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Abstract 

The ongoing rapid growth of electricity over the past few decades greatly promotes the necessity of 

accurate electricity load forecasting. However, despite a great number of studies, electricity load 

forecasting is still an enormous challenge for its complexity. Recently, the developments of machine 

learning technologies in different research areas have demonstrated its great advantages. General 

Vector Machine (GVM) is a new machine learning model, which has been proven very effective in 

time series prediction. In this article, we firstly review the basic concepts and implementation of 

GVM. Then we apply it in electricity load forecasting, which is based on the electricity load dataset 

of Queensland, Australia. A detailed comparison with traditional back-propagation neural network 

(BP) is presented in this paper. To improve the load forecasting accuracy, we specially propose to 

use the weights-fixed method, ReLu activation function, an efficient algorithm for reducing time and the 

influence of parameter matrix β to train the GVM model. Analysis of our approach on the historical 

Queensland electricity load dataset has demonstrated that GVM could achieve better forecasting 

results, which shows the strong potential of GVM for general electricity load forecasting. 

 

Keywords: Electricity load forecasting; BP neural network; General Vector Machine 

1. Introduction 

As a basic energy in our daily life, electricity is becoming more and more important, with the 

improvement of people’s living standard. Unfortunately, with the increase of electricity consumption, 

more and more electric energy is wasted due to the poor electricity load forecasting. Thus, an accurate 

electricity forecasting is very momentous, especially for satisfying people’s requirements for higher 

usage of electricity. Hidden in the growing trend is a fluctuation caused by the alteration in demand from 

day to day and month to month (Kenny and Durbin, 1982; Dagum, 1978). In fact, in the past few decades, 

electrical energy requirement has dramatically enlarged. For example, in the 1980s, due to the 



development of the economy proceeding quicker than that of the electric-power industry, China had a 

scarcity of electric power (Murata et al., 2008). In addition, electricity load requirements depend on not 

only the economic factors but also the environment conditions. 

 

Recently, the power grid collapse frequently happens in the electric power systems. Once the power grid 

collapsed, people’s daily life, basic activity, and public utility system will be greatly influenced. For 

example, a serious power grid collapse event happened in India; the power grid in the northern region 

collapsed on July 30, 2012, the basic life of 350 million people in nine Indian northern regions was 

affected. The worse thing is that they suffered a more serious large range power outage the following 

day; the basic services, public transport system, and daily life of more than 600 million people were 

greatly affected, which inspires people to pay more attention to assisting avoiding unexpected power grid 

collapse effectively. To achieve this, analysis and forecast electricity load in one region can provide basic 

information to grasp the demand trends and correlative changes (Taylor et al., 2006). 

 

On the other hand, electricity cannot be stored extensively, which means electricity demand must 

be satisfied instantaneously and producers need to accurately anticipate future demands to avoid 

overproduction (Vilar et al., 2012). Electricity supply plan requires efficient management of existing 

power systems which takes the responsibility for hourly scheduling of the electricity generators. It 

means that the power systems need to guarantee the balance of power production and demand. 

Therefore, we need to minimize the error between forecasting load and real power generation to 

reduce resource consumption. Finally, there must be a production surplus, with which local failures 

do not dramatically affect the whole system. Hence, to optimize the electricity systems, we need to 

develop a scheduling algorithm for the hourly generation and transmission of electricity (Wang et 

al., 2012; Soares and Souza, 2006). To sum up, accurate short-term and mid-term electricity demand 

forecasting become significant for electricity consumers and producers. 

 

From the perspective of technical approaches, in the prediction sub-discipline, the most frequently 

used method for training artificial neural networks (ANN) is back-propagation (BP) algorithm 

(Hagan et al., 2002), which is used to adjust the weight matrices of the ANN by gradient descent 

algorithm. However, because of being sensitive to the initial values and easily falling into local 

minimum, BP based ANN often suffers prediction accuracy problem for electricity forecasting. 

Meanwhile, the random algorithms used for training ANN are studied. Wang et al. (2016) explored 

the performance in both diluted and full-connected ANN based on Monte Carlo (MC) algorithm. 

