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ABSTRACT A novel nonintrusive statistical approach, known as the stochastic reduced order
model (SROM) method, is applied to efficiently estimate the statistical information of the terminal response
(i.e., the induced current) in transmission lines excited by a random incident plane-wave field. The idea of the
SROM method is conceptually simple, i.e., to represent the uncertain input space dimensioned by random
variables using the SROM-based input model. This input model consists of a very small number of selected
samples with assigned probabilities. Thus, only these input samples in the model need to be evaluated using
the deterministic solver. The SROM-based output model can be constructed to approximate the propagated
uncertainty to the real output response with elementary calculation. The efficiency and accuracy of the
SROM method to obtain the statistics of the induced current are analyzed using two examples, where
the complexity of the uncertain input space gradually increases. The performance of the SROM method
is compared with that of the traditional Monte Carlo (MC) method. The stochastic collocation (SC) method
based on sparse grid sampling strategy computed via the Smolyak algorithm is also implemented to fairly
evaluate the SROM performance. The result shows that the SROM method is much more efficient than the
MC method to obtain accurate statistics of the induced current, and even shows a faster convergence rate
compared with that of the SC method in the examples considered. Therefore, the SROM method is a suitable
approach to investigate the variability of radiated susceptibility in electromagnetic compatibility problems
with a random incident wave.

INDEX TERMS Field-to-wire coupling, stochastic collocation, stochastic reduced order model (SROM),
transmission lines, uncertainty quantification.

I. INTRODUCTION

The induced effect in cables caused by an incident elec-
tromagnetic field may be a potential threat to degrade the
performance of the system. This phenomenon is especially
of interest in aerospace systems. Therefore, it is important to
estimate the terminal response (such as the induced current or
voltage) of the cable to the impinging electromagnetic field
at the early stage to prevent possible malfunctions.

For deterministic estimation, the pioneering work in [1]
gave a closed-form solution for the terminal response of a
two-conductor transmission line illuminated by an incident
field. This work was later generalized for multiconductor
transmission lines (MTLs) in [2] and [3]. Then, the field-
to-wire coupling model was extended for some common

configurations, such as a twisted-wire pair (TWP) in free
space [4], a TWP or a bundle of TWPs above a ground plane
in [5] and [6]. The estimation approach for nonuniform cable
types (i.e., the cross-section varies along the cable length) was
addressed in [7] and [8]. The induced effect resulting from
the strong electromagnetic field such as lightning strikes was
investigated in [9] and [10].

The aforementioned work is very useful for deterministic
analysis with a unique output, but may not be sufficient for
practical cases. This is because the characteristics of the inci-
dent wave (such as the field strength and incident direction)
could be unknown in practice. As a result, statistical analysis
needs to be performed to account for the potential variability
of the induced effect.
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If the deterministic solver relating the input to output takes
the form of an analytic formula, the theory of random variable
transformation in [11] can be used to obtain the statistical
information of the output. On this basis, pioneering contri-
butions were presented in [12] and [13] to derive closed-
form expressions for the statistical properties of the induced
current. However, the probabilistic transformation involved
may become prohibitively difficult if the deterministic solver
takes complex algebraic forms or is an electromagnetic simu-
lator. Other work was dedicated to the estimation of extreme
induced current values using the controlled stratification
method [14].

In order to perform a general statistical analysis, one
may consider using the conventional Monte-Carlo (MC)
method [15], the well-established polynomial chaos expan-
sion (PCE) [16] and stochastic collocation (SC) [17]
methods, and the newly proposed stochastic reduced
order model (SROM) method [18]. The MC method is
nonintrusive, as the deterministic solver is used without any
modifications. However, the MC method may only produce
converged results after examining a sufficient number of pos-
sible occurrences, and therefore, is inefficient. Applications
of the MC method for field-to-wire coupling problems can
be found in [19] and [20].

The PCE method [16] has been used as an efficient sta-
tistical tool in the last decade. This method can express the
deterministic solver using an analytical formula with regard
to uncertain input variables. This analytical formula is used
as a replacement for the original deterministic solver. On this
basis, the statistics of the output can be efficiently obtained.
An application of the PCE method was given in [21] to
estimate the statistics of the induced current at the termination
load of transmission lines.

Similar to the PCE method, the SC method [17] is also
aimed at expressing the deterministic solver using an analyt-
ical formula. How to perform the SC method was given in
[17] and [22]. Like the MC method, the SC method is also
nonintrusive.

