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Tsumeb is one of the world’s premier localities for arsenate (and arsenite) minerals.  At least 84 

species containing the arsenate (or arsenite) anion groups have been confirmed from Tsumeb, which 

is the type locality for 42 of them (www.tsumeb.com; accessed December 2018).   

Minerals of the adamite – olivenite solid solution series are among the most common, most colorful, 

and best crystallized of Tsumeb’s arsenates.  They occur with a diversity of other minerals, both 

common and rare, in parageneses that range from simple to complex, but with associations and colour 

combinations that are often highly attractive (fig. 1). As such, specimens of adamite – olivenite series 

minerals are generally desirable, although their precise nomenclature has been problematic, 

particularly for collectors without access to analytical facilities.   
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Adamite and Olivenite at Tsumeb; a brief history  

Olivenite was recognized at Tsumeb from the earliest years of mining. Schneider (1906) implies that 

it was somewhat uncommon, occurring either as fine-grained, amorphous aggregates with other 

secondary minerals and quartz, or in cavities as columnar crystals to 1 mm in length.  Maucher (1908) 

described blackish-green crusts and crystals of olivenite.  He also determined that the olivenite is 

commonly zinc-enriched, with the zinc lending a lighter green colour to the mineral and a tendency to 

better-formed crystals.  In particular, he described the occurrence of leek-green radial hemispheres of 

zinc-enriched olivenite on crusts of quartz. 

Klein (1938) considered olivenite to be very common at Tsumeb, occurring with malachite and 

azurite to a depth of 100 m (i.e. between the surface and 4 level), and as particularly well-formed 

crystals between 3 and 4 levels.  The Klein Collection (now at Harvard University) boasts 15 olivenite 

specimens, four of which are from the open pit and the remainder from 4 level (Klein Collection 

catalog, unpublished, MGMH collection, Harvard University).  Klein’s open pit specimens include a 

spectacular example of needle-shaped olivenite crystals (fig. 2), an unusual habit for Tsumeb, on a 

matrix of massive malachite and olivenite.  

Intriguingly, none of the pre-WWII authors appear to have recognized the occurrence of adamite.  

One reason for this is simply that compositions close to end-member adamite appear to be relatively 

scarce at Tsumeb and particularly so in the upper levels of the mine (the first oxidation zone).  It also 

appears, however, that what later collectors would call ‘cuproadamite’ or ‘cuprian adamite’ was 

commonly misidentified by pre-war observers.  There are, for example, three specimens of ‘cuprian 

adamite’ in the Klein Collection, that Klein misidentified as tsumebite (Southwood, Alonso-Perez and 

Schnaitmann, 2018), while the Karabacek Collection, which was purchased by Harvard University in 

1935, includes a specimen that Karabacek believed to be a unique example of veszelyite from 

Tsumeb, but subsequent analysis (at MGMH) showed to be simply a ‘cuprian adamite’ (fig. 3).   



On the other hand, Karabacek (unpublished collection prospectus (English transcript), circa 1934, 

MGMH Collection, Harvard University) lists “…one single specimen of cobaltoadamine from 

Tsumeb with crystals over 0.5 cm in size” (see fig. 4).   

The first mention of adamite from Tsumeb in the formal literature is by Strunz, Söhnge and Geier 

(1958).  Their list of minerals from the first oxidation zone (page 92) includes “Olivenite 

Cu2[OH/AsO4] – Adamite Zn2[OH/AsO4] (Isomorphic)” suggesting that they recognized the presence 

of different compositions within the solid solution series.  For the second oxidation zone, however, 

they list (page 94) “Olivenite (epidote-green), Adamite (yellow-brown) and their mixed crystals (blue-

green to brown)” indicating, for the first time, the identification of something they believed to be 

close to end-member adamite and a growing understanding, perhaps, of the relationships of 

intermediate compositions in the solid solution series.   

Strunz (1959) described an occurrence of ‘cuproadamite’ from 30 level in the second oxidation zone.  

He presented crystallographic drawings, unit cell parameters and optical data, suggesting that the 

occurrence was considered a significant novelty. 

As mining progressed through the second oxidation zone, however, discoveries of ‘cuproadamite’ 

became relatively common (Geier 1973/74).  Bartelke (1976) noted the rarity of end-member adamite, 

but the relative abundance of bright green ‘cuproadamite’ with varying proportions of zinc and copper 

that sometimes manifest as color zoning.  He described crystals with rhombic, pseudo-octahedral and 

prismatic habits. 

Pinch and Wilson (1977, page18) commented on the rarity of “copper-free adamite” at Tsumeb and 

their description of ‘cuproadamite’ as “…supposedly part of a continuous series to olivenite” indicates 

a continuing uncertainty as to the nature and status of the more common copper-bearing members of 

the series.   

Keller (1977; page 43) made a study of second oxidation zone parageneses and concluded that 

‘cupriferous adamite’ is more common (in the second oxidation zone) than olivenite and that it occurs 



in more complex associations.  Keller identified 19 secondary minerals that occur with ‘cupriferous 

adamite’ compared with only nine for olivenite.   

In commenting on the best specimens of adamite and ‘cuproadamite’ from Tsumeb, Key (1977; page 

48) inadvertently highlighted the labelling dilemma facing many collectors: “Cuproadamite is a 

variety of different occurrence from the relatively pure adamite…  With the exception of several 

specimens that are nothing but cuproadamite, the others grade insensibly into zincian olivenite, and 

cannot be distinguished by eye.”  

Gebhard (1999; page 157) describes the 1986 discovery of “…probably the finest cuproadamite in 

existence…” on 30 level, in the second oxidation zone, with crystals up to 5 cm associated with 

yellow ferrilotharmeyerite and sparse crystals of wulfenite (fig. 5).  Cairncross (2000; page 126) 

refers to this pocket simply as “the Famous Find”.  

Further discoveries of ‘cuproadamite’ were made in the third oxidation zone in the early 1990s. One 

of the most important, on 44 level, yielded several different habits, ranging from stubby, zoned 

crystals to 2 cm associated with the very rare minerals chudobaite and johillerite to “…tiny, white 

needle-like crystals” associated with leiteite and legrandite (Gebhard 1999; page 160).  These 

discoveries undoubtedly contributed to the established wisdom among collectors that Tsumeb 

‘cuproadamite’ is often a marker for some of Tsumeb’s rarest species and that fresh acquisitions are 

always worthy of thorough examination under the microscope.  

Adamite – Olivenite Series Nomenclature: What are we dealing with? 

Adamite, ideally Zn2(AsO4)(OH), and olivenite, ideally Cu2(AsO4)(OH) have long been recognized 

as, respectively, the zinc and copper end-members of a solid solution series of basic zinc and copper 

arsenates.  Palache et al. (1951; page 865) noted that copper substitutes for zinc “…up to at least 

1:1.33, and a partial series therefore extends towards olivenite”, while Guillemin (1956) and Minčeva-

Stephanova et al. (1965; cited by Braithwaite, 1983) demonstrated complete compositional solid 

solution between the two end-members.   



Historically, both adamite and olivenite were considered to be orthorhombic.  Heritsch (1938) was the 

first of several workers to propose structures for olivenite based on the assumption of orthorhombic 

symmetry (space group Pnnm), with further refinements by Richmond (1940; space group P212121), 

Berry (1951; Pnmm) and Walitzi (1963; Pn21m). Subsequent studies (Toman, 1977; Burns and 

Hawthorne 1995; Li et al. 2008), however, have solved the olivenite structure on the basis of 

monoclinic symmetry (space group P21n;). Toman (1977, 1978) showed that the symmetry change 

from monoclinic to orthorhombic occurs at approximately 80 mol % copper.  Back (2018) lists 

adamite as orthorhombic, and olivenite as monoclinic.  

For many years, collectors and many mineral professionals have used the terms ‘cuproadamite’, 

‘cuprian adamite’, ‘zinc-olivenite’, and ‘zincian olivenite’ to describe intermediate members of the 

adamite-olivenite series.  Commonly, such names have been assigned on the basis of color or habit 

and without supporting analysis. Braithwaite (1983) lamented nomenclature problems in the adamite-

olivenite series and suggested (page 51) that a formal definition of cuproadamite should be introduced 

to “…include all orthorhombic members of the series containing appreciable copper.”   

In 2006, the International Mineralogical Association (IMA) approved a new mineral species named 

zincolivenite (IMA 2006-047; see Chukanov et al. 2007), and the name ‘cuproadamite’ was formally 

discredited (Burke, 2006). Zincolivenite, intermediate in composition between adamite and olivenite, 

ideally has the composition CuZnAsO4(OH), with a Zn : Cu ratio of 1 : 1.  Like adamite, it is 

orthorhombic, but it is justified as a distinct species according to the ordering of zinc and copper 

between the two separate cation sites in which the progressive substitution of one metal for the other 

is believed to be site-specific.  Based on the IMA’s ‘dominant cation’ rule, Chukanov et al. (2007) 

suggested that the species should be defined by a compositional range extending between 25 and 75 

mol % copper, or from Cu0.5Zn1.5AsO4(OH) to Cu1.5Zn0.5AsO4(OH).  

The structure and crystal chemistry of the adamite-olivenite series minerals have been detailed by 

Chukanov et. al (2007), but a simplified explanation is offered here, together with a structure diagram 

(fig. 6). All members of the adamite – olivenite series have two distinct cation sites, M1 and M2, that 

can contain either zinc or copper; however, one of them, M2 (see fig. 6), favors zinc, while the other, 



M1, favors copper.  In pure end-member adamite, both sites are zinc-filled, a situation that can be 

represented by rewriting the formula as ZnZn(AsO4)(OH).  As copper starts to substitute into the 

adamite structure, the replacement is site-specific, with copper replacing zinc only in the M1 site. 

Once copper becomes the dominant cation (i.e. > 50 mol %) in that site, the overall copper ratio 

(including both cation sites) exceeds 25 mol % and the mineral moves into the compositional range of 

zincolivenite.   Eventually, all of the zinc in the copper-favoring site is replaced by copper, at which 

point the “ideal” zincolivenite composition of ZnCu(AsO4)(OH) is reached, containing 50 mol % zinc 

and 50 mol % copper overall.  Thereafter, further substitution of copper occurs in the second, zinc-

favoring M2 site.  Once copper exceeds 50 mol % in the second site (i.e. > 75 mol % overall), 

however, the upper limit of copper content by which zincolivenite is defined is exceeded. 

Potentially, this introduces a further problem of nomenclature (although not an issue in the context of 

the current article); zincolivenite is defined as containing between 25 and 75 mol % copper, but in 

synthetic members of the series the symmetry change from orthorhombic to monoclinic occurs at 

around 80 mol % copper (Toman 1977, 1978; see fig. 7).   What then is the name of a composition in 

the adamite – olivenite series containing between 75 mol % and 80 mol % copper?  Potentially such a 

composition could be defined as a new species; however, none of the specimens analysed in the 

course of the current study have mean compositions that fall between 75 and 80 mol % copper and, to 

date, we are unaware of such compositions in other natural members of the adamite – olivenite series.        

In summary, the adamite – olivenite solid solution series now includes three distinct species: adamite 

(orthorhombic), ideally Zn2(AsO4)(OH) in which zinc must be the dominant metal in both cation sites 

so that the copper content must therefore be less than 25 mol %;  zincolivenite (orthorhombic), ideally 

ZnCu(AsO4)(OH), in which neither the copper nor the zinc content can exceed 75 mol %; and 

olivenite (monoclinic), ideally Cu2(AsO4)(OH), in which copper must be the dominant metal in both 

cation sites so that the overall zinc content must be less than 25 mol % (fig. 7).  Olivenite can be 

distinguished from zincolivenite and adamite by X-ray diffraction analysis (XRD), but the diffraction 

patterns for adamite and zincolivenite are so similar that a quantitative chemical analysis is required 

for definitive confirmation of these species. 



