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Abstract 

Nanofluid is divided in two major section, Mono nanofluid (MN) and hybrid nanofluid (HN). MN 

is created when a solid nano-particle disperses in a fluid, while HN has more than one solid 

nanomaterial. In this research, Iron (III) Oxide (Fe3O4) is MN and Fe3O4 plus Multi-Walled Carbon 

Nanotube (MWCNT) is HN, while both are mixed and dispersed into the water basefluid. Thermal 

conductivity (TC) of Fe3O4/Water and MWCNT/Fe3O4/Water, were measured after preparation 

and numerical model performed on the resulted data. Then, X-ray diffraction analysis (XRD) and 

Energy dispersive X-ray analysis (EDX) were studied for Phase and structural analysis. After that, 

Field emission scanning electron microscope (FESEM) was studied for Microstructural-

observation of nanoparticles. MN and HN TC were studied at temperature ranges of 25 to 50oC 

and volume fractions of 0.2 to 1.0%. For MN and HN, Thermal conductivity enhancement (TCE) 

of 32.76% and 33.23%, was measured at 50oC temperature - 1.0% volume fraction, individually. 

Different correlations have been calculated for numerical modeling, with R2=0.9 and also, 

Artificial neural network (ANN) has been modeled with R2=0.999. Deviation of 0.6007% and 

0.6096%, were calculated for given correlations for MN and HN individually. Deviation of 

0.5862% and 0.6057%, were calculated for trained models, for MN and HN individually. Thus, by 

adding MWCNT to Fe3O4-H2O nanofluid, TC is enhanced 0.47% and this HN has agreeable heat 

transfer potential. 

 

Keywords: Thermal conductivity; Numerical modeling; Artificial Neural Network (ANN); 

MWCNT; Fe3O4; Water 
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Nomenclature Subscripts 

XRD X-ray diffraction analysis bf Base Fluid 

FESEM-EDX field emission scanning electron microscope 

plus energy dispersive X-ray analysis 
nf Nanofluid 

TC Thermal Conductivity Exp Experimental 

TCR Thermal Conductivity Ratio pred Predicted 

TCE Thermal Conductivity Enhancement np Nanoparticle 

MWCNT Multi-Walled Carbon Nanotube r Ratio 

 

  



1. Introduction 

Recently, with their great potentialities in different technological fields such as heterogeneous 

catalysis, magnetic data storage and electrical devices, Carbon nanotubes (CNTs)-based magnetic 

nanocomposites have drawn considerable research interest. Cunha et al. and Teymourian et al., 

synthesized the MWCNTs functionalized with Fe3O4 and Fe3O4/MWCNT–COOH, for tissue 

engineering applications and for the low potential detection of NADH, respectively. As MRI 

contrasting agent, Wu et al. used the Fe3O4/MWCNT–COOH. 

Sumio Iijima discovered Carbon nanotubes (CNTs) in 1991. CNT caused a revolution in different 

fields of nanotechnology: pharmacology, chemistry, environment, mechanic and electronics. 

Porous structures and facile surface functionalization are those physical properties which have 

made the application of the CNTs more attractive [1]. Many modification methods such as 

chemical, physical or both have been used for the homogeneous dispersion of CNTs in common 

solvents to improve their solubility. Wide surface of CNTs compared with its length scale in 

diameter, makes good position for the functionalization and adding different functional groups [2]. 

Multi-walled carbon nanotubes (MWCNTs) gain more attention compare to single walled carbon 

nanotubes (SWCNTs), due to their availability in large quantities and low production costs. One 

of the first CNT nanofluids studied by Choi et al. They reported 160% increase in TC of 1.0 vol.% 

MWNTs dispersed in synthetic poly(a-olefin) oil [3]. 

Magnetite (Fe3O4), particularly when it is in nano scale, has great significance in different fields. 

