantine Fault Tolerance (BFT) pro-
tocols were proposed to improve its robustness and performance [5]. PBFT
works in asynchronous environments that might contain byzantine faults such
as the Internet [8].

PBFT progresses through a chain of views. Each view has a primary (i.e.,
proposer,) which is selected in round-robin order. The other nodes (replicas)
in the view are called backups. A client sends a request to the primary. The
primary assigns the request a sequence number and multicasts a signed pre-
prepare messages to the other backups. The pre-prepare contains the view and
sequence numbers. If the backups did not already accept a pre-prepare message
for the same view and sequence numbers, they accept the pre-prepare. After
accepting the pre-prepare, a backup broadcasts a signed prepare message. For
a replica to be prepared for a given request, the replica must receive 2f prepare
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messages for that request (where f is the is the maximum number of replicas
that may be faulty), with the same view and sequence number. When a replica
is prepared, it multicasts a signed commit message. After a replica receives and
accepts a commit, it checks the client request to the state machine and sends
back the result to the client.

PBFT uses a timeout mechanism to deal with faulty primaries. Backups
keep a timeout that starts every time they receive a new request. This timeout
finishes when the request pre-prepare is received. Hence, if backups did not
receive a pre-prepare message within the timeout for a request, they execute a
view change protocol. PBFT has the following issues [5]. First, changing the
view in case of a faulty primary is subtle and a bit complicated. Second, all
previous clients’ requests, since the last commit, migrated to the new view.

Tendermint

Tendermint [5, 22] is a protocol used to deliver security and consistency for
replicating an application on multiple nodes. Tendermint guarantees the secu-
rity, as it can work even if up to one-third of the nodes in the network fail in
arbitrary ways. The consistency means that every non-faulty node can view
the same transaction log and compute the same state. Tendermint is a consen-
sus protocol that does not include Proof of Work mining, which overcomes the
energy and resource consumption issues and speeds up blocks’ validations [22].

Tendermint is based on PBFT, and it involves three stages of voting to
reach consensus (propose, prevote, and precommit). A proposer proposes a new
block, then the validators prevote on the block and only proceed to precommit if
they receive more than two-thirds of prevotes. Likewise, validators only accept
the block if more than two-thirds of precommits are received. Tendermint, as
mentioned earlier, is a fixed-validators protocol; that is, it requires a fixed known
set of validators.

Voting on a block proceeds in rounds, where each round has a new pro-
poser. The validators vote on whether to commit the block or advance to the
next round. Tendermint is notable for its simplicity, performance, and fork-
accountability [31]. However, the number of validators yields a powerful influ-
ence on Tendermint’s performance. This is due to the communication overhead
created by the two stages of voting (i.e., prevote and precommit). This creates
a trade-o↵ between performance and security, where more validators strengthen
security. Our protocol is based on Tendermint and inherits all the features of-
fered by Tendermint. However, it deals with the validators’ selection issue by
selecting a di↵erent, random set of validators on each block proposal (i.e., true
decentralized).

Hyperledger Fabric

Hyperledger Fabric employs PBFT as its consensus algorithm [9]. Thus, it can
tolerate up to one-third byzantine nodes in a blockchain network. In Fabric
v0.6, there exists a fixed number of validation peers responsible for executing
the consensus protocol. A proposer can submit a transaction to any of them.
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Then, the chosen peer broadcasts this transaction to the other peers. One of
the validation peers is selected as a leader.

When generating a block, the leader orders the block’s transactions and
broadcasts this ordered list of transactions to all validation peers. When a vali-
dation peer receives the ordered list, it proceeds as follows. First, the validation
peer executes the transactions orderly. Second, after executing all transactions,
it calculates the hash for the newly created block (i.e., for the executed transac-
tions plus final state of the blockchain). Third, it broadcasts the resulting hash
to all other peers and begins counting their responses. Finally, if two-thirds
responses were received with the same hash, it commits the new block to its
local ledger. Hyperledger Fabric, like Tendermint, su↵ers partial centralization
since it employs a fixed known number of validation peers.

Ripple

Ripple [32] was introduced in 2012 to enable global payments using ’XRP’ cryp-
tocurrency by connecting payment providers, banks, and businesses via a net-
work called ’ripplenet.’ Ripple uses a BFT consensus protocol to maintain a
valid, distributed ledger.

In Ripple consensus, a proposer collects new transactions initiated by end
users and combines them into a list known as the “candidate set” (i.e., block).
Each node in the network has a Unique Node List (UNL). UNL is a list of
other nodes whom the node trusts. The nodes in a UNL are so-called validating
nodes. Each node amalgamates the candidate sets of all nodes on its UNL, and
votes on the integrity of all transactions. After 50% of the nodes approve the
transactions, the candidate set is pushed further for a higher round of voting.
The final round of voting needs a minimum of 80% of a node’s UNL in agreement
on a transaction. All transactions that fit this requirement are then written to
the ledger.

Ripple, however, requires 4/5.n of all n validating nodes to be correct for
maintaining correctness [33]. This corresponds to tolerating f < n/5 faulty
nodes. Additionally, Ripple requires a minimal overlap among the Unique Node
Lists to avoid forking. Moreover, as argued by Cachin and Vukolic [33], Ripple
”is by far not as decentralized as advertised” since Ripple o↵ers a default list of
validating nodes operated by Ripple and third parties.

Algorand

Recently, Algorand [10], a new fast Byzantine fault-tolerant consensus, has been
introduced to avoid the scalability and power-hungry issues presented by PoW.
It combines a revamped Byzantine Agreement protocol (BA*) with a crypto-
graphic method so-called ’Cryptographic Sortition’ to propose and agree on new
blocks.

Algorand advances in rounds. In each round, to propose a block, each node
in the network executes cryptographic sortition to determine if it is selected
to propose the block. The sortition ensures that a small number of nodes are
randomly selected based on their account balance. Each selected node has a
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priority and a proof. For each round, multiple nodes are selected and propose
the block for this round, but the one with the highest priority is adopted.

To agree on the proposed block, Algorand uses BA* consensus. Each node
initializes BA* with the highest-priority block that it received. The crypto-
graphic sortition is, also, used to select a committee of verifiers. The verifiers
are the nodes responsible for validating the proposed block and voting on it.
Each verifier is required to broadcast proof of selection so any other node can
verify this proof. These steps repeat until, in some phase of BA*, enough nodes
in the committee (a threshold level of votes) reach consensus.

Unlike most of the previously discussed protocols, Algorand does not rely
on fixed known validators, which makes is robust against DDoS and eclipse
attacks. Nevertheless, Algorand provides no incentive and does not guarantee
that the verifiers will adhere to the protocol. It is possible for attacks like
’denial of service’ and lazy verifiers to appear in Algorand. Our protocol, in
contrast, avoids this issue by leveraging a rewarding mechanism based on a
game theoretical model (Section 4.2).

2.3.4 Non-Byzantine Fault Tolerance

Paxos

Paxos [34] is an asynchronous consensus protocol and is quite similar to PBFT.
However, it requires only 2f + 1 nodes to tolerate f faults [5]. In Paxos, there
two parties: (1) proposer (leader), which proposes a value (block), and (2)
acceptors, which accepts the value. A client can connect to the proposer to add
a transaction (value) to the log (ledger). The proposer proposes the value to
the acceptors and counts the votes for acceptance of the majority. The value is
accepted when there is majority/quorum.

Raft

Raft [35] is a consensus protocol which has been introduced to be easy to under-
stand. It is similar in spirit to Paxos in fault-tolerance. Raft works by electing
a leader that coordinates some followers. When a client sends a request to
the leader, the leader instructs its followers to append the entry. The entry is
committed only when at least the majority of the followers have confirmed the
appending command. Raft is used by many blockchains, such as R3 Corda [36],
and Kadena [37].

Casper “The Friendly GHOST”

Casper [38] is the consensus mechanism in Ethereum [39]. It is an adjustment of
some of the principles of the GHOST protocol [40] (Greedy Heaviest-Observed
Sub-Tree). Casper in Ethereum was presented with security-deposit based eco-
nomic consensus protocol. In other words, each node which wishes to participate
in the validation and consensus process needs to have a security deposit that re-
flects how much stake it has. These nodes are known as ”bonded validators” and
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must place their security deposits prior to participating in the consensus. This
way, Ethereum addresses the “nothing at stake” problem since each bonded val-
idator has its deposit at stake. As a result, if the bonded validator misbehaves
in an objectively verifiable manner, it will lose its security deposit.

In Casper, to produce a block that will be accepted by all nodes in the
system, a validator bundles the new transactions in a block, validate them, and
securely signs the block. Then, the validator places bets (security deposit) on
the consensus process known as ’gambling on consensus.’ The likelihood that
this validator is chosen is directly proportional to the deposit it makes.

