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Abstract 

With ever-incresing concern about energy crisis, environmental pollution, and climate change, seaking for 

clean and renewable energy sources has become one of the biggest challenges for the sustainable 

development of society. The key to address this concern is the development of advanced energy 

conversion technologies, such as water electrolysis for hydrogen generation, fuel cells, and metal-air 

batteries. Developing high efficient electrocatalysts for the next-generation energy conversion devices 

has become a primary focus of research. Since two-dimensional (2D) graphene was discovered, numerous 

2D nanomaterials have aroused more research interest in the fields of energy conversion and storage. In 

particular, the novel 2D nanomaterials have become one of the most promising components for design 

and development of heterogenous electrocatalysts because of their unique physicochemical properties and 

adjustable electronic structure. However, some 2D nanomaterials are not active enough because of the 

large reaction free energy, low amount of active sites or poor conductivity. Some 2D materials are inert 

for electrocatalysis reactions, but are able to work as the functional substrates for the development of 

hybrid electrocatalysts. Thus, specific strategies are urgently desired to modulate the physicochemical and 

surface/interface properties of 2D material-based electrocatalysts, and to make full use of the 

functionalities of functional 2D material substrates to achieve fast catalytic reaction kinetics. In this 

regard, hetero-interface engineering strategy has been deployed into designing and preparing three 

different 2D material-based elctrocatalysts with well-defined interfaces for the enhanced oxygen 

evolution reaction (OER), hydrogen evolution reaction (HER), and oxygen reduction reaction (ORR).  

For the first work, the superhydrophilic GCN/Ni(OH)2 (GCNN) heterostructures with monodispersed 

Ni(OH)2 nanoplates strongly anchored on GCN were synthesized for enhanced water oxidation catalysis. 

Owing to the superhydrophilicity of functionalized GCN, the surface wettability of GCNN (contact angle 

0°) was substantially improved as compared with bare Ni(OH)2 (contact angle 21°). Besides, GCN 

nanosheets can effectively suppress Ni(OH)2 aggregation to help expose more active sites. Benefiting 

from the well-defined catalyst surface, the optimal GCNN hybrid showed a significantly enhanced 

electrochemical performance over bare Ni(OH)2 nanosheets, although GCN is electrochemically inert. In 

addition, similar performance promotion resulting from wettability improvement induced by the 

incorporation of hydrophilic functionalized GCN was also successfully demonstrated on Co(OH)2. 

For the second work, we design and synthesize new molybdenum dichalcogenide-based heterostructures 

with the basal planes decorated with SnS2 quantum dots towards enhanced alkaline HER activity. The 
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electrochemical results reveal that the alkaline hydrogen evolution kinetics of molybdenum 

dichalcogenides is substantially accelerated after incorporation of SnS2 quantum dots. The optimal 

MoSe2/SnS2 heterostructure delivers a much lower overpotential of 285 mV than MoSe2 (367 mV) to 

reach a current density of 10 mA cm-2 in 1 M KOH. The improved catalytic activity is predominantly 

owing to the enhanced water dissociation kinetics of the heterostructures with well-defined interfaces. 

Density functional theory (DFT) calculations reveal that the presence of SnS2 significantly promotes the 

water adsorption capability of MoSe2 nanosheets, which consequently facilitates the subsequent water 

dissociation process. These results open up a new avenue for the rational design of well-defined 

heterostructures with enhanced water adsorption/dissociation capability for the development of high-

performance alkaline HER electrocatalysts. 

For the third work, hexagonal boron nitride (h-BN) nanosheets are for the first time developed as the 

multifunctional supports for constructing durable and efficient heterostructured electrocatalysts for 

oxygen reduction reaction (ORR). As a proof-of-concept application, h-BN/Pd heterostructured 

electrocatalysts are designed and synthesized by assembling Pd nanoparticles (NPs) on ultrathin h-BN 

nanosheets towards enhanced ORR kinetics. Firstly, the robust h-BN serves as a durable platform to 

ensure the structural integrity of the heterostructured catalyst, uniform distribution of Pd NPs and 

maximal exposure of the active sites. More importantly, the h-BN is capable of modulating the electronic 

structure of Pd active centers by establishing unique heterostructrued interfaces, downshifting the position 

of Pd d-band center accordingly and eventually optimizing the affinity with the reaction intermediates for 

faster reaction kinetics. Meanwhile, the presence of h-BN can also contribute to the creation of a 

superhydrophobic surface of the heterostructured catalysts, promoting the adsorption capability and 

diffusion kinetics of O2. Benefiting from the favorable characters enabled by the multifunctional h-BN 

support, the heterostructured catalyst delivers exceptional ORR catalytic performance with a high half-

wave potential, enhanced mass and specific activity, and decent durability.  

In summary, three different heterostructured electrocatalysts with well-defined interface have been 

designed and synthesized for enhanced OER, HER, or ORR kinetics. The constructionof heterointerface 

can induce novel physicochemical properties and synergistic effects, which efficiently optimize the 

affinity/interaction with reactants, intermediate species, or products, further facilitating the 

electrocatalytic kinetics. Thus, I believe this thesis can open new avenues for the rational design and 

development of heterostructured electrocatalysts with well-defined interfaces based on 2D materials and 
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beyond towards a wide range of electrocatalysis applications. 
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Chapter 1 

1. Introduction 

1.1. Research Background 

Our rapid energy depletion and serious environmental deterioration have had serious negative 

effects on the development of modern society in recent years. Finding sustainable sources of energy is 

highly desirable to meet these challenges, although the unpredictability and intermittency of renewable 

energy severely limit its utilization efficiency. To efficiently utilize renewable energy, exploiting 

advanced energy conversion technologies is essential, such as oxygen reduction for liquid fuel generation 

and water splitting for hydrogen production.[1-4] The key to developing these technologies is research on 

several electrochemical processes, including the oxygen evolution reaction (OER) or the hydrogen 

oxygen reaction (HOR) occurring at the cathode, and the hydrogen evolution reaction (HER) or the 

oxygen reduction reaction (ORR) occurring at the anode (Figure 1.1).[5-7] To promote these 

electrocatalytic processes, designing highly active electrocatalysts is the most crucial factor. Currently, 

noble metal based catalysts, such as Pt, Ir, and Ru, are extensively utilized as the state-of-the-art 

electrocatalysts for these electrochemical reactions.[7-11] Nonetheless, they suffer from rarity, high cost, 

and insufficient stability, which would seriously limit large-scale applications. Therefore, exploring cost-

effective alternatives with high performance compared to noble-metal electrocatalysts plays a pivotal role 

for fundamental research and the practical applications of electrochemical energy storage and conversion 

technologies.[12] 

 

Figure 1.1. Schematic illustration of water splitting and fuel cell reactions. Reproduced with the 
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permission.[21] Copyright © 2017 American Chemical Society. 