Zhao (2016) used the idea of MC algorithm to adjust the weights of ANN, which is designed as the 

so-called General Vector Machine (GVM) model. Results show that, in many cases, GVM performs 

better than BP, especially for forecasting issues with small dataset (Wang et al., 2016; Zhou et al., 

2016). Chen et al. (2015) had successfully applied GVM to detect colon cancer and got good results. 

Hence, in this paper, we propose to apply GVM in load forecasting for small electricity demand 

dataset. 

 

The remainder of this paper is organized as follows. Section 2 introduces the related work. Section 

3 presents the GVM model and its architecture. Section 4 discusses the performance optimization 

strategy of GVM model. In Section 5, we give the details of our experiments and results. Finally, 

Section 6 concludes this paper. 



 

2. Related Work 

The literatures present various electricity load forecasting approaches over the last two decades 

(Wang et al., 2016). In general, the traditional electricity load forecasting is based on time series 

forecasting, which mainly applies the historical electricity load data to forecast the load in the future. 

The classic forecasting methods include trends extrapolation, regression models and so on (Bianco 

et al., 2009; Goia et al., 2010; Wu et al., 2013; Magnano et al., 2007; Wang et al., 2016; Agrawal et 

al.,2017). Time series forecasting techniques include autoregressive moving average (ARMA) (Wu 

et al., 2013; Wang and Schulz, 2006), grey-based prediction models (Bahrami et al., 2014), experts 

and experience forecasting etc. Recently, some machine learning technologies are used to forecast 

the electricity load, which include self-organizing maps (Che et al., 2012), support vector 

machine(SVM) (Kavousi-Fard et al., 2014; Xiong et al., 2014; Ju and Hong, 2013; Shayeghi and 

Ghasemi, 2013), particle swarm optimization(PSO) (Shayeghi and Ghasemi, 2013), ANN (Ju and 

Hong, 2013), fuzzy logic (Shayeghi and Ghasemi, 2013; Gu et al., 2016) and genetic algorithm (GA) 

(Kucukali and Baris, 2010).  

Bates et al. (1969) proposed a combined method, which tries to sum up the advantages of various 

methods. Dickinson (1975) proved that the mean absolute error (MAE) of the combined method is 

lower than a single method, which means that the combined method could perform better than the 

single method. Afterwards, various combination methods are used to forecast electricity load. For 

example, Hernández et al. (2014) presented a new method, which combines self-organizing maps, 

means algorithm and multilayer perceptron. Che and Wang (2014) proposed a kernel-based support 

vector regression (SVR) combination model to forecast the electricity load of Australia and 

California. In order to get more accurate results of electricity load forecasting, Geng et al. (2015) 

combined seasonal SVR model and chaotic cloud simulated annealing algorithm. Che (2013) 

applied the adaptive PSO algorithm to select the parameters in SVR model. Zhang et al. (2012) used 

the chaotic genetic algorithm (GA), simulated annealing algorithm (SA), and the SVR to forecast 

the cyclic electricity demand in Northeast China, in which the SVR was applied to deal with the 

trend of cyclic electricity load. Liu et al. (2014) introduced a combination model that mainly 

concentrates on the parameters optimization, and the model was tested with electricity load data in 

micro-grid. 

 

Some other studies are as follows: Hamzacebi and Es (2014) used the direct optimized grey 

modeling (1, 1) and iterative optimized grey modeling (1, 1) to forecast electricity load of Turkey. 

And the results showed that the direct forecasting approach performs better than the iterative 

forecasting approach. Lu et.al (2015) proposed a new on-line network training method namely 

distributed hyper-spherical ARTMAP (dHS-ARTMAP) to forecast the electricity load. The 

forecasting results of dHS-ARTMAP show the effectiveness compared with other methods, and it 

is a promising alternative to be put into practice. Yan and Chowdhury (2014) used multiple SVMs 

to forecast the mid-term electricity market clearing price. In his experiments, the multiple SVMs 

model outperforms the forecasting model with a single SVM.   

 

Although a number of combined methods have shown good performance in electricity load 

forecasting, there are still some limitations. Hence, we will introduce the newly proposed GVM 

method for electricity forecasting in the next sections. 



 

3. General Vector Machine Model 

Recently, based on statistical method and MC algorithm, Zhao (2016) proposed GVM model to deal 

with prediction for small dataset problems. In this section, we will introduce the basic structure and 

implementation of GVM.  