Thus, this material due to its characteristics, inspire researcher's new ideas [4]. Recently, 

considerable research has been focused on iron oxides, γ -Fe2O3 and Fe3O4 nanoparticles, which 

have attracted interest in the field of medical applications such as magnetic sensing, catalysis, high 

frequency applications, sensors, magneto-optics devices, microwave devices, cancer therapy and 

medical diagnostics, magnetic resonance imaging (MRI), photomagnetics, radio frequency 

hyperthermia, drug delivery systems (DDS), data storage, magnetic fluids, high-density digital 

recording disks and magnetic recording media such as audio and videotape. For such practical uses 

of magnetic nanoparticles, surface properties of the nanoparticles, magnetic properties and the 

particle size have great importance [5]. There are different ways to prepare Fe3O4 nanoparticles, 

such as high temperature decomposition of organic precursors, microemulsions, laser ablation, 



mechanical grinding and arc discharge [6]. These synthetic methods yield Fe3O4 nanoparticles 

with high crystallinity and narrow size distribution [7]. 

Recently, industries require fluids which can carry more heat in less time [8]. To improve the 

performance, energy consumption must be reduced [9]. Thus, fluids with faster heat transfer must 

be replaced with current fluids. One of these fluids are nanofluids (Introduced by Choi in 1995), 

which have attracted great concentration in recent years [10]. Nanofluids, are fluids with dispersed 

nano-size particles into basefluids such as Water, Oil and Ethylene Glycol [11]. Thermal 

conductivity increases or decrease if any nano-size particle dispersed into a fluid. After Choi, One-

, two- and three- dimensional nanomaterials such as fibers, sheets and particles and also different 

basefluids investigated to realize the effect of each material on thermal conductivity enhancement. 

There are two types of Nanofluids, mono and hybrid [12]. Mono-nanofluid is prepared by 

dispersion of one nanoparticle in a fluid, but hybrid-nanofluid is composed of more than one solid 

particle. In fact, each nanoparticle has its own properties [13]. Thus, this is possible to make use 

of different nanoparticles properties at the same time. Nanofluids can be used in different industrial 

applications: systems of engine cooling, electronic device cooling, heating and cooling system for 

buildings [14]. 

Recently, Artificial neural network was used in transformers heat analysis. The ANN, as a new 

parameter to investigate in each research, can model the data in specific range of temperature or 

volume fraction, with more than 1000 data. This means the highly reduction in the experiment 

costs. The ANN can model complex patterns by using simple computations. Thus, in nanofluid 

study, ANN modeling can be useful. 

The aim of this research is to investigate hybrid nanofluid’s thermal conductivity. Thus, Multi-

Walled Carbon Nanotube and Iron (III) Oxide nanoparticles dispersed in Water, and hybrid 

nanofluid (with composition of MWCNT 50% / Fe3O4 50%) was prepared at different volume 

fractions up to 1.0 %. After that, experiments done at different temperatures up to 50oC (by hot-

wire method). With using available data and curve fitting method, new correlations have been 

offered to calculate thermal conductivity of Iron (III) Oxide /Water MN and MWCNT/Iron (III) 

Oxide /Water HN in specified range of volume fraction and temperature [15]. Also, artificial neural 

network was modeled for both MN and HN to predict TC behavior in other volume fractions and 

temperatures. 



 

2. Materials and Methods 

2.1. Materials 

For nano-size solid materials, Multi-Walled Carbon Nanotube and Iron (III) Oxide were used. 

Figure 1, shows the 3D-chemical structure of MWCNT and Fe3O4. MWCNT was purchased from 

nano-bazar, Inc with length of ~ 30 um, ID 5-10 nm and OD 10-20 nm with COOH content of 2.0 

wt%. Fe3O4 was purchased from US Research Nanomaterials, Inc. Table 1, shows thermophysical 

properties of nanoparticles and basefluid. X-ray diffraction analysis was studied by D8ADVANCE 

Bruker X-ray diffractometer. Field emission scanning electron microscope images were taken by 

NOVA NanoSEM to observe sample morphology. Also, to certify XRD results, Energy dispersive 

X-ray analysis was used. 