3 Proposed Block-Supply Chain

This section explains our Block-Supply chain in detail. The Block-Supply au-
thenticates every product and detects counterfeit products without the need for
a centralized authentication server. Rather, it involves the nodes in the authen-
tication process utilizing blockchain technology. Every node in the blockchain
has a unique pair of keys (public pk and secret sk) and is identified by its public
key. There are three types of nodes in our protocol:

1. Proposing (proposer): This is the node which currently has the prod-
uct. It creates, proposes, and broadcasts the new block to the network.

2. Validator: This node is responsible for validating the newly proposed
block. Moreover, validators communicate their votes on the block to reach
consensus.

3. Idle: This node does nothing except wait for the decision to be reached
by validators on whether to accept or reject the proposed block. All other
nodes in the network are idle.

The Block-Supply chain has two phases, the initialization phase, and the
verification phase. The products’ manufacturer executes the initialization phase,
and the supply chain nodes execute the verification phase. Each product is
occupied by an NFC tag, which contains the product’s details such as serial
number, name, and expiration date.

3.1 Initialization Phase

This first phase is responsible for initializing the details of each product, securing
them and storing them on the product’s NFC tag. Every NFC tag has a read-
only unique tag ID (TID) and a read-only counter. The counter is increased
automatically on each reading of the tag. This factor can be used to keep track
of the number of times that the tag is read by the nodes.

The manufacturer executes this phase. It forms the product’s details (PDetails),
which includes the following:
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Figure 1: Blocks’ structure and chaining them. Two blocks are chained by
including the hash of the previous block in the new block.

• The unique product ID (PID).

• The product name (PName).

• The product expiration date (PExpiryDate).

• A field called (ToSignTID), that is equal to the read-only (TID).

Then, the manufacturer digitally signs PDetails using its private key (m.sk)
to produce the product’s data digital signature (SignedPDetails). After that,
it writes the product data (PDetails) and its signature (SignedPDetails) to
the product’s tag.

Once the tag is prepared, the manufacturer creates a genesis block for the
product. Each block in our system represents an event of a successful product’s
authentication. A valid block is added to the blockchain if it is validated by a
number of validators in the network. Figure 1 shows the block structure and
how the blocks are chained. A block contains three parts:

1. The block header, which includes the following:

• The blockchain ID (to identify each product’s blockchain).

• The block height (order) in the blockchain.

• The fee to be paid to the block’s validators.

• The time stamp.
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• The hash of the previous block (Hi�1).

2. The validation of the previous block to provide evidence of its validity, that
is the data on that block is valid and su�cient signatures are included.
This part includes the digital signatures of all the validators of the previous
block.

3. The block data, which contains:

• The product’s details (PDetails).

• The shipping source node address (Src).

• The node the product is being shipped to address (D).

• The current number of reads on the product’s tag (ReadingsOnBlock)
to track how many times the product’s tag has been read (this field
is for detecting the tag reapplication attack).

Finally, the manufacturer distributes the genesis block to every node in the
network, and ships the product to the supply chain. The manufacturer is the
initiator of the product’s blockchain and is no longer involved in authenticating
the product.

3.2 Verification Phase

This phase is executed by the supply chain nodes using blockchain. As a product
flows throughout the supply chain, its blockchain grows and gets updated every
time it leaves a node and moves to the next by adding new blocks to it. When
a node (D) receives a product, two types of authentication are performed: local
and global.

3.2.1 Local Authentication

The node D (i.e., the node that currently has the product) authenticates the
product locally as follows:

1. Read the product’s tag. Then, given the product data (PDetails), ver-
ify its signature (SignedPDetails) using the manufacturer’s public key
(m.pk) to detect modification on PDetails as follows:

V erifym.pk(PDetails, SignedPDetails)

If pass, proceed; if not, abort.

2. Check if the PDetails on the tag is the same as the PDetails on the last
block in the node’s own copy of the product’s blockchain.

3. Check if the tag ID (ToSignTID) included in PDetails is equal to the
read-only tag ID (TID). Then, compare the ToSignTID and PID on
the tag to the corresponding ones on the last block in the blockchain. This
is to detect cloning of PDetails. If pass, proceed; if not, abort.
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4. Check if the value of the tag’s read-only (Counter � 1) is equal to the
value of ReadingsOnBlock included in on the last block of the product’s
blockchain. This is to detect tag reapplication. Note that we subtract
one from the Counter value because of the node D’s reading. If they are
equal, then this means that no reads have been performed on the product’s
tag between Src and D. If pass, proceed; if not, abort.

If the local authentication succeeds, the product is authentic, and node D
proceeds accordingly. If the product is counterfeit, node D broadcasts this
finding to the other nodes in the network so further inspection can be con-
ducted to find the origin of the counterfeiting attack. Unlike centralized supply
chains that depends on an authentication server, the node in our Block-Supply,
which has the product (i.e., proposer), can check for all three types of attacks
(modification, cloning, and reapplication) by relying only on its own copy of
the product’s blockchain (assuming a valid blockchain). There is no need for a
remote authentication at this point. This is because the product’s blockchain
serves as a distributed database that contains valid information about the prod-
uct. Hence, it is safe for the node to consult this blockchain. The data on the
product’s tag and blockchain is su�cient to execute the local authentication
algorithm and check for the three attacks. Ensuring that the blockchain is valid
is the responsibility of the validators, which will be explained in the following
section.

3.2.2 Global Authentication

After successful local authentication, and prior to dispatching the product to
the next node, the node becomes a proposing node and proposes a new block.
The proposed block contains the following:

• The new source node (Src), which is the address for the current proposing
node.

• The destination node (D), where the product is going to be shipped to.

• The current number of reads of the tag’s counter (ReadingsOnBlock).

• The hash of the previous block (Hi�1).

• The digital signatures of the previous block’s validators.

The proposing node, then, broadcasts this new block to every node in the net-
work. The validators validate the block globally and vote on it.

Each validator executes global authentication, which includes the following
steps:

1. The validators ensure that the blocks in the product’s blockchain are well-
chained and have the appropriate order. This is done by hashing the
previous block (blocki�1) and comparing it to the Hi�1 that is included
in the proposed block (blocki).
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2. They check if PDetails in the previous blocks is the same as the one in
the proposed block.

3. They trace-and-track the product by ensuring that the source (Src) in
a block (blocki) is equal to the destination (D) in its previous block
(blocki�1). This is to ensure that the product has been supplied through
certified, valid nodes in the supply chain.

If the three checks are successful, the block is valid, and it is safe to include
it in the blockchain. The validators ensure that the blockchain always contains
valid blocks so the next proposing node can safely rely on the last block when
executing its local authentication.

This far, we have only discussed the role of validators, but how do we se-
lect them and how they interact to reach an agreement on a block validity?
Our proposed consensus protocol answers these two questions in the following
section.

4 The Proposed True Decentralized Consensus
Protocol

In this section, we propose a new consensus protocol that exploits randomness
and game theory to achieve true decentralization security with respect to ef-
ficiency. Our protocol is based on Tendermint and exploits its capability to
overcome up to one-third of Byzantine faults. Unlike other protocols that rely
on a fixed, static set of validators responsible for validating all proposed blocks,
our protocol randomly selects a di↵erent set of di↵erent size of validators each
time a new block is proposed. Thus, our protocol improves the security, since
the validators are not known before proposing the new block. This factor makes
the job more di�cult for an adversary to attack or to bribe the set of validators.

Each node in the blockchain has a unique pair of keys (public pk and secret
sk) and is identified by its public key. Moreover, each node has a public trust
(reputation) value (R) where this value a↵ects the selection of a node to be
validator over time. There are four types of nodes in our protocol:

1. Proposing (proposer): This is the node which executes the local au-
thentication algorithm in our Block-Supply chain (Section 3.2.1). After
successful authentication, it creates, proposes, and broadcasts to the net-
work the new block for the product.

2. Validation-leader (leader): This is the node responsible for selecting
the random set of validators for the proposing node.

3. Validator: This node is responsible for validating the newly proposed
block by executing the global authentication algorithm (Section 3.2.2).
Moreover, validators communicate their votes on the block to reach con-
sensus.
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4. Idle: This node does nothing except wait for the decision to be made by
validators on whether to accept or to reject the block. All other nodes in
the network are idle.

Our protocol works in two phases, the initialization phase and the verification
(validation) phase. The blockchain initiator executes the first phase at the
genesis state, in which it randomly maps each proposer to its validation-leaders.
In the second phase, each node becomes a proposer in a round-robin fashion.
When a node is a proposer, it proposes a block, broadcasts it to all nodes,
and its corresponding validation-leaders randomly select the validators to verify
(validate) this block. Next two subsections present an in-depth description of
how these two phases are executed.

