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Conditions for the existence, identification and calculus
rules of the threshold of prox-boundedness

C. Planiden∗

April 9, 2020

Abstract

This note advances knowledge of the threshold of prox-boundedness of a function; an
important concern in the use of proximal point optimization algorithms and in determining
the existence of the Moreau envelope of the function. In finite dimensions, we study general
prox-bounded functions and then focus on some useful classes such as piecewise functions and
Lipschitz continuous functions. The thresholds are explicitly determined when possible and
bounds are established otherwise. Some calculus rules are constructed; we consider functions
with known thresholds and find the thresholds of their sum and composition.

Keywords: Fenchel conjugate, infimal convolution, Lipschitz continuous, Moreau envelope,
Moreau–Yosida regularization, piecewise function, prox-bounded, proximal mapping, regulariza-
tion, threshold.

Mathematics Subject Classification: Primary 49A52; Secondary 46N10, 90C26

1 Introduction
The Moreau envelope function is a particular infimal convolution that first came about in the 1960s
[32]. Given a function f on a finite-dimensional space, the Moreau envelope of f employs a
nonnegative parameter r and is denoted erf :

erf(x) = inf
y∈Rn

{
f(y) +

r

2
‖y − x‖2

}
. (1.1)

It is a well-established, regularizing function that has many desirable properties when f has rea-
sonable structure [38, 40]. The set of all solution points to (1.1) is known as the proximal mapping
of f , denoted by Proxf . The proximal mapping is a key component of many optimization algo-
rithms, such as the proximal point method and its variants [5, 8, 13, 16, 20, 21, 37]. Because of the
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above and other nice features, the Moreau envelope and proximal mapping have been thoroughly
researched and applied to many situations in the convex [10, 17, 24, 29, 33, 35] and nonconvex
[22, 25, 26, 28, 30, 34, 39] settings.

For a function f , its Moreau envelope may or may not exist, or may exist only for certain x
and/or certain r. If there exists a point x such that erf(x) ∈ R for some r ≥ 0, we say that
f is prox-bounded. If a function is not prox-bounded, then its Moreau envelope does not exist
anywhere, for any choice of r. In that case, for any r fixed we have erf(x) ≡ −∞, which is not a
proper function (see [38]) and has empty domain.

It is the parameter r that is of primary interest in this work. There are many theoretically
proved-convergent proximal algorithms (see [1, 2, 7, 9, 11, 12] and the references therein), but
in practice, it has been observed that the initial choice of r and the manner of adjusting it as the
algorithm runs are of critical importance, in order to obtain reliable performance [6, 14, 15, 23, 27,
36]. We explore the threshold of prox-boundedness of f : the infimum of the set of r ≥ 0 such that
erf exists at at least one point.

In [19], the class of piecewise linear-quadratic (PLQ) functions on Rn was examined in the
context of prox-boundedness. The main result of [19] is a theorem that explicitly identifies the
threshold and the domain of the Moreau envelope of any finite-dimensional PLQ function. In that
setting, the threshold is max ri, where ri is the threshold of fi for each i. One of the aims of the
present work is to generalize that result in two aspects: where the functions fi are not necessarily
linear nor quadratic and the domains dom fi are not necessarily polyhedral. The main question
on which we focus is this: what are the minimal conditions needed on fi in order to be sure
that the threshold of the piecewise function is max ri? We establish bounds and illustrate several
counterexamples for functions with conditions that one might suspect sufficient to guarantee prox-
boundedness, but are not. Under certain conditions, the threshold can be determined exactly.

The second focus of this work is the establishing of calculus rules for thresholds of prox-
bounded functions. We explore classes of functions with known thresholds and study the condi-
tions needed to determine the threshold of their sum and composition, or to produce an upper bound
when an exact result cannot be found. By making use of the Fenchel conjugate representation of
the Moreau envelope and some other previously-established properties and characterizations of
prox-bounded functions, we determine sufficient conditions for the existence of a sum rule and a
composition rule for thresholds of prox-boundedness.

The remainder of this work is organized as follows. Section 2 presents the notation used
throughout and several definitions and known facts regarding prox-bounded functions and their
thresholds. In Section 3, we examine the family of piecewise functions and determine the minimal
conditions needed for finding the threshold. An example of what can go wrong when these condi-
tions are not met is provided. Section 4 is dedicated to forming calculus rules for the threshold of
the sum and the composition of prox-bounded functions. Section 5 offers concluding remarks and
suggests interesting areas of further research in this vein.
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2 Preliminaries
Throughout this paper, we work in finite-dimensional space Rn, endowed with inner product 〈·, ·〉
and induced norm ‖ ·‖. The set Rn ∪{+∞} is denoted by R. We generally conform to the notation
used in [38], including the terms proper, lower semicontinuous (lsc), Lipschitz continuous and
indicator function defined therein. We denote the domain and image of a function f by dom f and
Im f , respectively.

