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Abstract 

Graphene Oxide (GO) is a mixture of carbon, oxygen, and hydrogen. GO sheets used to make 

tough composite materials, thin films and membranes. Graphene Oxide - Water nanofluid’s 

rheological behavior was investigated in this research. Various mass fractions: 1.0, 1.5, 2.0, 2.5, 

and 3.5 mg/ml; different temperature ranges: 25, 30, 35, 40, 45, and 50℃; and several shear ranges: 

12.23, 24.46, 36.69, 61.15, 73.38, and 122.3 s-1 studied. X-ray diffraction analysis (XRD), Energy 

dispersive X-ray analysis (EDX), Dynamic light scattering analysis (DLS) and Fourier transform 

infrared (FTIR) tests, studied to analyze Phase and structure. Field emission scanning electron 

microscope (FESEM), and Transmission electron microscopy (TEM) tests, studied for 

Microstructural-observation. The stability of Nanofluid was checked by the Zeta-potential test. 

Non-Newtonian behavior of nanofluid, similar to power-law model (with power less than one) 

revealed by results. Also, results showed that viscosity increased by increment of mass fraction, 

and on the contrary, increment of temperature, cause a decrease in viscosity. Then, to calculate 

nanofluid’s viscosity, a correlation presented which has 1.88% (for RPM= 10) and 0.56% (for 

RPM= 100) deviation. Finally, to predict nanofluid’s viscosity in other mass fractions and 

temperatures, an Artificial neural network has been modeled by R2=0.99. It can be concluded that 

GO, can be used in thermal systems as stable nanofluid with agreeable viscosity. 
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Nomenclature Subscripts 

DLS dynamic light scattering bf Base Fluid 

GO Graphene Oxide Exp Experimental 

m Consistency index (Pa.sn) nf Nanofluid 

n Power law index np Nanoparticle 

RPM Round per minute pred Predicted 

TEM transmission electron microscopy   

Vis Viscosity   

XRD X-ray diffraction   

ZP Zeta potential   
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1. Introduction 

Graphene Oxide (GO), has a two-dimensional structure with superb mechanical and thermal 

properties [1]. Despite its excellent properties, GO mass-production at a low cost is important. 

Also, the production method must be eco-friendly due to its usage in biocomposites and biofilms 

[2]. Indeed, in nature, we can find Graphene sheets; however, the purity is another requirement to 

produce Graphene Oxide [3]. Production of Graphene from Graphite can be done physically and 

chemically. For this purpose, the selection of graphite is important and thus, Flake graphite with 

size less than one mm is required [4]. For useful applications, Graphene Oxide can also be self-

assembled or fabricated in macroscopic microstructures and compositions [5]. In the Staudenmaier 

method (that needs four days), about two-thirds of fuming HNO3 with concentrated H2SO4 

replaced and KClO3 added in multiple portions which allow the reaction in a vessel. Then, a new 

method introduced by hummers and Offeman (H method) in 1958. This method is widely accepted 

to synthesis GO and has some advantages. First, its production time reduced to hours instead of 

days; then, reaction safety increased by adding KMnO4 instead of KClO3, and finally, acid fog 

eliminated by adding NaNO3 instead of HNO3 [6]. Tour and co-workers improved this method 

(MH method) by excluding NaNO3 and adding more KMnO4 [7]. Also, by using an improved 

Hummers method, Graphene Oxide can be produced without using NaNO3 which causes more low 

cost and more eco-friendly effects [8]. 

In the oil, gas and petrochemical industries, heat exchangers play a major role and thus, more 

research to improve their efficiency is required. Using nanofluids by different types of 

nanomaterials and basefluid are recent studies in this field [9]. Due to its important usage in 

industries, nanofluids should be tested more to understand their properties and their effects. 

Thermal conductivity, Thermal stability and Viscosity are important properties of a nanofluid [10]. 

Despite numerous studies in thermal conductivity, limited studies exist on viscosity properties. 

Totally, Nanofluid is a suspension of particles or tubes with more thermal properties compared to 

base fluid. Research trends for nanofluid and their properties show global motivation in 

characterization and usage of nanofluids to gain more advantages. Nanoparticle properties such as 

shape, size, and also an interaction between nanoparticles and base fluid effects properties [11]. 

Rheological behavior and aggregate size of nanofluid are related to each other. A nanofluid can 

show both Newtonian and non-Newtonian behavior. Nanofluid behavior is due to its shape, size 

and mass fraction. 