 

Table 1. Thermophysical Properties of Basefluid and Nanoparticles 

Properties Water (Base fluid) Iron (III) Oxide 

(Nanoparticle 50%) 

Multi-Walled CNT 

(Nanoparticle 50%) 

Chemical formula H2O Fe3O4; FeO.Fe2O3 C 

Appearance --- Lustrous black Black 

Purity (%) Distilled water 97% 98% 

Molar mass (g/mol) 18.0153 231.533 12.011 

Density (gr/m3) 0.998 5.2 2.6 

Thermal conductivity (W/m·K) ~0.6 (@ 20oC) This paper 

 

 



Figure 1. 3D-schematic form of Multi-Walled Carbon Nanotube (MWCNT) and Iron (III) Oxide (Fe3O4) 

 

2.2. Nanofluid Preparation 

In this research, mono and hybrid nanofluid prepared separately, to measure nanofluid’s 

thermophysical properties. Fe3O4 as mono nanofluid, and Fe3O4 plus MWCNT (equal 50-50) as 

hybrid nanofluid, dispersed into water [16]. Various percentages of mono and hybrid nanofluid 

(0.2, 0.4, 0.6, 0.8 and 1.0 vol%) were prepared and then, pH meter, magnetic stirring and sonication 

were used to break agglomerations between nanoparticles to reach a stable suspension. To made 

and test this stable suspension, 120min magnetic stirring and 35min ultrasonic (400 W - 24 kHz), 

were done. 

 

2.3. Thermal Conductivity Measurement 

To measure thermo properties of mono and hybrid nanofluid, a KD2 Pro device (Decagon Devices, 

Inc., USA) was used. This device use hot-wire method with 5% error, and it needs to be calibrated 

with pure water. Mono and hybrid nanofluid containers placed at temp. bath and then, a single 

needle (stainless steel) sensor -KS.1- was inserted into containers, independently [17]. Thermal 

conductivity was measured 4-times, for each temperature (25, 30, 35, 40, 45 and 50oC), 

independently [18]. 

Thermal conductivity ratio (TCR) and Thermal conductivity enhancement (TCE) are 

calculated by equations 1 and 2, respectively. 

Thermal conductivity ratio nf

bf

k

k
=  

(01) 

( ) 0Thermal conductivity enhanc = *m 10e ent % nf bf

bf

k k

k

−
 

(02) 

Where k is thermal conductivity (TC) of nanofluid. Also, ”bf“ is basefluid and ”nf“ is nanofluid. 

 



3. Result and Discussion 

3.1. Materials 

3.1.1. Phase and Structural Analysis 

XRD 

Figure 2, displays the X-ray diffraction analysis of MWCNT–COOH and Fe3O4. An intense 

characteristic peak at (002) plane, 2θ = 26.04˚ with interlayer spacing (Via Bragg’s law Cu Kα: 

1.541˚ Å wavelength) of 3.418 Ǻ d-spacing is visible in the pattern [19]. Also, low-intensity peaks 

which indicates the crystalline structure of MWCNT are in (100), (004), and (110) planes, at 2θ = 

42.64˚, 2θ = 53.18˚ and 2θ = 78.22˚ [20]. For the Fe3O4 [21] XRD pattern of the sample, shows 

identical to pure magnetite (96-900-5840) with Cubic Crystal system. As it can be seen, (220) 

plane at 2θ = 29.98˚, (311) plane at 2θ = 35.45˚ and with 2.52 Ǻ d-spacing, (400) plane at 2θ = 

43.13˚ (422) plane at 2θ = 53.44˚ (511) plane at 2θ = 56.94˚ (440) plane at 2θ = 62.61˚ are the 

sample peaks. 