‘Cuproadamite’ is now a discredited name (Burke, 2006) so, following the IMA rules of 

nomenclature, ‘cuproadamite’ should no longer be used for specimen labels.  The current study was 

undertaken to determine the compositions of a range of adamite – olivenite series minerals from 

Tsumeb, firstly to determine where they lie in the solid solution series and hence their correct 

identification as either adamite, zincolivenite, or olivenite, and secondly to assess whether or not these 

species names can be assigned reliably on the basis of visual properties, notably color and habit. 

Experimental 

As a first step towards an understanding of the range of compositions in the adamite – olivenite series 

at Tsumeb, 43 specimens were selected to represent a wide range of colors and habits. 34 of these 

specimens were from the collection of one of the authors (M. Southwood; denoted as “MS” 

specimens in tables 1 and 2), and the remainder were from the inventory of Crystal Classics Fine 

Minerals (“TA” specimens). Single crystals (or parts thereof), typically 1 to 2 mm in size, were 

removed from each of these specimens, mounted in resin, polished and carbon coated for quantitative 

electron microprobe analysis. 

Analyses of the MS specimens were conducted using wavelength dispersive spectrometry (WDS) at 

15 kV, 5-10 mA, with a 3–5 μm beam diameter, on a JEOL JXA-8530F field emission electron probe 

microanalyser at the Australian National University, in Canberra, Australia.  Analyses of the TA 

specimens were conducted by WDS at 15 kV, 10 nA, with a 5 μm beam diameter, on a Cameca SX 

100 electron probe microanalyser at Department of Geological Sciences, Faculty of Science, Masaryk 

University, in Brno, Czech Republic. 

All samples were analysed for the major elements arsenic, copper and zinc, and for minor elements 

cobalt, iron and phosphorus, with between 3 and 8 analyses per sample. Standards used for analysis of 

the MS specimens were:  As and Co – skutterudite; Cu – cuprite; Fe – hematite; P – apatite and Zn – 

willemite. Standards used for analysis of the TA specimens were:  As and Cu – lammerite; Co – Co 

metal; Fe – almandine; P – fluorapatite and Zn – gahnite. 



Analytical results are presented in Table 1, with the specimens listed in order of increasing mean mol 

% copper. Calculation of chemical formulae shows that none of the minor elements (P, Co, Fe) 

substitutes at more than 1 mol % in the relevant sites, and they make little practical difference to the 

results as far as the determination of mineral species is concerned (figure 8).  

Ignoring the very minor presence of iron and cobalt in the two cation sites, the calculated mol % for 

copper and zinc always sums to 100. Because the boundaries between the species – adamite, 

zincolivenite and olivenite, are defined by the ratio of Cu:Zn, the molar proportion of copper, MPCu, 

expressed as a percentage, [i.e. Cu/(Cu+Zn)*100], provides a practical measure of where each 

analysis sits in the solid solution series.  End-member adamite has MPCu = 0%, while end-member 

olivenite has a value for MPCu of 100%; values for MPCu between 25% and 75% correspond to 

zincolivenite.    

Figure 9 summarizes the distribution of the 43 specimens in the solid solution series, based on their 

mean cation proportions.  Eight specimens have mean compositions with zinc as the dominant metal 

in both cation sites (i.e. MPCu < 25%) and are therefore adamite (see figs. 10 through 17); 28 have 

mean compositions indicative of zincolivenite (i.e. MPCu between 25 % and 75 %; figs 18 through 

45), while seven specimens with mean values for MPCu  > 75 % are olivenite (figs 46 through 52).   

Caution is required in interpreting the distribution of data in figure 9, as the sample (43 specimens) is 

small and cannot be assumed to reflect the natural abundance of various adamite – olivenite series 

compositions at Tsumeb.  In particular, the impression of a trimodal distribution in figure 9 may be 

exaggerated because of sampling bias; several specimens visually identified on the basis of habit and 

color as being close to end-member compositions (both adamite and olivenite) were deliberately 

included in the study and their weighting in the sample almost certainly exceeds their natural 

representation.  The data distribution does, however, suggest a tendency for both adamite and, to a 

lesser extent, olivenite specimens to lie close to their respective end member compositions.  It should 

be noted, in this respect, that the two specimens with mean MPCu values between 15.01 and 25.00 % 

in figure 9 are ‘hybrid’ specimens containing both adamite and zincolivenite compositions (see 

Compositional Variations, below).   



The interpretation of data within the zincolivenite grouping also requires caution, although apart from 

the obvious tendency to recover the more colourful and better-formed crystals from the mine in the 

first place, a sampling bias is less likely among these specimens.  The distribution of the zincolivenite 

analyses supports a preliminary hypothesis that the compositions of Tsumeb zincolivenites are 

weighted towards the middle of the range of MPCu values by which the species is defined. 

Relationships Between Composition and Visual Properties  

The photographs of specimens analysed in this study are arranged in ascending order of copper 

content (figs. 10 through 52), and represent a progression from adamite, through zincolivenite, to 

olivenite. A quick review of these figures will show a relationship between the visual properties of the 

minerals and chemical composition that is mainly dependent on color. A simple summary of the main 

visual properties (color, transparency (diaphaneity) and habit) for each specimen is provided in Table 

2, together with the minimum, mean, and maximum values for MPCu determined by our analyses.   

The description of color in minerals can be very subjective, particularly when attempting to compare 

or distinguish shades of similar hue among crystals of varying size, habit and transparency.  

Nevertheless, consideration of our descriptions, and analytical data (Table 2) together with the 

relevant specimen photographs indicates some clear trends. 

 Specimens confirmed by analysis as adamite show considerable variation in color (see figs. 10 

through 17).  With as little subjectivity as possible, our color descriptions for these specimens 

(Table 2) include orange-yellow, yellow-green, colorless to brown, pale-yellow and magenta or 

pink.  

 Zincolivenite specimens (as confirmed by analysis) also show variation in color but essentially all 

such specimens present as greens of varying hue.  We have used three main descriptions for the 

colors of these specimens – spearmint-green (for example fig. 25), emerald-green (for example 

fig. 34), and bottle-green (for example fig. 44) and we note that the majority of specimens in this 

color range would probably have been labelled traditionally as ‘cuproadamite’. Spearmint-green 

(paler) crystals tend to lie towards the zinc-rich end of the zincolivenite range (fig. 25), while a 



high proportion of specimens described as emerald-green are close to mid-range in terms of the 

MPCu value (fig. 39).  Zincolivenite crystals described as bottle-green are usually (though not 

always) towards the copper-rich end of the zincolivenite range (fig. 44) and may include zones of 

olivenite composition (fig. 45).   

 All of the specimens determined by analysis to be olivenite (on the basis of mean composition) 

are described as blackish-green.    

As far as our limited data set allows us to determine, no useful relationship between the observed 

diaphaneity (transparency) and composition is apparent, and only tenuous relationships between habit 

and composition are observed.  There is, for example, a loose tendency for adamite compositions to 

present as equant or tabular crystals, while zincolivenite habits are much more variable, ranging from 

pseudo-octahedral and short prismatic, through long prismatic and acicular.  Radial aggregates and 

curvilinear “fans” of crystals tend to occur in compositions towards the copper-rich end of the 

zincolivenite range (figs. 43 and 45) or in olivenite (fig. 47).  

Compositional Variations 

Several of the specimens analysed include more than one adamite – olivenite series mineral in the 

paragenesis.  In some cases, crystals of different composition are present on the same specimen while 

in others, compositional zoning occurs within individual crystals.  Table 2 shows minimum, mean and 

maximum values for MPCu determined for each of the specimens analysed.  The table shows that five 

of the specimens (figs. 16 through 20) include compositions corresponding to both adamite and 

zincolivenite, while only one specimen (fig. 45) has compositions straddling the zincolivenite – 

olivenite boundary.  

It is interesting to consider some of these ‘hybrid specimens’ more closely: 

 Specimen MS 2009.048 (fig. 16) includes two distinct generations comprising (a) elongated and 

intergrown crystals of magenta adamite that is close to end-member composition (mean MPCu  = 

0.18%), and for which the color is probably due to an elevated presence of cobalt (see below), and 

(b) a banded crust of spearmint-green zincolivenite crystals with a mean MPCu of 35.46 %.    



 By contrast, individual crystals from specimen TA2-6 (fig. 17) are zoned, with compositions close 

to end-member adamite (mean MPCu = 1.72 %, and a pale-yellow color) at the base of each 

crystal, grading to zincolivenite (mean MPCu = 38.51 %, and emerald-green) at the terminations. 

 Specimen MS 2013.002 (fig. 18) also has zoned crystals, but in this case the zoning appears to be 

concentric; the paler-colored cores have the adamite composition (MPCu = 11.14 %), while the 

darker-green sheaths are zincolivenite (MPCu = 38.69 %).  

 Specimen MS 2014.001 (fig. 45) has crystals with a mean composition of zincolivenite (MPCu = 

67.01%) but with a very wide compositional range from near-ideal zincolivenite (MPCu = 50.11 

%) to zinc-rich olivenite (with MPCu = 79.35%). This is the widest compositional range 

determined for any of the samples analysed, and yet no visually discernible zoning is apparent in 

these crystals. 

Wide compositional variation, however, does not necessarily straddle species boundaries:   

 The MPCu values determined for specimen MS 2012.011 (fig. 22) range from 29.39 % – 48.86 %, 

all comfortably within the compositional boundaries of zincolivenite. Surprisingly, perhaps, there 

is no visually-apparent zoning in the crystals on this specimen.  

“Pink” Adamite 

Cobalt was determined in each of the specimens studied, specifically because of its probable role as a 

chromophore in crystals that present with a magenta or ‘pink’ hue.  Pink adamite is rare at Tsumeb, 

and only two specimens (figs. 15 and 16) were available for this study.   

The pink crystals from specimen MS 2009.048 (fig. 16) are close to end-member adamite with a value 

for MPCu of just 0.18 %, and a cobalt content of 0.054 wt % (average of 3 analyses). The pink zones 

of crystals from specimen MS 2016.076 (fig. 15) have a value for MPCu of 1.62 % and contain 0.045 

wt % Co (average of 3 analyses).   

The pink adamite from both specimens is therefore close to end-member composition, with elevated 

Co content compared to the average for all specimens analysed of 0.015 wt %. 



While these results are by no means conclusive, our working hypothesis is that slightly elevated 

cobalt levels of as little as c. 0.05 wt % in near end-member adamites may be sufficient to impart a 

distinctive pink coloration to the crystals, but that the color affect from similar cobalt levels is lost in 

specimens with higher copper content.  For example, specimen MS 2013.002 (fig. 18) has crystals 

ranging in composition from adamite (MPCu = 11.14 %) to zincolivenite (MPCu = 38.69 %) and an 

average Co tenor of 0.041 wt %, but the bottle-green color of the crystals caused by copper masks the 

potential effect of the cobalt.   

Conclusions 

Although olivenite was recognised at Tsumeb at a very early stage of mining (Schneider, 1906), zinc-

dominant members of the adamite – olivenite series were often overlooked or mis-identified by early 

observers.  As mining penetrated the second oxidation zone in the 1950s, however, ‘cuproadamite’ 

was encountered much more commonly.  

The definition of zincolivenite, a new species in the adamite – olivenite solid solution series 

(Chukanov et al. 2007) and the discreditation of the name ‘cuproadamite’ (Burke 2006) have 

important implications for how specimens should be labelled.  We perceive a reluctance, however, 

among collectors and dealers, to use the name zincolivenite, for which we suggest two reasons.   

First, there may be a view that since zincolivenite is a relatively recently defined “new” mineral it is 

probably also a rare mineral.  This is simply not so.  Based on a modern understanding of crystal 

chemistry, zincolivenite is a redefined portion of a solid solution between two very well-known end-

members (adamite and olivenite); it is not a “new mineral” in the usual sense of species discovery. 