Many studies conducted to realize properties of nanofluids containing carbon-based materials, 

such as Graphene, Graphene Oxide and MWCNT [12]. Adding more of carbon-based materials to 

base fluid, create a gel-like fluid and thus, nanofluid viscosity increase which is undesirable [13]. 

Due to the unique physicochemical properties of graphene-based materials, and also their 

compatibility with other compounds, more experiment studies are required. There are few types 

of research about the effect of particle size and viscosity of graphene oxide nanofluids [14, 46-63]. 

In this paper, Graphene Oxide synthesized via the MH method. After that, Graphene Oxide added 

to Water and nanofluid prepared at mass fractions 1.0 to 3.5mg/ml. Then, experiments were done 

at various temperatures. By curve fitting method, a new correlation presented to calculate the 

viscosity of Graphene Oxide/Water nanofluid. Finally, artificial neural network modeled data. 

 

2. Materials and Methods 

2.1. Materials 

With respect to KPA-Iran, Flake graphite (FG) prepared with excellent purity. Also, other 

materials used in order to synthesis, had excellent purity with analytical grade. Figure 1 shows the 

Graphene Oxide and Flake Graphite 3D-schematic form. Also, Properties of nanomaterial and 

basefluid are presented in Table 1. 

 

Table 1. Thermophysical Properties of Base Fluid and Nanoparticle 

Properties Water (Base fluid) Flake Graphite Graphene Oxide 

(Nanoparticle) 

Chemical formula H2O C C 

Molar mass (g/mol) 18.0153 12.01 12.01 

Density (gr/m3) ~1.0 ~2.0 ~2.3 

Viscosity (mPa.s) --- --- This paper 

 



 

Figure 1. Graphene Oxide and Flake Graphite 3D-schematic form 

 

2.2. Powder Synthesis & Nanofluid Preparation 

Figure 2. displays synthesis and preparation steps of Graphene Oxide (GO) powder and nanofluid. 

XRD tested by a D8ADVANCE Bruker X-ray diffractometer. EDX used to confirm XRD results. 

Also, DLS was measured by VASCO Cordouan Technologies. Then, FTIR spectra was recorded 

on JASCO 6300JAPAN. Also, FESEM applied to observe sample morphology by NOVA 

NanoSEM [15]. 

The first step before thermophysical properties measuring, is the preparation of nanofluid. By 

adding GO to deionized Water, nanofluid prepared at concentration of 1.0, 1.5, 2.0, 2.5, and 3.5 

mg/ml. The total concentration of GO used in nanofluid can be computed from Equation (01). GO 

mass was measured by digital A&D GF-600 Weighing Lab Balance with 1-mg precision. To 

prepare the nanofluid, a two-stage method because of its reasonable cost and simplicity was used. 

In this technique, synthesized material, dispersed in water base fluid by applicable dispersion 

approach. However, the biggest problem in this method, is agglomeration. To prevent this, and to 

obtain a good dispersion, pH meter, magnetic stirring (for 100 min), and sonication (for 20 min) 

with ultrasonic processor 400 W - 24 kHz (Hielscher Company, Germany) is used. Thus, a stable 

suspension prepared [16]. 
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Where 𝜑 is mass fraction percentage, m indicates mass and 𝜌 is density. 

 

Figure 2. Schematic diagram of powder synthesis steps (Flake Graphite to Graphene Oxide) and also nanofluid 

preparation 

 

2.3. Viscosity Measurement 

To measure GO-Water viscosity, a DV2EXTRAPro rotational viscometer (BROOKFIELD) with 



5% error is applied [17]. These viscometers work based on measuring the resistance of the fluid 

due to the torque created by the spindle that is immersed in the fluid. Further, an precise 

temperature bath (LAUDA Alpha RA 8) was connected to viscometer to provide temperature 

stability and also measure the effects of temperature on viscosity of the nanofluid. as a result, it is 

possible to analyse the viscosity and rheological behavior of nanofluids under the influence of 

shear rate and temperature at various concentrations. To measure the viscosity of GO-Water, ULA 

spindle (1-200 RPM/ 1-6 mPa.S with 1.223 shear rate coefficient and a small sample adapter 

system) is used [18]. Earlier, DV2T was calibrated at room temperature by experiments with 

distilled water and its data compare with accessible viscosity data for pure water [19]. Viscosity 

analysis at different shear rates, studied four times for 25, 30, 35, 40, 45 and 50oC temperature, 

independently. The accuracy and repeatability of the viscometer used are ±0.2% and ±1% in the 

full-scale range (FSR) of measurements, accordingly. To calculate FSR through Equation (02), the 

values of torque coefficient (TK), spindle multiplier constant (SMC) and rotational speed of 

spindle by means of device round per minute (RPM) are needed. 