The SROM method [18] was recently proposed as a com-
putationally efficient alternative to MC simulations for statis-
tical analysis. This method is general, nonintrusive, and able
to produce accurate output statistics by only using a small
fraction of the MC computational cost. The idea of the SROM
method is essentially different from those of the PCE and SC
methods, but to approximate the statistics of random input
variables by using a very small number of selected samples
assigned with probabilities. Therefore, unlike the MC method
looking blindly and exhaustively at all the possible cases, the
SROM method only needs to examine these selected samples
without sacrificing accuracy. Clearly, the SROM method can
be considered as a smart version of the MC method. The
first application of the SROM method for EMC problems was
dedicated to the statistical analysis of cable crosstalk in [23].

Since SROM is a novel methodology, it is worth another
specific investigation on its performances and advantages
versus the brute-force MC approach and other efficient
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statistical methods. In this paper, the SROM method is
applied to efficiently estimate the statistics of the induced
current in multiconductor transmission lines induced by a
random incident wave. It provides an incremental contribu-
tion to efficient statistical analysis of field-to-wire coupling
problems. Also, as the relative goodness of SROM over SC or
vice versa in terms of efficiency is still unexplored, the SROM
performance is also compared with the SC method based on
Lagrange polynomials. The remainder of the paper is orga-
nized as follows: Section II presents a concise introduction of
the SROM method. In Section III, the field-to-wire coupling
model is described. In Section IV, the implementation of
SROM for uncertainty propagation in the case considered is
presented. Also, the application of the SC method is briefly
presented for comparison purposes. The discussion about
the SROM and SC performances is given in Section V. The
conclusion of the paper is presented in Section VL.

Il. STOCHASTIC REDUCED ORDER MODEL (SROM)

An introduction of the SROM method is presented in this
section. Let X = [X|, Xp, ..., Xp] be a D-dimensional
random input variable. Each dimension X; (1 < i < D)
is used to describe the variation of a random variable, and
can be correlated or uncorrelated with other dimensions. The
statistical properties of X are assumed to be known before-
hand. According to [24], they are described by the cumulative
distribution function (CDF) and g-th order moment of the
i-th dimension X; in (1) and (2), respectively, and the correla-
tion function in (3):

Fi(0) =P(X; <0) (1)
wi(q) = E (X 2)
r=EXXT] 3

wherei = 1, ..., D. Here, F; () is the probability of X; tak-
ing a value smaller than or equal to 8. The operator E(-) means
calculating the expectation value.

A. DEFINITION OF SROM

A SROM X is a sample-probability pair {X, p} containing a
very small number of samples with assigned probabilities, in
order to accurately approximate the statistics of the random
variable X quantified in (1)-(3). The sample set X contains
m different samples: {i(l) o, XY The sample fc(k)(l <
k < m) in X contains a set of coordinates (fcfk), ... ,fc(k)) for
X = [X1, X2, ..., Xp]. For example, fcfk) is the coordinate
of X in the dimension X;. The probability set p contains
the probabilities {pV, ..., p"™} of each sample in ¥. The
probabilities {pV, ..., p™} need to meet the conditions:
S p® =1and p® > 0.

The sample size m of X is related to the accuracy and
computational cost. A better accuracy is usually guaranteed
by increasing m, but accompanied by a brutal computa-
tional burden. Thus, choosing a proper value of m is mainly
dependent on the affordable computational cost. The statis-
tical information of X is described by the following three
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counterpart parameters of those of X in (1)-(3):

Fio) =P (% <0)= Zp<k>1@;k> =0 @

3

wi(g) = E( ) Z k)(;ci(k))q )
k=1
rj=E [X,X,] i (k));lﬂk)ij_(k) ©

where 1(A) is the indicator function and has two possible
outcomes: 1 if A is true and 0 if A is false.

Since there could exist many different SROM candidates
X for X, ameasure of the discrepancy between the statistics of
X and X is needed. Thus, the accuracy of X can be assessed by
the summation of the discrepancies between each statistical
property of X and X (i.e., between (1) and (4), (2) and (5),
(3) and (6)). The mathematical definition of the accuracy
can be found in [23]. The SROM candidate giving the most
accurate approximation for the statistics of X is referred to
as the optimal SROM X. Ideally, this optimal X should be
used in the implementation of the SROM approach. However,
in practice finding the optimal X can be too exhaustive or
even impossible. This is because the optimal X can only
be credited after examining every possible combination of
legitimate ¥ and p.

To solve this problem, three sampling techniques
(i.e., Dependent thinning, Integer optimization, and Pattern
classification) were suggested in [18] as guidelines on choos-
ing the sample set x¥ of X. Which technique to use can be
chosen heuristically, as all three techniques have the same
aim: to select m samples scattered as far from each other as
possible in the uncertain space of X. Taking samples in X as
centers of tessellations, the uncertain input space of X can
be divided into m Voronoi tessellations [25]. The probability
is assigned to each sample in X as the frequency density of
the grouped data in the corresponding Voronoi tessellation.
Although the resultant sample-probability pair of X may not
be strictly optimal, it generally provides a more accurate sta-
tistical approximation of X, compared with other candidates
obtained using random selection. The pattern classification
technique is used in this study to obtain the sample set X of X.
The mathematical workflow of using pattern classification to
construct X can be found in [23].