 

Figure 2. XRD of Multi-Walled Carbon Nanotube (MWCNT) and Iron (III) Oxide (Fe3O4) 

 



3.1.2. Microstructural Observations 

FESEM and EDX 

Figure 3 shows Field emission scanning electron microscope image of MWCNT with the 

magnification scales of 3000 (left) and 500 nm. 0D nanomaterials are nanoparticles and in 1D 

nanomaterials, one dimension is outside the nanoscale. As it can be seen, MW Carbon Nanotubes 

has one-dimension structure as like as nanorods, and nanowires. From the figure, nanotubes have 

nanometer scale which is under 100 nm [22]. MWCNT has a rough surface structure due to the 

attachment of oxygenated functional groups on its surface after acid treatment [23] and a smooth 

surface with bundles of tangled tubes. The chemical compositions of MWCNT was verified by 

using Two-point Energy dispersive X-ray analysis [24]. Figure 4 and Table 2 show 2-point EDX 

of MWCNT. MWCNT had impurities, however after acid functionalization [25], these metal 

impurities were removed. MWCNT at point-A contains utmost 95.63 at.% Carbon, 2.63 at.% 

Oxygen and 1.74 at.% Nitrogen. MWCNT at point-B contains utmost 96.49 at.% Carbon, 2.87 

at.% Oxygen and 0.64 at.% Nitrogen. 

 

Figure 3. FESEM of Multi-Walled Carbon Nanotube (MWCNT) 

 



 

 

Figure 4. EDX 2-point of Multi-Walled Carbon Nanotube (MWCNT) 

 

Table 2. EDX 2-point data for Multi-Walled Carbon Nanotube (MWCNT) 



MWCNT – First Point 

El AN  Series  unn. C norm. C Atom. C Error (1 Sigma) 

 [wt.%] [wt.%] [at.%] [wt.%] 

C 95.63 95.63 96.50 12.65 

O 2.63 2.63 1.99 1.37 

N 1.74 1.74 1.51 1.68 

 100 100 100  

MWCNT – Second Point 

El AN  Series  unn. C norm. C Atom. C Error (1 Sigma) 

 [wt.%] [wt.%] [at.%] [wt.%] 

C 96.49 96.49 97.28 13.09 

O 2.87 2.87 2.17 1.56 

N 0.64 0.64 0.55 1.09 

 100 100 100  

 

3.2. Nanofluid Preparation 

3.2.1. Thermal Conductivity 

Validation 

KD2-Pro device was calibrated with glycerin and maximum error of 0.47% was calculated, at 

T=45oC. This error was acceptable based on KD2-Pro manufacturer manual [26]. After that, water 

(basefluid) thermal conductivity was measured. Then in Figure 5, the data obtained from ASHRAE 

handbook [27] for thermal conductivity compared with experimental data. 

 



Figure 5. Pure water validation – Experimental results and ASHRAE handbook [27] 

 

Volume Fraction and Temperature Effect 

For Fe3O4 mono nanofluid (MN) 

Thermal conductivity of Fe3O4/H2O MN was measured at volume fraction ranges of 0.2 to 1.0% 

and temperature ranges of 25 to 50oC [28]. Temperature and volume fraction factors in thermal 

conductivity, were considered for this MN [29]. Figure 6 displays MN thermal conductivity by 

volume fraction in various temperatures while Figure 7 shows thermal conductivity by temperature 

in different volume fractions. It is obvious that, thermal conductivity was raised with increasement 

in temperature and volume fraction. Results pointed out that the trend for temperature and volume 

fraction is not similar [30]. It means that in higher volume fractions, temperature has more effect, 

For instance: 

For MN 0.2 Vol%, Thermal conductivity raised 0.071W/m.k (0.666 to 0.737 from 25oC to 50oC); 

For MN 1.0 Vol%, Thermal conductivity raised 0.108W/m.k (0.743 to 0.851 from 25oC to 50oC); 

Which means when volume fraction increased about 5.0 times, Thermal conductivity raised about 

1.52 times. 