10000
FSR(mPa.s) * *TK SMC

RPM
=  

(02) 

The values of TK and SMC for ULA spindle are 0.0937 and 0.64, accordingly. Thus, the 

repeatability of the results can be computed from Equation (03).   

Repeatability(mPa.s) 0.002( )FSR=  (03) 

The measurement error for the viscosity of nanofluids in this research can be computed by the 

Equation (04), in accordance with the user’s manual of viscometer. 

( . ) 0.01( )Error mPa s FSR = +  (04) 

In which, (mPa.s) represents the nanofluids viscosity. 

 

3. Result  

3.1. Synthesis 

3.1.1. Phase Investigation 

XRD 

Figure 3 displays XRD pattern and crystallinity structure of synthesized GO by MH method. The 



sharp (001) peak can be seen at 2θ = 10.775°, corresponding to the d-spacing of 8.214 Ǻ. However, 

this sharp (002) peak in FG, can be seen at 2θ = 26.475˚ corresponding to the d-spacing of 3.363 

Ǻ by Bragg’s law (1.541˚ Å wavelength of Cu Kα). This means, in the synthesizing process, the 

crystal plane changed from (002) to (001) which can be seen at 2θ; Also, d-spacing increased about 

4.851 Ǻ [20]. 

 

Figure 3. XRD comparison between Graphene Oxide (GO) and Graphite (FG) 

 

DLS 

DLS used to determine size distribution for FG and GO dispersed in Water. GO has a 2D structure 

which means only one dimension is at the nanoscale. However, DLS cannot measure the thickness 

itself, and the size of two other dimensions (which are in microscale) also shown in Figure. Figure 

4 shows that GO (About 69.4 vol.% has 474.28 nm) has less volume than Flake Graphite (Around 

39.5 vol.% has 653.49 nm) [21]. 



 

Figure 4. DLS comparison between Graphene Oxide (GO) and Graphite (FG) 

 

FTIR 

Figure 5 shows FTIR spectroscopy analysis. To study structure and functional groups of Flake 

Graphite and Graphene Oxide, FTIR used. For GO sample, the wide peak from 2859.3 to 3720.82 

cm−1, which correspond to OH groups of water molecules reported in the high-frequency area. 

Graphene Oxide hydrophilicity can be concluded from this wide peak. carboxyl C=O characteristic 

peaks of Graphene Oxide, reported in 1738.51 cm−1. To compare both FG and GO, Figure 5 

displays a lower intensity of FG peaks. As a report, functional groups can be seen as: 

O-H, C=C, C-OH and C-O at 3420.14 cm−1, 1622.8 cm−1, 1224.47 cm−1, 1052.94 cm−1, for 

Graphene Oxide respectively and also C=C, and C-O at 1578.01 cm−1 and 1028.32 cm−1 for Flake 

Graphite respectively [22]. 



 

Figure 5. FTIR comparison between Graphene Oxide (GO) and Graphite (FG) 

 

3.1.2. Microstructural Observations 

FESEM and EDX 

Figure 6 displays the FESEM of the disordered and amorphous 2D structure of synthesized 

GO. It can be seen that GO has a layer structure and its thickness is less than 100nm. The thick 

structure of GO is because of covalently bound oxygen presence, and it is easy to determine sheets 

edges. Wrinkled areas are one above the other. GO sheets have 1 - 3 µm flake diameter [23]. 

EDX test done for 2 points for FG and GO. Figure 7, displays that Flake graphite have around 

82.05 at.% C, 14.82 at.% O and 3.13 at.% N + Fe + Si + Al. However, Graphene Oxide has more 

purity and have around 61.12 at.% C, 37.94 at.% O and 0.94 at.% S. 