Second, even (and especially) with a clear understanding of the relationships between adamite, 

zincolivenite, and olivenite, definitive identification of these three species requires quantitative 

chemical analysis, and relatively few collectors have the inclination (or budget) to commission 

electron microprobe analyses.   

Following the approval of zincolivenite as a new species, Braithwaite, Green and Tindle (2009) 

conducted a study of the distribution of adamite and zincolivenite in the British Isles, noting that the 



majority of pre-2007 identifications of adamite had been based largely on XRD analysis, which is no 

longer reliable given the close similarity of the zincolivenite X-ray spectrum.  On the basis of over 50 

quantitative (WDS) analyses of adamite – olivenite series minerals from a variety of British localities 

they concluded that zincolivenite is “…a term which for most practical purposes is a synonym of 

‘cuproadamite’” (Braithwaite, Green and Tindle (2009), page 10) and that “…the adamite to 

zincolivenite solid solution is one of the cases where colour provides a reasonable guide to 

composition.”   

The analytical results from the current study suggest that the same is true at Tsumeb. Quantitative 

analysis is certainly desirable for definitive discrimination between adamite and zincolivenite, or 

zincolivenite and olivenite, particularly where zoned crystals are present. The relationship between 

color and mean composition is such, however, that zincolivenite (spearmint-green, emerald-green, 

bottle-green) can be distinguished from olivenite (blackish-green) and adamite (colorless, yellow, 

pink, brown) with reasonable confidence.   
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Figures and Tables 

 
Table 1. Mean compositions of adamite – olivenite series minerals, sampled from 43 Tsumeb 

specimens. Specimen numbers are shown in column 1, and a photograph of each specimen is 

included in this article according to the figure numbers in column 2.  Column 3 shows the number of 

analyses (n) on which the mean composition data (columns 4 through 10) are based. Calculated mol 

% for copper and zinc are shown in columns 11 and 12; column 13 shows the adjusted mol percent 

copper (MPCu; defined as Cu/(Cu+Zn)*100); columns 14 and 15 show the number of copper and zinc 

atoms per formula unit and column 15 identifies the mineral species on the basis of the MPCu value 

(column 13). 

  

MP Cu defined as 

Specimen Photo n CuO ZnO FeO CoO P2O5 As2O5 Total Cu (mol %) Zn (mol %) Cu/(Cu+Zn)*100 Cu Zn Indicated Mineral

MS 2014.068 Fig. 10 1 0.002 57.220 0.357 0.029 0.002 40.410 98.020 0.00 99.24 0.00 0.00 1.99 Adamite

MS 2014.149 Fig. 11 3 0.337 57.323 0.217 0.021 0.001 40.690 98.590 0.60 98.94 0.60 0.01 1.98 Adamite

MS 2016.072 Fig. 12 3 0.438 56.367 0.357 0.041 0.002 40.433 97.638 0.78 98.43 0.79 0.02 1.97 Adamite

TA2-10 Fig. 13 6 0.593 53.980 1.382 0.046 0.000 39.977 95.978 1.08 96.05 1.11 0.02 1.91 Adamite

MS 2015.065 Fig. 14 3 0.981 55.540 0.103 0.000 0.026 40.170 96.819 1.77 98.02 1.77 0.04 1.95 Adamite

MS 2016.076 Fig. 15 6 3.188 54.938 0.011 0.041 0.027 40.658 98.863 5.60 94.30 5.60 0.11 1.90 Adamite

MS 2009.048 Fig. 16 6 9.973 47.267 0.021 0.030 0.026 40.307 97.623 17.74 82.16 17.76 0.36 1.65 Adamite

TA2-6 Fig. 17 8 12.116 43.383 0.179 0.038 0.063 40.059 95.838 22.13 77.44 22.22 0.44 1.54 Adamite

MS 2013.002 Fig. 18 3 15.160 42.533 0.107 0.041 0.048 39.687 97.576 26.65 73.07 26.72 0.54 1.49 Zincolivenite

MS 2013.014 Fig. 19 3 15.460 41.900 0.272 0.000 0.176 39.570 97.378 27.26 72.21 27.41 0.55 1.47 Zincolivenite

TA1-2 Fig. 20 8 16.423 38.802 0.211 0.000 0.124 40.496 96.056 30.09 69.48 30.22 0.59 1.37 Zincolivenite

MS 2011.084 Fig. 21 2 17.915 39.795 0.006 0.017 0.080 39.830 97.643 31.52 68.43 31.54 0.64 1.39 Zincolivenite

MS 2012.011 Fig. 22 3 21.323 36.187 0.064 0.015 0.085 39.577 97.250 37.56 62.29 37.61 0.76 1.27 Zincolivenite

MS 1986.001 Fig. 23 3 22.737 34.023 0.154 0.021 0.041 40.080 97.055 40.47 59.19 40.61 0.81 1.19 Zincolivenite

TA1-5 Fig. 24 8 22.409 31.195 0.000 0.015 0.152 39.491 93.262 42.35 57.62 42.36 0.83 1.13 Zincolivenite

MS 2018.027 Fig. 25 4 23.805 32.683 0.026 0.022 0.115 39.868 96.518 42.66 57.24 42.70 0.86 1.15 Zincolivenite

MS 2010.189 Fig. 26 3 24.220 32.010 0.058 0.000 0.092 39.700 96.079 43.59 56.30 43.64 0.88 1.13 Zincolivenite

MS 2012.012 Fig. 27 3 24.283 32.010 0.024 0.019 0.083 39.827 96.247 43.66 56.25 43.70 0.88 1.13 Zincolivenite

MS 2016.004 Fig. 28 4 24.775 31.925 0.109 0.008 0.064 39.550 96.431 44.16 55.61 44.26 0.89 1.13 Zincolivenite

TA2-8 Fig. 29 7 24.713 30.715 0.099 0.000 0.102 40.080 95.709 45.06 54.74 45.15 0.89 1.09 Zincolivenite

MS 2015.051 Fig. 30 3 25.453 31.233 0.074 0.038 0.050 40.090 96.939 45.37 54.41 45.47 0.91 1.09 Zincolivenite

MS 2018.056 Fig. 31 3 25.397 30.970 0.106 0.006 0.073 40.053 96.605 45.52 54.26 45.62 0.91 1.09 Zincolivenite

MS 2014.108 Fig. 32 3 25.077 29.893 0.019 0.013 0.141 39.143 94.286 46.16 53.78 46.19 0.92 1.07 Zincolivenite

MS 2010.017 Fig. 33 3 26.420 29.997 0.144 0.019 0.075 39.657 96.311 47.25 52.43 47.40 0.95 1.06 Zincolivenite

MS 2016.075 Fig. 34 6 26.937 29.905 0.063 0.023 0.079 39.792 96.798 47.88 51.95 47.96 0.97 1.05 Zincolivenite

MS 2012.013 Fig. 35 3 27.360 29.183 0.009 0.016 0.124 40.323 97.017 48.94 51.01 48.96 0.98 1.02 Zincolivenite

MS 2005.043 Fig. 36 3 27.473 29.123 0.013 0.004 0.063 39.327 96.003 49.10 50.87 49.11 1.00 1.03 Zincolivenite

MS 2018.058 Fig. 37 4 27.838 28.833 0.010 0.027 0.126 39.933 96.765 49.66 50.27 49.69 1.00 1.01 Zincolivenite

TA1-3 Fig. 38 6 27.476 27.293 0.043 0.000 0.061 40.139 95.012 50.70 49.22 50.74 1.00 0.97 Zincolivenite

MS 2005.044 Fig. 39 3 28.543 27.783 0.013 0.006 0.035 39.907 96.287 51.23 48.73 51.25 1.03 0.98 Zincolivenite

MS 2010.101 Fig. 40 3 28.847 28.033 0.011 0.000 0.036 40.197 97.124 51.28 48.70 51.29 1.03 0.98 Zincolivenite

MS 2016.044 Fig. 41 3 29.330 27.190 0.015 0.009 0.016 39.690 96.250 52.44 47.51 52.46 1.06 0.96 Zincolivenite

TA1-4 Fig. 42 6 29.421 26.404 0.000 0.000 0.013 40.536 96.374 53.27 46.73 53.27 1.06 0.93 Zincolivenite

MS 2017.069 Fig. 43 6 31.057 25.638 0.031 0.013 0.095 39.870 96.703 55.30 44.62 55.35 1.11 0.90 Zincolivenite

MS 2009.064 Fig. 44 3 36.270 20.410 0.101 0.018 0.118 39.900 96.816 64.37 35.40 64.52 1.30 0.71 Zincolivenite

MS 2014.001 Fig. 45 3 37.487 18.880 0.098 0.019 0.069 39.520 96.072 66.86 32.91 67.01 1.35 0.67 Zincolivenite

MS 1985.018 Fig. 46 3 45.903 11.467 0.149 0.026 0.454 39.563 97.562 80.11 19.56 80.38 1.63 0.40 Olivenite

TA2-7 Fig. 47 8 49.016 6.858 0.026 0.000 0.122 40.056 96.078 87.93 12.02 87.97 1.76 0.24 Olivenite

MS 1988.001 Fig. 48 3 52.227 4.087 0.069 0.012 0.184 39.523 96.102 92.75 7.09 92.90 1.88 0.14 Olivenite

MS 1984.043 Fig. 49 4 54.453 1.821 0.078 0.001 0.704 39.295 96.352 96.69 3.16 96.84 1.94 0.06 Olivenite

TA2-9 Fig. 50 6 54.193 1.681 0.000 0.000 0.124 40.275 96.273 97.06 2.94 97.06 1.94 0.06 Olivenite

MS 2017.023 Fig. 51 3 55.453 1.138 0.240 0.001 0.887 38.303 96.022 97.57 1.96 98.03 1.99 0.04 Olivenite

MS 2017.053 Fig. 52 7 55.554 0.928 0.007 0.006 0.735 38.887 96.119 98.37 1.61 98.39 1.99 0.03 Olivenite

Analysis - Wt % (mean of n  analyses) Cations: (mean of n  analyses) APFU



 

Table 2. Copper content (minimum, mean, and maximum values for MPCu) and simple visual 

properties for 43 specimens of adamite – olivenite series minerals from Tsumeb, arranged in 

ascending order of mean copper content.  Compositions indicative of adamite are shown in yellow, 

zincolivenite in lime-green, and olivenite in olive-green. 