 

 

Figure 6. Changes in (a) Thermal conductivity and (b) Thermal conductivity ratio – by volume fraction at different 

temperatures 

 



 

 

Figure 7. Changes in (a) Thermal conductivity and (b) Thermal conductivity ratio - by temperature at different 

volume fractions 

 



For CNT/Fe3O4 Hybrid nanofluid (HN) 

After that by adding MWCNT, thermal conductivity of MWCNT/Fe3O4/H2O HN was measured 

at volume fraction ranges of 0.2 to 1.0% and temperature ranges of 25 to 50oC. Temperature and 

volume fraction factors in thermal conductivity, were considered for this HN [31]. Figure 8 

displays HN thermal conductivity by volume fraction in various temperatures while Figure 9 

shows thermal conductivity by temperature in different volume fractions. It is obvious that, thermal 

conductivity raised with increasement in temperature and volume fraction [32]. Results pointed 

out that the trend for temperature and volume fraction is not similar. It means that in higher volume 

fractions, temperature has more effect, For instance: 

For HN 0.2 Vol%, Thermal conductivity raised 0.076W/m.k (0.72 to 0.796 from 25oC to 50oC); 

For HN 1.0 Vol%, Thermal conductivity raised 0.091W/m.k (0.763 to 0.854 from 25oC to 50oC); 

Which means when volume fraction increased about 5.0 times, Thermal conductivity raised about 

1.197 times. 

Figure 10, compare thermal conductivity of MN and HN by both volume fraction and temperature 

in three- dimensional status. 

 



 

Figure 8. Changes in (a) Thermal conductivity and (b) Thermal conductivity ratio – by volume fraction at different 

temperatures 

 

 



 

Figure 9. Changes in (a) Thermal conductivity and (b) Thermal conductivity ratio - by temperature at different 

volume fractions 

 



 

Figure 10. 3D-Thermal conductivity data compare at various nanofluid volume fractions and temperatures 

 

Thermal Conductivity Enhancement 

When the temperature increase, interactions between the nanoparticles (NPs) increase too. 

Brownian motion refers to augmentation in number of suspended NPs by increment in volume 

fraction, which leads to growth in surface to volume ratio [33]. 

For Fe3O4 mono nanofluid 

Figure 11 shows the thermal conductivity enhancement (TCE) of MN. It can be seen that the 

maximum TCE for Fe3O4/Water mono nanofluid is about 32.76% which is at the most volume 

fraction and temperature. Nanoparticles number and thus, Brownian motion increase at upper 

temperature and volume fraction. So, TCE percentage of MN at this state, is more than that at 

lower temperature [34]. 

For MN 0.2 Vol%, Thermal conductivity enhancement raised 5.08% (9.9 to 14.98 from 25oC to 

50oC); 



For MN 1.0 Vol%, Thermal conductivity enhancement raised 10.16% (22.6 to 32.76 from 25oC to 

50oC); 

Which means when volume fraction increased about 0.8%, Thermal conductivity enhancement 

raised about 5.08% [35]. 

Thermal conductivity enhancement of various particles in MN noticed at Table 3. 

 

Figure 11. Variations in Thermal conductivity enhancement by nanofluid temperature at different volume fractions 

 

Table 3. Thermal conductivity enhancement of various particles in mono nanofluids 

Dispersed particles Basefluid Maximum enhancement/% Ref. 

Fe3O4 Water 32.76% @ 1.0 vol% This Work 

Graphene Water 10.3% @ 0.02 vol% [36] 

Graphene Oxide Water 19.9% @ 0.5 wt% [37] 

Graphene Water 25% @ 0.1 wt% [38] 

Graphene Water 27% @ 0.2 vol% [39] 

MWCNT Water 64.0 [40] 

MWCNT Water 38.0 [41] 



MWCNT Water 11.3 [42] 

CuO Water 37 [43] 

ZnO Water 21 [44] 

MgO Water 22 [45] 

 

For CNT/Fe3O4 Hybrid nanofluid (HN) 

Figure 12, shows the thermal conductivity enhancement (TCE) of HN. It can be seen that the 

maximum TCE for MWCNT/Fe3O4/Water HN is about 33.23% which is at  the most volume 

fraction and temperature [46]. Nanoparticles number and thus, Brownian motion increase at upper 

temperature and volume fraction. So, TCE percentage of MN at this state, is more than that at 

lower temperature. 