As shown in Fig. 1, GVM is based on 3-layer ANN, which includes input layer, hidden layer and 

output layer. The weight matrix connected between the input layer and the hidden layer is denoted 

as W1, and the weight matrix between the hidden layer and the output layer is denoted as W2. The 

bias matrix of hidden layer is denoted as B. In our implementation, the biases of hidden nodes are 

organized as part of W1. β is parameter of each hidden node, which is used to control the stability 

performance of GVM model. 

The process of computing the output nodes is the so-called forward propagation, which mainly 

includes two steps (Faruk, 2010). 

 

Fig. 1 The architecture of GVM based on 3-layer ANN 

 

Firstly, the values of the hidden nodes are calculated by Eq. (1) and Eq. (2). 𝑀 is the number of input 

nodes and 𝑁 is the number of hidden nodes. 

ai = ∑ W1𝑖𝑗
M
j=1 ∙ xj + bi,   i = 1, … , N          (1)                                                         

hi = f(𝛽𝑖ai),   i = 1,2, … , N                            (2)                                                         

In Eq. (1), bi is the bias of the 𝑖𝑡ℎ hidden node and ai is the weighted sum of the 𝑖𝑡ℎ hidden node. 

ℎ𝑖  is the output of the 𝑖𝑡ℎ hidden node. βi is an important parameter whose range could influence the 

performance of the network seriously, f is the activation function of the hidden nodes which is defined 

by the following Eq. (3): 

𝑓(x) =
1

1+exp (−x)
                                 (3) 

In general, there are several different non-linear functions, which are suitable for the selection of 

activation function. In fact, we will test the influences of different activation functions in our 

experiment part. 

At last, the outputs of GVM are simply calculated by Eq. (4). L is the number of output nodes. 



     yl = ∑ W2𝑙𝑖 ∙ ai
N
i=1 ,      l = 1,2, … , L                         (4) 

In Eq. (4), yl (l=1, 2, …, L) is the final outputs of the GVM. In reality, we can add activation functions 

to the output nodes. However, the line function could achieve a good result in our prediction model. 

Hence, we simply use the weighted sum of the hidden nodes as the outputs of the output layer. 

Before training the GVM model, we randomly initialize the weights of matrix 𝑾𝟏 as float numbers 

between -1 and +1. The weights of matrix 𝑾𝟐 are randomly set as -1 or +1 and we will not change 

matrix 𝑾𝟐 after initialization. The biases of hidden nodes are randomly initialized between -1 and +1. 

After initialization, we can train our GVM model with MC algorithm. 

Generally, to train a GVM model, we need to fix the weight matrix 𝑾𝟐 and adjust the weights and 

biases in matrix 𝑾𝟏. The specific procedure of training GVM is stated as follows, and the flowchart is 

presented in Fig. 2. 

  

Fig. 2 The flowchart of training GVM 

 

(1) In order to know when the training process should end, an overall cost is defined as the 

function: Τ = Τ(yu, tu), in which u is the dimension of output nodes, while tu represents the actual output 

of GVM under the input xu. 

(2) The weights and biases in matrix 𝑾𝟏 are all set to be random values between -1 and +1. The 

weights of matrix 𝑾𝟐 are randomly set to be -1 or +1. The parameter matrix β is initialized to values 

in a range, which is usually between 0 and 1.  

(3) After initialization, we repeat the following procedure to adjust the weights in 𝑾𝟏  and 

parameters in matrix β to reduce the overall cost: Firstly, we randomly select a weight or bias in matrix 

𝑾𝟏, or parameter in matrix β and change it to a new value within its intervals. Then we calculate the 

new overall cost of the training samples. If the cost gets smaller, we accept the change and record the 



new minimum cost. Otherwise, we reset the changed weight or parameter to its original value. In reality, 

we do not need to recalculate all the nodes in the hidden layer. The changes happen in the nodes whose 

connected weights are changed. Hence, we only update the output values of the hidden nodes connected 

to the changed weights. By this way, the overall cost is calculated more efficiently.  