4.1 Initialization Phase

This phase’s main task ismapping proposers to validation-leaders. At the genesis
state (i.e., when the genesis block is created), the blockchain initiator randomly
maps four validation-leaders to each proposer in the network. The reasoning
behind this choice is that four is the minimum number to provide tolerance
to a single Byzantine fault [5]. As our protocol is based on Tendermint, it is
assumed that a Tendermint network has two-thirds of non-Byzantine nodes. A
simple approach is to employ only one validation-leader per a proposer; however,
to ensure the safety and liveness of the consensus process, we need to utilize
more. It is worth noting that this number (i.e., four) can be changed based on
factors such as the network’s size and hostility, or the blockchain application
that utilizes our protocol. Our approach works with any number of validation-
leaders per proposer other than four, but we utilize the minimum in favor of
e�ciency. Additionally, this number can be a random number to further increase
robustness.

The mapping is executed randomly according to the nodes’ weights (repu-
tations R). As shown in Algorithm 1, we use the Weighted Random Sampling
(WRS) algorithm [41]. The weights in our algorithm are the nodes’ reputation
values. Furthermore, this mapping is anonymous and done blindly; that is, no
proposer knows its corresponding leaders and no leader knows its proposer until
executing the consensus protocol. This way, we prevent a malicious proposer
from corrupting or bribing its leaders and vice versa.

To accomplish the anonymous mapping, the blockchain initiator, first, in-
cludes a secret (S1) in every node’s genesis block, so it uses this secret when
the node becomes a proposer. S1 is a hash that includes the proposer’s public
key (pr.pk), all the four selected the leaders’ public keys [vl1.pk � vl4.pk], the
blockchain ID (BlockchainID), and a random number (Rand1) as follows:

S1  hash(pr.pk||vl1.pk||vl2.pk||vl3.pk||vl4.pk||blockcahinID||Rand1)

Note that there is only one proposer secret S1. Each proposer in the network
has its own (S1). This secret is checked by each of the four validation-leaders.
Second, the blockchain initiator generates a validation-leader’s secret (S2). S2
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is a hash that includes the proposer’s secret S1, and a random number (Rand2)
as follows:

S2  hash(S1||Rand2)

Here, we use di↵erent Rand2 for each leader to make S2 di↵erent for each one
of them. Note that Rand2 is private and is only known to its particular leader
node.

To ensure that a validation-leader is legitimate and that it has been elected
by the blockchain initiator, we need to utilize a verifiable proof (⇡). This proof
is a digital signature signed by the initiator using its private key (in.sk). The
proof ⇡ includes the proposer’s public key (pr.pk), the validation-leader’s public
key (vl.pk), and the blockchain ID (BlockchainID), as below.

⇡  Signin.sk(pr.pk||vli.pk||blockcahinID)

The validation-leader must submit this proof to its elected validators so that
each can verify ⇡ using the initiator’s public key (in.pk) prior to involving in
the validation and consensus process. This protects against ’malicious nodes’
claiming that they are ’validation-leaders’ for a proposer.

As mentioned, for one proposer, there exist four leaders responsible for se-
lecting the validators for the block proposed by this particular proposer. This
raises a new problem of selection conflict, since each validation-leader selects
the validators blindly without knowing its peer leaders. Consequently, the four
leaders perform the validators’ selection from the same pool of nodes without
any communication or agreement between them. This can result in selecting
a validator more than once by di↵erent leaders. Our protocol overcomes this
problem by dividing the pool of nodes into four pools, each of which is assigned
to a leader. Specifically, each validation-leader will have a range (g) to choose
from determined at the genesis state. Note, we assume that all the nodes in the
network have the same set of nodes in the same order. As shown in Algorithm
1, g is predetermined by the blockchain initiator and is defined below:

g  [((i� 1).n4 ) + 1 , i.n4 ]

Where 1  i  4 and is the index of a validation-leader among its peers.
In Algorithm 1, there are three lists. The first list (A) is a population of

n nodes each of which has a reputation value R. The second list (B) is a
temporary list for a proposer to hold the public keys for the selected validation-
leaders; this list is flushed after selecting the validation-leaders and initializing
their secrets and proofs. The last list (C) is for a validation-leader. There exist
four corresponding proposers for each validation-leader. Thus, C stores four
tuples, and each of them corresponds to one proposer. Each tuple includes the
secret (S2), the random number (Rand2), the proof (⇡), and the range (g). By
the end of executing Algorithm 1, each node in the network will have exactly
one proposer’s secret (S1) used when the node becomes a proposing node, and a
list (C) used whenever this node becomes a validation-leader for one of its four
proposing nodes. This concludes the initialization phase.
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4.2 Verification (Validation) Phase

This phase is executed upon proposing a new block. It is carried out by three
parties (proposer, validation-leaders, and validators). The main purpose of this
phase to decide the validity of the newly proposed block and to reach a consensus
on this decision.

When a node becomes a proposer, it broadcasts its secret (S1) to all nodes
in the network. Every other node checks if it is a validation-leader for this
proposer by looping through its list (C) and hashing the received S1 and each
private random number (Rand2) it has. If the resulting hash matches its secret
(S2), then this node is a leader for this proposer as shown in Algorithm 2.

4.2.1 Deciding the Number of Validators (M)

Each validation-leader decides its number of validators (m), of which m < n
where n is the total number of nodes in the network. Our protocol utilizes
a game theoretical approach to determine the risk likelihood threshold (risk)
of each proposer. In this game, we treat a proposer as a potential attacker
(payer x). The defenders in this game are the corresponding leaders (player y).
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There are two benefits to this game theoretical approach. First, according to
the outcomes of the game, the validation-leaders can assess the risk of their
proposer. Consequently, based on this risk, they determine the number of
validators to select (i.e., m), which is proportional to this risk. Second, the
game rewards the honest players and penalizes the dishonest ones, which results
in adhering to the protocol and mitigating the malicious behavior.

Game Model

In this game, player x could be of two type: a)malicious, or b) regular. Since the
validation-leaders do not know the type of player x (i.e., regular or malicious),
we model our game as a Bayesian game. Table 1 shows the notation used in
our game theoretical approach. Table 2 shows the payo↵ matrix of the game
when player x is of type malicious. For each cell in the payo↵ matrix, the first
payo↵ is for player x and the second one is for player y. Table 3 shows the
payo↵ matrix of the game when player x is of type regular. We assume that
the players are rational and they play the best strategy they have to maximize
their payo↵s.

The Bayesian game introduces a third player called Nature (denoted by N ),
which determines the type of player x by assigning a probability (µ) to player
x of being malicious. Figure 1 represents the Bayesian game extensive form. In
this game, player x will try to play a strategy to minimize the chances of being
detected, and player y will also try to play a strategy to maximize the chance
of detecting the cheating without much cost.

This game does not have a pure-strategy Bayesian Nash Equilibrium
(BNE). To derive the game mixed-strategy BNE, we let p be the proba-
bility that player x plays Cheat, and q be the probability which player y
plays AddMoreV alidators. After some analysis, we found that player y plays
AddMoreV alidators, if:

p >
wy + 2�

µ�(gy � cy) + µ�
(1)
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Player x plays Cheat, if:

q >
wx � (�gx)

µ�(gy � cy)
(2)
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Figure 2: Extensive form of first-stage Bayesian game.

Thus, our game’s mixed-strategyBNE is: ((q if malicious, NotCheat if regular),
p, µ).

p is the probability that the proposing node (player x) might attack (plays
Cheat). In response to this probability, a validation-leader (player y) chooses
the appropriate strategy that will maximize its payo↵ (i.e., whether or not
to AddMoreV alidators). Hence, we consider p as the ”risk likelihood” (i.e.,
risk = p) of an attack.

In case a validation-leader chooses to play AddMoreV alidators, the number
of validators (m) will be a random number bound by the minimum number of
validators (i.e. four) and a fraction of n

4 proportional to p (we choose n
4 because

we have four validation-leaders). In other words, a validation-leader selects a
random number between 5 (the minimum number of validators plus one) and
p.(n�2)

4 (excluding the proposing and the validation-leader nodes).
After a validation-leader decides its m, it selects its validators, instructs

them, and broadcasts m to all nodes. When a node in the network receives
all the ms from the validation-leaders, it calculates the overall number of the
validators involved in the protocol (M) as follows:

M = ⌃4
i=1mi

This way the overall number of validators is proportional to risk. Note
that our protocol inherits the Byzantine tolerance provided by Tendermint. In
other words, the system can work with one faulty leader, of which M is the
aggregation of only three ms. In case of more than one faulty leader, each
node in the network waits for a time period named ”leader-time-out” and then
switches to ”all-validate” mode. In this mode, every node in the network votes
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on the receivedM to agree on it. This mode is costly but preserves the consensus
liveness.