Definition 2.1. For a function f : X → Y , X is called the domain of f and Y is called the
codomain of f . The domain of f is the set dom f = X = {x : f(x) ∈ Y }. The image of f is the
set Im f = {y ∈ Y : f(x) = y for some x ∈ X}.

Definition 2.2. For any set S, the indicator function ιS is defined by

ιS(x) =

{
0, if x ∈ S,
∞, otherwise.

Definition 2.3. For proper functions fi : Rn → R, i ∈ {1, 2, . . . ,m}, the piecewise function
f : Rn → R is defined by

f(x) =


f1(x), x ∈ S1,

...
fm(x), x ∈ Sm,

where
⋃

i Si = Rn and Si ∩ intSj = ∅ for i 6= j.

Definition 2.4. A function f : Rn → R is prox-bounded if there exists r ≥ 0 such that erf(x) >
−∞ for some x ∈ Rn . The infimum of all such r is called the threshold of prox-boundedness of f.

Our interest in this work is to identify thresholds of prox-boundedness of functions and the
conditions for their existence. To that end, we list the following results from previous works.

Fact 2.5. [19, Lemma 2.4] Let f : Rn → R be proper and lsc. Then f is bounded below if and
only if its threshold r̄ = 0 and dom er̄f = Rn .

Fact 2.6. [38, Theorem 1.25] Let f : Rn → R be proper, lsc and prox-bounded with threshold r̄.
Then for all r > r̄, dom erf = Rn.

Fact 2.7. [38, Example 3.28] Let f : Rn → R be such that

lim inf
‖x‖→∞

f(x)

‖x‖
> −∞.

Then f is prox-bounded with threshold r̄ = 0.

Fact 2.8. [38, Theorem 2.26] Let f : Rn → R be proper, lsc and convex. Then f is prox-bounded
with threshold r̄ = 0.
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Note that by definition of prox-regular, if r < r̄, then erf(x) = −∞ for all x ∈ Rn. By Fact
2.6, if r > r̄, then erf(x) > −∞ for all x ∈ Rn. At the threshold itself, however, there is no
such universal behaviour of the Moreau envelope. Depending on the nature of f , dom er̄f can be
empty, full-domain or a proper subset of Rn, even for very simple functions (see [19, Examples
2.5–2.7]). This is partly why the choice of initial prox-parameter r and the manner in which it
changes are so crucial in many minimization algorithms; vastly different proximal behaviour is
possible with distinct values of r. In the next section, we explore existence conditions for the
threshold of prox-boundedness of piecewise functions.

3 Existence of thresholds of prox-boundedness
The conditions for prox-boundedness in the case of PLQ functions was thoroughly examined in
[19]. Now we move beyond that class of functions. We concentrate primarily on piecewise func-
tions as defined in Definition 2.3, as that is a natural extension to what has been accomplished
already. We begin by establishing the fact that Lipschitz continuous functions are prox-bounded.
The definition of the little-o set is required for the proof.

Definition 3.1. Let f, g : Rn → R. We say that f is little-o of g, written f ∈ o(g), if

lim
‖x‖→∞

f(x)

g(x)
= 0.

That is, f ∈ o(g) if asymptotically g grows in magnitude faster than f .

Proposition 3.2. Let f : Rn → R be proper and globally K-Lipschitz. Then f is prox-bounded
with threshold r̄ = 0.

Proof. Let r > 0 and x ∈ Rn. We have

f(y) +
r

2
‖x− y‖2 = f(y)− f(x) +

r

2
‖x− y‖2 + f(x)

≥ −K‖x− y‖+
r

2
‖x− y‖2 + f(x).

Thus,
erf(x) ≥ inf

y∈Rn

{r
2
‖x− y‖2 −K‖x− y‖

}
+ f(x) > −∞,

since the quadratic function y 7→ r
2
‖x− y‖2 −K‖x− y‖ is bounded below. Since this holds true

for every r > 0, we conclude that r̄ = 0.

Now we focus on the family of piecewise functions and say what we can about their thresholds.
Henceforth, any mention of a piecewise function refers to a function defined as in Definition 2.3.