Low Mean High n Photo Color / diaphaneity / habit Indicated mineral species and comments

MS 2014.068 0.00 0.00 0.00 1 Fig. 10 Orange-yellow; translucent; equant Adamite (essentially end-member composition)

MS 2014.149 0.32 0.60 1.13 3 Fig. 11 Greenish-yellow; translucent; equant Adamite (close to end-member composition)

MS 2016.072 0.03 0.79 1.74 3 Fig. 12 Colorless to brown; transparent; equant Adamite (close to end-member composition)

TA2-10 0.02 1.11 3.25 6 Fig. 13 Orange-yellow; translucent; long prismatic Adamite (close to end-member composition)

MS 2015.065 0.65 1.77 2.82 3 Fig. 14 Pale yellow; opaque; tabular Adamite (close to end-member composition)

MS 2016.076 0.00 5.60 18.04 6 Fig. 15 Yellowish brown, pink (zoned); translucent; pseudo-octahedral Adamite (variable composition; locally copper-rich)

MS 2009.048 0.03 17.76 36.68 6 Fig. 16 (1) Pink; translucent; elongate;  and (2) green; opaque Adamite / zincolivenite; mean composition is adamite

TA2-6 1.72 22.22 38.51 8 Fig. 17 Yellow, to green (zoned); translucent; long prismatic Adamite / zincolivenite; mean composition is adamite

MS 2013.002 11.14 26.72 38.69 3 Fig. 18 Bottle-green (zoned); translucent; pseudo-octahedral Adamite / zincolivenite; mean composition is zincolivenite

MS 2013.014 16.06 27.41 37.87 3 Fig. 19 Emerald-green (zoned); translucent; pseudo-octahedral Adamite / zincolivenite; mean composition is zincolivenite

TA1-2 13.87 30.22 41.33 8 Fig. 20 Pale-green (zoned), translucent, short prismatic Adamite / zincolivenite; mean composition is zincolivenite

MS 2011.084 27.72 31.54 35.31 2 Fig. 21 Spearmint-green; opaque; equant Zincolivenite

MS 2012.011 29.39 37.61 48.86 3 Fig. 22 Emerald-green; transparent; pseudo-octahedral Zincolivenite (wide compositional range)

MS 1986.001 37.87 40.61 42.70 3 Fig. 23 Spearmint-green; translucent; equant Zincolivenite

TA1-5 38.73 42.36 48.97 8 Fig. 24 Spearmint-green; opaque; short prismatic Zincolivenite

MS 2018.027 40.40 42.70 45.36 4 Fig. 25 Spearmint-green; opaque; short prismatic Zincolivenite

MS 2010.189 39.39 43.64 43.98 3 Fig. 26 Spearmint-green; opaque; equant Zincolivenite

MS 2012.012 37.29 43.70 47.30 3 Fig. 27 Spearmint-green; translucent; elongated / acicular Zincolivenite

MS 2016.004 41.92 44.26 46.41 4 Fig. 28 Gray-green; opaque; equant Zincolivenite

TA2-8 43.70 45.15 47.75 7 Fig. 29 Spearmint-green; opaque; equant Zincolivenite

MS 2015.051 42.56 45.47 48.31 3 Fig. 30 Spearmint-green; opaque; prismatic Zincolivenite

MS 2018.056 44.65 45.62 46.88 3 Fig. 31 Spearmint-green; translucent; prismatic Zincolivenite

MS 2014.108 43.86 46.19 48.25 3 Fig. 32 Spearmint-green; opaque; prismatic Zincolivenite

MS 2010.017 42.33 47.40 51.37 3 Fig. 33 Spearmint-green; opaque; short prismatic Zincolivenite

MS 2016.075 43.69 47.96 52.98 6 Fig. 34 Emerald-green; translucent; pseudo-octahedral Zincolivenite

MS 2012.013 45.25 48.96 51.75 3 Fig. 35 Emerald-green; translucent; prismatic Zincolivenite

MS 2005.043 47.13 49.11 51.36 3 Fig. 36 Emerald-green; translucent; prismatic Zincolivenite

MS 2018.058 47.23 49.69 52.01 4 Fig. 37 Emerald-green; translucent; prismatic (acicular) Zincolivenite

TA1-3 46.24 50.74 55.13 6 Fig. 38 Emerald-green; translucent; prismatic / radial aggregates Zincolivenite

MS 2005.044 51.13 51.25 51.38 3 Fig. 39 Emerald-green; transparent; prismatic Zincolivenite (very narrow compositional range)

MS 2010.101 50.78 51.29 51.78 3 Fig. 40 Emerald-green; transparent; prismatic Zincolivenite (very narrow compositional range)

MS 2016.044 51.03 52.46 54.40 3 Fig. 41 Emerald-green; translucent; pseudo-octahedral Zincolivenite

TA1-4 50.3 53.27 56.26 6 Fig. 42 Emerald-green; translucent; prismatic Zincolivenite

MS 2017.069 49.83 55.35 60.37 6 Fig. 43 Emerald-green; transparent; prismatic / radial aggregates Zincolivenite

MS 2009.064 63.57 64.52 66.06 3 Fig. 44 Bottle-green; translucent; prismatic / radial aggregates Zincolivenite

MS 2014.001 50.11 67.01 79.35 3 Fig. 45 Bottle-green; translucent; composite radial aggregates Zincolivenite / olivenite; mean composition is zincolivenite

MS 1985.018 79.39 80.38 80.89 3 Fig. 46 Blackish-green; translucent; 'bow-tie' radial aggregates Olivenite; zinc-enriched

TA2-7 81.16 87.97 94.46 8 Fig. 47 Blackish-green; translucent; composite radial aggregates Olivenite; zinc-enriched

MS 1988.001 90.70 92.90 95.30 3 Fig. 48 Blackish-green; translucent; prismatic Olivenite; zinc-enriched

MS 1984.043 95.63 96.84 98.30 4 Fig. 49 Blackish-green; translucent; short prismatic Olivenite

TA2-9 94.78 97.06 97.82 6 Fig. 50 Blackish-green; translucent; long prismatic Olivenite

MS 2017.023 97.23 98.03 98.62 3 Fig. 51 Blackish-green; translucent; equant / short prismatic Olivenite (close to end-member composition)

MS 2017.053 97.58 98.39 99.13 7 Fig. 52 Blackish-green; translucent; short prismatic Olivenite (close to end-member composition)

MP Cu = Cu/(Cu+Zn)*100



 

Figure 1. Crystals of translucent, emerald-green zincolivenite (to 11 mm) associated with aggregates 

of mustard-yellow ferrilotharmeyerite.  2.6 cm.  Malcolm Southwood specimen and photo. 

 

 

Figure 2.  Acicular crystals (to 20 mm) of translucent, olive green olivenite on crystallized malachite 

lining a vug in a 20 cm boulder of massive malachite and olivenite from the Tsumeb open pit. This 

habit of olivenite is uncommon at Tsumeb and appears to have occurred only in the near-surface 

portion of the deposit. The specimen is number 1050 in the collection of Wilhelm Klein. Field of view 

is 9 cm.  Courtesy of the Mineralogical & Geological Museum at Harvard University, Olivenite; 

MGMH ID# 106045, Tsumeb; Namibia. @ copyright 2012, President and Fellows of Harvard College. 

All rights reserved. Malcolm Southwood photo. 



  
 

Figure 3.  Specimen number 2640 from the Karabacek Collection, labelled by its original owner as 

‘veszelyite’, but identified as ‘adamite’ by X-ray diffraction at Harvard.  Field of view is 3.5 cm in a 7.5 

cm specimen from the first oxidation zone at Tsumeb. Courtesy of the Mineralogical & Geological 

Museum at Harvard University, Adamite; MGMH ID# 93856, Tsumeb; Namibia. @ copyright 2012, 

President and Fellows of Harvard College. All rights reserved. Malcolm Southwood photo. 

 

 

Figure 4. The famous ‘cobaltoan adamite’ specimen from the Karabacek Collection (# 4318) at 

Harvard University.  Adamite crystals (to 7 mm) cover one side of the specimen and their 

terminations are blackish-green in color.  Broken surfaces, however, reveal magenta tints attributed 

to the presence of cobalt. 11 cm specimen, from the first oxidation zone at Tsumeb.   Courtesy of the 

Mineralogical & Geological Museum at Harvard University, Adamite; MGMH ID# 93828, Tsumeb; 

Namibia. @ copyright 2012, President and Fellows of Harvard College. All rights reserved. Malcolm 

Southwood photo. 



   

Figure 5.  Emerald-green crystals of ‘cuproadamite’ associated with powdery lemon-yellow 

ferrilotharmeyerite.  The specimen was recovered from 30 level in the second oxidation zone in 

1986. 10.9 cm. Des Sacco specimen; Bruce Cairncross photo. 

 

 

Figure 6. Atomic arrangement of the adamite-olivenite series. The M1 and M2 octahedral sites are 

indicated by different shades of green. Arsenic resides on the tetrahedral site (blue) and oxygen 

atoms are indicated by pink spheres.  Rendering created with VESTA 3 (Momma and Izumi 2011). 



 

Figure 7.  The adamite – olivenite solid solution series includes three mineral species (adamite, 

zincolivenite and olivenite) defined by the proportions of copper and zinc in each of two ordered 

cation sites in the crystal structure.  Adamite and zincolivenite are both orthorhombic, while 

olivenite is monoclinic; however, the symmetry change occurs at circa 80 mol % copper, so that the 

speciation for compositions between 75 mol % and 80 mol % copper is poorly defined.  For the 

purpose of this study we would consider compositions with > 75 mol % copper to be olivenite. 

 

 

Figure 8. Mean zinc and copper content expressed as atoms per formula unit (APFU) for 43 

specimens of adamite – olivenite series minerals from Tsumeb.  The (small) deviations from a 

straight-line (unit) plot are attributable to the minor presence of iron and cobalt in some of the 

specimens. 8 specimens (with Cu < 0.5 APFU) plot as adamite (yellow circles) while 7 specimens 

(with Cu > 1.5 APFU) plot as olivenite (olive-green squares). The remaining 28 specimens (green 

triangles) plot in the compositional field defining zincolivenite, with Cu between 0.5 and 1.5 APFU. 
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Figure 9.  Distribution of mean compositions of 43 specimens of adamite – olivenite series minerals 

from Tsumeb.  Adamite (yellow) specimens appear towards the left of the chart (i.e. lower Cu 

content); zincolivenite (green) in the center and olivenite (olive-green; higher Cu content) on the 

right. 

 

 

Figure 10.  Orange-yellow crystals of adamite (to 2 mm) over massive sulfide. This is essentially end-

member adamite, with a value for MPCu of < 0.01%.  3.7 cm.  Malcolm Southwood specimen (# MS 

2014.068) and photo.   



 

Figure 11.  Yellow-green, partly transparent crystals of adamite (to 18 mm) associated with off-white 

crystals of smithsonite (EDS confirmed). The mean MPCu value of just 0.60 % (range: 0.32 – 1.13 %) is 

indicative of near end-member adamite, but it has a distinct greenish color. 6 cm.  Malcolm 

Southwood specimen (# MS 2014.149) and photo.   

 

 

Figure 12.  Equant crystals (to 5 mm) of transparent, colorless to amber-brown adamite, on a 

siliceous matrix, with goethite.  The mean MPCu is 0.79 % (range: 0.03 – 1.74 %), so the adamite is 

close to end member composition and, in this case, the minor copper content does not appear to 

influence the color. 4.5 cm.  Malcolm Southwood specimen (# MS 2016.072) and photo.   

 



 

Figure 13. Long prismatic crystals of orange-yellow adamite on mineralised dolostone. The mean 

MPCu is 1.11 % (range: 0.02 – 3.25 %), so the adamite is close to end member composition. 10 cm. 

Crystal Classics specimen and photo. 

 

Figure 14.  Thick, tabular, crystals of yellow adamite (to 3 mm), on a sub-botryoidal crust of white 

scalenohedral smithsonite crystals. The mean MPCu is 1.77 % (range: 0.65 – 2.82 %), so the adamite is 

close to end member composition. 8.5 cm.  Malcolm Southwood specimen (# MS 2015.065) and 

photo.   

 



 

Figure 15.  This specimen includes adamite – olivenite series minerals of several compositions.  The 

pseudo-octahedral crystals at upper right (as photographed) are yellowish-brown in color, but some 

have a distinct pinkish blush. The mean MPCu for the brown crystals is 9.38 % (range: 0.88 – 18.04 %) 

while the pinkish crystals contain a mean MPCu of 1.62 % (range: 0.27 – 4.60 %).  The mean cobalt 

content of the pinkish crystals is 0.045 wt % (see text for further details). 9.5 cm.  Malcolm 

Southwood specimen (# MS 2016.076) and photo.   

 

Figure 16.  Densely intergrown blades of magenta-coloured adamite crystals (mean MPCu  = 0.18 %), 

abruptly transitioning to a banded crust of spearmint-green zincolivenite (mean MPCu = 35.46 %). 

The mean cobalt content of the magenta crystals is 0.054 wt % (see text for further details). 3.8 cm.  

Malcolm Southwood specimen (# MS 2009.048) and photo.   