 

 

Figure 6. FESEM of Graphene Oxide (GO) and Graphite (FG) 

 

 



 

Figure 7. EDX of Graphene Oxide (GO) and Graphite (FG) 

 

Table 2. EDX pattern 

First Point of Flake Graphite First Point of Graphene Oxide 

El AN  Series  unn. C norm. C Atom. C Error (1 Sigma) El AN  Series  unn. C norm. C Atom. C Error (1 Sigma) 

 [wt.%] [wt.%] [at.%] [wt.%]  [wt.%] [wt.%] [at.%] [wt.%] 

C 76.42 76.42 82.05 12.88 C 53.54 53.54 61.12 11.86 

O 18.39 18.39 14.82 5.94 O 44.27 44.27 37.94 11.34 

N 2.05 2.05 1.89 2.55 S 2.19 2.19 0.94 0.19 

Si 1.42 1.42 0.65 0.14      

Fe 0.98 0.98 0.24 0.16      

Al 0.74 0.74 0.35 0.10      

Total 100 100 100   100 100 100  

Second Point of Flake Graphite Second Point of Graphene Oxide 

El AN  Series  unn. C norm. C Atom. C Error (1 Sigma) El AN  Series  unn. C norm. C Atom. C Error (1 Sigma) 

 [wt.%] [wt.%] [at.%] [wt.%]  [wt.%] [wt.%] [at.%] [wt.%] 

C 100.00 100.00 100.00 16.86 C 50.14 50.14 43.02 12.17 

     O 49.86 49.86 56.98 10.88 

Total 100 100 100   100 100 100  

 

TEM 

Transmission electron microscopy used to confirm that GO thickness is under 100nm. In the TEM 

technique, to make an image, a beam of electrons transmitted through a specimen. It can be seen 

in Figure 8 that Graphene Oxide has a 2D layer structure and its thickness is less than 50nm [24]. 



 

Figure 8. TEM of Graphene Oxide (GO) 

 

3.2. Generate the Nanofluid 

3.2.1. Stability 

Zeta Potential 

Figure 9 displays the zeta potential of Graphene Oxide at 1.0 and 4.5 mg/ml. GO colloid solution 

at a pH range of 2–4, displays negative zeta potential. As reported by ASTM, ZP ranges of 20 to 

30 mV are moderately stable and ˃± 30 mV are highly stable. ZP for mass fractions 1.0 and 4.5 

are 36 mV 38.3 mV, respectively, these ZP values, displays high stability of nanomaterial in the 

aqueous phase. By these ZP values, it can be concluded that GO has aggregation behavior by 

increasing the mass fraction. By increasing mass fraction, GO negative electrical surface charge, 

rose which is due to the ionization of carboxylic acid groups [25]. This trend was not seen through 

the previous works [64-79]. 



 

Figure 9. Zeta potential of Graphene Oxide (concentration of 1.0 mg/ml & 4.5 mg/ml) 

 

3.2.2. Viscosity 

Validation 

First, to confirm viscometer accuracy, DV2T viscometer validity was specified by distilled water 

(as calibration fluid) and compared to the ASHRAE handbook [26]. The error of device 

measurement was acceptable (less than 5%) at T = 25oC (regarding its manual). Figure 10, shows 

maximum error of 4.58% (at T = 25oC). 



 

Figure 10. Viscosity of experimental data for pure water versus ASHRAE handbook [26] data by temperature 

 

Mass Fraction and Temperature Effect 

Determining nanofluid’s rheological behavior whether it shows Newtonian or non-Newtonian 

behaviors at various mass fractions and temperatures is important [27]. Figure 11 shows viscosity 

by mass fraction at various temperatures in shear rates of 12.23 and 122.3 [28]. Figure 12 shows 

viscosity by the temperature at various mass fractions in shear rates of 12.23 and 122.3 [29]. As it 

can be seen by increasing mass fraction, viscosity increased. However, by increasing in 

temperature, viscosity decreased. Figure 13 shows 3D results of viscosity by both temperature and 

mass fraction in shear rates of 12.23 and 122.3. 



 

Figure 11. Viscosity profiles versus concentration 

 

 

Figure 12. Viscosity profiles versus temperature  



 

 

Figure 13. Three-dimensional view of Experimental data for viscosity at various nanofluid mass fractions and 

temperatures and  

 

Non-Newtonian behavior 

The rheological behavior of nanofluids could be characterized, because of the flow behavior under 

applied external pressure and also a response to shear stress. Also, the effects caused by the shear 

stress are more important than the pressure because most liquids are considered as an 

incompressible fluid. Fluids have Newtonian behavior when shear stress (τ) is linearly proportional 

to the shear rate (𝛾 ̇) and their viscosity (𝜇) remains constant. Though, for non-Newtonian fluids, 

viscosity is a function of shear rate and shear stress or varies at various shear rates. Non-Newtonian 

fluids are: Time-dependent, Time-independent and Viscoelastic [30], [31]. 