Proposition 3.3. Let f : Rn → R be a proper, lsc, piecewise function. Then f is prox-bounded if
and only if fi + ιSi

is prox-bounded for each i.
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Proof. (⇒) Let f be prox-bounded with threshold r̄. Suppose that there exists j such that fj + ιSj

is not prox-bounded. Fix r > r̄, so that erf(x) ∈ R for all x (Fact 2.6). By definition of erf, for x̄
fixed we have

erf(x̄) = inf
y

{
f(y) +

r

2
‖y − x̄‖2

}
= min

[
inf
y

{
f1(y) + ιS1(y) +

r

2
‖y − x̄‖2

}
, . . . , inf

y

{
fm(y) + ιSm(y) +

r

2
‖y − x̄‖2

}]
. (3.1)

Since fj + ιsj is not prox-bounded, we have

inf
y

{
fj(y) + ιSj

(y) +
r

2
‖y − x̄‖2

}
= −∞,

hence erf(x̄) = −∞. This is a contradiction to the fact that erf(x̄) ∈ R . Therefore, fi + ιSi
is

prox-bounded for all i ∈ {1, 2, . . . ,m}.
(⇐) Let fi + ιSi

be prox-bounded with threshold ri for each i ∈ {1, 2, . . . ,m}. Let r̄ = max ri,
and choose any r > r̄. Then r > ri for all i, so that erfi(x) ∈ R for all i and for all x. Then each
infimum in (3.1) is a real number, hence the minimum of (3.1) exists. Therefore, erf(x̄) ∈ R, and
we have that f is prox-bounded.

Theorem 3.4. Let f : Rn → R be a proper, lsc, piecewise function and let each fi + ιSi
be

prox-bounded with threshold ri. Then the threshold of f is r̄ = max ri.

Proof. Choose any r > max ri. By Proposition 3.3, there exists x̄ such that erf(x̄) ∈ R . Since r
is arbitrary, we have that f is prox-bounded for all r > max ri. Hence, r̄ ≤ max ri. Now choose
any r < max ri. Then there exists j ∈ {1, 2, . . . ,m} such that r < rj. By definition of prox-
boundedness, er

(
fj + ιSj

)
(x) = −∞ for all x. The Moreau envelope of f is the expression of

(3.1), whose minimand contains at least one instance of−∞ due to fj +ιSj
. Hence, erf(x) = −∞

for all x, and we have that r̄ ≥ max ri. Therefore, r̄ = max ri.

We have our first results for piecewise functions. However, the result of Theorem 3.4 is weak-
ened if the term ιSi

is removed from the statement and we require fi itself to be prox-bounded, as
Theorem 3.5 shows.

Theorem 3.5. For i ∈ {1, 2, . . . ,m}, let fi : Rn → R be proper, lsc and prox-bounded with
threshold ri. With these fi, define a piecewise function f as per Definition 2.3. Then f is prox-
bounded with threshold r̄ ≤ max ri.

Proof. Let r > ri. Since fi is prox-bounded with threshold ri, there exists x̄ ∈ Rn such that
erfi(x̄) > −∞. Since

erfi(x̄) = inf
y∈Rn

{
fi(y) +

r

2
‖y − x̄‖2

}
≤ inf

y∈Si

{
fi(y) +

r

2
‖y − x̄‖2

}
= er(fi + ιSi

)(x̄),

we have that er(fi + ιSi
)(x̄) > −∞. Hence, fi + ιSi

is prox-bounded with threshold r̃i ≤ ri. This
is true for all i ∈ {1, 2, . . . ,m}, so Theorem 3.4 applies and we have r̄ = max r̃i ≤ max ri.
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The best we can do is an upper bound in this case. One might hope to establish a lower bound
for r̄ as well, such as min ri. However, this cannot be done in the general setting of Theorem 3.5.
Example 3.6 illustrates why not.

Example 3.6. Let f1, f2 : R→ R be defined by

f1(x) =

{
x2, x < 0,

−x2, x ≥ 0,
f2(x) =

{
−x2, x < 0,

x2, x ≥ 0.

Define

f(x) =

{
f1(x), x < 0,

f2(x), x ≥ 0.

Then the thresholds of f1 and f2 are r1 = r2 = 2 and the threshold of f is r̄ = 0.

Proof. Considering f1 first, we define

ϕr(y) = f1(y) +
r

2
|y − x|2 =

{(
1 + r

2

)
y2 − rxy + r

2
x2, y < 0,(

−1 + r
2

)
y2 − rxy + r

2
x2, y ≥ 0.