(4) We repeat step (3) until the overall cost is less than a fixed value Τ0, or the training time t is 

larger than a fixed time interval t0. T0 and t0 are artificially set before training. 

When training GVM by MC algorithm, we change the weight parameters in a small deviation ε. For a 

weight with discrete states (Rosen-Zvi and Kanter, 2001; Zhao, 2004), the parameter ε is used to change 

the weights jumping from the present interval to a neighboring interval randomly. After repeating the 

above step (1), (2), (3), (4) several iterations, the overall cost of the trained GVM model will obviously 

converge to a small value, which indicates that the training process finishes. 

 

4. Optimization of GVM 

In this section, we will employ the performance optimization methods in training GVM for electricity 

load forecasting, which are divided into four subsections including weights-fixed method, mixed 

activation functions, the efficient algorithm for overall cost and the influence of parameter matrix β.  

 

4.1 Weights-fixed method 

As mentioned in Sect. 3, we fix the weight matrix connected between the hidden layer and output layer, 

which is the so-called 𝑾𝟐 matrix because of the fact that we can reduce the computation of training 

GVM by fixing 𝑾𝟐 matrix. To verify this, we also conducted an experiment to test the training times 

with the weights-fixed method and weights-unfixed method. 

 

In our experiments, the minimum value of overall cost is set as 0.01. Then, we compare the training times 

between fixed and unfixed methods for the different dimension of hidden nodes. The results are shown 

in Table 1, in which we denote the GVM model with N hidden nodes as N-GVM 

Table 1. The average and variance of training times of weights-fixed method and weights-unfixed 

method  

Hidden 

dimension 

Average training time(s) Variance 

100-GVM 500-GVM 1000-GVM  100-GVM 500-GVM 1000-GVM 

Fixed 41.345  40.880  43.004   88.323 67.352 208.945 

Unfixed 57.756  54.294  74.837   150.793 102.454 259.366  

 

From Table 1, we can conclude that weights-unfixed method takes more time in training compared to the 

weights-fixed method. While the 500-GVM achieves the best performance compared to 100-GVM and 

1000-GVM. Moreover, the training time of weights-unfixed method is nearly 1.5 times of the weights-

fixed method. Hence, we adopt the weights-fixed method in our paper. 

 

4.2 Mixed activation functions 

Generally, GVM is absolutely free to select its activation functions. Hence, herein we also researched the 

influences of activation functions. In fact, we could apply a different type of activation functions in GVM 

to achieve a better performance. In our test, we use different activation functions to construct the GVM 



model for electricity demand forecasting. The popularly used activation functions in constructing ANN 

include sigmoid function, tanh function, gauss function and Rectified Linear Units (ReLu) etc. These 

functions are given in the following Eq. (5) – Eq. (8): 

  𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑥) =
1

1+𝑒−𝑥                                   (5) 

𝑡𝑎𝑛ℎ(𝑥) =
𝑒𝑥−𝑒−𝑥

𝑒𝑥+𝑒−𝑥                                   (6) 

                              𝑔𝑎𝑢𝑠𝑠(𝑥) = 𝑒−𝑥2
                                   (7) 

     𝑅𝑒𝐿𝑢(𝑥) = {
𝑥, 𝑥 > 0
0, 𝑥 ≤ 0

                                (8) 

These activation functions are randomly selected by the hidden nodes of our GVM model. In reality, we 

found that using gauss function and ReLu function as activation functions of hidden nodes could achieve 

better forecasting performance.  

 

Hence, we also test the combination of the two activation functions. In our training, the minimum value 

of overall cost is set as 0.01. Then, we train the GVM models and compare the training time of the GVM 

models with different activation functions. The results are shown in Fig. 3, from which we can get the 

following conclusions. If only a single type activation function is used, the GVM with ReLu activation 

function shows the best forecasting performance. Moreover, along with the increase of the dimension of 

hidden layer, training time of GVM with ReLu activation function is not much affected. It is noted that 

ReLu activation function is widely used in constructing deep ANN. And Krizhevsky et al. (2012) found 

that ReLu activation function could achieve a better efficiency than sigmoid activation function. 