Since two-dimensional (2D) graphene was discovered, numerous 2D nanomaterials have aroused 

an abundance of research interest in the fields of energy conversion and storage.[13-14] In particular, 2D 

nanomaterials have become one of the most promising candidate materials for the design and 

development of electrocatalysts, due to their unique physico-chemical properties and electronic 

structures.[15-18] Some 2D nanomaterials are not active enough, however, because of their poor intrinsic 

activity, low amount of active sites, or weak conductivity. Some 2D nanomaterials are inert for 

electrocatalysis, but can act as functional substrates to boost the catalytic activity of hybrid 

electrocatalysts. Thus, numerous strategies, such as heteroatom doping, heterostructure engineering, 

geometric tuning, and defect engineering, have been developed to modulate the physico-chemical and 

electronic properties of 2D material-based electrocatalysts, and to make full use of the functionalities of 

functional 2D nanomaterial substrates to achieve fast catalytic reaction kinetics.[19-25] Among these 

modification strategies, engineering hetero-interfaces employing 2D nanomaterial-based matrices could 

not only modulate their physico-chemical properties and electronic structures, but also endow them with 

many new properties, such as controllable wettability, excellent electronic conductivity, proper affinity of 

molecules, decent durability, and structural stability, which are beneficial to the enhancement of 

electrocatalytic activities.[26-29] Heteroatom doping, as another way of engineering hetero-interfaces, is 

also an effective route to exploiting novel hybrid electrocatalysts. Generally, the catalytic activities of 

heteroatom-doped electrocatalysts are limited by the species and numbers of heteroatoms. For example, 

the catalytic performance of single-doped (N, P, or S-doped) carbon is inferior to that of bi- or tri-doped 

carbon-based electrocatalysts.[30] In addition to the selection of dopants, the precise control of the doping 

level of is still challenge.[31] 

Thus, engineering heterointerfaces based on 2D nanomaterial matrices is a promising strategy to 

attain high-efficiency heterostructured electrocatalysts, because it can introduce unique electronic 

structures and surface/interface properties, which are favourable for the extrinsic and intrinsic activity of 

electrocatalysts. Specifically, these properties include: (1) maximally exposing and distributing the active 

sites; (2) shortening the distance for charge/ion migration; (3) changing the local coordination 

environment of active centres; and (4) optimizing the adsorption energy of reactants and intermediates. 

Based on these favourable properties, great efforts can be profitably undertaken to investigate the 

structure-activity relationships of heterostructured electrocatalysts. 
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1.2. Objectives of the Research 

In this thesis, three different heterostructured electrocatalysts for enhancement of the OER, HER, 

and ORR have been designed and investigated. Specifically, functionalized graphitic carbon nitride, g-

C3N4 (GCN), nanosheets (NSs) have been successfully deployed for constructing 2D GCN/Ni(OH)2 

(GCNN) heterostructures with monodispersed Ni(OH)2 nanoplates anchored on the GCN NSs. The 

superhydrophilic GCN not only endows the hetrostructures with superhydrophilicity, facilitating mass 

diffusion, but also substantially ensures the exposure of active sites. Meanwhile, the strong interfacial 

coupling between the robust GCN and Ni(OH)2 can efficiently enhance the electrode performance and 

structural stability. These favourable merits give GCNN heterostructured electrocatalysts the ability to 

deliver significantly enhanced catalytic performance towards the OER as compared to bare ultrathin 

Ni(OH)2 NSs. 

2D molybdenum dichalcogenides, in particular, MoS2 and MoSe2, are very promising 

nonprecious-metal-based electrocatalysts for the hydrogen evolution reaction (HER) in acidic media. 

They exhibit inferior alkaline HER activity, however, due to the sluggish water dissociation process. Thus, 

in order to improve the alkaline HER activity of molybdenum dichalcogenides, we designed novel 

MoSe2/SnS2 and MoS2/SnS2 heterostructures with SnS2 quantum dots decorated on the basal planes of the 

molybdenum dichalcogenides. It has been confirmed by density functional theory (DFT) calculations that 

the incorporation of SnS2 brings in substantial enhancement of the water adsorption capability of MoSe2, 

both on the edge sites and on the basal planes. Thus, benefiting from the enhanced water 

adsorption/dissociation capability, the well-defined heterostructures delivered significantly accelerated 

HER kinetics in comparison with pure MoSe2 in alkaline media.  

To further investigate whether engineering heterostructures with well-defined interfaces is an 

effective strategy for obtaining high-performance electrocatalysts, novel hexagonal boron nitride (h-

BN)/Pd heterostructured electrocatalysts were obtained by assembling Pd nanoparticles (NPs) on ultrathin 

h-BN nanosheets towards enhanced ORR kinetics. The results demonstrated that the robust h-BN serves 

as a durable platform to ensure the structural integrity of the heterostructured catalyst, uniform 

distribution of Pd NPs, and maximal exposure of the active sites. More importantly, the h-BN is capable 

of modulating the electronic structure of Pd active centres by establishing unique heterostructured 

interfaces, downshifting the position of the Pd d-band centre accordingly, and eventually optimizing the 

heterostructure’s affinity with the reaction intermediates for faster reaction kinetics. Meanwhile, the 
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presence of h-BN can also contribute to the creation of a superhydrophobic surface for the 

heterostructured catalysts, promoting the adsorption capability and diffusion kinetics of O2. Benefiting 

from the favourable characters enabled by the multifunctional h-BN support, the heterostructured catalyst 

delivers exceptional ORR catalytic performance with a high half-wave potential, enhanced mass and 

specific activity, and decent durability. These findings open a new avenue for the rational design and 

development of heterostructured catalysts by interface engineering towards electrocatalysis applications. 

1.3. Thesis Structure 

Engineering heterostructures with well-defined interfaces is an effective strategy to obtain high-

performance electrocatalysts. Thus, we designed 2D nanomaterial-based heterostructured electrocatalysts 

(including GCNN, MoSe2/SnS2, and h-BN/Pd) with unique interfacial functionalities for enhanced OER, 

HER, and ORR performance. The effects of unique surface/interface properties and electronic structures 

on the electrocatalytic performance of these heterostructures were investigated. Thus the outline of this 

thesis is briefly presented as follows: 

Chapter 1 introduces the research background on electrocatalysis and its applications in the 

energy storage and conversion field, and identifies the significance of constructing heterostructures with 

well-defined interfaces in this work. 

Chapter 2 presents a literature review on  OER, HER, and ORR electrocatalysts and the basic 

theories on their activity, together with recent progress on heterostructured electrocatalysts. 

Chapter 3 presents the detailed synthesis methods, as well as the componential, structural, and 

electrochemical characterization techniques used in this thesis work. 

Chapter 4 investigates the functionalized GCN substrate deployed for the construction of 2D 

GCNN heterostructures with the decoration of monodispersed Ni(OH)2 nanoplates towards enhanced 

water oxidation. 