4.2.2 Selecting Validators

Each validation-leader selects its set of m validators. The four sets of selected
validators will be responsible for validating the proposed block. Our proto-
col is based on Tendermint which involves two steps of voting (pre-vote and
pre-commit). The validators are selected randomly, and each set of selected
validators is only known to their validation-leader. A validator is only known to
the other nodes in the network when it contributes to one of the voting steps.
Therefore, an adversary can observe the validators after revealing their identities
in executing the first stage of voting (i.e., pre-voting). As a result, a powerful
adversary might be able to attack or corrupt a su�cient number of them, which
can result in not executing the second step of voting (i.e., pre-committing). In
response to this issue, our protocol requires each validation-leader to select two
sets of nodes of size m. The first set is the validators/pre-voters, and the second
one is the pre-committers. The pre-voters are responsible for executing the first
step of voting, and the pre-committers execute the second step. As a result,
the adversary discovers a participating node in the voting only after giving its
vote, which is unuseful knowledge. Algorithm 3 shows the process of selecting
the validators/pre-voters and pre-committers.
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After selecting the validators and pre-committers, each validation-leader
needs to include a proof of eligibility (⌧) for each selected node to prove that
a legitimate validation-leader has selected this node. ⌧ is a digital signature
signed by the validation-leader’s private key (vl.sk) and includes the validation-
leader’s public key (vl.pk), the selected node’s public key (pv.pk for a pre-voter
and pc.pk for a pre-committer), and the validation-leader’s proof (⇡) as follows:

⌧  Signvl.sk(vl.pk||pv.pk||⇡)

A node which receives a vote accompanied by ⌧ from a voting node (i.e., pre-
voter or pre-committer) needs to perform two verifications. First, it needs to
verify ⌧ using the validation-leader’s public key (vl.pk). Second, after successful
verification of ⌧ , the node verifies ⇡ using the initiator’s public key (in.pk).

4.2.3 Consensus Mechanism

Thus far, we have covered how the validators are selected. However, these
validators need a way to reach consensus in the presence of Byzantine nodes.
Our protocol is based on Tendermint and exploits its capability to overcome
up to one-third of Byzantine faults. The validators in our protocol pre-vote
on the proposed block, and when they hear from more than two-thirds of M
other nodes, they pre-commit the block. The block is committed when more
than two-thirds of M pre-commits are received. The consensus algorithm is
summarized as follows:

1. When a node in Block-Supply chain becomes a proposing node, this node
broadcasts its secret S1 to all nodes. After that, when this node is ready
to propose, it creates the new block and broadcasts it to the network.

2. Upon receiving S1, each node in the network checks if it is a validation-
leader, as mentioned earlier. If a node is a validation-leader, then it deter-
mines how may validators to select (i.e., m) based on the outcomes of the
played game. Then, it executes the ”validators’ selection” algorithm to
randomly select m validators/pre-voters and pre-committers. After that,
it sends a validate message to the selected validators, and a pre-commit
message to the selected pre-committers. In addition, each leader broad-
casts its m to all nodes.

3. After receiving all the ms from the leaders, the remaining nodes wait for a
”validator-time-out” period. The validator-time-out is the time that every
node waits to hear a validate message from the validation-leader node, or
a pre-vote message from a validator. There are three possibilities a node
might act in this step:

(a) If the node receives a validate message, then it acts as a validator
and carries on the validation process.

(b) If the node receives a pre-vote message, then it is an idle node, and
it waits to hear the remaining two-thirds pre-votes.
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Figure 3: Our consensus protocol. The first step is ”Propose.” After this step,
validators only advance after hearing from two-thirds or more of M other nodes.
By the end of the cycle, either the block is committed, and the blockchain height
increases, or the proposed block is rejected and the protocol aborts.

(c) If the node receives neither, then it acts as an ”all-validate” validator
and carries on the validation process. All-validate is an alternative
mode to the M -validators mode that we described so far. This mode
allows all nodes to participate in reaching a consensus. It is a partic-
ular case that preserves the liveness of the protocol.

4. After receiving the validate message, the validators wait for a proposer-
time-out to receive the proposed block. This time-out protects the pro-
tocol’s liveness from faulty proposing nodes. The validators begin this
step by initializing the voting’s round-number to zero. Each validation
event (i.e., executing the consensus protocol) is a round. The validators’
votes depend on two factors: a) whether or not they receive the proposed
block within the proposer-time-out, and b) whether or not the proposed
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block is valid. If a validator receives the proposed block in the proposer-
time-out, it validates the block, and pre-votes ’valid’ if the block is valid
or ’invalid’ otherwise. However, if the proposer-time-out terminates, then
the validator pre-votes ’timed-out’ as illustrated in Figure 3.

5. When a validator receives more than 2.M
3 pre-votes, it pre-commits ’valid’,

’invalid’, or ’timed-out’ according to the received pre-votes type.

Note that our consensus algorithm is based on Tendermint and ex-
ploits its capability to overcome up to one-third of Byzantine faults;
that is up to 1.M

3 of faulty validators. If more than 1.M
3 validators

fail to pre-vote, then the consensus will stall and the pre-committers
will not be able to proceed. As a result, Tendermint introduced the
concept of validation rounds to overcome such vulnerability. For ex-
ample, when 2.M

3 pre-votes are not received on time, a new round
is initiated to maintain the protocol’s liveness. Put di↵erently, the
proposer will start a new round by proposing the block again giving
a chance for the network’s nodes to reach consensus on the block.

6. When a validator receives more than 2.M
3 pre-commits, it commits ’valid’,

’invalid’, or ’timed-out’ according to the received pre-commits type. The
remaining nodes commit when they receive more than 2.M

3 pre-votes fol-
lowed by 2.M

3 pre-commits.

7. There is a final subsequent step follows the commit step, and it is of three
types. First, if a node commits ’valid,’ then it adds the proposed block to
the blockchain and extends it to a new height. Second, if the node commits
’invalid,’ then it aborts the protocol. Third, if the commit is of type
’timed-out,’ the idle and validation-leader nodes do nothing, they wait to
hear again from the validators. On the other hand, the validators check
the round-number against a rounds’ counter we call rounds-limit. If the
round-number is less than or equal to the rounds-limit, the validators: a)
increase the rounds-limit by one, b) increase the proposer-time-out based
on the network conditions, and c) start a new round giving a chance for
the proposing node to re-propose. However, if the round-number is greater
than the rounds-limit, the validators pre-vote ’invalid’.

It is worth mentioning that the proposed block and all types of messages (i.e.,
validate, pre-vote, and pre-commit) are digitally signed by the sender using its
private key, and verified by the receiver using the sender’s public key.

5 Dynamic Proposers-Leaders Mapping

Our proposed protocol (Section 4) was initially designed for our Block-Supply
chain application (Section 3). In this protocol, the static proposers-leaders’
mapping, performed at the genesis state, guarantees the anonymous mapping
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only for one cycle of proposing. In other words, when a proposer proposes a
block for the second time, its leaders’ identities are revealed. Hence, they could
be vulnerable to attacks like DDoS, eclipse, and bribery. Consequently, we need
to involve the blockchain manufacturer to execute the proposers-leaders map-
ping at the beginning of each cycle. This is suitable for our Block-Supply chain
use case, since each product flows through the supply chain nodes and gets
authenticated only once by every node. As mentioned in Section 3, one suc-
cessful authentication event corresponds to one block added to its the product’s
blockchain. When the product reaches the market (i.e., end customer), none
of the previous nodes in the supply chain will repropose a new block for this
product. Thus, for an application that strict their blockchain’s nodes to propose
only once the static mapping, which is executed by the blockchain initiator, is
adequate and guarantees the anonymous mapping.

In blockchain applications that allow the nodes to propose more than once,
relying on static mapping is tedious and yields partial centralization. This is
due to involving the blockchain initiator or some special nodes in the network to
map the proposers to their leaders on every cycle of proposing (i.e., when nodes
need to repropose again). As a result, to make our protocol suitable for any
other blockchain applications, we need to make the proposers-leaders mapping
dynamic in a way that preserves the anonymity.

In this section, we propose a new dynamic proposers-leaders mapping mech-
anism that does not rely on any centralized proposers-leaders mapper. Instead,
the regular nodes in the network perform the mapping dynamically and anony-
mously. Our dynamic mechanism is executed in two phases: 1) initialization at
the genesis state, and 2) during the verification phase of our protocol.