B. SOLUTION BY SROM
This section describes how to propagate uncertainty from the
multivariate random variable X = (Xi, X»,...,Xp) to the
output ¥ with the SROM method. Here, X can be interpreted
as a collection of D random variables. After obtaining X =
{x, p} as the SROM-based input, the statistics of ¥ can be
derived in three steps as follows:

Step 1): Construct a SROM-based output ¥ = {7, py} for
the real output Y. The sample sety = {}(1), et _)7(”’)} can be
obtained by running the deterministic solver M with the input
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set equal to (fc(l), .. ,fc(m)), sequentially:

M:iP 550 k=1, m @)

The probabilities { p(,] ), . p)m) } in the probability setpy can
be obtained using: p( ) =p(k), k=1, ..., m. This is because
the occurrence of y(k) is completely subject to the occurrence
of ¥0).

Step 2): The CDF, g-th order moment, and standard devia-
tion of ¥ can be obtained using:

P (fV < E) = ;p<k>l<y<"> <) (8)
E(77) = ,;P“”@(k))" ©)

o (y) _ ip(k) (y(k) _ E(?l)>2. (10)
k=1

Step 3): The statistical information of the actual output Y
is approximated by those of the SROM-based output ¥
in (8)—(10).

The reason for the SROM method being able to reduce
computational cost is now clear: only a small number of
representative samples (¥, ..., ™) needs to be checked.
In contrast, the MC method exhaustively examines almost
every input sample until the converged result is obtained. The
only overhead of the SROM method is to build the optimal
model to account for uncertainty sources, and is negligible
compared with the computational cost of the MC method.

Incidence plane

(a) (b)

FIGURE 1. (a) Variables characterizing the incident plane-wave field.
(b) Configuration of an arbitrary wire in the illuminated MTL [26].

IIl. DETERMINISTIC SYSTEM

In this section, the field-to-wire coupling model sketched
in Fig. 1 is introduced. As shown in Fig. 1(a), the external
excitation source is a plane-wave field characterized by the
incidence angles 6 (the elevation angle) and i (the azimuth
angle), the polarization angle 7, and the electric field ampli-
tude Ej.

The victim of the incident field is a uniform and lossless
MTL with length /. This MTL consists of N perfect conduc-
tors placed in the y-axis direction above a ground plane. For
the sake of the neatness of the MTL plot, only a representative
(the ith, 1 < i < N) conductor is shown in Fig. 1(b).
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The position of the ith conductor in the x-z plane (the cross-
section plane) is denoted by the coordinate (x;, z;). The
ith conductor is connected to the ground plane via the termi-
nation loads R;; at the left end and R;g at the right end. The
medium immersing the MTL is characterized by the electric
permittivity &9 and magnetic permeability p¢ in free space.
The system response refers to the induced current in the right-
end termination of the MTL. Given the characteristics of
the field-to-wire coupling model, the induced current can be
calculated using the deterministic solver (i.e., the calculation
process). The detailed description of the deterministic solver
was presented in [26], and is not repeated herein.

z (mm)

41(-7.42) #2(0)42) #3(7,42)

#4(-10.5, 35) #5 (3.5, 35]#6 (3.5, 35) #7 (105, 35)

48 (-10.5, 28)#9 (-3.5, 28)| 410 (3.5, 28) #11 (10.5, 28)

#12(-7,21) #13 (021)  #14 (7, 21)

x (mm)

FIGURE 2. Positions of each line denoted by the coordinates (x;, z;) in the
cross section of the MTL.

TABLE 1. Clarification of stochastic and deterministic variables.

0 Stochastic
4 Stochastic
Ey, |Deterministic in Section IV.A, stochastic in Section IV.B.
n |Deterministic in Section IV.A, stochastic in Section IV.B.

X; Deterministic
Z; Deterministic
R Deterministic
Rir Deterministic

The uncertainty is assumed to be embedded in the inci-
dent field, whereas the features of the MTL are determinis-
tically characterized. Specifically, the length of the MTL is
! =2 m, and the radius of each conductor is r = 1 mm.
The cross-section detail of the MTL is shown in Fig. 2. Each
line is terminated using 50 €2 loads at the left and right
ends. By default, the analysis is performed at the frequency
of 50 MHz unless specifically stated. A clarification of the
stochastic and deterministic variables assumed in this paper
is given in Table 1.