Chapter 5 presents novel MoSe2/SnS2 and MoS2/SnS2 heterostructures with electrocatalytically 

inactive SnS2 quantum dots decorated on the basal planes of molybdenum dichalcogenides towards 

enhanced alkaline HER activity. 

Chapter 6 investigates h-BN as a multifunctional substrate employed for engineering h-BN/Pd 

heterostructured electrocatalysts towards enhanced ORR kinetics. 

Chapter 7 summarizes this thesis and proposes some current challenges and future perspectives 

for heterostructured electrocatalysts. 
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Chapter 2 

2. Literature Review 

2.1. The history of electrocatalysis 
Electrocatalysis is a type of catalysis that can improve the rate of electrochemical reaction occurring at the 

interface of electrode and electrolyte. It concentrates on researching the structure-activity relationships 

and mechanism in electrocatalytic reaction. The term of electrocatalysis was firstly used in a English 

scientific paper by Grubb in 1963 due to the investigation of fuel cell.[1] It was further claimed by 

Frumkin et al.[2] The rate of electrochemical reaction determines the efficiency of fuel cell. Thus, it can be 

inferred that the electrocatalysis was promoted by rising of fuel cells in the 1960s. The electrocatalytic 

pathway was firstly put forward and taken into practice by Bowden and Rideal in 1928.[3] To implement 

proof of concept, they deployed various catalysts into the same electrochemical reaction for hydrogen 

generation. At that time, they mainly focused on the fundamental experiment, rather than the relationship 

between catalysts and activities. Until 1935, theory anticipation was taken into interpreting the 

experimental results.[1] The famous theory that the adsorption energy of hydrogen proton strongly 

depends on the interaction between hydrogen atom and metal, is still adopted up to now in electrocatalytic 

field. The theory was further applied in the HER which possesses the simple mechanism and provides 

accessibly supporting experiment data. Thus, following the Butler’s attempt,[4] Parsons[5] and Gerischer[6] 

completely applied the Horiuti and Polanyi’s theory into hydrogen evolution reaction in the 1950s to 

confirm catalytic activity closely associated with the hydrogen adsorption energy.  

With the development of electrocatalysis, different types of catalytic reactions and electrocatalysts spring 

up. Specifically, the investigation of electrocatalysts has attracted more attentions than that of the 

electrocatalytic reactions, although the various electrocatalytic reactions with the most important benefit 

in the practical application should be more in-depth research. In general, the electrocatalytic reactions 

mostly focused on water splitting involved in oxygen[7]and hydrogen evolution[8], oxygen reduction,[9] 

hydrogen peroxide production,[10] carbon dioxide reduction,[11] nitrogen reduction (NRR),[12] and carbon 

fuels oxidation like formic acid and methanol. In this regard, the classic Horiuti and Polanyi’s theory has 

been applied to the various electrocatalytic reactions to establish the relationship between the activity and 

electrocatalysts, which can expressed by means of the binding energy of the intermediates on the surface 

of catalysts. Besides, some researchers empirically introduced the volcano-shaped plot to establish the 
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correlation of chemical reaction rate with the adsorption properties such as adsorption enthalpy. 

Thereafter, the “Volcano” plots were applied in other electrocatalytic reactions as descriptors of the 

adsorption energy of intermediates vs. catalytic reaction rate. So far, the conceptual electrocatalysis has 

been developed from hydrogen evolution to bioelectrocatalysis and photo-electrocatalysis, as well as from 

bulks or polycrystalline blocks to nanoparticles, clusters, quantum dots, single atoms, single crystals, 

(non)metal alloys, amorphous materials, oxides. Meanwhile, these developments have efficiently 

improved the progress of materials science. 

2.2. The theories of OER, HER, and ORR 

2.2.1. The mechanism for OER 

The mechanism of OER is still intricate and debatable on metal oxide surfaces. Normally, the reaction has 

been proposed as four proton/electron-coupled processes in acid and alkaline electrolyte solutions. In 

acidic media, the four reaction steps of OER are considered to occur as follows, 

H2O +   OH  + H+ + e                                                                                       (2.1) 

OH   O  + H+ + e                                                                                                (2.2) 

O  + H2O  OOH  + H+ + e                                                                                  (2.3) 

OOH   O2 +  + H+ + e                                                                                        (2.4) 

where * represents the active sites of catalysts, and O*, OH*, OOH* denote adsorbed intermediates. 

Similarly, the reaction pathways can be shown as the following elementary steps in alkaline media:  

OH  +   OH  + e                                                                                                    (2.5) 

OH  + OH   O  + H2O + e                                                                                      (2.6) 

O  + OH   OOH  + e                                                                                               (2.7) 

OOH  + OH   O2 +  + H2O + e                                                                              (2.8) 

According to aforementioned equations, each elementary step generates one electron. [13-14]  
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Figure 2.1. (a) Free energy diagram for OER, indicating the reactive species and intermediates. The 

dashed lines indicate downhill energetics for all steps at the electrode potential (i.e. thermochemical 

overpotential); ∆Gi denotes the free reaction energy of each elementary reaction step. Reproduced with 

the permission.[15] Copyright © 2010 WILEY VCH Verlag GmbH & Co. KGaA, Weinheim.  (b) A 

schematic polarization curve for OER. Reproduced with the permission.[16] Copyright © 2016 WILEY

VCH Verlag GmbH & Co. KGaA, Weinheim. 

Beyond the early concepts mentioned above, density functional theory (DFT) calculations have been 

adopted more recently to highlight the thermochemical aspects of OER.[15-16] The free reaction energy of 

the elementary reactions ( Gi) was used for thermochemical analysis. As depicted in Figure 2.1a, the 

Gibbs reaction energy order G3> G1= G2> G4 indicates that the formation of the peroxide intermediate 

( G3) is the thermochemically least favorable step, while G3 and G4 are considered as the “potential-

determining steps” controlling the activation energy. Theoretically, the Gi of the overall reaction is equal 

to that of the sum of four-step elementary reaction with the same Gi for an ideal catalyst, resulting in a 

same equilibrium voltage E =1.23 eV (4.92 eV/4 = 1.23 eV) vs RHE (reversible hydrogen electrode, 

afterwards all the potential noted is in terms of RHE, unless otherwise specified). In reality, however, 

there is still no ideal catalyst to achieve the same Gi of each step, thus generating the overpotential of 

OER. 

To evaluate and compare the performance of target electrocatalysts, overpotential or onset potential is 

considered as one of the most fundamental parameters. Since it is quite arbitrary to experimentally 

determine the precise value of onset potential, the value of potential at a current density of 10 mA cm-2 

(E10) is applied more frequently.[17] Overpotential is the difference between the equilibrium potential 

(E0=1.23 V) and E10. As indicated by typical polarization curves in Figure 2.1b, the current density tends 

to remain zero before reaction activated, and start increasing at the onset potential before a sharp 
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increase.[16]    

Tafel slope is another parameter employed to provide insights into the reaction kinetics and 

electrocatalytic activity.[17] Specifically, Tafel slope contributes to elucidating the rate-determining step 

by employing the following equation. 