For any r > 2, both pieces of ϕr are strictly convex quadratic. Thus, erf1(x) = inf φr(y) > −∞
and r1 ≤ 2. For any r < 2, the second piece of ϕr is concave quadratic, so erf1(x) = −∞ for all
x and r1 ≥ 2. Therefore, r1 = 2. Similarly, r2 = 2. But f(x) = x2 has r̄ = 0 by Fact 2.5.

It is equally simple to construct an example where r̄ = max ri for a piecewise function, for instance

f(x) =

{
f1(x), x ≥ 0,

f2(x), x < 0

where f1, f2 are defined in Example 3.6. In that case, f(x) = −x2 and r̄ = 2 = max{r1, r2}. So
we cannot do better than bounding r̄ from above in this most general setting. Furthermore, one
can obtain a prox-bounded function from the sum of two functions that are not prox-bounded. For
instance, f1(x) = x3 and f2(x) = −x3 are not prox-bounded, but their sum is the constant function
zero, with threshold zero. The next section considers more specific cases of both the sum and the
composition of functions, where we can make some tighter conclusions about exact thresholds.

4 Calculus of the threshold of prox-boundedness
In this section, we consider the thresholds of the sum and the composition of prox-bounded func-
tions. The functions here are no longer (necessarily) piecewise functions, as they were in the
previous section. The following definition and facts will be useful.
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Definition 4.1 (Fenchel conjugate). For any function f : Rn → R, the Fenchel conjugate of f is
the function f ∗ : Rn → R defined by

f ∗(y) = sup
x∈Rn
{〈y, x〉 − f(x)}.

The Fenchel conjugate and the Moreau envelope enjoy a beautiful equivalence, as the following
fact states.

Fact 4.2. [34, Proposition 2.1] For any proper function f : Rn → R,

erf(x) =
r

2
‖x‖2 − g∗r(rx),

where gr(x) = f(x) + r
2
‖x‖2.

Fact 4.3. [38, Exercise 1.24] For a proper, lsc function f : Rn → R, the following are equivalent:

(i) f is prox-bounded;

(ii) f majorizes a quadratic function;

(iii) there exists r ∈ R such that f + r
2
‖ · ‖2 is bounded below;

(iv) lim inf
‖x‖→∞

f(x)
‖x‖2 > −∞.

If r̂ is the infimum of all r for which (iii) holds, the limit in (iv) is − r̂
2

and the threshold for f is
r̄ = max{0, r̂}.

First, we address the quadratic function mentioned in Fact 4.3(ii). Rockafellar and Wets state
that it exists, but give no details as to its form. Lemma 4.4 below describes the curvature that such
a quadratic function must have, in terms of the threshold.

Lemma 4.4. Let f : Rn → R be proper, lsc and prox-bounded with threshold r̄. Then for any
r > r̄, there exists mr = m(r) ∈ R such that f is bounded below by the quadratic function
qr : Rn → R, qr = − r

2
‖ · ‖2 + mr. Furthermore, for any r < r̄ there does not exist mr ∈ R such

that f is bounded below by qr. Therefore, the smallest possible curvature of a quadratic function
that minorizes f is r̄

2
, which occurs in the case lim

r↘r̄
mr > −∞.

Proof. Let r > r̄. By Fact 4.3(iii), we have that f + r
2
‖ · ‖2 is bounded below, i.e., there exists

mr ∈ R such that for all x ∈ dom f , f(x) + r
2
‖x‖2 ≥ mr. Rearranging, we have

f(x) ≥ −r
2
‖x‖2 +mr ∀x ∈ dom f. (4.1)

Since (4.1) is true for all r > r̄, we have

lim
r↘r̄

f(x) ≥ lim
r↘r̄

(
−r

2
‖x‖2 +mr

)
f(x) ≥ − r̄

2
‖x‖2 + lim

r↘r̄
mr.

7



Therefore, if the above limit exists, we have that f is bounded below by qr̄. If the limit is −∞,
then f is bounded below by qr for all r > r̄, but not by qr̄. Now suppose that for some r < r̄,
there exists mr such that (4.1) holds. Then we have that f + r̂

2
‖ · ‖2 is bounded below for some

r̂ ∈ (r, r̄), which by Fact 4.3(iii) and the postamble contradicts the fact that r̄ is the threshold of f .
Therefore, r̄

2
is the minimum curvature possible of a quadratic minorant of f .

Remark 4.5. It is easy to see that some nonconvex functions, such as concave quadratic functions,
are indeed bounded below by qr̄. However, there are others that are not. For instance, the function
f : R → R, f(x) = −|x| has threshold zero and is not bounded below by q0 (i.e. constant
function), though it is bounded below by qr for any r > 0. It is also interesting to note that this can
happen with convex functions as well. Nonconstant affine functions, which are convex and have
threshold zero, are not bounded below by q0.