IV. NUMERICAL EXAMPLES
In this section, taking the MTL with 14 conductors as the

victim, the SROM method is applied to derive the statistics
of the induced current excited by a random incident plane-
wave. Specifically, the induced current (Iz3) in the right-
end termination of wire #3 is observed for the demonstration

purpose.
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To test the efficacy and robustness of the proposed
SROM method, two examples are considered, and the com-
plexity of the uncertain input space in the second example
is increased with respect to the first one. In addition, the
SC method using Lagrange interpolation is also applied to
random field coupling problems for the first time. But the
aim of introducing the SC method is to provide a com-
peting technique for comparison with the SROM method.
MC results from 200000 simulations are used as the reference
to benchmark the accuracy of the SROM and SC results.

A. RANDOM 6 AND v

In this section, the SROM method is applied to quantify the
variability of the induced current /g3 due to two uncertain
variables, and its performance is discussed with respect to
the SC method. The two random variables are chosen as the
incidence angles 6 and v following uniform distributions in
[0, /2] and [0, 7], respectively. This assumption means that
the incident plane-wave field could illuminate the MTL from
any direction above the ground plane. Please note that the
variation range of the azimuth  is chosen as [0, ] instead
of [0, 27r]. This is because the cross section of the MTL is
symmetrical. Such a choice can avoid analyzing a redundant
space of the variable . It is to be noted that the random
variables in this paper are uncorrelated by nature, but the
SROM method is also applicable to correlated input variables,
please see [18] for example. The field strength Ey and polar-
ization angle n are assumed to take deterministic values of
1 V/m and Oo, respectively.

o o o
o [=] o e
E 8 8 =

o
=
5}

Probability of SROM sample

FIGURE 3. (a) Distribution of 10000 samples of X = [¢, ¥] and 13 samples
of X in corresponding Voronoi regions. (b) Visualization of SROM X with
sample size of 13.

The first step of the SROM implementation process is to
construct a SROM-based input model as the approximation
of the uncertain input space. Let X be a bivariate random
variable containing the two uncertain variables 8 and V¥, i.e.,
X = [0, ¥] and the dimension D = 2. Each sample of
X represents a point on the 2-D plane dimensioned using
0 and  as orthogonal axes. The coordinates of the point
indicate the input information, i.e., the values of 6 and .
This information can be used to run the deterministic solver
once and obtain the corresponding output value (i.e., the
induced current in this case). The construction process of the
SROM-based input X for X is visualized in Fig. 3.

As shown in Fig. 3(a), 10000 independent samples of X =
[6, Y] are randomly generated according to the probability
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distributions of € and . The samples of X can be selected
using the pattern classification algorithm, and are shown in
Fig. 3(a) for sample size m = 13. Having determined the sam-
ples of X, the probability of the sample in X can be obtained
using the sample number of X in that specific Voronoi region.
Now the SROM-based input Xis completely constructed and
visualized using red dots in Fig. 3(b). Specifically, the projec-
tion of the red dot on the 6-i plane tells the coordinates of
the SROM sample, and the height of the red dot represents the
probability assigned to this SROM sample. It is clear that the
SROM samples in X are assigned very similar probabilities,
and are evenly located in the uncertain region: [0, 0.57] x
[0, m]. This is due to the probabilistic nature of the input
X (i.e., following uniform distributions in the dimensions
of 6 and ). Please note that a different set of 10000 MC
samples in Fig. 3(a) (but still accurately characterizing the
statistics of the input) would yield variations in the choice
of SROM samples and probabilities. But such variations are
very small and the influence on the accuracy of the result is
negligible. Due to the importance of assumed input statistical
distributions on the result, one could also consider the influ-
ence of assuming Gaussian distributed incidence angles of
the plane wave. Such an investigation would be similar to the
example of bivariate Gaussian distributions in [23].

Having constructed the SROM-based input X for
X = [0, ¥], the SROM-based output 11;3 can be obtained
according to Section II-B. Specifically, the samples of I3 are
produced using the deterministic solver, and the probabilities
of the samples in /, 1;3 are the same as those in X. On this basis,
the statistics (i.e., CDF, mean value, and standard deviation)
of the actual induced current /g3 can be derived using (8)-(10).