1) Time-dependent: which is at constant shear rates, the viscosity of fluids modifies by time. By 

increasing the shear rate in these types of fluids, If the viscosity increases with time, the fluids are 

rheopectic and if decreases with time, they are called thixotropic. 



2) Time-independent: which has no memory of their past history or not dependent on the time of 

applying the shear rate. In Time-independent category, Bingham fluids have initial yield stress 

(need initial tension to flow) [32]. 

3) Viscoelastic fluids: which exhibit both viscous and elastic characteristics, after undergoing 

deformation can be converted into the initial state.  

Figure 14, shows nanofluid viscosity and shear stress by shear rate for mass fractions 1.0 to 3.5 

mg/ml and temperatures 25 to 50oC. This figure shows that the rheological behavior of nanofluid 

is non-Newtonian. As mentioned above, non-Newtonian fluid type divided into Time-dependent 

and Time-independent (which divided into Shear-thinning and Shear-thickening) [33]. For 

Graphene Oxide, power (in pawer law equation) is less than one and so, pseudoplastic type (Shear-

thinning) happened [34]. Equation (05) for pawer law is: 

τ= nm  )5(0 

Where 𝜏 is shear stress (Pa), 𝛾 ̇ is shear rate (𝑠−1), m is flow consistency index (Pa.𝑆𝑛), and n is the 

power-law index (dimensionless). 

Also, obvious viscosity is calculated from Equation (06) as: 

1μ= nm −  )6(0 

where 𝜇 stands for obvious nanofluid viscosity [35]. 

It can be seen the trend of viscosity or shear stress by shear rate is non-linear. m and n values at 

any mass fraction and temperature can be calculated by using Equation (07) and curve-fitting 

method. 

τ=  )7(0 



 

 



 

 



 

Figure 14. Viscosity and Shear stress variations for (a) 1.0 mg/ml, (b) 1.5 mg/ml, (c) 2.0 mg/ml, (d) 2.5 mg/ml and 

(e) 3.5 mg/ml by shear rate 

 

By considering nanofluid’s non-Newtonian behavior, and results of Figure 14, m and n parameters 

obtained in Figure 15. As can be seen, Figure 15.a shows the consistency index (m). For each mass 

fraction, by increasing the temperature, m decreased, however in general view, by increasing mass 

fraction, m increased [36]. Also, Figure 15.b shows the pawer law index (n). For each mass 

fraction, by increasing temperature, n increased, however in general view, by increasing mass 

fraction, n decreased [37]. This behavior is logical due to decrement of viscosity by increasing 

temperature which causes nanofluid acts more likely to water basefluid (which has Newtonian 

behavior). 



 

 

Figure 15. Variations in (a) Consistency index and (b) power-law index by temperature 

 



3.3. Numerical Study 

Proposed Correlation 

A new correlation to calculate viscosity of Graphene-Water nanofluid offered by using a curve-

fitting method (Equations 08 and 09). R2 for this correlation was about 0.99 [38]. Figure 16 shows 

the 3D fitted equation on experimental data for both 12.23 and 122.3 shear rates. 

R2 for shear rate 12.23 (10 RPM) is 0.9966 and its correlation reported as: 

0.78823 1.02734Vis=[1.39544* ]*[ ]T wt−
 )8(0 

R2 for shear rate 122.3 (100 RPM) is 0.9993 and its correlation reported as: 

0.55613 0.46584Vis=[1.05301* ]*[ ]T wt−
 )9(0 

Where viscosity is in centipoise, T stands for temperature in Celsius and wt is mass fraction [39]. 

 



 

Figure 16. Verify presented correlation by experimental results; viscosity by temperature and mass fraction of 

nanofluid for a) 10 RPM and b) 100 RPM 

 

To verify the presented correlation by experimental data of viscosity, Equation 10 used to compute 

deviation. Figure 17 shows the highest deviation of margin calculated 1.88% (for RPM= 10) and 

0.56% (for RPM= 100), shows that proposed correlation is valid and has high accuracy [40]. 