5.1 Initialization Phase

As in our protocol, the blockchain initiator executes this phase at the genesis
state. This phase is performed only once. After the genesis state our proto-
col proceeds utilizing the dynamic proposers-leaders’ mapping in a distributed
manner. It is worth mentioning that this dynamic approach is executed along
with executing our protocol (Section 4). The blockchain initiator uses its pair
of keys (i.e., public in.pk and private in.sk) to perform this phase.

Each node in the network has two pairs of keys. The first one (pk1, sk1) is
to identify the nodes, communicate with other nodes, and sign proposals and
votes. The second pair (pk2, sk2) is used for the dynamic anonymous proposer-
leaders’ mapping. At the geniuses state, the blockchain initiator executes this
phase as follows:

• Generates a secret ID (SID) for each node. This ID is appended to
the node’s geniuses block and is only known to this node. This SID is
associated with the public key of the second pair of keys (i.e., pk2).

• Creates a publicly known list that holds all the SIDs and their corre-
sponding pk2s; we call this list SList. Each node in the network has this
list.
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Algorithm 4: Dynamic Mapping Initialization Phase

Input : A population A of n nodes having their pk1s and pk2s
1 foreach node 2 A do
2 Generate a unique SID
3 Append SID to the node’s genesis block
4 SList.add(node.pk2, node.SID)
5 end
6 Create CycleSlots, where r = 2 and s = [1, n]
7 foreach node 2 A do
8 Append SList to the node’s genesis block
9 Append CycleSlots to the node’s genesis block

10 end

• Creates another list (CycleSlots) that represents the proposing slots in
the next cycle. Each cycle consists of many slots. For example, a cycle
may have slots equal to the number of nodes in the network. For each slot,
a new block is proposed. Therefore, each cycle slot (cs) in this list can be
selected only once, that is in a cycle slot, only one block is proposed. A
cycle slot has two fields:

– The cycle number (c): Each cycle has a number. This number is used
to identify a cycle. The number of cycles can be finite or infinite.

– The slot number within a cycle (s): As mentioned earlier, each cycle
has a finite number of slots, each of which is identified by a number.

An example of a cycle slot (cs) is (3,10), which identifies the slot number
10 in cycle 3. When a proposer is selected for that cycle slot, the proposer
will propose a new block. Upon selecting a cs, we exclude this cs from the
list CycleSlots.

Note that this initialization phase is only executed once. In this approach,
each cycle of proposing/validating gets its anonymous proposers-leaders’ map-
ping from the previous cycle as will be explained in the next section. Neverthe-
less, the anonymous mapping for the first cycle is static. After the first cycle,
the protocol proceeds independently utilizing the dynamic approach to assign
the anonymous mapping. Algorithm 4 illustrates the process of the dynamic
mapping’s initialization phase. Note that we choose the number of slots in our
system to be equal to the number of nodes (n).

5.2 Dynamic Mapping During the Verification Phase

This phase takes place during the verification phase of our protocol. As men-
tioned earlier, each cycle obtains its mapping from the previous one. That is,
the current proposers and leaders propose the mapping for the next new cycle
and the current validators agree on this mapping. Note, we refer to the nodes
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that are currently executing the protocol (i.e., proposers, leaders, and valida-
tors) as current. On the other hand, we refer to the nodes that will execute the
protocol for the next cycle as new. Three entities execute the dynamic mapping:

1. The current proposer: This node selects and proposes a new proposer for
a cycle slot (cs) in the next cycle.

2. The current corresponding leaders: They are responsible for selecting the
new leaders of this cs for the newly selected proposer.

3. The current validators: These nodes assign the mapping for the new se-
lected proposer/leaders and vote on it.

Following subsections explain in detail how each of these entities performs
their role.

5.2.1 New Proposers Selection

In our protocol, the proposing nodes propose the new blocks, their leaders select
the validators for that block, and the chosen validators validate the new block
and reach consensus on it. The mapping between the proposers and their leaders
is anonymous which contributes to greater security. In this section, we add a
new task for the current proposers, which is selecting a new proposer for a slot
in the next cycle. Algorithm 5 shows the anonymous new proposer selection, in
which the current proposer does the following:

1. Randomly select a new proposer’s secret ID (PrSID) from its the public
list that contains all the secret IDs (i.e., SList). Once the secret ID is
selected, obtain the the second public key (PrSID.pk2) for this selected
PrSID. Note that each tuple in SList has two fields: a) the secret ID
(SID), and b) its corresponding second public key (pk2).

2. Generate a random number (Rand0).

3. Randomly, select a cycle slot (cs) form the list CycleSlots .

4. Produce an anonymous new proposer (NewPr) by encrypting the PrSID,
Rand0, and cs with the new selected proposer’s second public key (PrSID.pk2)
as below:

NewPr  EPrSID.pk2(PrSID||Rand0||cs)

Note that no one can reveal the real identity of this selected proposer,
since the nodes are only identified by their first public keys (i.e., pk1s),
which is not involved in the dynamic proposers-leaders mapping at all.
Although the second public keys are publicly published, the correlation
between the second public key (pks) and the first public key (pk1) for a
node is invisible. The only node in the network that can reveal the identity
of this NewPr is the node that has the second private key (sk2), which
corresponds to the selected second public key in step 1 (i.e., PrSID.pk2).
Furthermore, sk2 is private and only known to the owner node.
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Algorithm 5: Selecting a New Proposer and its Round Slot

Input : SList and CycleSlots
Output: NewPr, cs, and [gs1, gs4]

1 Let PrSID = null
2 Randomly select SID from SList� current.SID
3 PrSID  SID
4 Randomly select cs from CycleSlots
5 Generate Rand0
6 NewPr  EPrSID.pk2(PrSID||Rand0||cs)
7 for i 1 to 4 do
8 gsi  [((i� 1).SList.size

4 ) + 1 , i.SList.size
4 ]

9 end
10 Return NewPr, cs, and [gs1, gs4]

5. As discussed in Section 4.1, to avoid selecting a validator by more than one
leader, we assign each node a pool of nodes (i.e., g) to choose from when
it becomes a leader, where each g contains di↵erent nodes. Similarly, in
our dynamic mapping approach, each node will have a pool that includes
the secret ID’s (SIDs) for the nodes from whom this node can select. We
call this list sg. sg is introduced in the dynamic mapping to avoid conflict
in choosing the leaders for the new cycle slot selected cs. As a result,
the current proposer creates four ranges (i.e., four sgs) each of which is
assigned to one of its leaders as follows:

gsi  [((i� 1).SList.size
4 ) + 1 , i.SList.size

4 ]

Where 1  i  4 and is the index of the current leader among its peers.
Each leader is numbered by i. For example, the range gs3 is for the leader
number 3 to avoid conflict.

A current leader can only select its new leader from the range in the list
SList that has been assigned to it to avoid choosing one new leader by
more than one current leader.

6. Sign and broadcast NewPr, cs, and the four ranges (i.e., [gs1, gs4]).

It is worth mentioning that the anonymous new proposer selection is made
simultaneously with proposing the current block.

5.2.2 New Leaders Selection

After receiving the newly selected proposer and its cycle slot, each current leader
of the current proposer anonymously selects a new leader for this new proposer.
As stated earlier, each current leader chooses a new leader from a range of
nodes di↵erent from the ones its peer leaders have to evade selecting the same
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Algorithm 6: Selecting a New Leader for the Selected Proposer

Input : SList, NewPr, and cs
Output: NewV li, Si.1, and Randi.2

1 Let V lSID = null
2 Randomly select SID from SList� current.SID
3 V lSID  SID
4 Generate Rand0
5 NewV li  EV lSID.pk2(V lSID||Rand0||cs)
6 Generate Randi.1
7 Si.1  hash(NewPr||NewV li||Randi.1)
8 Generate Randi.2
9 Return NewV li, Si.1, and Randi.2

new leader twice. The mechanism for choosing new leaders is performed in a
way similar to selecting a new proposer. Algorithm 6 illustrates how to select
new leaders anonymously, where each current validation-leader i conducts the
following:

1. Randomly selects a new validation-leader’s secret Id (V lSID) from the
current leader’s range sgi in the list SList.

2. Generate its own random number (Rand0).

3. Produce an anonymous new leader (NewV li) by encrypting the V lSID,
Rand0, and cs with the new selected leader’s public key V lSID.pk2 as
below:

NewV li  EV lSID.pk2(V lSID||Rand0||cs)

4. Randomly generate a Randi.1. This random number is similar to the one
we utilize in the static mapping (Section 4.1).

5. Partially create secret 1 (Si.1) for the new selected proposer NewPr as
follows:

Si.1  hash(NewPr||NewV li||Randi.1)

Note that every current leader participates in creating this secret. This is
because secret 1 (S1) used in the static mapping (Section 4.1) consists of
all the four leaders’ public keys.