On the other hand, the SC method is also implemented
based on sparse grid sampling computed via the Smolyak
algorithm. This sampling technique can significantly reduce
the number of times of running the deterministic solver for
high random dimensions, compared with the tensor product
sampling. The SC implementation process is decomposed as
follows. First, collocation points are selected in the uncertain
input region using sparse grid sampling. Here, SC collocation
points are essentially the same as SROM samples, in the sense
that the coordinates of each collocation point also contain
the value of each random variable to run the deterministic
solver once. In other words, the number of collocation points
is equal to the number of simulations for SC to derive the
analytical relationship between random inputs and the out-
put. The number of collocation points is determined by the
random dimension D and the Smolyak construction level k.
If D is fixed, the number of collocation points is increased by
increasing k, so are the accuracy and computational cost. The
coordinates of the collocation point in each dimension can
be calculated based on the extrema of Chebyshev polynomi-
als [17]. Having obtained collocation points, the output values
at collocation points are calculated using the deterministic
solver. On this basis, the Lagrange interpolating function
(a common choice of polynomials in the SC implementation)
can be used to derive the analytical formula representing
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the deterministic solver. Now the statistics (mean, standard
deviation, and CDF) of the output can be extracted from the
output samples obtained by evaluating a sufficient number of
input samples using this analytical formula (i.e., the derived
efficient form of the deterministic solver).

It is clear that the accuracy of the SC result is dependent on
the resolution of the derived analytical formula with respect to
the deterministic solver. Since the SC method is not the core
of this study, only a concise description of the SC method is
given above, and further details can be found in [17] and [22].
The SC application in this paper is realized using the sparse
grid interpolation toolbox in [27].

. T
4
‘ 10" Avproximated response
< 25+ X Theoretical response
"'x
&
S 0574 ¢ * L ) §
5
o
o
@
8
S
. 2
057
04 + +
0.25x 05+ e
4 L 0 0 '
(@) (b)

FIGURE 4. (a) 13 collocation points obtained using sparse grids based on
the extrema of Chebyshev polynomials, with D =2 and k = 2.

(b) Comparison of the theoretical response and the SC approximated
response using 13 collocation points.

In each comparison, the number of SROM samples is
chosen the same as that of the SC collocation points. As a
result, the two methods consume the same computational cost
of running the deterministic solver. Fig. 4(a) shows 13 col-
location points in the uncertain input region: [0, 0.57] x
[0, 7], with k& = 2. In Fig. 4(b), the derived analytical
response of the induced current /g3 to incidence angles 6 and
¥ is plotted against the theoretical response (obtained from
the 200000 MC simulations). In this case, the approximated
response by the SC method gives exact induced currents
at collocation points, but is generally very different from
the theoretical response. With the approximated response of
Ir3 being obtained, the statistics of Ig3 can be efficiently
obtained. Please note that the theoretical response of this
bivariate example in Fig. 4(b) does not present symmetry in
the space of random variables. This implies that the proposed
example is suitable for evaluation purposes, as symmetry
could make SROM, SC, and MC uselessly inefficient.

In Fig. 5, the derived CDFs of /g3 obtained by the SROM
and SC methods are compared. Here, the SROM sample
number is set to 13, 29, 65, and 145, to equalize the number
of SC collocation points at k = 2, 3, 4, and 5, respectively.
Hereinafter, the sample size can refer to the SROM sample
number as well as the SC collocation point number, depend-
ing on which method is being discussed. It is clear in Fig. 5
that for each method, the derived CDF becomes closer to the
reference CDF (given by 200000 MC simulations) by increas-
ing the sample size. But the performances of SROM and SC
could be different. Specifically, at the sample size of 13, the
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FIGURE 5. Comparison of the reference CDF of /3, the CDFs
approximated by the SROM-based output /55 with the sample

sizes of 13, 29, 65, and 145, and the CDFs approximated by the SC method
with 13, 29, 65, and 145 collocation points (corresponding to k = 2, 3,

4, and 5, respectively).
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FIGURE 6. Convergence rates of the SROM and SC methods at the
frequency of 50 MHz, when the two random variables are 6 and v.

SROM method gives a more accurate CDF compared to that
of SC. However, at the sample size of 29, the CDF given
by SC becomes very close to the reference CDF, whereas
the SROM-based CDF is still noticeably different (although
significantly improved compared to the CDF at 13 sam-
ples). This noticeable discrepancy from the staircase-shaped
CDF is due to the discontinuity nature of the CDF approxi-
mation mechanism in (8). To improve the resolution of the
SROM-based CDF, one needs to increase the sample size.
Seeing the 65 sample case in Fig. 5 for example, the differ-
ence between the SROM-based and reference CDFs becomes
almost indistinguishable. Finally, at the sample size of 145,
both methods give the error-free CDF of Ig3. In Fig. 5, no
method shows overwhelming accuracy over the counterpart
to predict the CDF of the induced current /g3 in the case of
random incidence angles 6 and .

As shown in Fig. 6, the performances of the SROM and
SC methods to estimate the mean value p and standard
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FIGURE 7. (a) 145 collocation points obtained using sparse grids based
on the extrema of Chebyshev polynomials, with D =2 and k = 5.

(b) Comparison of the theoretical response and the SC approximated
response using 145 collocation points.