Now we focus on the threshold of the sum of two prox-bounded functions. As in the case of
the piecewise function with prox-bounded pieces, we will find that an exact threshold cannot be
obtained and we settle for an upper bound in the general case. If certain restrictions are put on one
or both of the functions, an exact threshold can be determined.

Lemma 4.6. Let f1, f2 : Rn → R be proper, lsc and prox-bounded with respective thresholds
r1, r2. If f1 ≤ f2, then for any r > max{r1, r2}, we have

−∞ < erf1 ≤ erf2.

Proof. We have −∞ < erf1 by Fact 2.6. Defining g1, g2 : Rn → R by g1(x) = f1(x) + r
2
‖x‖2

and g2(x) = f2(x) + r
2
‖x‖2, we have g1 ≤ g2. By [4, Proposition 13.14(ii)], g∗1(rx) ≥ g∗2(rx). By

Fact 4.2, we have

erf1(x) =
r

2
‖x‖2 − g∗1(rx),

≤ r

2
‖x‖2 − g∗2(rx),

= erf2(x).

Corollary 4.7. Let f1, f2 : Rn → R be proper, lsc and prox-bounded with respective thresholds
r1, r2. If f1 ≤ f2, then r1 ≥ r2.

Proposition 4.8. Let f1, f2 : Rn → R be proper, lsc and prox-bounded with respective thresholds
r1, r2. Define f(x) = (f1 + f2)(x). Then f is prox-bounded with threshold r̄ ≤ r1 + r2. Moreover,
if f2 is bounded, then r̄ = r1.

Proof. The first part of this proposition appears as part of [18, Lemma 2.4], but we provide a full

8



proof for the sake of completeness. For any ε > 0, we have

er1+r2+2εf(x) = inf
y

{
f1(y) + f2(y) +

r1 + r2 + 2ε

2
‖y − x‖2

}
= inf

y

{[
f1(y) +

r1 + ε

2
‖y − x‖2

]
+

[
f2(y) +

r2 + ε

2
‖y − x‖2

]}
≥ inf

y

{
f1(y) +

r1 + ε

2
‖y − x‖2

}
+ inf

y

{
f2(y) +

r2 + ε

2
‖y − x‖2

}
= er1+εf1(x) + er2+εf2(x) > −∞ ∀x ∈ Rn .

So we have e(r1+r2)+2εf(x) > −∞ for all x ∈ Rn and for any ε > 0, which by Fact 2.6 tells us
that f is prox-bounded and r̄ ≤ r1 + r2. Now suppose that f2 is bounded. Since f2 is bounded
below, we have that r2 = 0 by Fact 2.5. Hence, r̄ ≤ r1 + 0 = r1. Since f2 is bounded above, there
exists M ∈ R such that M ≥ f2(x) ∀x. Suppose that r1 > 0. (Otherwise, trivially r̄ = 0 = r1.)
Then for any r ∈ (0, r1), we have

erf(x) = inf
y

{
f1(y) + f2(y) +

r

2
‖y − x‖2

}
,

≤ inf
y

{
f1(y) +M +

r

2
‖y − x‖2

}
,

= M + inf
y

{
f1(y) +

r

2
‖y − x‖2

}
,

= M + erf1(x) = −∞.

Hence, r̄ ≥ r1. Therefore, r̄ = r1.

Corollary 4.9. Let f1, f2 : Rn → R be proper, lsc and prox-bounded with threshold 0. Then
(f1 + f2)(x) is prox-bounded with threshold 0.

The very strong condition of f2 being bounded above and below in Proposition 4.8 can be
relaxed slightly, as the corollary below indicates, with the same proof as the proposition.

Corollary 4.10. Let f1, f2 : Rn → R be proper, lsc and prox-bounded with respective thresholds
r1, r2. Define f(x) = (f1 + f2)(x). If r2 = 0 and f2 is bounded above, then r̄ = r1.

Proposition 4.11. Let f1 : Rn → R be proper and lsc. Let f2 : Rn → R be an affine function.
Then f1 + f2 is prox-bounded with threshold r1 if and only if f1 is prox-bounded with threshold r1.

Proof. We see in [3, Lemma 3.6] that the Moreau envelope of f can be expressed as the sum of
a quadratic function and a Moreau envelope of f1 only, with x plus a constant as the argument.
Therefore, erf exists if and only if erf1 exists and we have that f has the same threshold as f1.

Proposition 4.11 invites another slight relaxation of the condition on f2 in Proposition 4.8.