 = b  log( j/j0 )                                                                                                          (2.9) 

Where  represents overpotential, b denotes the Tafel slope, j stands for current density and j0 is exchange 

current density. In general, a smaller Tafel slope with faster increase in current density (j) is desired. 

2.2.2. The mechanism for HER 

HER is a typical two-electron transfer reaction in acid and alkaline solutions. In a cidic media, the 

reaction steps of HER are presented as follows: 

Volmer step:         H+ +  + e   H                                                                           (2.10) 

Heyrovsky step:   H+ +  + e  + H   H2 +                                                             (2.11) 

Tafel step:           2H   H2 + 2                                                                                (2.12) 

Where * represents the active sites of catalysts, and H* denote adsorbed hydrogen intermediates. 

Similarly, the reaction pathways can be displayed as the following elementary steps in alkaline media:  

Volmer step:           H2O +  + e   OH- + H                                                            (2.13) 

Heyrovsky step:     H2O +  + e  + H   H2 +  + OH                                              (2.14) 

Tafel step:            2H   H2 + 2                                                                                (2.15) 

According to aforementioned equations, it can be explicit for the hydrogen intermediates originated from 

hydronium ion or water dissociation in the different electrolyte. Then, the H  would form H2 by the 

Heyrovsky or Tafel step. In actual electrocatalytic reactions, the reaction pathway strongly depends on the 

physicochemical properties and electronic states of catalyst surface. 

 



 
 
 
 
Chapter 2 Literature Review 
 

11 
 

Figure 2.2. Relationship between j0 and ΔGH. Reproduced with the permission.[22] Copyright © 2015 

WILEY VCH Verlag GmbH & Co. KGaA, Weinheim. 

Generally, the HER activity can be directly evaluated by the parameters of overpotential, Tafel slopes, 

and TOF, which all can obtained from the electrochemical test. The hydrogen adsorption free energy, 

ΔGH, the assessment of the HER kinetic, can be calculated by density functional theory (DFT). According 

to the Sabatier principle expressed by the volcano-shaped plot (Figure 2.2), the most active 

electrocatalyst (shown by exchange current density, j0) is that the binding strength of hydrogen should be 

neither too weak nor too strong. [19-22] If the binding strength of hydrogen intermediates adsorbed on the 

electrode surface is too weakly, the Volmer step correlated with the overall reaction rate would be limited, 

while if binding strength is too strong, the Heyrovsky/Tafel step, i.e. the desorption step, would be 

restricted. Therefore, the necessary but not sufficient condition to achieve the optimal HER kinetics is tiH 

is .[5, 18, 23, 24]    

2.2.3. The mechanism for ORR 

The oxygen reduction can occur through a two-electron (2e-) transfer pathway to form the hydrogen 

peroxide in alkaline media or hydroperoxyl (HO2
−) in acidic media, or by means of a four-electron (4e-

)transfer process to directly produce water.  

Dissociative (4e ):                               O2 + 2*   O                                                                            (2.16) 

                                                         2O* + 2H+ + 2e                                                                        (2.17) 

                                                          2OH* + 2H+ + 2e      2O + 2*                                                 (2.18) 

Associative (4e ):                                    O2 + *    2*                                                                       (2.19) 

                                                            O2* + H+ + eH                                                                      (2.20) 

                                                          OOH* + H+ + e          2O                                                       (2.21) 

                                                          O* + H+ + e                                                                           (2.22) 

                                                       OH* + H+ + e     2O + *                                                            (2.23)  

Associative (2e ):                                       O2 + * O  2*                                                                 (2.24) 

                                                          O2* + H+ + eH                                                                       (2.25) 

                                                      OOH* + H+ + e    OOH  + *                                                     (2.26) 

The selectivity of 2e− or 4e− process mainly depends on the free reaction energies of adsorbed 

intermediates on the electrode surface.[25] From the view of molecule, the direct 4e− mechanism can 

proceed as two possible ways, dissociative or associative pathways. The primary distinction of the two 
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mechanisms is engineering different O2 dissociation energy barrier. Such as, it has been demonstrated by 

DFT calculations that the dissociation barriers are so high on the carbon surface that the reaction proceeds 

by 4e− dissociative pathway.[26] Thus, that’s why almost carbon materials always tend to 2e− reaction 

rather than 4e−.[27-28] In contrast, Pt-based catalysts for ORR process normally take a dissociative route 

because of the strong original O2 dissociation energy barrier.[29] It has been evidenced that Pt-based 

electroctalysts is inclined to the 4e− reaction pathway all the time. In addition, the adsorption energy of 

oxygen-containing intermediates can also determine the reaction pathway. If the adsorption energy is too 

weakly, the reaction facilitates 2e− pathway, in verse, the reaction tend to 4e− pathway.[30-31] 

Commonly, some indicators like onset potential, half-wave potential (E1/2), and diffusion-limiting current 

density (jL) can be used as evaluation criteria of ORR performance for various electrocatalysts at the same 

test conditions. The ORR potential range deviates a lot from the equilibrium potential, and the reaction 

kinetics are multistep. Thus the exchange current density can not be served as the parameter of assessing 

performance. Catalytic selectivity can be assessed by the electron transfer number (n), which 

arecalculated by the Koutecky–Levich equation.[30]  

The kinetic current (Jk) can be calculated by the Koutecky–Levich equation which is represented by 

                                                                                                                                              (2.27) 

Where J stands for the measured current and Jd for the diffusion limited current. 

The number of electrons transferred (n) can be estimated by the Levich equation: 

                                                                                                           (2.28) 

where F stands for Faraday’s constant (96485 C mol−1). A is the area of electrode (0.196 cm2), and D is 

the diffusion coefficient of O2 in 0.1 M KOH solution (1.93×10−5 cm2 s−1). υ stands for the kinematic 

viscosity of the electrolyte (1.01×10−2 cm2 s−1). ω represents the angular frequency of rotation: ω = 2πf/60, 

f in r.p.m. is the RDE rotation rate, and  is the concentration of molecular oxygen in 0.1M KOH 

electrolyte (1.26×10−6 mol cm−3). 

2.3. 2D electrocatalysts 

2D nanomaterials have been extensively applied in the electrocatalysts due to their adjustable and evenly 

exposed lattice planes, unique physicochemical properties, and electronic structures. These special 

features can have remarkable influences on the extrinsic and intrinsic activities of electrocatalysts. Apart 

from the adjustable catalytic activities, 2D nanomaterials can also work as functional supports because of 
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their large specific surface areas and robustness for the development of hybrid electrocatalysts.[32-38] 

However, most pure 2D electrocatalysts are inert or not active enough because of the poor intrinsic 

activity, low density of active sites, and low electrical conductivity. [39-40] Thus, some efficient 

optimization strategies (including heteroatom doping, surface/interface building, defect constructing, and 

geometric controlling, etc.) are already proposed for 2D electrocatalysts to achieve higher catalytic 

activities (Figure 2.3).[41] These optimization approaches aim to modulate the surface/interface properties 

and electronic structures correlated with intermediates adsorption free energy and charge/mass transfer 

kinetics, which would affect catalytic kinetics. 