<)

deviation oof the induced current /g3 are compared at the
sample sizes of 5, 13, 29, 65, 145, 321, 705, 1537, and 3329,
corresponding to k = 1, 2, ..., and 9, respectively. It is
clear that in this case the SROM method is more efficient
than the SC method to converge with sufficient accuracy.
Specifically, the SROM method only needs 13 samples to
produce accurate i (Ig3) and o (Ig3) (both within the error of
2% with respect to the MC result using 200000 simulations).
In contrast, at least 145 collocation points are required for the
SC-based u (Ig3) and o (Ig3) to simultaneously converge to
the SROM accuracy level at the sample size of 13. The reason
is that the approximated response of /g3 by the SC method
only becomes sufficiently detailed when using 145 colloca-
tion points or more. This can be clearly demonstrated using
Fig. 7. Specifically, Fig. 7(a) shows 145 collocation points
in the uncertain input region, and Fig. 7(b) shows a good
match between the approximated and theoretical responses
of Ig3. Therefore, to obtain accurate u (Ig3) and o (Ig3) in
the presence of uncertain 6 and i, the number of repeated
deterministic runs can be reduced by a factor of 145/13 ~ 11
by replacing the SC method with the SROM method. Finally,
the MC method needs around 9000 simulations to converge
to the same accuracy level. Hence, the MC process can be
expedited by 9000/13 & 692 times using the SROM method.

Instead of aforementioned discussion at the single fre-
quency of 50 MHz, the comparison between the SROM
and SC performances is widened to the frequency range:
[10 MHz, 100 MHz] in Fig. 8. It is clear that at the sample
size of 13, the SROM-based © (Ig3) and o (Ig3) are more
accurate than the SC results, especially at the resonance
frequency around 80 MHz. It is interesting to see that the
errors are increasing when dealing with resonance frequency.
This shows that the quality of the approaches could be sub-
ject to the complexity of the deterministic mapping. More
specifically, the resonating nature of the problem makes the
induced current more sensitive to random incidence angles,
and consequently degrades the result accuracy.

As shown above, accurate mean value u and standard
deviation o of the induced current /g3 can be obtained at
each frequency using the SROM method with 13 samples.
For practical purposes, the interval [u—30, u+30] can be
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FIGURE 8. Comparison of the SROM and SC performances to estimate the
mean value p (Ip3) and standard deviation o (Ip3) in the frequency range:
[10 MHz, 100 MHz].
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FIGURE 9. Upper bound of the induced current /53 obtained using the

SROM method with only 13 samples, in the presence of the two
random variables: ¢ and y.

used as a heuristic and general choice to define approximate
upper and lower bounds. On this basis, the variability of /g3
can be bounded. To ensure it is worth assuming ©+30 as
the maximum, one may need to validate with high quantile
assessment (such as 0.95, 0.99, 0.995 quantile), which is
beyond the scope of this paper. Please note that Fig. 9 only
presents the upper boundary in the frequency range: [1 MHz,
100 MHz]. This is because: 1) the upper bound is of more
interest for field-to-wire coupling problems, and 2) the lower
bound based on t—30 could give minus (i.e., not physically
sound) induced currents at some frequencies, and, therefore,
is omitted in Fig. 9. As shown in Fig. 9, it is remarkable that
the accurate upper boundary obtained using only 13 SROM
samples (i.e., 13 simulations) can hold underneath almost
10000 random simulation results. Comparing 13 simulations
by SROM to 10000 simulations by MC, it is obvious to see
the sizable acceleration given by the SROM method.
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FIGURE 10. Comparison of the reference CDF of /g5, the CDFs
approximated by the SROM-based output /55 with the sample sizes

of 41, 137, 401, and 1105, and the CDFs approximated by the SC method
with 41, 137, 401, and 1105 collocation points (corresponding to

k =2, 3, 4, and 5, respectively).

B. RANDOM 0, v, 1, AND E,

In this section, the incident plane-wave field is assumed
to be fully stochastically characterized by all four random
variables: the incidence angles 6 and 1, field strength Ey, and
polarization angle 5. To further complicate the investigated
problem, random variables are assumed to follow different
probability distribution types. Specifically, the random vari-
ables 6, v, and n are uniformly distributed in the ranges
[0, 7/2], [0, =], and [O, 27 ], respectively. These variation
ranges of the angles cover all possible physical values of
the plane wave in the upper half-space without redundancy.
Also, Ey is regarded as a Gaussian random variable with
the mean value E(Ep) = 1 V/m and standard deviation
0(Ep)=0.2 V/m.