For HN 0.2 Vol%, Thermal conductivity enhancement raised 5.37% (18.81 to 24.18 from 25oC to 

50oC); 

For HN 1.0 Vol%, Thermal conductivity enhancement raised 7.32% (25.91 to 33.23 from 25oC to 

50oC); 

Which means when volume fraction increased about 0.8%, Thermal conductivity enhancement 

raised about 1.95%. 

Results indicated that by adding MWCNT to Fe3O4, Thermal conductivity enhanced about 0.47% 

[47]. 

Thermal conductivity enhancement of various particles in HN noticed at Table 4. 



 

Figure 12. Variations in Thermal conductivity enhancement by nanofluid temperature at different volume fractions 

 

Table 4. Thermal conductivity enhancement of various particles in hybrid nanofluids 

Dispersed particles Basefluid Maximum enhancement/% Ref. 

Fe3O4-MWCNT Water 33.23% @ 1.0 vol% This Work 

Ag-MWCNT Water 37.3 [48] 

Nano 

Diamond/Nickle 

Water 21 [49] 

MWCNT-y Alumina Water 20.6 [50] 

Cu-Al2O3 Water 13.6 [51]–[53] 

 

3.3. Numerical Study 

To present a new correlation with 0.9 R-squared, experimental data of thermal conductivity ratio 

(TCR) in 3-dimentional plotted. Then, Curve-fitting method applied and different types of 

correlations investigated to find the best fit [54]. 



Correlation for Fe3O4 mono nanofluid 

A dependable correlation introduced to calculate TCR of Fe3O4/Water mono nanofluid. This 

correlation can be used to calculate TCR at specific range of volume fraction and temperature. 

Temperature and volume fraction effect on TCR of mono nanofluid is obvious by this equation. 

Figure 13 displays the fitted correlation on experimental data. 

Proposed correlation is presented in Equation 3. 

0.57325 0.493941 (0.03542* * )=nf

bf

T V
k

k
+  

(03) 

Where T is Temperature (in oC) and V is volume fraction (in %) of nanofluid. 

 

Figure 13. 3D-Applied correlation on thermal conductivity ratio data 

 

Figure 14 displays 6 graphs (for each temperature), to find relation between the experimental 

results and correlation outputs in all temperatures. This figure, displays TCR by mono nanofluid 



volume fraction in various temperatures. Also, thermal conductivity correlations were reported for 

various mono nanofluids, presented in Table 5. 

 

 



 

 



 

 

Figure 14. Verify presented method by experimental results regarding to Thermal conductivity ratio by nanofluid 

volume fraction at different temperatures 

 



Table 5. Thermal conductivity correlations for various mono nanofluids  

Nanofluid Correlation Ref. 

Al2O3/Water 

 

nf bf

bf

0.764481464  0.018688867  0.4
k -k

6214 1
k

7 75u T+= −  

 

[55] 

CuO/Water 
nf bf

bf

3.761088  0.017924
k -k

 0.30734
k

u T+ −=  

[55] 

ZnO/EG-Water 0.29216

nf bf

0.29216

bf

k -k 1.8454 5.2302
( )*100

k 3.457T

−
=

−
 

[56] 

MWCNT/EG-

Water 

0.319nf

bf

k
0.9212 + 1.0975 exp(0.01286T)

k
=  

[57] 

 

Deviation margin, which can confirm the accuracy of presented correlation, is calculated 

in equation 4. 

Pr- 
Deviation margin (%) 100

Exp ed

Exp

k k

k
=   

(04) 

Where Exp is experimental and Pred is predicted values. 