 

Figure 2.3. The engineering strategies of 2D nanomaterials and their effects on improving electrocatalytic 

performance.[41] Copyright © 2018 American Chemical Society. 

2.3.1. 2D electrocatalysts for OER 

2.3.1.1. Transition-metal oxides 

In recent years, transition-metal oxides (TMD) like CoOx, NiOx, and FeOx have drawn great attention in 

electrocatalysis application, due to the high electrocatalytic activity for OER in alkaline solutions. More 

efforts have already been devoted to boosting the catalytic activity through optimizing the nanostructured 

morphology and active surface area.[42-45] It is generally acknowledged that higher valence state of nickel 

and cobalt results in higher OER catalytic activity.[45-46] Thus, various approaches to prepare nickel oxides 

with higher valence state and improved catalytic performance have been pursued.[47] As a typical example, 

Zou et al. reported high-valence-state NiO/Co3O4 nanoparticles decorated on nitrogen-doped carbon for 

OER with low overpotential. Rich high-valence Ni3+ and Co3+ species were dispersed on the surface of 

the composite electrocatalysts. The combination of higher oxidation states of both Ni and Co 
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synergistically leads to outstanding OER activity.[48] As mentioned above, the surface Gibbs free energy 

( Gs) also plays a critical role for water oxidation reaction. Zhang et al. prepared ultrafine NiO 

nanosheets with a platelet size of 4.0 nm and thickness of 1.1 nm stabilized by TiO2 by calcining 

monolayer NiTi-layered double hydroxide (LDH) precursor.[49] The successful fabrication of ultrathin 

NiO heterostructured catalysts achieved high exposure of reactive NiO [50] facets, presence of Ni3+ and 

Ti3+ sites, and abundant interfaces, which demonstrated strong synergetic effects to accelerate H2O 

adsorption and benefit charge transfer (Figure 2.4a-c). In fact, the surface Gibbs free energy ( Gs) 

follows the order of [50] ≈ [51] > [50] > [52] for NiO facets.[53] Surface reactivity, in that case, increases with 

Gs, making it greatly desirable to fabricate ultrathin and ultra-small NiO nanosheets with more exposed 

[50] facets for enhanced performance. 

  

Figure 2.4. (a) HRTEM image of mono-NiTi-MMO. (b) AFM image and (c) corresponding height 

profiles of mono-NiTi-MMO. Reproduced with the permission.[49] Copyright © 2016 American Chemical 

Society. (d) iR corrected-LSV curves of Ir−Ni mixed oxide films with different ratios of Ir to Ni, (x% Ni-

MO: x represents at% Ni). (e) Structural models representing: (I) rutile type (IrO2) unit cell, (III) the 

bunsenite type (NiO) unit cell, and (II) 39%Ni-MO-ap. (red: O or OH; yellow: Ni; blue: Ir). Reproduced 

with the permission.[61] Copyright © 2015 American Chemical Society. (f) DFT + U calculations 

demonstrating effects owing to Ce doping, gold support and geometry. (g) Experimental overpotentials 

for NiOx and NiCeOx supported on either bare or Au-coated GC substrates, (yellow: Au; green: Ni; grey: 

Ce; red: O; white: H). Reproduced with the permission.[62] Copyright © 2016, Springer Nature. 

Cation doping is another strategy to improve the catalytic performance.[54-60] For example, well-defined 

thermally prepared Ir−Ni oxide thin film with a low ratio of Ir showed an unprecedented 20-fold increase 

in water oxidation activity and enhanced stability over pure Ir oxide electrocatalysts under highly 
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corrosive acidic conditions (Figure 2.4d).[61] Furthermore, an intuitive model for the formation of the 

catalytically active state of the bimetallic Ir−Ni oxide surface were proposed to identify the coverage of 

reactive surface hydroxyl groups as a suitable descriptor for the OER activity (Figure 2.4e). Later work 

by Jaramillo et al. demonstrated the remarkable enhancement of OER activity of electrodeposited NiOx 

films, which benefited from the synergistic effects of employing Ce as the dopant and gold as the support. 

Superior OER performance was achieved by the NiCeOx–Au catalyst in alkaline media, which was 

among the best reported at that time. Based on experimental observations and theoretical modelling, the 

excellent performance was ascribed to the integration of electronic, geometric and support effects. 

Modified electronic circumstance of host nickel oxide by Ce doping, leads to beneficial binding energies 

of the OER intermediates and promoted approach to highly active geometrical-coordinating Ni site 

simultaneously (Figure 2.4f-g).[62]  

2.3.1.2. Layered transition-metal hydroxides and double hydroxides 

Layered double hydroxides (LDHs) are a class of lamellar materials consist of positively charged layers 

and charge-balancing interlayer anions. The positively charged layers can be replaced by monovalent 

cations (Li+), divalent cations (e.g. Mg2+, Ni2+, Co2+, Mn2+, Cu2+, Ca2+, Zn2+ et al) or trivalent cations (e.g. 

Al3+, Fe3+, Cr3+). The interlayer anions are normally carbonate (CO3
2-), which can easily be substituted by 

other anions (e.g. SO4
–, NO3

–, Cl– and Br–).[63-64] Endowed with chemical versatility, open structures as 

well as high accessibility to electrolytes by anion exchange, LDHs have been extensively investigated as 

promising candidates for electrochemical applications (e.g. supercapacitors, batteries, water splitting, etc.). 

In particular, NiFe LDH, has drawn considerable attention as electrocatalysts due to its prominent 

catalytic activities and stability during OER process.[51-52, 65-66] One of the major advantages of NiFe 

LDHs is that metal atoms can regularly located on the LDHs flakes to provide abundant exposed active 

sites. Besides, the features of anion-exchange as well as ease of delamination have provided more 

opportunities for engineering nanostructured assembly of LDHs towards enhanced OER performance. 
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Figure 2.5. (a) Polarization curves of NiFe LDH based composites in 1.0 M KOH media. (b) TOF of 

Ni2/3Fe1/3-rGO, Ni2/3Fe1/3-GO, and Ni2/3Fe1/3-NS at the overpotential of 0.3 V. Reproduced with the 

permission.[71] Copyright © 2015 American Chemical Society. (c) TEM image of the hierarchical Ni-Fe 

LDH hollow nanoprisms. (d) Polarization curve for the Ni-Fe LDH hollow prisms in 1 M KOH media. 

Reproduced with the permission.[75] Copyright © 2018 Wiley VCH Verlag GmbH & Co. KGaA, 

Weinheim. 