6. Randomly generate a Randi.2. This is to make a di↵erent Rand2 for each
new leader in order to make its S2 di↵erent from the others new leaders’
S2s.

7. Sign and broadcast NewV li, Si.1, and Randi.2.
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Algorithm 7: Mapping and Validating the New Proposer and Leaders

Input : NewPr , NewV l[1�4], S[1�4].1, Rand[1�4].2, CycleSlots, and cs
Output: (NewPr, S1) and (NewV l[1�4], S[1�4].2, Rand[1�4].2)

1 if Check cs is in CycleSlots then
2 CycleSlots  CycleSlots - rs
3 S1  S1.1||S2.1||S3.1||S4.1.
4 foreach NewV li do
5 Si.2  hash(S1||Randi.2)
6 end
7 Return (NewPr, S1) and (NewV l[1�4], S[1�4].2, Rand[1�4].2)
8 else
9 Return Invalid cycle slot

10 end

Since the current leaders do not know each other and have no means to com-
municate with each other, selecting the new leaders is performed anonymously
and independently. Moreover, the current leaders have no clue of what the new
proposer is. Hence, a current leader cannot select a new leader that can collude
maliciously with the new selected prosper.

5.2.3 New Proposer-Leaders’ Mapping and Validating

The current validators are responsible for finalizing the mapping and voting on
it, so the other nodes in the network can commit this mapping. The primary
purpose of this part of the dynamic mapping is for the validators to form the
secret 1 (S1) for the new proposer and secret 2 (Si.2) for each new leader. In
addition to that, they need to vote on the mapping the same way they vote
on the proposed block. Algorithm 7 shows the task for every validator. Each
validator does the following:

1. Validate that cs is an existing valid cycle slot in the CycleSlots.

2. Exclude cs form CycleSlots (i.e., CycleSlots � rs). This step to avoid
forming two maps for the same cycle slot.

3. Construct S1 as follows:

S1  S1.1||S2.1||S3.1||S4.1.

4. For each new selected validation-leader NewV li, do:

Si.2  hash(S1||Randi.2)

5. Sign and vote on:

• The new selected proposer and its secret (NewPr and S1).

• Each new selected leader NewV li, its secret, and its random number
(NewV li, Si.2, and Randi.2).
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Algorithm 8: Checking if a Node is a Proposer or a Leader

Input : NewPr, NewV l[1�4]

1 Let IsPr  Down.sk2(NewPr)
2 if IsPr.PrSID == own.SID then
3 own.cs IsPr.cs
4 own.S1  IsPr.S1

5 end
6 foreach NewV li do
7 Let IsV l Down.sk2(NewV li)
8 if IsV l.V lSID == own.SID then
9 own.cs IsV l.cs

10 own.S2  IsPr.S2

11 own.Rand2  IsV l.Rand2
12 own.C.add(own.S2, own.Rand2, IsV l.cs)
13 end
14 end

5.2.4 Checking if a Node in the New Mapping

After reaching consensus on the proposed proposer-leaders’ mapping, each node
in the network verifies if it has been selected as a new proposer or one of the
new leaders. A node can check if it is the NewPr by decrypting the NewPr
using its second private key (sk2) as below:

Dsk2(NewPr)

If the outcome matches its own SID, then this node is the proposer for the slot
s in the next cycle c. If it is the proposer for the next cycle slot (cs), this node
broadcasts the assigned S1 when that cycle slot comes. Similarly, each node
checks if it is a new leader for that cycle slot by decrypting all the NewV ls.
Algorithm 8 illustrates this process.

Each time a new mapping is proposed, a cycle slot cs is excluded from the
list CycleSlots. By the end of the cycle (c), the CycleSlots will be empty. At
the beginning of the next cycle, every node in the network populates its own
copy of CycleSlots. The population mechanism is simple; only increase c by 1,
while the slots numbers in the cycle c + 1 remain the same as in cycle c. We
mentioned earlier that the proposing/validation cycles have a number of slots.
This number could be any finite number and remain the same for every cycle
(we choose it to be equal to the number of nodes (n) in the network).

5.3 Proposers/Leaders’ Legitimacy Checking

At the initialization phase of our protocol, and to ensure that a proposer
is legitimate and has been selected by the blockchain’s initiator to propose
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a block for a cycle slot cs, the initiator assigns each proposer a verifiable
proof we call ⇡0. This proof is a digital signature signed by the initiator
using its private key (in.sk). The proof ⇡0 includes the cycle slot number
(cs) and is defined as below:

⇡0  Signin.sk(cs)

The proposer must submit this proof to the network along with its
secret (S1), so that other nodes can verify ⇡0 using the initiator’s public
key (in.pk) prior to involving in the validation and consensus process. This
protects against ’malicious nodes’ claiming that they are ’proposers’ for a
certain cycle slot.

Similarly, each validation-leader will be assigned a proof we call ⇡ de-
fined as follows:

⇡  Signin.sk(cs)

Since each cycle slot cs is uniquely identified, each proposer or leader
can only be involved in the cycle slot that they have been assigned to. Each
other node in the network can easily verify that by decrypting the ⇡0 or
⇡ using the initiator’s public key (in.pk) to check the legitimacy of their
claims.

To apply the same proposers/leaders legitimacy checking approach after
the initialization phase, each current proposer that selects and proposes
a new proposer for a cycle slot (cs) in the next cycle will generate the
verifiable proof ⇡0 for this new selected proposer. The new ⇡0 is a digital
signature signed by the current proposer’s private key (current.sk1). This
new proof ⇡0 includes the current proposer’s proof (current.⇡0) as a proof
of its legitimacy, and the cycle slot (cs) as below:

new.⇡0  Signcurrent.sk1(current.⇡
0||cs)

The new.⇡0 is then attached to the new selected proposer and its secret
(i.e., NewPr and S1). The new selected proposer (NewPr) needs to submit
new.⇡0 along with its secret (S1) as a proof of its legitimacy to propose for
cs.

Likewise for the new leaders, each current leader is responsible for gen-
erating a proof ⇡ for the new leader whom it selects. ⇡ is a digital signature
signed by the current leader’s private key (current.sk1), and includes the
current leader’s proof (current.⇡), and the cycle slot (cs) as below:

new.⇡  Signcurrent.sk1(current.⇡||cs)
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This way, we protect the consensus form malicious nodes claiming that
they are a proposer or leaders for a cycle slot. Each node in the system
that claims it is involved in a cycle slot has to submit its proof, so that
each other node can verify it.

5.4 Protocol Liveness

In the current version of our protocol, we employ only one proposer per cs. This
because our protocol (using the static proposer-leaders’ mapping) was designed
to the Block-Supply use case, in which only the node that has the product can
propose a new block. Nevertheless, we introduced the dynamic mapping to
make our protocol suitable for any blockchain application.

Having one proposer per cs could threaten the protocol liveness. This be-
cause the selected proposer for a particular slot may fail to propose due regular
crashes or maliciousness. To overcome such an issue, the dynamic mapping re-
quires each current proposer to select and propose more than one new proposer
per a cycle slot. The corresponding current leaders, in turn, select the new
leaders in a way that every of the new proposer would have four new leaders.
The number of selected new proposers varies based on the blockchain network’s
conditions such as the number of the nodes, environment hostility, and how
likely crashes occur.

Although such an approach can fix the issue of liveness, it arises a new
problem. That is, if more than one proposer proposes a block for the same slot,
which one of these proposers should we select as the primary proposer. Note that
we are only accepting one proposer per a cycle slot to avoid forking. Our protocol
overcomes this problem by electing the new proposer with the highest reputation
value (R). So, when the chosen proposers broadcast their secrets (S1s) for a
cycle slot cs, the nodes decide which one of them is the primary proposer based
on R. When the nodes determine the primary proposer, they only wait to hear
from its corresponding leaders. Moreover, any other proposer checks if its own
R is less than any other R. If so, this proposer aborts the proposing process
to avoid unnecessarily work and conflict. However, if a proposer with less R
proceeds, its block eventually will be discarded.