 

Figure 17.  Elongated, prismatic crystals (to 5 mm) with a marked color zoning, ranging in 

composition from near end-member adamite to zincolivenite. The pale-yellow base of the crystals 

has a value for MPCu of 1.72 %, close to end-member adamite, grading up into yellow-green copper-

rich adamite, and green terminations with a value for MPCu of 38.51 % which lies well within the 

compositional field of zincolivenite. The mean MPCu is 22.22 %.  5 cm specimen. Crystal Classics 

specimen; John Schneider photo.   

 

Figure 18.  Pseudo-octahedral crystals (to 6 mm) of bottle-green zincolivenite (mean MPCu = 26.85 %) 

associated with a yellow micro-botryoidal mineral of the tsumcorite group.  The zincolivenite crystals 

are zoned, with paler, frosted cores. WDS analysis shows that zones of both adamite and 

zincolivenite are present in these crystals, with MPCu ranging from 11.14 % to 38.69 %. 3 cm. 

Malcolm Southwood specimen (# MS 2013.002) and photo.   



 

Figure 19.  Equant (pseudo-octahedral) crystals (to 3 mm) of green adamite / zincolivenite (mean 

MPCu = 27.41 %). The crystals are zoned, with paler, frosted cores. WDS analysis shows that zones of 

both adamite and zincolivenite are present in these crystals, with MPCu ranging from 16.06 % to 

37.87 %. 2.5 cm. Malcolm Southwood specimen (# MS 2013.014) and photo.   

 

 

Figure 20. Short, prismatic crystals of adamite / zincolivenite (mean MPCu = 30.22 %) with pale cores 

of adamite (MPCu = 13.87 %) sheathed in darker green zincolivenite (MPCu = 41.33 %). 4 cm 

specimen. Crystal Classics specimen; John Schneider photo. 



 

 

Figure 21. Equant, spearmint-green crystals (to 1 mm) of zincolivenite (mean MPCu = 31.54 %; range: 

27.72 – 35.31 %), overgrowing arborescent aggregates of spheroidal duftite / conichalcite. 7 cm. 

Malcolm Southwood specimen (# MS 2011.084) and photo.   

 

Figure 22. Gemmy crystals (to 3 mm) of emerald-green zincolivenite (mean MPCu = 37.61 %; range: 

29.39 – 48.86 %), many of them doubly terminated, on etched and corroded quartz, with an 

unidentified (yellow) mineral of the tsumcorite group. The zincolivenite crystals appear zoned, which 

is consistent with the wide compositional range. 2.5 cm. Malcolm Southwood specimen (# MS 

2012.011) and photo.   



 

 

Figure 23. Equant, spearmint-green crystals of zincolivenite (mean MPCu = 40.61 %; range: 37.87 – 

42.70 %) over silicified dolostone.  2.5 cm.  Malcolm Southwood specimen (# MS 1986.001) and 

photo.   

 

 

Figure 24. A crust of intergrown, short prismatic crystals (to 8 mm) of spearmint-green zincolivenite 

(mean MPCu = 42.36 %; range = 38.73 – 48.97 %). 5 cm specimen. Crystal Classics specimen; John 

Schneider photo. 

 



 

Figure 25. Prismatic crystals (to 4 mm) of spearmint-green zincolivenite (mean MPCu = 42.70 %; 

range: 40.40 – 45.36 %), associated with quartz, rosasite and minor duftite / conichalcite.  6 cm.  

Malcolm Southwood specimen (# MS 2018.027) and photo.   

 

 

Figure 26. Equant, stubby crystals of spearmint-green zincolivenite (mean MPCu = 43.64 %; range: 

39.39 – 43.98 %) over silicified dolostone. 3 cm.  Malcolm Southwood specimen (# MS 2010.189) and 

photo.   

 



 

Figure 27. Sprays of elongated blades (to 10 mm) of spearmint-green zincolivenite (mean MPCu =  

43.70 %; range: 37.29 to 47.30 %).  3 cm.  Malcolm Southwood specimen (# MS 2012.012) and 

photo.   

 

 

Figure 28. Aggregates of equant, bottle-green crystals (sub-mm) of zincolivenite (mean MPCu = 44.26 

%; range: 41.92 – 44.26 %), in a vug lined with bright yellow zincgartrellite (EDS confirmed). 5.5 cm.  

Malcolm Southwood specimen (# MS 2016.004) and photo.  

 



 

Figure 29.  Equant, spearmint-green crystals of zincolivenite (mean MPCu = 45.15 %; range = 43.70 – 

47.75 %). 8 cm. Crystal Classics specimen and photo.   

  

 

Figure 30. Elongated prismatic crystals (to 10 mm) of spearmint-green zincolivenite (mean MPCu = 

45.47 %; range: 42.56 – 48.31 %), on quartz that is partly coated with goethite and sparse tabular 

crystals of butterscotch-colored wulfenite. This 5.5 cm specimen was collected from the second 

oxidation zone by the late John Innes, chief mineralogist at Tsumeb in the early 1980s. Malcolm 

Southwood specimen (# MS 2015.051) and photo.  



 

 

Figure 31. Spearmint-green, intergrown crystals (to 1.5 mm) of zincolivenite (mean MPCu = 45.62 %; 

range: 44.65 – 46.88 %) forming a crust over tennantite crystals (to 40 mm). A little malachite is also 

present. 7 cm.  Malcolm Southwood specimen (# MS 2018.056) and photo.  

 

Figure 32. Spearmint-green, elongated crystals (to 8 mm) of zincolivenite (mean MPCu = 46.19 %; 

range: 43.86 – 48.25 %) associated with microbotryoidal aggregates of tangeite (XRD/EDS 

confirmed). 3.5 cm. Malcolm Southwood specimen (# MS 2014.108) and photo.  

 



 

Figure 33. Short, terminated prismatic crystals (to 3 mm) of spearmint-green zincolivenite (mean 

MPCu = 47.40 %; range: 42.33 – 51.37 %) associated with botryoids of fibrous malachite, on quartz. 

4.5 cm. Malcolm Southwood specimen (# MS 2010.017) and photo.  

 

 

Figure 34. Pseudo-octahedral crystals (to 1.5 mm) of highly translucent, emerald-green zincolivenite 

(mean MPCu = 47.96 %; range: 43.69 – 52.98 %) associated with a powdery yellow mineral of the 

tsumcorite group. 6 cm. Malcolm Southwood specimen (# MS 2016.075) and photo.  

 



 

Figure 35. Fans of frosted, pale emerald-green, elongated crystals (to 8 mm) of zincolivenite (mean 

MPCu = 48.96 %; range: 45.25 – 51.75 %), peppered with a powdery yellow mineral of the tsumcorite 

group. 3 cm. Malcolm Southwood specimen (# MS 2012.013) and photo.  

 

 

Figure 36. Slender prismatic crystals (to 4 mm) of emerald-green zincolivenite (mean MPCu = 49.11 %; 

range: 47.13 – 51.36 %) with sub-spherical tufts of acicular olive-green duftite (EDS confirmed). 2.3 

cm. Malcolm Southwood specimen (# MS 2005.043) and photo.  

 



 

Figure 37. Tightly intergrown acicular crystals of emerald-green zincolivenite (mean MPCu = 49.69 %; 

range: 47.23 – 52.01 %) forming radial sprays, associated with a powdery yellow mineral of the 

tsumcorite group. 5.2 cm. Malcolm Southwood specimen (# MS 2018.058) and photo.  

 

 

Figure 38. Radial fans of long prismatic crystals of emerald-green zincolivenite (mean MPCu = 50.74 

%; range = 46.24 – 55.13 %) on a mineralized, siliceous matrix. 2.5 cm specimen.  Crystal Classics 

specimen; John Schneider photo. 

 



 

Figure 39.  Elongated and striated crystals (to 8 mm) of transparent, emerald-green zincolivenite 

(mean MPCu = 51.25 %; range: 51.13 – 51.38 %), associated with drusy sprays of mustard yellow to 

brown ferrilotharmeyerite, on a matrix of massive sulfide with quartz. 2.7 cm. Malcolm Southwood 

specimen (# MS 2005.044) and photo.  

 

 

Figure 40.  Pale emerald-green crystals of zincolivenite (mean MPCu = 51.29 %; range: 50.78 – 51.78 

%), associated with colorless-white schultenite, on a matrix of massive sulfide with quartz. 2.1 cm. 

Malcolm Southwood specimen (# MS 2010.101) and photo.  

 



 

Figure 41.  Pseudo-octahedral crystals of emerald-green zincolivenite (mean MPCu = 52.46 %; range: 

51.03 – 54.40 %), associated with blackish-green prismatic crystals of olivenite (EDS analysis only), 

and a powdery yellow mineral of the tsumcorite group. 4.5 cm. Malcolm Southwood specimen (# MS 

2016.044) and photo.  

 

Figure 42. Prismatic crystals of gemmy, emerald-green zincolivenite (mean MPCu = 53.27 %; range = 

49.83 – 60.37 %), associated with minor colorless schultenite, and quartz.  6 cm specimen. Crystal 

Classics specimen; John Schneider photo. 

 



 

Figure 43. Fans of curvilinear crystals of emerald-green zincolivenite (mean MPCu = 55.35 %; range: 

49.83 – 60.37 %) forming discoidal aggregates over a carpet of smaller crystals of the same mineral, 

associated with quartz, goethite and wulfenite. 9.5 cm. Malcolm Southwood specimen (# MS 

2017.069) and photo.  

 

Figure 44. Intergrown crystals of bottle-green zincolivenite (mean MPCu = 64.52 %; range: 63.57 – 

66.06 %) associated with yellow gartrellite (XRD/EDS confirmed). Field of view is 4 cm (in a 9 cm 

specimen). Malcolm Southwood specimen (# MS 2009.064) and photo.  

 



 

Figure 45. Curvilinear, fan-shaped crystals of bottle-green zincolivenite (mean MPCu = 67.01 %; range: 

50.11 – 79.35 %) associated with a yellow tsumcorite group mineral.  While the mean MPCu value for 

this specimen lies within the compositional range of zincolivenite, the maximum value indicates that 

zones of olivenite are also present. This 4 cm specimen was collected by the late John Innes, chief 

mineralogist at Tsumeb in the early 1980s, from 35 level north-east, in the second oxidation zone. 

Malcolm Southwood specimen (# MS 2014.001) and photo.  

 

Figure 46. A ‘bow-tie’ aggregate of greenish-black olivenite crystals (mean MPCu = 80.38 %; range: 

79.39 – 80.89 %), associated with equant crystals of lighter green duftite / conichalcite and slender 

individual prisms (to 2.5 mm) of yellow-green olivenite (EDS analysis only) on quartz. 2 cm. Malcolm 

Southwood specimen (# MS 1985.018) and photo.  



 

 

Figure 47. Curvilinear aggregates (to 10 mm) of blackish-green olivenite (mean MPCu = 87.97 %; range 

= 81.16 – 87.97 %), on quartz. 5 cm. Crystal Classics specimen; John Schneider photo. 

 

Figure 48.  Composite blades of blackish-green olivenite (mean MPCu = 92.90 %; range: 90.70 – 95.30 

%), associated with a partial crust of malachite, over quartz. 3.5 cm. Malcolm Southwood specimen 

(# MS 1988.001) and photo.  



 

Figure 49.  Short prismatic crystals of blackish-green olivenite (mean MPCu = 96.84 %; range: 95.63 – 

98.30 %), overgrown by isolated botryoidal aggregates of fibrous malachite (to 1 mm) in a vug in 

massive olivenite with relict sulfide. 5.5 cm. Malcolm Southwood specimen (# MS 1984.043) and 

photo.  

 

 

 

Figure 50.  Elongated prismatic crystals of blackish-green olivenite (mean MPCu = 97.06 %; range: 

94.78 – 97.82 %), intergrown in a shallow vug in a matrix of brecciated apple-green arsenates 

(undetermined) with malachite and minor azurite. 11 cm. Crystal Classics specimen and photo. 