However, the low conductivity of LDHs has hindered their practical applications as OER catalysts. To 

resolve this problem, some researchers attempted to hybridize LDHs with conductive materials such as 

conductive carbon materials (rGO and CNTs), or directly grow them on conductive substrates (nickel 

foam and carbon fiber cloth).[67-70] Ma et al. prepared a superlattice-like Ni2/3Fe1/3 LDH nanosheets/GO 

(Ni2/3Fe1/3/GO) heterostructured composites via a homogeneous precipitation strategy. The resultant 

Ni2/3Fe1/3/GO delivered excellent OER performance (an overpotenial of 0.23 V at 10 mA cm−2) with a 

small Tafel slope (42 mV dec−1). The overpotenial can be further decreased to 0.21 V at 10 mA cm−2 by 

hybridizing Ni2/3Fe1/3 LDH with rGO. The improvement of catalytic activity can be ascribed to the 

interfacial interaction between Ni2/3Fe1/3 LDH and GO at a molecular level, which hampered the 

aggregation of LDHs and thus increased the active electrochemical surface areas, generating a synergistic 

effect for OER (Figure 2.5a-b).[71] On the other hand, the OER activity of an electrocatalyst can be 

optimized by tuning its geometric structure, since the OER process involves a series of surface/interface 

reactions. Thus, engineering nanostructures such as hollow, porous and complex 3D architectures is 

highly desirable to further boost the OER activity of Ni-based LDHs.[72-74] Lou’s group successfully 
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synthesized hierarchical hollow nanoprisms composed of ultrathin Ni-Fe LDH nanosheets by self-

sacrificing template method. Nickel-precursors tetragonal nanoprisms were employed as templates and 

dissolved by the hydrolysis of iron(II) sulfate for the simultaneous growth of ultrathin Ni-Fe LDH 

nanosheets on the surface (Figure 2.5c).[75] The wise design of advanced FeNi LDH nanostructures with 

large surface areas contributed to a low overpotential of 280 mV at 10 mA cm-2 (Figure 2.5d). The 

promoted activity can be possibly ascribed to their unique nanostructure and optimized chemical 

composition. Besides the synergistic effect between Ni and Fe, the hierarchical hollow nanoprisms with 

large surface areas could provide plenty of active sites for electrochemical reactions.  

Meanwhile, other LDHs such as Ni-V monolayer double hydroxide,[50] NiCo LDHs,[76-78] NiMn LDH,[79] 

NiFeAl,[80] NiFeMn[81] and NiCoAl[82] ternary LDH nanosheets, were investigated for OER in alkaline 

electrolyte. Sun and co-workers reported a monolayer of nickel–vanadium LDH achieving a current 

density of 27 mA cm-2 (57 mA cm-2 after IR correction) driven by an overpotential of 350 mV for OER.[50] 

These enhanced catalytic activities were ascribed to enhanced conductivity, facilitated electron transfer 

and increased active sites. Wang and co-workers further reported ternary NiCoFe LDH nanosheets by 

cation exchange reaction at ambient temperatures.[83] The NiCoFe-LDH electrode reached a current 

density of 10 mA cm−2 with a low overpotential of 280 mV and showed excellent stability after 10 h with 

a retention rate of 98% in 1 M KOH electrolyte. Although emerging in-situ or in operando techniques 

have been used for in-depth investigation on the electrocatalysts for OER, systematic theoretical studies 

of the catalytic pathway and active sites of Ni-based LDHs in terms of various compositions and 

structures remain to be explored. 

2.3.1.3. Metal-free OER electrocatalysts 

2D metal-free nanomaterials have been extensively investigated in electrochemical energy storage and 

conversion fields, such as batteries, supercapacitor, and catalysis. As OER catalysts, they exhibit very 

promising catalytic activity with proper modification. Such as, N,P co-doped graphene/carbon nanosheets 

(N,P-GCNS) with N,P-doped carbon sandwiching few-layers-thick graphene were fabricated.[84] The N,P-

GCNS nanosheets can maximally expose the active sites and highly enhance the conductivity due to the 

doped N and P. Meanwhile, the large specific surface areas and hierarchical pores can afford rapid 

transportation pathway and adequate combination between the electrode and electrolyte. As a result, the 

N,P-GCNS catalyst achieved lower overpotential at 10 mA cm-2 with smaller Tafel slope than that of 

RuO2 benchmark. Notably, the N,P-GCNS is an effective bi-functional electrocatalysts for the enhanced 
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ORR process also. 

 

Figure 2.6. (a) The OER activity of various catalysts evaluated by LSV tests. (b) Tafel plots of N,P-CNS 

and N,P-GCNS. Reproduced with the permission.[84] Copyright © 2015 American Chemical Society. (c) 

TEM image of g C3N4/graphene composites (inset: the HRTEM image of a typical g C3N4 nanosheet). 

(d) CVs during the ORR and OER potential window of g C3N4/graphene composites, g C3N4, bulk 

g C3N4, graphene, RuO2, and 20 wt % Pt/C in N2 saturated 0.1 M KOH. Reproduced with the 

permission.[88] Copyright © 2014 WILEY VCH Verlag GmbH & Co. KGaA, Weinheim. 

2D graphitic carbon nitride g-C3N4 (GCN) has been widely implemented in the photocatalysis field due to 

its unique electronic band structure and high physicochemical stability.[85] Some effort has already been 

made to study GCN-based composites as electrocatalysts for water splitting.[86-87] It was found that bare 

GCN is nearly inert for OER and hydrogen evolution reaction (HER), and the delivered catalytic 

performance is mainly ascribed to the synergistic effect of GCN and the conductive carbonaceous 

materials (e.g., CNT and graphene). According to the strategy, ultrathin g-C3N4 nanosheets/graphene 

hybrid has been synthesized under ultrasonication-assisted method.[88] The g C3N4 and graphene are 

well hybridized by π stacking interactions due to π rich characteristics and their 2D configurations. 

The conductive graphene nanosheets work as high rapid electron transporting channels in the hybrid 

and the graphene nanosheets partially covered by g C3N4 can ensure effective electrical contacts 
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between them. Meanwhile, the thickness of g C3N4 nanosheet is only approximate 1.1 nm, while the 

largest distance of electron tunnelling is up to be 3 nm, so electrons could pass through the g

C3N4 barrier. In addition, g C3N4 nanosheets exhibit high chemical stability. Therefore, the g

C3N4/graphene hybrids delivered better OER performance and durability. 