Furthermore, ReLu activation function has advantages over traditional sigmoid and tanh activation 

functions in training 3-layer ANN. We can also see from Fig. 3 that time-consuming of training GVM 

with sigmoid function is larger than the time with other activation functions. Also, the training time of 

GVM with tanh function increases with the increase of the dimension of hidden layer. Meanwhile, we 

also found that gauss activation function showed a better performance than sigmoid and tanh, but no 

better than ReLu function. The combination of multi-activation functions also shows a good result in 

training time, but no better than using a single ReLu activation function. Overall, the ReLu activation 

function is the best choice of GVM for electricity load in this paper. Therefore, ReLu is selected as the 

activation function of GVM to accelerate the training process of electricity load forecasting model. 



 

Fig. 3 Comparisons s of training performance with different activation functions 

 

4.3 An efficient algorithm to change only one weight in each iteration 

In GVM, only one weight is changed in each iteration. Hence, the output values of hidden nodes can be 

saved to accelerate the training process. With these saved outputs, we only need to recalculate the outputs 

of the node connected to the changed weight in each iteration, which makes the algorithm more efficient. 

Conventionally, GVM algorithm recalculates all the outputs of all nodes to get a new cost of GVM. We 

tested the performances of the conventional algorithm (namely normal algorithm) and our new efficient 

algorithm, as illustrated in Fig. 4. 

  
Fig. 4 Comparisons s of training performance between normal algorithm and efficient algorithm 

 



From Fig. 4, we can see that the training time of normal algorithm nearly coincides with the training time 

of efficient algorithm multiplied by N (the dimension of the hidden layer of GVM), which means that 

the efficient algorithm could improve the performance by N times compared to the normal algorithm. 

Therefore, the efficient algorithm performs better than the normal algorithm. 

 

4.4 The influence of parameter matrix β  

Finally, we discuss the influence of the parameter matrix β, which affects the stability of training results. 

Because we randomly initialize the weight matrices of the network, and the weights are also randomly 

updated, the experimental results will change in a range. In fact, this is the design risk of GVM. In other 

words, with a large interval of β, we get a bigger design risk. Therefore, the parameter β reflects the 

stability and the repeatability of GVM. In our experiment, we fix the other hyper parameters but the 

range of weights in β. That is to say, we only change the value of β to test the influences. For each β, we 

repeat the experiment 40 times to get an average result. By this way, we can test the stability of GVM. 

The experimental results are shown in Fig. 5. 

 

Fig. 5 Stability of training timings of different parameters β 

From Fig. 5, we can see that: when the value of β is smaller than 0.4, the training time is long and the 

result is unstable. However, when the value of beta ranges from 0.6 to 1.0, the training time is almost the 

same. In these results, the training time is optimal when β is fixed as 0.6. Normally, the value of β is not 

fixed for different applications, where β in general is kept in the range between 0 and 1. Hence, in order 

to get the best result, we need to test different β values. In this paper, we empirically set beta as 0.6, by 

which we can achieve stable and best experimental results. 

 

Above all, we specially proposed to use the weights-fixed method, ReLu activation function and the 

efficient algorithm to improve the performance of GVM model for electricity load forecasting. And 

we also optimized the parameter β to improve the stability of GVM model. 

 

5. EXPERIMENT RESULTS 

5.1 Electricity data 

There is a simple fact that the electricity load data has internal rules with it. For example, the people's 

life, industrial and commercial activities have some kind of similarity on Mondays in a month statistically, 



which leads to the situation that electricity load data from all Mondays in a month are similar. By using 

the similarity, we divide the electricity load data and use the data to train our GVM model.  

 

In this paper, the electricity load data from May 2, 2011, to July 3, 2011, in Queensland is selected as the 

dataset. As mentioned above, we divide the electricity load data into seven groups, which include 

Monday group, Tuesday group, Wednesday group, Thursday group, Friday group, Saturday group and 

Sunday group, which are shown in Fig. 6.  

 

Fig. 6 The original electricity demand data of 7 groups. 