 

 

Figure 51. Blackish-green crystals (to 2 mm) of olivenite (mean MPCu = 98.03 %; range: 97.23 – 98.62 

%) in a vug in massive olivenite, associated with minor malachite and arsentsumebite.  7 cm. 

Malcolm Southwood specimen (# MS 2017.023) and photo.  

 

 

Figure 52. Stout prismatic crystals of bottle-green to blackish-green olivenite (mean MPCu = 98.39 %; 

range: 97.58 – 99.13 %), with minor azurite, malachite after azurite, and botryoidal malachite. The 

olivenite crystals are locally quite gemmy with yellowish-green translucency. 4.5 cm. Malcolm 

Southwood specimen (# MS 2017.053) and photo.  



Figures and Tables 

 
Table 1. Mean compositions of adamite – olivenite series minerals, sampled from 43 Tsumeb 

specimens. Specimen numbers are shown in column 1, and a photograph of each specimen is 

included in this article according to the figure numbers in column 2.  Column 3 shows the number of 

analyses (n) on which the mean composition data (columns 4 through 10) are based. Calculated mol 

% for copper and zinc are shown in columns 11 and 12; column 13 shows the adjusted mol percent 

copper (MPCu; defined as Cu/(Cu+Zn)*100); columns 14 and 15 show the number of copper and zinc 

atoms per formula unit and column 15 identifies the mineral species on the basis of the MPCu value 

(column 13). 

  

MP Cu defined as 

Specimen Photo n CuO ZnO FeO CoO P2O5 As2O5 Total Cu (mol %) Zn (mol %) Cu/(Cu+Zn)*100 Cu Zn Indicated Mineral

MS 2014.068 Fig. 10 1 0.002 57.220 0.357 0.029 0.002 40.410 98.020 0.00 99.24 0.00 0.00 1.99 Adamite

MS 2014.149 Fig. 11 3 0.337 57.323 0.217 0.021 0.001 40.690 98.590 0.60 98.94 0.60 0.01 1.98 Adamite

MS 2016.072 Fig. 12 3 0.438 56.367 0.357 0.041 0.002 40.433 97.638 0.78 98.43 0.79 0.02 1.97 Adamite

TA2-10 Fig. 13 6 0.593 53.980 1.382 0.046 0.000 39.977 95.978 1.08 96.05 1.11 0.02 1.91 Adamite

MS 2015.065 Fig. 14 3 0.981 55.540 0.103 0.000 0.026 40.170 96.819 1.77 98.02 1.77 0.04 1.95 Adamite

MS 2016.076 Fig. 15 6 3.188 54.938 0.011 0.041 0.027 40.658 98.863 5.60 94.30 5.60 0.11 1.90 Adamite

MS 2009.048 Fig. 16 6 9.973 47.267 0.021 0.030 0.026 40.307 97.623 17.74 82.16 17.76 0.36 1.65 Adamite

TA2-6 Fig. 17 8 12.116 43.383 0.179 0.038 0.063 40.059 95.838 22.13 77.44 22.22 0.44 1.54 Adamite

MS 2013.002 Fig. 18 3 15.160 42.533 0.107 0.041 0.048 39.687 97.576 26.65 73.07 26.72 0.54 1.49 Zincolivenite

MS 2013.014 Fig. 19 3 15.460 41.900 0.272 0.000 0.176 39.570 97.378 27.26 72.21 27.41 0.55 1.47 Zincolivenite

TA1-2 Fig. 20 8 16.423 38.802 0.211 0.000 0.124 40.496 96.056 30.09 69.48 30.22 0.59 1.37 Zincolivenite

MS 2011.084 Fig. 21 2 17.915 39.795 0.006 0.017 0.080 39.830 97.643 31.52 68.43 31.54 0.64 1.39 Zincolivenite

MS 2012.011 Fig. 22 3 21.323 36.187 0.064 0.015 0.085 39.577 97.250 37.56 62.29 37.61 0.76 1.27 Zincolivenite

MS 1986.001 Fig. 23 3 22.737 34.023 0.154 0.021 0.041 40.080 97.055 40.47 59.19 40.61 0.81 1.19 Zincolivenite

TA1-5 Fig. 24 8 22.409 31.195 0.000 0.015 0.152 39.491 93.262 42.35 57.62 42.36 0.83 1.13 Zincolivenite

MS 2018.027 Fig. 25 4 23.805 32.683 0.026 0.022 0.115 39.868 96.518 42.66 57.24 42.70 0.86 1.15 Zincolivenite

MS 2010.189 Fig. 26 3 24.220 32.010 0.058 0.000 0.092 39.700 96.079 43.59 56.30 43.64 0.88 1.13 Zincolivenite

MS 2012.012 Fig. 27 3 24.283 32.010 0.024 0.019 0.083 39.827 96.247 43.66 56.25 43.70 0.88 1.13 Zincolivenite

MS 2016.004 Fig. 28 4 24.775 31.925 0.109 0.008 0.064 39.550 96.431 44.16 55.61 44.26 0.89 1.13 Zincolivenite

TA2-8 Fig. 29 7 24.713 30.715 0.099 0.000 0.102 40.080 95.709 45.06 54.74 45.15 0.89 1.09 Zincolivenite

MS 2015.051 Fig. 30 3 25.453 31.233 0.074 0.038 0.050 40.090 96.939 45.37 54.41 45.47 0.91 1.09 Zincolivenite

MS 2018.056 Fig. 31 3 25.397 30.970 0.106 0.006 0.073 40.053 96.605 45.52 54.26 45.62 0.91 1.09 Zincolivenite

MS 2014.108 Fig. 32 3 25.077 29.893 0.019 0.013 0.141 39.143 94.286 46.16 53.78 46.19 0.92 1.07 Zincolivenite

MS 2010.017 Fig. 33 3 26.420 29.997 0.144 0.019 0.075 39.657 96.311 47.25 52.43 47.40 0.95 1.06 Zincolivenite

MS 2016.075 Fig. 34 6 26.937 29.905 0.063 0.023 0.079 39.792 96.798 47.88 51.95 47.96 0.97 1.05 Zincolivenite

MS 2012.013 Fig. 35 3 27.360 29.183 0.009 0.016 0.124 40.323 97.017 48.94 51.01 48.96 0.98 1.02 Zincolivenite

MS 2005.043 Fig. 36 3 27.473 29.123 0.013 0.004 0.063 39.327 96.003 49.10 50.87 49.11 1.00 1.03 Zincolivenite

MS 2018.058 Fig. 37 4 27.838 28.833 0.010 0.027 0.126 39.933 96.765 49.66 50.27 49.69 1.00 1.01 Zincolivenite

TA1-3 Fig. 38 6 27.476 27.293 0.043 0.000 0.061 40.139 95.012 50.70 49.22 50.74 1.00 0.97 Zincolivenite

MS 2005.044 Fig. 39 3 28.543 27.783 0.013 0.006 0.035 39.907 96.287 51.23 48.73 51.25 1.03 0.98 Zincolivenite

MS 2010.101 Fig. 40 3 28.847 28.033 0.011 0.000 0.036 40.197 97.124 51.28 48.70 51.29 1.03 0.98 Zincolivenite

MS 2016.044 Fig. 41 3 29.330 27.190 0.015 0.009 0.016 39.690 96.250 52.44 47.51 52.46 1.06 0.96 Zincolivenite

TA1-4 Fig. 42 6 29.421 26.404 0.000 0.000 0.013 40.536 96.374 53.27 46.73 53.27 1.06 0.93 Zincolivenite

MS 2017.069 Fig. 43 6 31.057 25.638 0.031 0.013 0.095 39.870 96.703 55.30 44.62 55.35 1.11 0.90 Zincolivenite

MS 2009.064 Fig. 44 3 36.270 20.410 0.101 0.018 0.118 39.900 96.816 64.37 35.40 64.52 1.30 0.71 Zincolivenite

MS 2014.001 Fig. 45 3 37.487 18.880 0.098 0.019 0.069 39.520 96.072 66.86 32.91 67.01 1.35 0.67 Zincolivenite

MS 1985.018 Fig. 46 3 45.903 11.467 0.149 0.026 0.454 39.563 97.562 80.11 19.56 80.38 1.63 0.40 Olivenite

TA2-7 Fig. 47 8 49.016 6.858 0.026 0.000 0.122 40.056 96.078 87.93 12.02 87.97 1.76 0.24 Olivenite

MS 1988.001 Fig. 48 3 52.227 4.087 0.069 0.012 0.184 39.523 96.102 92.75 7.09 92.90 1.88 0.14 Olivenite

MS 1984.043 Fig. 49 4 54.453 1.821 0.078 0.001 0.704 39.295 96.352 96.69 3.16 96.84 1.94 0.06 Olivenite

TA2-9 Fig. 50 6 54.193 1.681 0.000 0.000 0.124 40.275 96.273 97.06 2.94 97.06 1.94 0.06 Olivenite

MS 2017.023 Fig. 51 3 55.453 1.138 0.240 0.001 0.887 38.303 96.022 97.57 1.96 98.03 1.99 0.04 Olivenite

MS 2017.053 Fig. 52 7 55.554 0.928 0.007 0.006 0.735 38.887 96.119 98.37 1.61 98.39 1.99 0.03 Olivenite

Analysis - Wt % (mean of n  analyses) Cations: (mean of n  analyses) APFU



 

Table 2. Copper content (minimum, mean, and maximum values for MPCu) and simple visual 

properties for 43 specimens of adamite – olivenite series minerals from Tsumeb, arranged in 

ascending order of mean copper content.  Compositions indicative of adamite are shown in yellow, 

zincolivenite in lime-green, and olivenite in olive-green. 

Low Mean High n Photo Color / diaphaneity / habit Indicated mineral species and comments

MS 2014.068 0.00 0.00 0.00 1 Fig. 10 Orange-yellow; translucent; equant Adamite (essentially end-member composition)

MS 2014.149 0.32 0.60 1.13 3 Fig. 11 Greenish-yellow; translucent; equant Adamite (close to end-member composition)

MS 2016.072 0.03 0.79 1.74 3 Fig. 12 Colorless to brown; transparent; equant Adamite (close to end-member composition)

TA2-10 0.02 1.11 3.25 6 Fig. 13 Orange-yellow; translucent; long prismatic Adamite (close to end-member composition)

MS 2015.065 0.65 1.77 2.82 3 Fig. 14 Pale yellow; opaque; tabular Adamite (close to end-member composition)

MS 2016.076 0.00 5.60 18.04 6 Fig. 15 Yellowish brown, pink (zoned); translucent; pseudo-octahedral Adamite (variable composition; locally copper-rich)

MS 2009.048 0.03 17.76 36.68 6 Fig. 16 (1) Pink; translucent; elongate;  and (2) green; opaque Adamite / zincolivenite; mean composition is adamite

TA2-6 1.72 22.22 38.51 8 Fig. 17 Yellow, to green (zoned); translucent; long prismatic Adamite / zincolivenite; mean composition is adamite

MS 2013.002 11.14 26.72 38.69 3 Fig. 18 Bottle-green (zoned); translucent; pseudo-octahedral Adamite / zincolivenite; mean composition is zincolivenite

MS 2013.014 16.06 27.41 37.87 3 Fig. 19 Emerald-green (zoned); translucent; pseudo-octahedral Adamite / zincolivenite; mean composition is zincolivenite

TA1-2 13.87 30.22 41.33 8 Fig. 20 Pale-green (zoned), translucent, short prismatic Adamite / zincolivenite; mean composition is zincolivenite

MS 2011.084 27.72 31.54 35.31 2 Fig. 21 Spearmint-green; opaque; equant Zincolivenite

MS 2012.011 29.39 37.61 48.86 3 Fig. 22 Emerald-green; transparent; pseudo-octahedral Zincolivenite (wide compositional range)