2.3.2. 2D electrocatalysts for HER 

2.3.2.1. Graphene-based HER electrocatalysts 

The basal plane of pristine graphene is inactive for the hydrogen evolution with a large hydrogen 

adsorption free energy, ΔGH* (1.85 eV) due to containing no free electrons for reaction.[89] Large positive 

ΔGH* means the sluggish HER process, which is corresponding with the experimental results. Therefore, 

doping graphene with one or more non-metallic atoms to redistribute the charge/spin in combination with 

the reactants/intermediates adsorption is the most effective strategy for boosting HER performance.[89-91] 

Among these single-heteroatom-doped graphene nanomaterials, B-doped graphene exhibits exceptional 

HER performance. But it remains not quite good enough in comparison with the MoS2-based and Pt-

based electrocatalysts. Moreover, it can be found that the Tafel slopes of all heteroatom-doped graphene 

are in close proximity to 120 mV dec−1, indicating that the rate-determining step is Volmer step also 

evidenced by DFT calculations. Meanwhile, although doping heteroatoms in graphene can enhance the 

hydrogen adsorption ability, but the ΔGH* values are still more than the ideal ones, demonstrating 

unfavourable thermodynamic adsorption process. Thus, all heteroatom-doped graphene catalysts locate at 

the right bottom leg of the volcano curves (Figure 2.7a).[92] To rank the activity grades of volcano plots, a 

basic principle of optimizing ΔGH* was expounded by Qiao and co-authors according to the HMOT. They 

discovered a good linearity of the DOS peak position and the ΔGH* by examining the active-center DOS 

of all models (Figure 2.7b).[92] In view of the poor hydrogen adsorption on the built graphene models, the 

DOS peak position for the active centers should be closer to the Fermi level. Based on the above 

predication, dual-heteroatom-doped strategies were adopted to optimize the ΔGH* of graphene-based 

materials. Such as N,P-, N,S-, N,B-, N,P,S- co-doped graphene-based nanomaterials were designed 

towards HER process. As predicted, almost dual-atoms doped graphene-based catalysts exhibit 

accelerated HER performance in comparison with the single-atom doping ones except for N-, B-doped 

graphene. The results are also in agreement with the DFT calculations of ΔGH*. As is well-known, the 

catalytic activity is dominated by the inherent activity of every active site, as well as extrinsic physical 

and chemical characteristics associated with those exposed active sites. Particularly, for the doped 
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catalysts, the density of exposed active sites is closely connected with the degree of doping and the 

specific surface area of electrode. Thus, the HER activities for graphene-based catalysts can be enhanced 

by controlling the doping level and increasing the specific surface area.  

 

Figure 2.7. (a) HER volcano plots consisting of DFT calculated ΔGH* of intermediates (x-axis) and 

experimentally tested i0 (y-axis) as descriptors. (b) The relationship between ΔGH* and the highest peak 

position of DOS of the active carbon, the red line as a guide. Reproduced with the permission.[92] 

Copyright © 2016, Springer Nature. 

Apart from the above non-metal heteroatom doped graphene to modulate the HER intrinsic activity of 

graphene-based electrocatalysts, graphene and its derivatives also serve as important platforms for the 

support of metal nanoparticles, nanoclusters, and single atoms. Especially, the modified graphene 

substrate uniformly decorated by single atoms has been considered as an effective strategy for 

synthesizing alternative electrocatalysts to Pt-like non-noble metals. For example, Sun’s group 

synthesized isolated single Pt atoms and clusters dispersed on the surface of N-doped graphene by the 

atomic layer deposition technique.[93] The N dopants can induce strong electronic interaction and 

chemical bonding between Pt and graphene matrix, modulating the electronic structure of Pt to facilitate 

the HER kinetics. The as-synthesized samples delivered better HER performance than that of state-of-the-

art Pt/C catalysts. Both the XANES analysis and DFT calculations demonstrate that the N coordination of 

the isolated Pt single site modulated modulates the electronic structure of Pt and optimized optimizes the 

hydrogen adsorption energy, and thereby boosting the HER kinetics. Other than noble-metal single atoms, 

several transition-metal single atoms such as cobalt, nickel single atoms anchored on the functionalized 

graphene as high-performance HER electrocatalysts were also reported.[94-95] Therefore, doping 

heteroatoms or supporting active metals on the surface of graphene is both considered as an effective 
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strategy for engineering high-activity graphene-based electrocatalysts. 

2.3.2.2. Transition-metal dichalcogenides   

Recently, the development of 2D HER electrocatalysts are mainly concentrated on investigating the 

TMDs. Molybdenum dichalcogenides, in particular MoS2 and MoSe2, are the most promising TMDs 

electrocatalysts for the HER. Therefore, in the following discussion, MoS2 is taken as a typical example. 

Both density functional theory (DFT) calculations and experimental findings have demonstrated that the 

HER catalytic activity of molybdenum dichalcogenides is mainly derived from their edge sites.[96-100] In 

this regards, various strategies, such as building various nanostructures or phases, engineering 

surface/interface and defects, or heteroatom doping, are taken to increase the number of exposed active 

sites, as well as modulate the ΔGH* and band structure of molybdenum-dichalcogenide-based 

electrocatalysts for enhanced HER activity.[101-103]  

Engineering various nanostructures to increase the specific surface area is the most common method for 

improving the activity of MoS2 electrocatalysts, such as constructing nanowires,[104] mesostructures,[105] 

nanoparticles,[106-107] and nanosheets,[108] etc. Generally, this strategy would not change the electronic 

states of pure MoS2, but could physically enlarge the density of active sites to significantly improve the 

current density. Besides, as with doping graphene, doping heteroatom (e.g., Ni, Co) can alter the 

electronic properties and enhance the HER kinetics accordingly. Moreover, the identification of doping 

sites should be precisely confirmed so that to determine the impact on HER performance.[109-110]  

Introducing defects of purpose in the MoS2 basal planes is also an efficient approach to modify the band 

structures, and crack the basal planes to create more edge sites. For example, Xie’s group reported a 

scalable approach to introduce defects into the surface of MoS2 to generate more active 

edges.[111] HRTEM results indicated the relavant unordered atomic arrays on the basal planes, which can 

cause a cracking of the basal plane and lead to generating more additional edges (Figure 2.8a-c).  
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Figure 2.8. (a) HRTEM image and the corresponding FFT patterns. (b) Cross-sectional HRTEM image. 

(c) Polarization curves of various samples as shown. (d) Polarization curves of different samples as 

shown. (e) Free energy diagram of the dominant Volmer-Heyrovsky pathway for two samples as 

indicated. (a), (b), and (c) reproduced with the permission.[111] Copyright © 2013 WILEY VCH Verlag 

GmbH & Co. KGaA, Weinheim. (d) and (e) reproduced with the permission.[115] Copyright © 2017 

Elsevier Inc. 