Corollary 4.12. Let f1, f2 : Rn → R be prox-bounded with respective thresholds r1, r2. Define
f = f1 + f2. If r2 = 0 and f2 is majorized by an affine function, then f is prox-bounded with
threshold r̄ = r1.

9



Now we move on to sufficient conditions for a composition rule. This is a difficult issue; one
can construct examples of composition where the resulting threshold is any nonnegative number
one desires, or even nonexistent. The following simple examples demonstrate.

Example 4.13. For a, b ≥ 0, define f1, f2 : R→ R,

f1(x) = −bx, f2(x) = −a
2
x2.

Then the threshold of f1 ◦ f2 is r̄12 = 0, while the threshold of f2 ◦ f1 is r̄21 = ab2.

Proof. Since (f1 ◦ f2)(x) = ab
2
x2 is bounded below, by Fact 2.5 we have r̄12 = 0. We find that

(f2 ◦f1)(x) = −ab2

2
x2, so by the same method as the proof of Example 3.6 we have r̄21 = ab2.

Example 4.13 shows that with two basic prox-bounded functions it is possible to obtain a
threshold for the composition that is any particular nonnegative number, by making appropriate
choices of a and b. The next example shows that we can just as easily use two prox-bounded
functions to construct a function that is not prox-bounded.

Example 4.14. Define f1(x) = x2, f2(x) = −x2. Then f1 ◦ f2 has threshold r̄12 = 0, while f2 ◦ f1

is not prox-bounded.

Proof. Since (f1 ◦ f2)(x) = x4 is bounded below, by Fact 2.5 we have that r̄12 = 0. We find that
(f2 ◦ f1)(x) = −x4, so by Fact 4.3(ii), f2 ◦ f1 is not prox-bounded.

Furthermore, one can compose two functions that are not prox-bounded to form a function that
is prox-bounded. For instance on R+, f1(x) = −x3 and f2(x) = ln x are not prox-bounded, yet
they yield the composition (f1 ◦ f2)(x) = − ln3 x, which is minorized by −x2 and thus prox-
bounded by Fact 4.3(ii). So what can we say about the thresholds of the composition of prox-
bounded functions? As in the case of the sum of prox-bounded functions, if we restrict ourselves
to certain classes of functions, we can make some conclusions. We start by listing a known fact
that is used in the proof of the subsequent proposition.

Fact 4.15. [18, Lemma 2.4] Let f : Rn → R be proper, lsc and prox-bounded with threshold r̄.
Then for any λ ≥ 0, λf is prox-bounded with threshold λr̄.

Proposition 4.16. Let f1 : Rm → R and f2 : Rn → Rm be such that Im f2 ⊆ dom f1. Define
f : Rn → R, f = f1 ◦ f2. If f1, f2 are Lipschitz continuous, then the threshold of f is r̄ = 0.

Proof. Let f1 be K1-Lipschitz and f2 be K2-Lipschitz. Then

‖f1(f2(y))− f1(f2(x))‖ ≤ K1‖f2(y)− f2(x)‖ ≤ K1K2‖y − x‖,

which says that f1 ◦ f2 is K1K2-Lipschitz. By Proposition 3.2, r̄ = 0.

Proposition 4.17. Let f1, f2 : R → R be prox-bounded with respective thresholds r̄1, r̄2. Define
f : R→ R, f = f1 ◦ f2.
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(i) If f1 is affine: f1(x) = ax+ b with a ∈ R+ and b ∈ R, then the threshold of f is r̄ = ar̄2.

(ii) If f2 is affine: f2(x) = ax+ b with a, b ∈ R, then the threshold of f is r̄ = a2r̄1.

Proof. (i) We have (f1 ◦ f2)(x) = af2(x) + b. This yields r̄ = ar̄2 by Fact 4.15 and the fact that
the vertical shift by the constant value b has no impact on the threshold.

(ii) We have (f1 ◦ f2)(x) = f1(ax+ b). Let r > r̄1. Then by Fact 4.3(iii), f1 + r
2
‖ · ‖2 is bounded

below. We have, for some m ∈ R and for all x ∈ dom f1,

f1(x) +
r

2
‖x‖2 ≥ m,

f1(ax+ b) +
r

2
‖ax+ b‖2 ≥ m,

f1(ax+ b) + ar〈x, b〉+
a2r

2
‖x‖2 ≥ m− r

2
‖b‖2. (4.2)

Hence, f1(ax + b) + ar〈x, b〉 + a2r
2
‖x‖2 is bounded below. Since (4.2) is true for any arbitrary

r > r̄1, it is true for all r > r̄1. By an identical argument, for any r < r̄1 we have that f1(ax+ b) +
ar〈x, b〉 + a2r

2
‖x‖2 is not bounded below. Thus, r̄1 is the infimum of all r such that (4.2) is true.