Figure 15 shows an acceptable agreement between experimental data and correlation outputs. 

Maximum positive and negative deviation margins for this correlation are 0.6007% and 0.5221% 

respectively. Thus, the total deviation margin gap is about 1.1228%. 



 

Figure 15. Verify presented method by experimental results 

 

Figure 16 displays margin of deviation by mono nanofluid’s volume fraction and also shows 

comparison between errors of correlation outputs for each temperature. The margin of deviation 

in this figure calculated by presented correlation. It can be seen that accuracy matter in thermal 

conductivity predicting [58]. 



 

Figure 16. Margin of deviation by nanofluid volume fraction 

 

Correlation for CNT/Fe3O4 Hybrid nanofluid 

A dependable correlation introduced to calculate TCR of MWCNT/Fe3O4/Water hybrid nanofluid. 

This correlation can be used to calculate TCR at specific range of volume fraction and temperature. 

Temperature and volume fraction effect on TCR of hybrid nanofluid is obvious by this equation. 

Figure 17 displays the fitted correlation on experimental data. 

Proposed correlation is presented in Equation 5. 

0.35753 0.196551 (0.08134* * )=nf

bf

T V
k

k
+  

(05) 

Where T is Temperature (in oC) and V is volume fraction (in %) of nanofluid. 



 

Figure 17. 3D-Applied correlation on thermal conductivity ratio data 

 

Figure 18 displays 6 graphs (for each temperature), to find the relation between the experimental 

results and correlation outputs in all temperatures. This figure, displays TCR by hybrid nanofluid 

volume fraction in various temperatures [59]. Also, thermal conductivity correlations were 

reported for various hybrid nanofluids, presented in Table 6. 



 

 



 

 



 

 

Figure 18. Verify presented method by experimental results regarding to Thermal conductivity ratio by nanofluid 

volume fraction at different temperatures 

 



Table 6. Thermal conductivity correlations for various hybrid nanofluids  

Nanofluid Correlation Ref. 

MWCNT-

TiO2/EG-

Water 

1.099 1.051nf

bf

k
0.006*( )* 1.014

k
T= +  

[60] 

 

Deviation margin, which can confirm the accuracy of presented correlation, is calculated 

in equation 6. 

Pr- 
Deviation margin (%) 100

Exp HN ed HN

Exp HN

k k

k

− −

−

=   
(06) 

Where Exp-HN is hybrid nanofluid’s experimental and Pred-HN is hybrid nanofluid’s predicted values 

[61]. 

Figure 19 shows an acceptable agreement between experimental data and correlation outputs. 

Maximum positive and negative deviation margins for this correlation are 0.6096% and 0.3247% 

respectively. Thus, the total deviation margin gap is about 0.9343%. 

 

Figure 19. Verify presented method by experimental results 

 



Figure 20 displays margin of deviation by hybrid nanofluid’s volume fraction and also shows 

comparison between errors of correlation outputs for each temperature. The margin of deviation 

in this figure was calculated by presented correlation. It can be seen that accuracy matter in thermal 

conductivity predicting. 

 

Figure 20. Margin of deviation by nanofluid volume fraction 

 

Artificial Neural Network 

In this paper, the experimental data was measured. After that, an algorithm was proposed to 

determine the best neuron number in the hidden layer. By using curve-fitting method, the ANN 

outputs were compared to experimental results [62]. Thermal conductivity was predicted by ANN 

based on the volume fraction and temperature. 100 Data points (divided into test, validation and 

train categories) were set. 15 data considered as test, 15 data for validation and 70 data points were 

considered as train data. While Train data was used in training the ANN, validation data monitors 

and modifies the training process. Also, the test data points were used to evaluate the accuracy and 

reliability of ANN. To model ANN, thermal conductivity considered as output and nanoparticle 

temperature-volume fractions considered as input. Thus, Levenberg-Marquardt backpropagation 



algorithm is used and a general two-layer, feed-forward network with 20 sigmoid hidden neurons 

and linear output neurons trained [63]. 