 

The electricity load data in Queensland was collected every half an hour, so there are 48 electricity 

data in one day. We divide the electricity from May 2, 2011, to July 3, 2011, into seven groups (data 

of 63 days), and each group has electricity data of 9 days. For example, Monday group includes the 

data of May 2, May 9, May 16, May 23, May 30, June 6, June 13, June 20 and June 27. Among 

these 9 days’ electricity data, the first eight days’ data is used to as the input vector of GVM model, 

and the electricity data of last day is seen as the data to be predicted. Specifically, when training the 

GVM model, the first seven days’ electricity data is used as the input vector, and the data of the 

eighth day is used as the output vector. When testing the model, the data from the second day to the 

eighth day is used as the input vector, and the data of the ninth day is used as the output to be 

predicted. Similarly, the data used in other six groups is preprocessed in the same way. 

 

5.2 Forecasting evaluation methods 

In this paper, different forecasting performance metrics are evaluated to determine the accuracy of the 

prediction models, including smallest mean error (AE), root mean square error (RMSE), MAE and mean 

absolute percentage error (MAPE), which are given in the following Eq. (9) – Eq. (12). 

AE =
1

n
∑ (Pi − Ai)

n
i=1                                (9)                                                                        

RMSE = √
∑ (Pi−Ai)2n

i=1

n
                               (10) 



MAE =
1

n
∑ |(Pi − Ai)|n

i=1                              (11) 

MAPE =
∑ |

(Pi−Ai)

Ai
|n

i=1

n
× 100%                          (12) 

Where Pi and Ai are the predicted and actual values, respectively, and n is the number of forecasting 

samples. Lower values of these measures indicate better forecasting results. According to Lin and 

Hsu (2002), if MAPE is less than 10%, the model is successful for electricity load forecasting.  

 

5.3 Experiment results and analysis 

In this section, we will firstly give the results comparisons between traditional BP and GVM model, 

then the comparisons between different GVM models are given. In the first part, the experiment 

environments of two models are set the same. For convenience, we call the BP based neural network 

as BP and denote the GVM model with N hidden nodes as N-GVM. In the second part, we will 

change the number of hidden nodes N to compare different GVMs. 

 

5.3.1 BP vs 100-GVM 

In the experiments of comparing BP and GVM, we also fix the dimension of input vector, transfer 

function and the dimension of output vector. The forecasting results of BP and 100-GVM in each day 

are illustrated in Fig. 7.  

 

Fig. 7 Forecasting results of BP and 100-GVM 

From Fig. 7, we can observe that the curves of GVM model are more consistent with the original data 

curves compared with the curves of BP. In order to compare these two methods more clearly, the metrics 

of AE, RMSE, MAE and MAPE are calculated. 

From the bar figures of the four metrics of BP and GVM shown in Fig. 8, we can get the following 



intuitive conclusion: the AE, MAE, RMSE and MAPE of BP are both larger than 100-GVM. That 

is to say, 100-GVM performs better than BP for electricity load forecasting. 

 

Fig. 8 Bar figures of BP and proposed GVM 

5.3.2 100-GVM, 500-GVM vs 1000-GVM 

In this section, we test the GVM with different dimensions of hidden nodes. Herein, we will see that 100-

GVM has the worst forecasting results compared with 500-GVM and 1000-GVM. However, compared 

to BP, it reduced AE by 46.26%, MAE by 22.33%, RMSE by 42.79% and MAPE by 44.52%. 

  

Fig. 9. Forecasting results of GVM in each day 

 

In order to verify the effectiveness of GVM model used in this paper, we conduct the following 

three experiments. We fix the dimension of the input vector, transfer function, parameter matrix β 

and the dimension of the output vector. Meanwhile, we change only the dimension of hidden nodes. 

We try different dimensions of 100, 500 and 1000, respectively. The forecasting results of 100-GVM, 

500-GVM and 1000-GVM in each day are illustrated in Fig. 9. 



From Fig. 9, we can conclude that there are little differences between these GVM models. The forecasting 

curves of each day are almost coincident with the original data. In fact, the forecasting curves of 500-

GVM and 1000-GVM are particularly good. In order to see the results clearly, the metrics of these three 

GVM models are also listed in the following Table 2 and Table 3. 