In this case, the SROM-based input X needs to be con-
structed for the 4-D random variable X = [0, ¥, Ey, n].
For the SC method, at the random dimension D = 4, the
number of collocation points based on sparse grid sampling
is 9, 41, 137, 401, 1105, 2929, and 7537, corresponding to
k =1,2,3,4,5, 6, and 7, respectively. It is worth noting
the efficiency of sparse grid sampling over tensor product
sampling in this case. Specifically, the top three minimum
numbers of collocation points based on tensor product sam-
pling are 2* = 16, 3* = 81, and 4* = 256, and can be
reduced to 9, 41, and 137 using sparse grid sampling. Again,
the sample sizes for the SROM and SC methods are the
same in each comparison. The implementation of the SROM
and SC methods follows the same process demonstrated in
Section I'V-A, and, therefore, is not detailed herein.

Fig. 10 shows the CDFs of the induced current /g3 given
by the SROM and SC methods using the sample sizes of 41,
137, 401, and 1105. Clearly, the CDF given by each method
becomes more accurate by increasing the sample size. But
the SROM-based CDF is generally more accurate than the
SC-based CDF. At the sample sizes of 137 and 401, the
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FIGURE 11. Convergence rates of the SROM and SC methods at the
frequency of 50 MHz, when the four random variables are 6 , ¥, Eg, and 7.

CDFs given by SROM are already in good agreement with
the reference CDF, whereas the CDFs given by SC exhibit
obvious discrepancy. The SC method can only produce accu-
rate CDFs by using 1105 collocation points. This is because
at least 1105 collocation points are needed to give sufficient
resolution to the SC approximated response of Ig3. Please
note that in this example, the SC method could generate
minus (i.e., non-physical) induced currents at the sample size
of 41, due to the insufficient resolution of the approximated
response. This behavior could contaminate the statistical
information of the induced current. To resolve this problem,
one should increase the number of SC collocation points,
thus to increase the resolution of the approximated response.
Please see the reduced probability of the non-physical current
in the 137 sample case in Fig. 10 for example.

In Fig. 11, the convergence rates of the SROM and SC
methods are compared at the sample sizes of 9, 41, 137,
401, 1105, 2929, and 7537. It is clear that in this case,
the SROM method is more efficient than the SC method to
obtain the converged mean value w(Ig3) and standard devia-
tion o (Ig3). Specifically, the sample size of 401 is sufficient
for the SROM method to converge to accurate w(lg3) and
o (Ig3), both within the error of 2%. In contrast, the SC
method needs at least a sample size of 1105 to converge
to around the same accuracy level. This is in line with the
accurate SC-based CDF given by 1105 collocation points in
Fig. 10. By switching from the SC method to the SROM
method, the number of deterministic runs needed for accu-
rate results can be reduced by a factor of 1105/401 ~ 2.8.
Meanwhile, the MC method needs around 23000 simula-
tions to converge to the SROM accuracy level at the sample
size of 401. Therefore, the MC analysis can be expedited
by 23000/401 ~ 57 times using the SROM method. Please
note that each method (SROM, SC, and MC) needs a larger
sample size to converge in this case than in Section IV-A,
due to the increment of the random dimension. Please note
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FIGURE 12. Upper bound of the induced current /53 obtained using the
SROM method with 41 samples, in the presence of the four random
variables: 6 , ¥, Eg, and 1.

that the convergence rate of SC in Fig. 11 does not exhibit
the exponential feature claimed in [28]. This is because the
efficacy of SC can be influenced by the complexity of the
deterministic mapping between the input and the output. It is
worth noting that the SROM-based v (Ir3) and o (Ir3) at
the sample size of 41 are already accurate to some extent,
specifically with the errors of 1% and 7%, respectively.

On this basis, Fig. 12 shows the heuristic upper bound
of the induced current Ig3 obtained by the SROM method
with the sample size of 41. It is clear that almost 10000 MC
simulations (except for very few extreme occurrences) are
held underneath this upper bound. Therefore, the efficiency
of obtaining the upper bound is remarkable using the SROM
method. It is interesting to see that the spread of /g3 in Fig. 12
for the 4-D case is wider than that in Fig. 9 for the 2-D case.
This is because there are many more possible occurrences in
the 4-D case.

V. DISCUSSION

This section presents in-depth discussions on the perfor-
mances of SROM and SC in the 2-D and 4-D examples. It is
clear that both the SROM and SC methods are much more
efficient than the MC method. Also, the comparison between
SROM and SC shows that the SROM method has a faster
convergence rate to produce accurate statistics of the induced
current /g3z. On the other hand, as shown in the 4-D case,
the SC method may generate non-physical induced currents,
making the SC result considerably deviate from the reference.
However, please note that the presented SC result is given
by standard implementation based on sparse grid sampling,
but state-of-the-art SC variations (such as the adaptive sparse
grid collocation method [22]) are possible, and may produce
better performance. The non-intrusive PCE method [28] may
also outperform the SROM method in terms of accuracy
and computational cost. However, the comparison with every
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competing technique would be too exhaustive. There is no
intention of contriving the examples and results in this paper
to make SROM appear as superior. The demonstrated good-
ness of the SROM method over the SC method only holds
true in the scope of this paper, and may become overstated in
other cases.