For Fe3O4 mono nanofluid 

Fe3O4/Water mono nanofluid’s thermal properties can be predicted by an Artificial Neural Network 

(ANN) model. Figure 21 shows a color fill contour for trained data and experimental data. With 

30 experimental data, lines in Figure 21.a are wavy, however, with 1000 trained data (estimated 

from ANN model), lines are smooth in Figure 21.b. 

 



 

Figure 21. Contour – Color fill of (a) main data and (b) trained data 

 

Figure 22 shows an acceptable agreement between experimental data and trained model outputs. 

Maximum positive and negative deviation margins for this model are 0.5862% and 0.3987% which 

are 0.0145% and 0.1234% less than maximum deviation margin of presented correlation. Also, 

the total deviation margin gap is about 0.9849% which is 0.1379% less than correlation [64]. 



 

Figure 22. Verify trained data by experimental results 

 

For CNT/Fe3O4 Hybrid nanofluid 

MWCNT/Fe3O4/Water mono nanofluid’s thermal properties can be predicted by an Artificial 

Neural Network (ANN) model [65]. Figure 23 shows a color fill contour for the trained data and 

experimental data. With 30 experimental data, lines in Figure 23.a are wavy, however, with 1000 

trained data (estimated from ANN model), lines are smooth in Figure 23.b. 



 

 

Figure 23. Contour – Color fill of (a) main data and (b) trained data 

 



Figure 22 shows an acceptable agreement between experimental data and trained model outputs. 

Maximum positive and negative deviation margins for this model are 0.6057% and 0.3139% which 

are 0.0039% and 0.0108% less than maximum deviation margin of the presented correlation. Also, 

the total deviation margin gap is about 0.9196% which is 0.0147% less than correlation [66]. 

 

Figure 24. Verify trained data by experimental results 

 

4. Conclusion 

In this research, multi-walled carbon nanotube (MWCNT) was added to Iron (III) Oxide (Fe3O4) / 

Water nanofluid to measure enhanced thermal conductivity. So, to improve the Water (base fluid) 

thermo properties, mono nanofluid (MN) and hybrid nanofluid (HN) prepared solely. For thermal 

conductivity measurements, MN and HN volume fraction ranges were 0.2, 0.4, 0.6, 0.8 and 1.0%. 

Also, temperature ranges were 25, 30, 35, 40, 45 and 50oC. Then, new correlations for MN and 

HN have been calculated by using curve-fitting method on experimental data. These correlations, 

can calculate Fe3O4/Water and MWCNT (50%) /Fe3O4 (50%)/Water thermal conductivity in 

another research. Also, Artificial neural network (ANN) has been modeled for both MN and HN. 

At the end, calculated data (which obtained by correlation or trained model) was compared with 



experimental data which shows a high accuracy [67]. Thus, ANN models which trained in this 

research, can predict thermal conductivity properties with acceptable error. 

The main results include: 

• After dispersing mono Fe3O4 and hybrid MWCNT/Fe3O4 to water, homogeneous and 

durable nanofluid (for more than 2½ months) have been made. 

• Thermal conductivity of MN and HN were measured at volume fraction ranges up to 1.0% 

and temperature ranges up to 50oC. 

• By adding MWCNT/Fe3O4, basefluid’s thermal conductivity improved and raised by 

increasing in temperature and volume fraction. 

• Maximum thermal conductivity enhancements (TCE) of 32.76% and 33.23%, were 

measured at 1.0% volume fraction and 50oC temperature for MN and HN, individually. 

These results showed that by adding MWCNT to Fe3O4, TCE increased about 0.47%. 

• 0.6007% and 0.6096% deviations were calculated for MN and HN at presented correlations 

with R2=0.9, individually. 

• 0.5862% and 0.6057% deviations were calculated for MN and HN at trained models with 

R2=0.999, individually 
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