By Fact 4.3, the threshold of f1(a · +b) + ar〈·, b〉 is a2r̄1. By Proposition 4.11, we conclude that
the threshold of f1 ◦ f2 is a2r̄1.

So we have that (on Rn) if both f1, f2 are Lipschitz continuous functions, or (on R) if one of
f1, f2 is affine, then the threshold of the composition can be determined exactly. It is clear from
Examples 4.13 and 4.14 that if one of f1, f2 is quadratic, chaos ensues. So far, it does not seem that
other standard properties such as convexity and boundedness are any more promising in forming
composition rules, not even in providing an upper bound for the threshold. We leave the further
development of properties of the threshold of prox-boundedness to future consideration.

5 Conclusion and future work
The threshold of prox-boundedness of the objective function of a minimization problem is an
important value to take into consideration when implementing optimization algorithms. In this
work, we have determined the threshold of Lipschitz functions and bounds on the threshold of
piecewise functions. We established properties of thresholds of the sum and the composition of
functions under certain conditions and shown that when we do not have these conditions, functions
can be constructed so that the threshold of the sum or composition is any nonnegative number.

This paper is the first step in determining thresholds for larger classes of functions, with the
long-term goal of improving the efficiency of optimization routines that are based in the proximal
point algorithm. At the moment, the conditions imposed are quite heavy; the search continues
for other well-behaved functions whose thresholds can be identified or at least bounded. The work
done here regarding piecewise functions, together with the results of [19] on PLQ functions, should
open the way for exploration of thresholds of composition classes such as the fully subamenable
functions of [31]. Such functions are an extension of fully amenable functions [38], respect a chain
rule and are suitable for use in constrained composite modelling and optimization applications.
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[3] M. Bačak, J. Borwein, A. Eberhard, and B. Mordukhovich. Infimal convolutions and Lips-
chitzian properties of subdifferentials for prox-regular functions in Hilbert spaces. J. Convex
Anal., 17(3-4):737–763, 2010.

[4] H. Bauschke and P. Combettes. Convex analysis and monotone operator theory in Hilbert
spaces. CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC. Springer, New
York, 2011.

[5] H. Bauschke, E. Matoušková, and S. Reich. Projection and proximal point methods: conver-
gence results and counterexamples. Nonlinear Anal., 56(5):715–738, 2004.

[6] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein. Distributed optimization and statisti-
cal learning via the alternating direction method of multipliers. Found. Trend. Mach. Learn.,
3(1):1–122, 2011.

[7] L. Briceno-Arias, P. Combettes, J.-C. Pesquet, and N. Pustelnik. Proximal algorithms for
multicomponent image recovery problems. J. Math. Imag. Vision, 41(1-2):3–22, 2011.

[8] R. Burachik and A. Iusem. A generalized proximal point algorithm for the nonlinear com-
plementarity problem. RAIRO Oper. Res., 33(4):447–479, 1999.

[9] P. Calamai and J. Moré. Projected gradient methods for linearly constrained problems. Math.
Program., 39(1):93–116, 1987.

[10] Y. Chen, C. Kan, and W. Song. The Moreau envelope function and proximal mapping with
respect to the Bregman distances in Banach spaces. Vietnam J. Math., 40(2-3):181–199,
2012.

12



[11] M. Dao and M. Tam. Union averaged operators with applications to proximal algorithms for
min-convex functions. J. Optim. Theory Appl., 181(1):61–94, 2019.

[12] J. Douglas and H. Rachford. On the numerical solution of heat conduction problems in two
and three space variables. Trans. Amer. Math. Soc., 82(2):421–439, 1956.

[13] J. Eckstein and D. Bertsekas. On the Douglas–Rachford splitting method and the proximal
point algorithm for maximal monotone operators. Math. Program., 55(3, Ser. A):293–318,
1992.

[14] C. Fougner and S. Boyd. Parameter selection and preconditioning for a graph form solver. In
Emerging Applications of Control and Systems Theory, pages 41–61. Springer, 2018.

[15] A. Fuduli and M. Gaudioso. Tuning strategy for the proximity parameter in convex mini-
mization. J. Optim. Theory Appl., 130(1):95–112, 2006.

[16] M. Fukushima and H. Mine. A generalized proximal point algorithm for certain nonconvex
minimization problems. Internat. J. Systems Sci., 12(8):989–1000, 1981.