It should be pointed out that the distribution of the output is
described via CDF using the SROM method. In fact, the prob-
ability density function may be better to show the shape of
the distribution tails and estimate the spreading of the system
response. But due to the nature of the SROM-based output
(i.e., consisting of a set of discrete sample-probability pairs),
it may be unfeasible to produce a continuous PDF directly
by SROM. Please note that the performance of MC regarding
mean, standard deviation, and CDF prediction is neglected
in the examples. This is because at such sample sizes, per-
forming a MC analysis with the same number of samples for
different values of the random variables considered gives very
different results.

TABLE 2. Computation time required by SROM, SC, and MC.

EXAMPLE X=[6, v] |X=[0, v, Eo, i)
Time (s) 0.4 5.9
SROM Speed-up 367x 63x
SC Time (s) 8.3 22.1
Speed-up 18x 17x
MC Time (s) 146.7 372.5
Speed-up - -

Although both the SROM and SC methods need to repeat-
edly call the deterministic solver, the overall complexity of
each method is different. This is because the core of the
SROM implementation is to construct an accurate SROM-
based input. Then, the statistics of the output can be straight-
forwardly obtained using (8)-(10). In contrast, the SC method
needs to first select collocation points based on sparse grids,
and then derive the approximated response of the output
before quantifying the output uncertainty. Table 2 shows
the computation time required by each method to converge
within the error of 2%, and the speed-up factor compared
with MC, based on a CPU of 3.4 GHz and RAM of 8 GB.
The MC simulation time in Table 2 refers to 9000 simulations
for the example X = [0, ¥] and 23000 simulations for X =
[0, ¥, Eg, n]. It is clear that the SROM implementation is
faster than SC, and much faster compared to the MC method.

Some questions about the SROM method are still waiting
to be solved. For example, there is still no clear guideline
on how to choose the optimal sample size m of X, given
probability distribution types and the number of dimensions.
Also, the performances of the SROM and SC methods in
Section IV are based on a-posteriori evaluation. This means
that the accuracy of each method can only be revealed after
comparing the result to the reference. In fact, an a-priori
evaluation approach would be more desirable. However, this
task is extremely difficult. The reason is that the accuracy
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of the SROM solution is not solely dependent on the SROM
approximation of the real input, but also affected by the deter-
ministic mapping (i.e., the problem under investigation). As a
result, the a-priori accuracy evaluation should be tailored to
each specific EMC problem. At the current stage, proposing
a general guideline still remains as a bottleneck. On the other
hand, it will be worth investigating how the SROM method
scales with the number of random variables, given a practical
computational resource. However, it may be difficult to yield
a general conclusion. This is because the sensitivity of the
output to random variables is different in each problem, which
could affect the efficacy of the SROM method.

It is worth noting that the cable in this paper is assumed
to be a uniform transmission line with lossless and bare
wires. It would certainly be more practical and convincing
to consider the cable with some real features. However, this
assumption is acceptable in the scope of this paper. This
is because all the uncertainty sources are assumed to be
embedded in the incident plane-wave field. This random field
is the nucleus component of the statistical analysis. The cable
itself is only used as a victim for the current to be induced to.

VI. CONCLUSION

In this paper, a nonintrusive statistical approach referred to as
the SROM method has been applied to efficiently estimate the
statistics of the induced current in transmission lines excited
by a random incident plane-wave field. The robustness of the
SROM method has been validated by assuming the incident
wave to be fully statistically characterized. With the SROM
method, the accurate statistical information of the induced
current (such as the CDF, mean value, standard deviation, and
the upper bound) has been obtained with great efficiency.

The performance of the SROM method has been
thoroughly compared with other nonintrusive statistical
approaches (SC and MC) for the prediction of the field-to-
wire coupling phenomenon. It has been found that the SROM
method is more efficient than the SC method in terms of
reducing the number of simulations, and much more effi-
cient than the MC method in the examples considered. The
advantages and limitations of the SROM method have been
thoroughly discussed, such as the implementation simplicity
and the difficulty of developing the a-prior error evaluation
mechanism.

Having demonstrated the impressive accuracy and effi-
ciency of the SROM method in a typical field-to-wire
coupling problem, the idea of the SROM method can be
suggested to expedite statistical irradiation analysis in com-
plex platforms (such as the cable in aircrafts).
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