5.5 Limitations

The dynamic proposers-leaders mapping achieves the anonymity and random-
izes the mapping. A new selected proposer (NewPr) or leader (NewV l) is
anonymous and only known to the node that has the second private key (sk2).
This sk2 corresponds to the public key (pk2) that was used to encrypt the se-
cret ID (SID) for this NewPr or NewV l. Note that the ’correlation’ between
a node’s public identity (i.e., the first public key (pk1)) and the secret hidden
identity (i.e., second public key (pk2) and secret ID (SID)) is private informa-
tion and unknown to the other nodes. In other words, the hidden identities (i.e.,
pk2s and SIDs) for all nodes are publicly published in the list SList for the
seek of new proposers and leaders selection, but no node in the network knows
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which (pk2, SID) relates to which node except the ’owner node.’ In addition to
that, no current proposer recognizes it leaders nor a leader knows its proposer or
its peer leader. Therefore, colluding between these nodes to compose malicious
new mapping is infeasible. Although the dynamic proposers-leaders mapping is
anonymous, it su↵ers the following two limitations:

1. The current proposer may observe the identity (i.e., pk1) of the new pro-
posed proposer when this new proposer proposes its block in cs. Hence, it
can correlates the hidden identity (pk2, SID) to the public identity (pk1).
However, this is unuseful knowledge since the current proposer will only
uncover this information after the new proposer has proposed its block.
Additionally, this malicious current proposer does not know any of the
corresponding new leaders since each one has been selected by a di↵erent
current leader.

However, one possible attack is for the current proposer to intently se-
lect the same new proposer (i.e., selecting the same pr.SID), when the
malicious current proposer has the chance to repropose in future. Then,
the malicious current proposer could launch a DDoS attack to prevent
the new proposer from proposing. Nevertheless, having more than one
proposer per a cycle slot (cs) can withstand such an attack. Also, we
can enforce the random new proposer selection by applying a game the-
oretical rewarding mechanism to reward honest, adhering to the protocol
nodes and penalize dishonest ones. The same above argument applies to
malicious current leaders.

2. A new selected proposer (NewPr) for a cycle slot (cs) can be also selected
as a new leader for itself by one of the current leaders. This is because
there is no any communication between the current proposer and leaders.
However, only one leader can select the NewPr as a NewV l because each
leader has a range (sg) in the list SList to choose from. Our protocol,
however, can tolerate this issue since it is based on Tendermint and hence it
can tolerate up to one-third of Byzantine fault assuming that the NewPr
is a Byzantine malicious node.

6 Experiments and Evaluation

In this section, we evaluate the performance and security of our proposed true
decentralized consensus protocol. One of our most important design goals is to
balance between performance and security. We chose Tendermint as a reference
protocol due to its noteworthy performance, and ability to maintain liveness
and safety in the presence of Byzantine nodes.

Our protocol achieves remarkable performance and at the same time main-
tains a reasonable level of robustness in a fully decentralized and distributed
manner. The high performance and scalability are accomplished by decreasing
the number of validators and distributing the validation work among
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the blockchain nodes on every block proposal, instead of relying on the same set
of validators. The security is achieved by the anonymous leaders-proposers’
mapping and the random validators’ selection. We set the risk value in
our protocol so the employed validators would be log n nodes. This is only to
show that even if we select a relatively small number of validators, our protocol
can still be secured when compared to an optimal secured protocol where all
the nodes in the network are selected to be validators. However, as mentioned
before in Section 4.2.1, the number of validators in our protocol is dynamic, and
it changes based on the proposing node risk likelihood.

6.1 Experiments Setup

In our experiments, we used Omnet++ as our simulation platform. OMNeT++
is a C++-based discrete event simulator for modeling communication networks
[42]. It has gained wide-spread popularity in P2P protocols simulations [43],
which makes it very suitable for our use case. Besides, OMNET++ proves
to have better performance than some well-known simulators such as NS2 and
OPNET [44]. Other advantages of OMNET++ are: it is well structured, highly
modular, not limited to network protocol simulation, and source code is publicly
available [45].

Neverthless, OMNET++ doesn’t have a blockchain-based platform, and is
not ideal for simulating a real-time application. However, we had to use it
due to the lack of blockchain-enabled simulators. In addition, OMNET++
is not limited to network protocols simulation [44] and is known to its
popularity in modeling p2p networks which is suitable for our blockchain use
case as we have modeled our blockchain network as a p2p network. Creating
a large testbed for evaluating an application like blockchain can result in
high e↵orts [46]. Therefore, we utilized OMNeT++ to get a glimpse of how
well our proposed protocol is performing before involving in costly, subtle
implementations.

We simulated our Block-Supply chain as a peer-to-peer (p2p) network. The
network is initiated in the genesis state. The two protocols (Tendermint and
ours) where exactly simulated as they were described before (Sections 2.2.3 and
4). The only thing that we had to introduce is how to simulate the physical
products and their movement between nodes. In this regard, we treated a
product as a ’control ’ message that propagates between nodes in the same way
that the product might geographically flow in a real supply chain starting from
the manufacturer (i.e., node 0) and ending to the last node in the supply chain
(i.e., node n � 1). This newly introduced control message contains the data
that are supposed to be on the product’s NFC tag. It is assumed that there
are fields in the control message that are read-only (i.e. TID and counter).
However, without loss of generality, we had to update the tag’s counter variable
in a way that simulates updating it automatically upon readings in the real
world.
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The control message triggers the proposing nodes. In other words, when a
node receives a control message, it becomes a proposing node, so, it sends its
S1 to all nodes. Similarly, when the product is valid, that is the consensus
protocol was executed, and the new block is committed, the proposing node
sends this control message to the next node in the network and becomes
an idle node. This way we model our p2p network as a supply chain where
real physical products are treated as control messages. As in our Block-
Supply chain, where each product is uniquely identified by a PID, each
corresponding control message is uniquely identified by the same PID.

It is worth noting that we modeled our blockchain network as a permis-
sioned/private blockchain. This is because our Block-Supply chain appli-
cation is defined on a set of nodes known in advance as in the real supply
chains, where the products flow in a certain path from their manufacturers
to the end consumers. Hence, we did not have to introduce the func-
tion/mechanism of how new nodes enter the network.

6.2 Products Verification against Counterfeiting

In our simulated blockchain network, when node i receives a control message
(that represents a product in the real world), the node authenticates the
product locally by executing the local authentication algorithm (Section
3.2.1). The local authentication involves the following:

1. Given the product data (PDetails) on the control message, verify
its signature (SignedPDetails) using the manufacturer’s public key
(m.pk) to detect modification on PDetails. The manufacturer in
our simulated network is the first node (i.e, node 0). Each other node
in the network knows the public key of node 0. If pass, proceed; if
not, abort.

2. Check if the PDetails on the control message is the same as the
PDetails on the last block in the node’s own copy of the product’s
blockchain.

3. Check if the tag ID (ToSignTID) included in PDetails is equal to
the tag ID (TID) on the control message. This is to detect cloning
of PDetails. If pass, proceed; if not, abort.

4. Check if the value of the (Counter) on the control message is equal
to the value of ReadingsOnBlock stored on the last block of the
product’s blockchain. This is to detect tag reapplication.

If the local authentication succeeds, the product is authentic, and node
i proceeds accordingly. Node i can check for all three types of attacks
(modification, cloning, and reapplication) by relying only on its own copy
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of the product’s blockchain (assuming a valid blockchain). Ensuring that
the blockchain is valid is the responsibility of the validators.

After successful local authentication, and before sending the control mes-
sage to the next node in the network, node i creates a new block (repre-
sented by a message containing all the data on a block) and broadcasts
this newly created block to all nodes in the blockchain network to be vali-
dated and agreed on by the validators. When a consensus is reached on the
proposed block, node i sends the control message to the next node in the
network simulating shipping a product to the next node in a real supply
chain.

6.3 Performance

We have conducted several experiments to examine our protocol performance
with di↵erent numbers of nodes. The question that we were trying to answer by
conducting these experiments is: ”if we validate the same number of products
on two blockchain networks, each one of them uses di↵erent consensus protocol
(i.e., one uses ours and the another uses Tendermint), having the same number
of nodes, under the same network conditions, which protocol will outperform the
another in term of performance?”

Our reference protocol was Tendermint employing n�1 nodes as validators.
We chose n � 1 validators for Tendermint because the only way that Tender-
mint can guarantee the true centralization, fairness of validators’ selection, and
optimal security is by involving n� 1 nodes in the validation process.

We simulated our Block-Supply chain application to examine and compare
the performance of Tendermint and our proposed protocol. In this section, we
evaluate two performance metrics:

1. Latency: Measured as the time taken to commit one proposed block.
Figure 4 shows that our protocol outperforms the optimal secured Ten-
dermint.

2. Scalability: Measured as the changes of latency when increasing the
number of nodes in the network. To better illustrate how scalable each
protocol, we simulated five di↵erent sizes of blockchain networks using
both Tendermint with n�1 validators and ours with log n validators. We
chose networks of 100, 125, 150, 175, 200 nodes respectively. We measured
the total time taken to validate a product in its supply chain life cycle (i.e.,
from the first node to the last node). This way, we were able to observe a
clear illustration of how a consensus protocol might a↵ect the validation
and consensus time. Figure 5 illustrates the comparison between our log
n validators protocol and the n� 1 validators Tendermint.