MS 1986.001 37.87 40.61 42.70 3 Fig. 23 Spearmint-green; translucent; equant Zincolivenite

TA1-5 38.73 42.36 48.97 8 Fig. 24 Spearmint-green; opaque; short prismatic Zincolivenite

MS 2018.027 40.40 42.70 45.36 4 Fig. 25 Spearmint-green; opaque; short prismatic Zincolivenite

MS 2010.189 39.39 43.64 43.98 3 Fig. 26 Spearmint-green; opaque; equant Zincolivenite

MS 2012.012 37.29 43.70 47.30 3 Fig. 27 Spearmint-green; translucent; elongated / acicular Zincolivenite

MS 2016.004 41.92 44.26 46.41 4 Fig. 28 Gray-green; opaque; equant Zincolivenite

TA2-8 43.70 45.15 47.75 7 Fig. 29 Spearmint-green; opaque; equant Zincolivenite

MS 2015.051 42.56 45.47 48.31 3 Fig. 30 Spearmint-green; opaque; prismatic Zincolivenite

MS 2018.056 44.65 45.62 46.88 3 Fig. 31 Spearmint-green; translucent; prismatic Zincolivenite

MS 2014.108 43.86 46.19 48.25 3 Fig. 32 Spearmint-green; opaque; prismatic Zincolivenite

MS 2010.017 42.33 47.40 51.37 3 Fig. 33 Spearmint-green; opaque; short prismatic Zincolivenite

MS 2016.075 43.69 47.96 52.98 6 Fig. 34 Emerald-green; translucent; pseudo-octahedral Zincolivenite

MS 2012.013 45.25 48.96 51.75 3 Fig. 35 Emerald-green; translucent; prismatic Zincolivenite

MS 2005.043 47.13 49.11 51.36 3 Fig. 36 Emerald-green; translucent; prismatic Zincolivenite

MS 2018.058 47.23 49.69 52.01 4 Fig. 37 Emerald-green; translucent; prismatic (acicular) Zincolivenite

TA1-3 46.24 50.74 55.13 6 Fig. 38 Emerald-green; translucent; prismatic / radial aggregates Zincolivenite

MS 2005.044 51.13 51.25 51.38 3 Fig. 39 Emerald-green; transparent; prismatic Zincolivenite (very narrow compositional range)

MS 2010.101 50.78 51.29 51.78 3 Fig. 40 Emerald-green; transparent; prismatic Zincolivenite (very narrow compositional range)

MS 2016.044 51.03 52.46 54.40 3 Fig. 41 Emerald-green; translucent; pseudo-octahedral Zincolivenite

TA1-4 50.3 53.27 56.26 6 Fig. 42 Emerald-green; translucent; prismatic Zincolivenite

MS 2017.069 49.83 55.35 60.37 6 Fig. 43 Emerald-green; transparent; prismatic / radial aggregates Zincolivenite

MS 2009.064 63.57 64.52 66.06 3 Fig. 44 Bottle-green; translucent; prismatic / radial aggregates Zincolivenite

MS 2014.001 50.11 67.01 79.35 3 Fig. 45 Bottle-green; translucent; composite radial aggregates Zincolivenite / olivenite; mean composition is zincolivenite

MS 1985.018 79.39 80.38 80.89 3 Fig. 46 Blackish-green; translucent; 'bow-tie' radial aggregates Olivenite; zinc-enriched

TA2-7 81.16 87.97 94.46 8 Fig. 47 Blackish-green; translucent; composite radial aggregates Olivenite; zinc-enriched

MS 1988.001 90.70 92.90 95.30 3 Fig. 48 Blackish-green; translucent; prismatic Olivenite; zinc-enriched

MS 1984.043 95.63 96.84 98.30 4 Fig. 49 Blackish-green; translucent; short prismatic Olivenite

TA2-9 94.78 97.06 97.82 6 Fig. 50 Blackish-green; translucent; long prismatic Olivenite

MS 2017.023 97.23 98.03 98.62 3 Fig. 51 Blackish-green; translucent; equant / short prismatic Olivenite (close to end-member composition)

MS 2017.053 97.58 98.39 99.13 7 Fig. 52 Blackish-green; translucent; short prismatic Olivenite (close to end-member composition)

MP Cu = Cu/(Cu+Zn)*100



 

Figure 1. Crystals of translucent, emerald-green zincolivenite (to 11 mm) associated with aggregates 

of mustard-yellow ferrilotharmeyerite.  2.6 cm.  Malcolm Southwood specimen and photo. 

 

 

Figure 2.  Acicular crystals (to 20 mm) of translucent, olive green olivenite on crystallized malachite 

lining a vug in a 20 cm boulder of massive malachite and olivenite from the Tsumeb open pit. This 

habit of olivenite is uncommon at Tsumeb and appears to have occurred only in the near-surface 

portion of the deposit. The specimen is number 1050 in the collection of Wilhelm Klein. Field of view 

is 9 cm.  Courtesy of the Mineralogical & Geological Museum at Harvard University, Olivenite; 

MGMH ID# 106045, Tsumeb; Namibia. @ copyright 2012, President and Fellows of Harvard College. 

All rights reserved. Malcolm Southwood photo. 



  
 

Figure 3.  Specimen number 2640 from the Karabacek Collection, labelled by its original owner as 

‘veszelyite’, but identified as ‘adamite’ by X-ray diffraction at Harvard.  Field of view is 3.5 cm in a 7.5 

cm specimen from the first oxidation zone at Tsumeb. Courtesy of the Mineralogical & Geological 

Museum at Harvard University, Adamite; MGMH ID# 93856, Tsumeb; Namibia. @ copyright 2012, 

President and Fellows of Harvard College. All rights reserved. Malcolm Southwood photo. 

 

 

Figure 4. The famous ‘cobaltoan adamite’ specimen from the Karabacek Collection (# 4318) at 

Harvard University.  Adamite crystals (to 7 mm) cover one side of the specimen and their 

terminations are blackish-green in color.  Broken surfaces, however, reveal magenta tints attributed 

to the presence of cobalt. 11 cm specimen, from the first oxidation zone at Tsumeb.   Courtesy of the 

Mineralogical & Geological Museum at Harvard University, Adamite; MGMH ID# 93828, Tsumeb; 

Namibia. @ copyright 2012, President and Fellows of Harvard College. All rights reserved. Malcolm 

Southwood photo. 



   

Figure 5.  Emerald-green crystals of ‘cuproadamite’ associated with powdery lemon-yellow 

ferrilotharmeyerite.  The specimen was recovered from 30 level in the second oxidation zone in 

1986. 10.9 cm. Des Sacco specimen; Bruce Cairncross photo. 

 

 

Figure 6. Atomic arrangement of the adamite-olivenite series. The M1 and M2 octahedral sites are 

indicated by different shades of green. Arsenic resides on the tetrahedral site (blue) and oxygen 

atoms are indicated by pink spheres.  Rendering created with VESTA 3 (Momma and Izumi 2011). 



 

Figure 7.  The adamite – olivenite solid solution series includes three mineral species (adamite, 

zincolivenite and olivenite) defined by the proportions of copper and zinc in each of two ordered 

cation sites in the crystal structure.  Adamite and zincolivenite are both orthorhombic, while 

olivenite is monoclinic; however, the symmetry change occurs at circa 80 mol % copper, so that the 

speciation for compositions between 75 mol % and 80 mol % copper is poorly defined.  For the 

purpose of this study we would consider compositions with > 75 mol % copper to be olivenite. 

 

 

Figure 8. Mean zinc and copper content expressed as atoms per formula unit (APFU) for 43 

specimens of adamite – olivenite series minerals from Tsumeb.  The (small) deviations from a 

straight-line (unit) plot are attributable to the minor presence of iron and cobalt in some of the 

specimens. 8 specimens (with Cu < 0.5 APFU) plot as adamite (yellow circles) while 7 specimens 

(with Cu > 1.5 APFU) plot as olivenite (olive-green squares). The remaining 28 specimens (green 

triangles) plot in the compositional field defining zincolivenite, with Cu between 0.5 and 1.5 APFU. 
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Figure 9.  Distribution of mean compositions of 43 specimens of adamite – olivenite series minerals 

from Tsumeb.  Adamite (yellow) specimens appear towards the left of the chart (i.e. lower Cu 

content); zincolivenite (green) in the center and olivenite (olive-green; higher Cu content) on the 

right. 

 

 

Figure 10.  Orange-yellow crystals of adamite (to 2 mm) over massive sulfide. This is essentially end-

member adamite, with a value for MPCu of < 0.01%.  3.7 cm.  Malcolm Southwood specimen (# MS 

2014.068) and photo.   



 

Figure 11.  Yellow-green, partly transparent crystals of adamite (to 18 mm) associated with off-white 

crystals of smithsonite (EDS confirmed). The mean MPCu value of just 0.60 % (range: 0.32 – 1.13 %) is 

indicative of near end-member adamite, but it has a distinct greenish color. 6 cm.  Malcolm 

Southwood specimen (# MS 2014.149) and photo.   

 

 

Figure 12.  Equant crystals (to 5 mm) of transparent, colorless to amber-brown adamite, on a 

siliceous matrix, with goethite.  The mean MPCu is 0.79 % (range: 0.03 – 1.74 %), so the adamite is 

close to end member composition and, in this case, the minor copper content does not appear to 

influence the color. 4.5 cm.  Malcolm Southwood specimen (# MS 2016.072) and photo.   

 



 

Figure 13. Long prismatic crystals of orange-yellow adamite on mineralised dolostone. The mean 

MPCu is 1.11 % (range: 0.02 – 3.25 %), so the adamite is close to end member composition. 10 cm. 

Crystal Classics specimen and photo. 

 

Figure 14.  Thick, tabular, crystals of yellow adamite (to 3 mm), on a sub-botryoidal crust of white 

scalenohedral smithsonite crystals. The mean MPCu is 1.77 % (range: 0.65 – 2.82 %), so the adamite is 

close to end member composition. 8.5 cm.  Malcolm Southwood specimen (# MS 2015.065) and 

photo.   

 



 

Figure 15.  This specimen includes adamite – olivenite series minerals of several compositions.  The 

pseudo-octahedral crystals at upper right (as photographed) are yellowish-brown in color, but some 

have a distinct pinkish blush. The mean MPCu for the brown crystals is 9.38 % (range: 0.88 – 18.04 %) 

while the pinkish crystals contain a mean MPCu of 1.62 % (range: 0.27 – 4.60 %).  The mean cobalt 

content of the pinkish crystals is 0.045 wt % (see text for further details). 9.5 cm.  Malcolm 

Southwood specimen (# MS 2016.076) and photo.   

 

Figure 16.  Densely intergrown blades of magenta-coloured adamite crystals (mean MPCu  = 0.18 %), 

abruptly transitioning to a banded crust of spearmint-green zincolivenite (mean MPCu = 35.46 %). 

The mean cobalt content of the magenta crystals is 0.054 wt % (see text for further details). 3.8 cm.  

Malcolm Southwood specimen (# MS 2009.048) and photo.   



 

Figure 17.  Elongated, prismatic crystals (to 5 mm) with a marked color zoning, ranging in 

composition from near end-member adamite to zincolivenite. The pale-yellow base of the crystals 

has a value for MPCu of 1.72 %, close to end-member adamite, grading up into yellow-green copper-

rich adamite, and green terminations with a value for MPCu of 38.51 % which lies well within the 

compositional field of zincolivenite. The mean MPCu is 22.22 %.  5 cm specimen. Crystal Classics 

specimen; John Schneider photo.   

 

Figure 18.  Pseudo-octahedral crystals (to 6 mm) of bottle-green zincolivenite (mean MPCu = 26.85 %) 

associated with a yellow micro-botryoidal mineral of the tsumcorite group.  The zincolivenite crystals 

are zoned, with paler, frosted cores. WDS analysis shows that zones of both adamite and 

zincolivenite are present in these crystals, with MPCu ranging from 11.14 % to 38.69 %. 3 cm. 