Pr
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Figure 17. Verify presented correlation by experimental results for a) 10 RPM and b) 100 RPM 

 



Artificial Neural Network 

This paper aims to model the viscosity of Graphene Oxide. This model has three inputs namely 

the temperature, mass fraction and shear rate and also, one output namely the viscosity. To that 

end, an Artificial Neural Network (ANN) model is utilized. The ANN has one hidden layer and 

one output layer. The hidden layer has 16 sigmoid neurons while the output layer has a linear 

transfer function. The architecture of the ANN is illustrated in Figure 18. The Bayesian 

regularization backpropagation is employed as the training algorithm. 

 

Figure 18. The architecture of the ANN 

 

There are two training datasets for the shear rates of 12.23 (1/s) and 122.3 (1/s). Every training 

dataset has 36 samples obtained by the experiment. The training datasets for the investigated shear 

rates are illustrated in Figure 19 [41,42]. 

 

(a) 



 

(b) 

Figure 19. The training dataset for shear rates of (a) 12.23 (1/s) and (b) 122.3 (1/s) 

 

The regression plots for the ANN model is illustrated in Figure 20. In this diagram, the numerical 

viscosity predicted by the ANN model is plotted against the experimental viscosity. In an ideal 

case, the numerical and experimental viscosities should be identical. In other words, the slope, and 

bias values of the fitted line should equal to 1 and 0, respectively. Hence, ANN model provides an 

acceptable model because the slope and bias values of the fitted regression plot are 0.997, 0.004, 

respectively. Moreover, the regression value is 0.9996 that indicates a suitable regression fit. 



 

Figure 20. The regression plots for the ANN model  

The prediction error of the ANN model is illustrated in Figure 21. In this figure, the error 

percentages are plotted against the experimental viscosity. It can be seen that the maximum error 

percentage is about 6% while the error percentages are generally less than 3%. Also, the error 

histogram illustrated in Figure 22. shows the error distribution. 

 

Figure 21. The prediction error of the ANN model 



 

Figure 22. The error histogram 

 

Once the ANN model is obtained, the viscosity can be predicted in the investigated domain of the 

temperature, mass fraction and shear rate. Figure 23. shows the numerical viscosities predicted by 

the ANN model as contours. Every contour displays the viscosity as a function of the temperature 

and mass fraction at a constant shear rate. It can be observed that the shear rate severely effects the 

predicted viscosity. The higher the shear rate, the lower the predicted viscosity. Also, it can be 

seen that the viscosity increases with mass fraction while it decreases with the temperature. 

However, the mass fraction is more effective on the predicted viscosity than the temperature. Since 

the numerical values of the viscosity are obtained in non-trained shear rates, temperatures and 

mass fractions, the ANN is successful in the prediction of the nanofluid behaviors. 



 

Figure 23. The numerical viscosities predicted by the ANN model in the investigated domain of outputs (the higher 

the shear rate, the lower the predicted viscosity) 

 

4. Conclusion 

In this study, dynamic viscosity of Graphene Oxide-Water nanofluid at mass fractions of 1.0 to 

3.5mg/ml and temperature ranges of 25 to 50℃ measured. Water has Newtonian behavior; 

however, when GO added to basefluid, nanofluid showed non-Newtonian behavior [43]. Viscosity 

increases by increasing mass fraction and decreases by increasing temperature. Nanofluid followed 

a power-law model. Power law model indices (m and n) found for all mass fractions and 

temperatures. By experimental results and curve-fitting, a correlation which shows very high 

accuracy, for both 12.23 and 122.3 shear rates calculated [44]. Then, correlation validated and 

1.88% (for RPM= 10) and 0.56% (for RPM= 100) deviation reported [45]. A list of results listed 

as: 

• GO, a 2D material, synthesized via modified hummers’ method and then, a stable and 

homogeneous nanofluid has been prepared. 



• By adding GO, basefluid viscosity increased and pseudoplastic behaviour reported due to 

the study of shear rate by shear stress. 

• Zeta potential test revealed GO-water acceptable stability of nanofluid. 

• Correlation presented in this paper, has the R-Squared (deviation) of about 0.99. Thus, it 

can calculate GO-Water viscosity in further researches. 

• ANN modeled in this paper, has the R-Squared (deviation) of about 0.997. Thus, it can 

predict viscosity of other mass fractions and temperatures. 
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