[17] O. Güler. On the convergence of the proximal point algorithm for convex minimization.
SIAM J. Control Optim., 29(2):403–419, 1991.

[18] W. Hare. A proximal average for nonconvex functions: a proximal stability perspective.
SIAM J. Optim., 20(2):650–666, 2009.

[19] W. Hare and C. Planiden. Thresholds of prox-boundedness of PLQ functions. J. Convex
Anal., 23(3), 2014.

[20] W. Hare and C. Planiden. Computing proximal points of convex functions with inexact sub-
gradients. Set-Valued and Variational Analysis, 26(3):469–492, 2018.

[21] W. Hare, C. Planiden, and C. Sagastizábal. A derivative-free VU-algorithm for convex finite-
max problems. arXiv preprint arXiv:1903.11184, 2019.

[22] W. Hare and C. Sagastizábal. Computing proximal points of nonconvex functions. Math.
Program., 116(1-2, Ser. B):221–258, 2009.

[23] B. He, H. Yang, and S. Wang. Alternating direction method with self-adaptive penalty param-
eters for monotone variational inequalities. J. Optim. Theory Appl., 106(2):337–356, 2000.

[24] J.-B. Hiriart-Urruty and H. Le. From Eckart and Young approximation to Moreau envelopes
and vice versa. RAIRO Oper. Res., 47(3):299–310, 2013.

[25] A. Kaplan and R. Tichatschke. Proximal point methods and nonconvex optimization. J.
Global Optim., 13(4):389–406, 1998. Workshop on Global Optimization (Trier, 1997).

[26] I. Kecis and L. Thibault. Moreau envelopes of s-lower regular functions. Nonlinear Anal.,
127:157–181, 2015.

13



[27] Y. Li, H. Zhang, Z. Li, and H. Gao. Proximal gradient method with automatic selection of
the parameter by automatic differentiation. Optim. Methods Softw., 33(4-6):708–717, 2018.

[28] Y. Lucet. Fast Moreau envelope computation. I. Numerical algorithms. Numer. Algorithms,
43(3):235–249 (2007), 2006.

[29] B. Martinet. Régularisation d’inéquations variationnelles par approximations successives.
Rev. Française Informat. Recherche Opérationnelle, 4(Ser. R-3):154–158, 1970.

[30] R. Mifflin and C. Sagastizábal. V U -smoothness and proximal point results for some noncon-
vex functions. Optim. Methods Softw., 19(5):463–478, 2004.

[31] A. Mohammadi, B. Mordukhovich, and M. Sarabi. Variational analysis of composite models
with applications to continuous optimization. arXiv preprint arXiv:1905.08837, 2019.

[32] J.-J. Moreau. Proximité et dualité dans un espace Hilbertien. Bull. Soc. Math. France,
93:273–299, 1965.

[33] C. Planiden and X. Wang. Strongly convex functions, Moreau envelopes, and the generic
nature of convex functions with strong minimizers. SIAM J. Optim., 26(2):1341–1364, 2016.

[34] C. Planiden and X. Wang. Epi-convergence: the Moreau envelope and generalized linear-
quadratic functions. J. Optim. Theory Appl., 177(1):21–63, 2018.

[35] C. Planiden and X. Wang. Proximal mappings and Moreau envelopes of single-variable
convex piecewise cubic functions and multivariable gauge functions. In Nonsmooth opti-
mization and its applications, volume 170 of Internat. Ser. Numer. Math., pages 89–130.
Birkhäuser/Springer, Cham, 2019.

[36] P. Rey and C. Sagastizábal. Dynamical adjustment of the prox-parameter in bundle methods.
Optimization, 51(2):423–447, 2002.

[37] R. Rockafellar. Monotone operators and the proximal point algorithm. SIAM J. Control
Optim., 14(5):877–898, 1976.

[38] R. Rockafellar and R. Wets. Variational analysis. Grundlehren der Mathematischen Wis-
senschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin,
1998.

[39] W. Sun, R. Sampaio, and M. Candido. Proximal point algorithm for minimization of DC
function. J. Comput. Math., 21(4):451–462, 2003.

[40] K. Yosida. Functional analysis. Die Grundlehren der Mathematischen Wissenschaften, Band
123. Academic Press, Inc., New York; Springer-Verlag, Berlin, 1965.

14


	Conditions for the existence, identification and calculus rules of the threshold of prox-boundedness
	Recommended Citation

	Conditions for the existence, identification and calculus rules of the threshold of prox-boundedness
	Abstract
	Disciplines
	Publication Details

	tmp.1592531326.pdf.PSOwU