Table 2. The AE and MAE of GVM with different dimensions of hidden nodes 

Date 
AE of MAE of 

100-GVM 500-GVM 1000-GVM 100-GVM 500-GVM 1000-GVM 

Monday 145.854  113.065  111.701  145.854  113.065  111.701  

Tuesday 165.247  115.876  119.924  165.247  115.876  119.924  

Wednesday 114.989  79.853  78.972  122.614  88.237  88.254  

Thursday 116.521  65.265  56.296  130.246  101.618  105.281  

Friday -13.777  -37.085  -21.500  60.281  57.225  63.486  

Saturday 114.666  96.063  106.085  114.708  96.063  106.085  

Sunday 20.228  9.019  11.639  40.881  41.158  41.398  

Whole week 94.818  63.151 66.160  111.404  87.606  90.876  

The AE and MAE in each day have little differences in Table 2. For example, on Monday, the AE and 

MAE of the three models have progressively declined, which means that the 1000-GVM performs better 

than 500-GVM and 100-GVM. Hence, the accuracy order of these models for Monday is: 1000-GVM, 

500-GVM and 100-GVM. Take the results on Tuesday, Saturday, and Sunday, it can be found that 500-

GVM performs better than 1000-GVM and 100-GVM. Hence, the accuracy order of forecasting these 3 

days is: 500-GVM, 1000-GVM and 100-GVM. However, in general, if considering the average values 

of the whole week, there are little differences between AE and MAE metrics of the three GVM models.  

Table 3. The RMSE and MAPE of GVM with different dimensions of hidden nodes 

Date 
RMSE of MAPE of (%) 

100-GVM 500-GVM 1000-GVM 100-GVM 500-GVM 1000-GVM 

Monday 151.771  115.762  114.601  2.486 1.939 1.924 

Tuesday 169.689  117.856  121.954  2.802 1.995 2.066 

Wednesday 138.745  99.158  98.108  2.138 1.520 1.530 

Thursday 144.476  109.616  112.570  2.243 1.752 1.815 

Friday 79.818  74.400  82.252  1.031 0.971 1.059 

Saturday 126.226  100.657  110.129  2.163 1.788 1.955 

Sunday 47.587  47.173  47.848  0.781 0.801 0.805 

Whole week 122.616  94.946  98.209  1.949  1.538 1.593  

 

The above analysis can also be applied to the results in Table 3. Though the RMSE and MAPE in each 

day have some differences, the accuracy order of Monday is: 1000-GVM, 500-GVM and 100-GVM, and 

the accuracy order of the Tuesday, Saturday and Sunday is: 500-GVM, 1000-GVM and 100-GVM. 

Similarly, if average values of the whole week are considered, there is not much difference for RMSE 

and MAPE metrics between these three models. For example, the MAPEs of three models are 1.949, 

1.538 and 1.593 respectively. According to Lin and Hsu (2002), an accepted MAPE is less than 10% for 

a successful prediction model. Therefore, the three GVM models are successfully applied to the 

electricity load forecasting.  



 

Because of the similarity of the average MAPE of the three models, we can conclude that the dimension 

of hidden nodes has little impact on the electricity load forecasting, while BP algorithm always tries to 

reduce the number of hidden nodes to reduce the risk of over-fitting. Instead, GVM is able to control the 

over-fitting problem by setting the structure of the network. Meanwhile, GVM uses more hidden nodes 

to forecast the dataset better.  

 

6. CONCLUSION 

In this paper, we aim to apply a novel GVM model to short-term electricity load forecasting with the 

actual data collected from Queensland, Australia. By combining MC algorithm, GVM is more suitable 

for time series prediction for small dataset. We also discuss the influences of the weights-fixed method, 

mixed activation functions, the efficient algorithm for training our model and the influences of the β 

matrix. The comparisons with BP-ANN are also given in the article. Results show that using GVM model 

in electricity load forecasting is effective and efficient. Although this paper significantly extended the 

work that we reported in (Yong et al., 2017), especially by providing a discussion on the performance of 

the GVM, the combination of GVM model with other model is still not discussed, which needs to be 

undertaken in the future. For example, applications of fuzzy theories to incorporate linguistic values in 

ANN are widely used in time series prediction, such as the long-term travel time prediction model with 

a fuzzy neural network (Li et al., 2017). The fluctuations of electricity supplies and demands could be 

affected by many indeterministic factors such as extreme weather and human errors or even terrorist 

attacks. In this case, more work on new model for electricity load forecasting needs to be researched. 
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