Despite the overhead that we introduced by the anonymous proposers-leaders’
mapping and the random the validators’ section, our protocol outperforms Ten-
dermint and shows great scalability. After analyzing the simulation results, we
found that two factors influence the protocols’ performance:
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Figure 4: Consensus latency for committing one block.

1. Communication overhead: The number of exchanged messages to reach
a consensus was the most dominant factor. In our protocol, this number
was reduced due to a small number of communicating validators. This
contributes significantly to lower latency compared to Tendermint.

2. The validation work: Another important factor was the computational
cost resulted from validating a new block. This cost is proportional to the
number of validators performing the validating computation.

6.4 Security

In our protocol, each proposer is blindly and randomly mapped to four leaders.
Then, each of the leaders randomly selects a portion of validators without any
communication with its peer leaders. This way of selection approach protects
against the following attacks:
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Figure 5: Scalability: our protocol’s consensus latency with random log n valida-
tors increases gradually, while Tendermint’s time with n�1 validators increases
significantly on networks of sizes between 100 - 200 nodes.

6.4.1 DDoS attacks

The DDoS attack is more likely to happen if the set of validators is known in
advance. Such an attack can happen to undermine the blockchain and can be
launched from inside or outside the network. Validators’ replaceability and ran-
domizing their selection can significantly mitigate this attack. This is because of
the set of validators changes randomly, and their identities remain anonymous
until they participate in the consensus voting. Besides, each step of voting has
a di↵erent set of voters. Thus, launching a DDoS attack is almost impossible
and requires to attack all the nodes in the network to undermine the system.
Similarly, attacking the leaders is hard too since leaders are known only af-
ter completing their tasks (i.e., broadcasting the m value and instructing their
selected validators/pre-voters and pre-commiters). Note that we just aim to
protect the validation and consensus process form DDoS attacks.

6.4.2 Eclipse attacks

This attack is presented by Heilman et al. [47] and allows an attacker who
controls an adequate number of IP addresses to manage all connections to and
from a victim node. As a result, the adversary can utilize the victim nodes
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for attacks on block validation and consensus system. As in the DDoS attack,
an adversary mounting this attack needs to know the node participating in
the validation and consensus process in advance. Introducing variable random
validators on each block’s proposal makes the adversary’s job more di�cult.

6.4.3 Bribery Attacks

Bonneau et al. [48] introduced a new attack on blockchains consensus so-called
bribery attack. In this attack, a malicious node deliberately pays miners or
validators to work on specific blocks and forks. The goal of such an attack is
to generate an arbitrary fork which benefits this malicious node. The attack
generally works by the adversary o↵ering the miners a bribe to misbehave and
deviate from the protocol. This bribe is higher than the fees/reward that the
miners/validators obtain if perform correctly and adhere to the protocol. An
example of this attack is when a malicious proposer bribes and convinces other
leaders or voters to accept and vote for an invalid block. Performing such
an attack requires knowing the identities of the targeted nodes. Our protocol
anonymizes the interaction between the consensus and validation parties, which
significantly mitigates such an attack.

6.5 Leaders denial of service attack [49]

In this attack, an omission fault occurs due to a leader avoiding to select val-
idators as instructed by the protocol. This attack could happen for various
reasons, but mostly that the fees associated with a proposed block does not
worth working on it [49]. The game theoretical model that we integrate to our
protocol mitigates such an attack. The game played between the proposer and
it leaders incentivizes the leaders to adhere to the protocol due to the reward the
game provides. Additionally, the punishment or the cost would disincentivize
malicious leaders to perform this attack.

6.6 Experimental Evaluation

Proving a consensus protocol security experimentally requires examining all the
possible strategies for an adversary, which is infeasible [10]. However, for il-
lustration purpose, we choose the bribery attack. In this attack, a malicious
proposing node tries to corrupt the nodes responsible for executing the consen-
sus (i.e., leaders and validators) by bribing them. In other words, a malicious
proposer (i.e., the bribing party) proposes an invalid block, and the corrupted
nodes (i.e., the bribed parties) agree and vote on this block. The incentive for
such an attack is financial for both the bribing and bribed parties. We model
the attacks and evaluate the protocols as follows:

• We randomly select a 0.33% fraction of the nodes as malicious from each
network.
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The reason for this choice is that Tendermint and our protocol tol-
erate up to 1/3 of Byzantine nodes, which is in this case malicious.
To evaluate a critical aspect such as the security, we need to maxi-
mize the risk to the highest limit. In our case, the highest we can
do is the 0.33% of the network being malicious. Byzantine Fault
Tolerance (BFT) protocols such as Tendermint usually can work in
environments where less than one-third of their nodes are faulty or
malicious. However, it is possible for a blockchain network to have
more than one-third (i.e., 0.33%) malicious nodes, and we believe that
our protocol can handle such a case. Hence, our future work includes
conducting more experiments where a higher percentage of nodes are
malicious.

• We assume, without loss of generality, that these malicious nodes are
bribable (corruptible). On the other hand, the remaining fraction of nodes
are honest and would not accept a malicious bribe.

• Our security metric is Detection Rate (DR), in which undetected (suc-
cessful) attack is when a malicious node proposes an invalid block and the
other malicious consensus nodes agree on it.

• For each experiment, we select the 0.33% random malicious nodes for
each network of the five networks (i.e., the 100, 125, 150, 175, or 200
nodes networks). Then, we evaluated each of the following protocols:

– Tendermint with n� 1 validators.

– Our protocol without validation-leaders (i.e., fixed validators).

– Our protocol with validation-leaders, but without anonymous proposer-
leaders’ mapping.

– Our protocol with validation-leaders’ and anonymous mapping.

The reason that we select these four types of protocols is that we aim to
illustrate how our true decentralized protocol evolves, and to show the
importance of applying the anonymity and the validators’ replaceability
to our protocol.

• In each of the above protocols a successful attack is:

– Tendermint with n� 1 validators: an adversary (i.e., malicious pro-
poser) needs to corrupt/bribe all the nodes in the network, which is
infeasible since the security of blockchains is based on the assumption
that the majority of the nodes are honest.

– Fixed-validators: the malicious proposer would try to bribe the fixed
set of validators over time. If more than two-thirds of these validators
are malicious (i.e., corruptible), the attack succeeds.
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Figure 6: Detection Rate with 95% Confidence Intervals.

– Our protocol leaders without anonymous proposer-leaders’ mapping:
the malicious proposer would try to bribe a chosen set of log n nodes
over time. Then, it bribes its corresponding known leaders to select
these nodes as validators (note, we are not applying the anonymous
mapping).

– Our protocol leaders with anonymous proposer-leaders’ mapping: the
malicious proposer bribes a chosen set of log n nodes over time. How-
ever, in this protocol, the proposer does not know its corresponding
leaders in advance, and they are anonymous. Hence, it can only try
to blindly select a set of nodes hoping they are its leaders and bribes
them. We call this set the ’lottery choice.’

Figure 6 shows the DR with 95% Confidence Intervals (IC). This figure nearly
o↵ers a clear vision of how the true decentralization (anonymous mapping) con-
tributes to the consensus protocol security. Our protocol with the anonymous
proposers-leaders’ mapping achieves high attacks detection rate, ranging from
99.5% when the network size is 100 nodes to 99.8% with 200 nodes network.
Note we only examine one attack (bribery), but we argue that true decentral-
ization withstands many other attacks such as DDoS and eclipse.
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7 Conclusion

In this paper, we have proposed a new supply chain using blockchain technology.
This Block-Supply chain can detect modification, cloning, and tag reapplication
attacks in addition to tracking products without a centralized managing server.
Furthermore, this paper has introduced a new truly decentralized consensus
protocol utilizing anonymous, dynamic mapping and randomness. Our protocol
randomly employs a di↵erent set of di↵erent size of validators on every block’
proposal to protect against several real attacks mounted by powerful adversaries.
Our simulations show that our new protocol is very scalable for large networks
when utilizing a relatively small number of validators. At the same time, it
maintains a satisfiable level of security.

This work, however, is in progress and has a few problems. First, OM-
NET++ is not ideal for simulating a real-time application. The reason
that we used OMNeT++ is to test and evaluate only our proposed con-
sensus protocol. Nevertheless, the implementation of our protocol is left
for future work. Second, we only chose 0.33% as malicious nodes because
when evaluating the security of our protocol. However, it is possible for
a blockchain network to have more than one-third (i.e., 0.33%) malicious
nodes, and we believe that our protocol can handle such a case. Hence, our
future work includes conducting more experiments where a higher percent-
age of nodes are malicious.
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