Malcolm Southwood specimen (# MS 2013.002) and photo.   



 

Figure 19.  Equant (pseudo-octahedral) crystals (to 3 mm) of green adamite / zincolivenite (mean 

MPCu = 27.41 %). The crystals are zoned, with paler, frosted cores. WDS analysis shows that zones of 

both adamite and zincolivenite are present in these crystals, with MPCu ranging from 16.06 % to 

37.87 %. 2.5 cm. Malcolm Southwood specimen (# MS 2013.014) and photo.   

 

 

Figure 20. Short, prismatic crystals of adamite / zincolivenite (mean MPCu = 30.22 %) with pale cores 

of adamite (MPCu = 13.87 %) sheathed in darker green zincolivenite (MPCu = 41.33 %). 4 cm 

specimen. Crystal Classics specimen; John Schneider photo. 



 

 

Figure 21. Equant, spearmint-green crystals (to 1 mm) of zincolivenite (mean MPCu = 31.54 %; range: 

27.72 – 35.31 %), overgrowing arborescent aggregates of spheroidal duftite / conichalcite. 7 cm. 

Malcolm Southwood specimen (# MS 2011.084) and photo.   

 

Figure 22. Gemmy crystals (to 3 mm) of emerald-green zincolivenite (mean MPCu = 37.61 %; range: 

29.39 – 48.86 %), many of them doubly terminated, on etched and corroded quartz, with an 

unidentified (yellow) mineral of the tsumcorite group. The zincolivenite crystals appear zoned, which 

is consistent with the wide compositional range. 2.5 cm. Malcolm Southwood specimen (# MS 

2012.011) and photo.   



 

 

Figure 23. Equant, spearmint-green crystals of zincolivenite (mean MPCu = 40.61 %; range: 37.87 – 

42.70 %) over silicified dolostone.  2.5 cm.  Malcolm Southwood specimen (# MS 1986.001) and 

photo.   

 

 

Figure 24. A crust of intergrown, short prismatic crystals (to 8 mm) of spearmint-green zincolivenite 

(mean MPCu = 42.36 %; range = 38.73 – 48.97 %). 5 cm specimen. Crystal Classics specimen; John 

Schneider photo. 

 



 

Figure 25. Prismatic crystals (to 4 mm) of spearmint-green zincolivenite (mean MPCu = 42.70 %; 

range: 40.40 – 45.36 %), associated with quartz, rosasite and minor duftite / conichalcite.  6 cm.  

Malcolm Southwood specimen (# MS 2018.027) and photo.   

 

 

Figure 26. Equant, stubby crystals of spearmint-green zincolivenite (mean MPCu = 43.64 %; range: 

39.39 – 43.98 %) over silicified dolostone. 3 cm.  Malcolm Southwood specimen (# MS 2010.189) and 

photo.   

 



 

Figure 27. Sprays of elongated blades (to 10 mm) of spearmint-green zincolivenite (mean MPCu =  

43.70 %; range: 37.29 to 47.30 %).  3 cm.  Malcolm Southwood specimen (# MS 2012.012) and 

photo.   

 

 

Figure 28. Aggregates of equant, bottle-green crystals (sub-mm) of zincolivenite (mean MPCu = 44.26 

%; range: 41.92 – 44.26 %), in a vug lined with bright yellow zincgartrellite (EDS confirmed). 5.5 cm.  

Malcolm Southwood specimen (# MS 2016.004) and photo.  

 



 

Figure 29.  Equant, spearmint-green crystals of zincolivenite (mean MPCu = 45.15 %; range = 43.70 – 

47.75 %). 8 cm. Crystal Classics specimen and photo.   

  

 

Figure 30. Elongated prismatic crystals (to 10 mm) of spearmint-green zincolivenite (mean MPCu = 

45.47 %; range: 42.56 – 48.31 %), on quartz that is partly coated with goethite and sparse tabular 

crystals of butterscotch-colored wulfenite. This 5.5 cm specimen was collected from the second 

oxidation zone by the late John Innes, chief mineralogist at Tsumeb in the early 1980s. Malcolm 

Southwood specimen (# MS 2015.051) and photo.  



 

 

Figure 31. Spearmint-green, intergrown crystals (to 1.5 mm) of zincolivenite (mean MPCu = 45.62 %; 

range: 44.65 – 46.88 %) forming a crust over tennantite crystals (to 40 mm). A little malachite is also 

present. 7 cm.  Malcolm Southwood specimen (# MS 2018.056) and photo.  

 

Figure 32. Spearmint-green, elongated crystals (to 8 mm) of zincolivenite (mean MPCu = 46.19 %; 

range: 43.86 – 48.25 %) associated with microbotryoidal aggregates of tangeite (XRD/EDS 

confirmed). 3.5 cm. Malcolm Southwood specimen (# MS 2014.108) and photo.  

 



 

Figure 33. Short, terminated prismatic crystals (to 3 mm) of spearmint-green zincolivenite (mean 

MPCu = 47.40 %; range: 42.33 – 51.37 %) associated with botryoids of fibrous malachite, on quartz. 

4.5 cm. Malcolm Southwood specimen (# MS 2010.017) and photo.  

 

 

Figure 34. Pseudo-octahedral crystals (to 1.5 mm) of highly translucent, emerald-green zincolivenite 

(mean MPCu = 47.96 %; range: 43.69 – 52.98 %) associated with a powdery yellow mineral of the 

tsumcorite group. 6 cm. Malcolm Southwood specimen (# MS 2016.075) and photo.  

 



 

Figure 35. Fans of frosted, pale emerald-green, elongated crystals (to 8 mm) of zincolivenite (mean 

MPCu = 48.96 %; range: 45.25 – 51.75 %), peppered with a powdery yellow mineral of the tsumcorite 

group. 3 cm. Malcolm Southwood specimen (# MS 2012.013) and photo.  

 

 

Figure 36. Slender prismatic crystals (to 4 mm) of emerald-green zincolivenite (mean MPCu = 49.11 %; 

range: 47.13 – 51.36 %) with sub-spherical tufts of acicular olive-green duftite (EDS confirmed). 2.3 

cm. Malcolm Southwood specimen (# MS 2005.043) and photo.  

 



 

Figure 37. Tightly intergrown acicular crystals of emerald-green zincolivenite (mean MPCu = 49.69 %; 

range: 47.23 – 52.01 %) forming radial sprays, associated with a powdery yellow mineral of the 

tsumcorite group. 5.2 cm. Malcolm Southwood specimen (# MS 2018.058) and photo.  

 

 

Figure 38. Radial fans of long prismatic crystals of emerald-green zincolivenite (mean MPCu = 50.74 

%; range = 46.24 – 55.13 %) on a mineralized, siliceous matrix. 2.5 cm specimen.  Crystal Classics 

specimen; John Schneider photo. 

 



 

Figure 39.  Elongated and striated crystals (to 8 mm) of transparent, emerald-green zincolivenite 

(mean MPCu = 51.25 %; range: 51.13 – 51.38 %), associated with drusy sprays of mustard yellow to 

brown ferrilotharmeyerite, on a matrix of massive sulfide with quartz. 2.7 cm. Malcolm Southwood 

specimen (# MS 2005.044) and photo.  

 

 

Figure 40.  Pale emerald-green crystals of zincolivenite (mean MPCu = 51.29 %; range: 50.78 – 51.78 

%), associated with colorless-white schultenite, on a matrix of massive sulfide with quartz. 2.1 cm. 

Malcolm Southwood specimen (# MS 2010.101) and photo.  

 



 

Figure 41.  Pseudo-octahedral crystals of emerald-green zincolivenite (mean MPCu = 52.46 %; range: 

51.03 – 54.40 %), associated with blackish-green prismatic crystals of olivenite (EDS analysis only), 

and a powdery yellow mineral of the tsumcorite group. 4.5 cm. Malcolm Southwood specimen (# MS 

2016.044) and photo.  

 

Figure 42. Prismatic crystals of gemmy, emerald-green zincolivenite (mean MPCu = 53.27 %; range = 

49.83 – 60.37 %), associated with minor colorless schultenite, and quartz.  6 cm specimen. Crystal 

Classics specimen; John Schneider photo. 

 



 

Figure 43. Fans of curvilinear crystals of emerald-green zincolivenite (mean MPCu = 55.35 %; range: 

49.83 – 60.37 %) forming discoidal aggregates over a carpet of smaller crystals of the same mineral, 

associated with quartz, goethite and wulfenite. 9.5 cm. Malcolm Southwood specimen (# MS 

2017.069) and photo.  

 

Figure 44. Intergrown crystals of bottle-green zincolivenite (mean MPCu = 64.52 %; range: 63.57 – 

66.06 %) associated with yellow gartrellite (XRD/EDS confirmed). Field of view is 4 cm (in a 9 cm 

specimen). Malcolm Southwood specimen (# MS 2009.064) and photo.  

 



 

Figure 45. Curvilinear, fan-shaped crystals of bottle-green zincolivenite (mean MPCu = 67.01 %; range: 

50.11 – 79.35 %) associated with a yellow tsumcorite group mineral.  While the mean MPCu value for 

this specimen lies within the compositional range of zincolivenite, the maximum value indicates that 

zones of olivenite are also present. This 4 cm specimen was collected by the late John Innes, chief 

mineralogist at Tsumeb in the early 1980s, from 35 level north-east, in the second oxidation zone. 

Malcolm Southwood specimen (# MS 2014.001) and photo.  

 

Figure 46. A ‘bow-tie’ aggregate of greenish-black olivenite crystals (mean MPCu = 80.38 %; range: 

79.39 – 80.89 %), associated with equant crystals of lighter green duftite / conichalcite and slender 

individual prisms (to 2.5 mm) of yellow-green olivenite (EDS analysis only) on quartz. 2 cm. Malcolm 

Southwood specimen (# MS 1985.018) and photo.  



 

 

Figure 47. Curvilinear aggregates (to 10 mm) of blackish-green olivenite (mean MPCu = 87.97 %; range 

= 81.16 – 87.97 %), on quartz. 5 cm. Crystal Classics specimen; John Schneider photo. 

 

Figure 48.  Composite blades of blackish-green olivenite (mean MPCu = 92.90 %; range: 90.70 – 95.30 

%), associated with a partial crust of malachite, over quartz. 3.5 cm. Malcolm Southwood specimen 

(# MS 1988.001) and photo.  



 

Figure 49.  Short prismatic crystals of blackish-green olivenite (mean MPCu = 96.84 %; range: 95.63 – 

98.30 %), overgrown by isolated botryoidal aggregates of fibrous malachite (to 1 mm) in a vug in 

massive olivenite with relict sulfide. 5.5 cm. Malcolm Southwood specimen (# MS 1984.043) and 

photo.  

 

 

 

Figure 50.  Elongated prismatic crystals of blackish-green olivenite (mean MPCu = 97.06 %; range: 

94.78 – 97.82 %), intergrown in a shallow vug in a matrix of brecciated apple-green arsenates 

(undetermined) with malachite and minor azurite. 11 cm. Crystal Classics specimen and photo. 



 

 

Figure 51. Blackish-green crystals (to 2 mm) of olivenite (mean MPCu = 98.03 %; range: 97.23 – 98.62 

%) in a vug in massive olivenite, associated with minor malachite and arsentsumebite.  7 cm. 

Malcolm Southwood specimen (# MS 2017.023) and photo.  

 

 

Figure 52. Stout prismatic crystals of bottle-green to blackish-green olivenite (mean MPCu = 98.39 %; 

range: 97.58 – 99.13 %), with minor azurite, malachite after azurite, and botryoidal malachite. The 

olivenite crystals are locally quite gemmy with yellowish-green translucency. 4.5 cm. Malcolm 

Southwood specimen (# MS 2017.053) and photo.  
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