Constructing hetero-interface via hybridizing with an additional phase (e.g., graphene and Ni(OH)2) is 

another strategy to optimize the hydrogen adsorption energy on Mo edges, and further improving the 

catalytic activity of MoS2. Under the guidance of the prediction, various MoS2-based heterostructures are 

synthesized and normally delivered improved HER performance compared to pure MoS2. The supported 

phases have a wide range of choice, including from 0D quantum dots to 3D foams.[112-116] For example, 

Feng’s group presented the interface engineering of MoS2/Ni3S2 as a bi-functional water splitting 

electrocatalysis.[116] Combining the experimental and theoretic results, it can be demonstrated that the 

engineered interfaces between MoS2 and Ni3S2 is of great benefit to the chemisorption of hydrogen and 

oxygen intermediates, accordingly enhancing the overall water-splitting reaction performance. Yang’s 

group also utilized the synergistic effects of heterostructure fabricated by MoS2 hybridized with NiCo-

LDH to improve the HER kinetics in base (Figure 2.8d-e).[115] In addition, phase engineering for TMDs 
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like the phase transition of 2H phase to 1T  facilitates the activation of the basal plane, obviously alter 

band structures, and boost the charge transfer process, consequently enhancing the catalytic performance. 

2.3.3. 2D electrocatalysts for ORR 

2.3.3.1. Graphene-based ORR electrocatalysts 

 

Figure 2.9. (a) ORR mass activity of three Fe−N−C catalysts at 0.75 V vs RHE. Reproduced with the 

permission.[122] Copyright © 2011 American Chemical Society. (b) ORR polarization curves of different 

graphene confining FeN4 catalysts and other comparative samples. (c) Dissociative adsorption energy 

(Ea(dis)) of O2 on various sites in FeN4 model. (d) Comparison of onset potential with RHE (Uonset) for the 

theoretical calculation and experiment measurement in base. (e) Comparison of the theoretical free energy 

of potential-determining step at equilibrium potential (∆Gmax) and the exchange current density in 

experiment (j0
exp) for different catalysts in base. (f) Computational models of Fe@pyrrolic N moieties for 

ORR. [124] (b) and (c) reproduced with the permission.[123] Copyright © 2016 Published by Elsevier Ltd.  

Developing high-efficient and low-cost electrocatalysts is urgent demand for application of 

electrocatalytic technology. To a certain extent, the noble-metal-free strategy simulates the development 

of 2D electrocatalysts. Especially, the development of metal-Nx-confined graphene and the N-doped 

graphene ORR electrocatalysts was originated from the Pt-replacing strategy in fuel cells.[117-121] So far, 

the single-atom-confined graphene electrocatalysts exhibit a superior activity for the oxygen reduction 

process, surpassing 3D-carbon catalysts. For example, Yang’s group reported Fe–N–C electrocatalyst 

based on functional graphene (Fe–N–rGO) synthesized by heating the mixture of Fe salt, g-C3N4, and 
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rGO.[122] The ORR performance of as-obtained Fe–N–rGO catalysts are better than that of carbon black-

based FeNx catalysts (Figure 2.9a). The enhanced activities of Fe–N–rGO catalysts might be attributed to 

the modified graphene with large surface area and unique electronic configuration, which could offer a 

platform to support the numerous FeNx active sites. Bao’s group also found that the single iron sites 

confined in graphene matrix exhibit a comparable ORR performance, as well as a higher stability and 

tolerance to SOx, NOx, and methanol over 40% commercial Pt/C (Figure 2.9b).[123] To reveal the origins 

of catalytic activity and reaction mechanism, DFT calculations were applied. The DFT results suggested 

that the high ORR performance can be due to the high dispersion and high-density coordination of 

unsaturated Fe sites, which can serve as the active sites and effectively activate O species (Figure 2.9c). 

Also, the high stability can be ascribed to the chemical confinement of 4N atoms by graphene matrix. 

Recently, Cao’s group further unveiled that incorporating Fe atoms into the N-doped graphene matrix can 

activate the C atoms next to the pyrrolic N atoms to serve as the additional active sites, resulting in the 

increasing of active sites by orders of magnitude (Figure 2.9d-f).[124] Engineering Fe-pyrrolic-N4 model 

has great potential in catalytic fields for energy storage and conversion. 

Apart from Fe single atoms, some other transition-metal atoms, such as Cu, Mn, and Ru, can be confined 

by functional graphene matrix for high-performance ORR electrocatalysts.[125-127] For example, Sun’s 

group reported that Cu single atoms uniformly anchored on graphene (Cu/G) matrix with a loading of 

5.4 wt% as an ORR electrocatalysts. The Cu/G hybrid catalyst exhibits outstanding ORR activity, even 

surpassing the commercial Pt/C.[127] Tour’s group reported single-dispersion Ru atoms embedded on N-

doped graphene matrix (Ru-N/G) for high-ORR activity.[125] The isolated single Ru-N4 species as the 

oxygen-reduction active sites have been computationally confirmed. Also, the Ru-oxo-N4 structure should 

take responsibility for the enhanced ORR activity. 
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Figure 2.10. The ORR mechanism of the PtS4 catalyst.[128]  

In addition to the N as the ligands to confine the single atoms on the modified graphene matrix, S 

incorporated into the graphene can be also as the ligands to anchor the metal atoms. However, this would 

apply in different catalytic reaction. Such as, Choi and co-authors reported that PtS4 moieties anchored on 

the graphene can selectively catalyze the two-electron H2O2, rather than the four-electron ORR process. 

As expounded by Figure 2.10, all elementary pathways are conducive to thermodynamic-dominated 

processes, which is not consistent with the experimental results.[128] Therefore, it can be inferred that the 

catalytic reaction on the PtS4 species might be dynamic-dominated processes.  

 

Figure 2.11. HO2 adsorption model in (a) B-doped graphene, and (b) graphitic N-doped graphene. 

Reproduced with the permission.[129] Copyright © 2013 WILEY VCH Verlag GmbH & Co. KGaA, 

Weinheim.   

Except for the metal atoms confined in the graphene-based electrocatalysts, some non-metal elements 

such as B, N, and S doped or dual-doped into graphene matrix for ORR. Similar to the HER, due to the 

different size and electronegativity of the heteroatoms from C atoms, doping heteroatoms can modulate 
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the electronic structures of graphene. It is worth noting that B- and N-doped graphene electrocatalysts 

exhibit almost different catalytic mechanism. As demonstrated by Qiao’s group, the adsorption sites for 

HO2 on B-doped graphene are B atoms themselves (Figure 2.11a), whereas those on N-doped graphene 

are C atoms adjacent to graphitic N atoms that is far from the edges (Figure 2.11b).[129] The different 

adsorption sites might originate from the distinguished electronegativity. The N electronegativity is 

higher than that of C, resulting in the charge transfer from C atom to N atom in N-doped graphene. 

Accordingly, the adsorption and activation of O2 were significantly improvedsuggestingthat N atom could 

activate the inactive graphene to accelerate the oxygen reduction process. In contrast, the 

electronegativity of B atoms in B-doped graphene is lower than that of C atoms, which would lead to the 

charge transfer from B atoms to C atoms. As a result, the B sites with positive charges can be served as 

the active sites. Besides, the dual-doped graphene electrocatalysts can show better catalytic activity as 

compared to single-doped graphene due to the synergistic effects between the different dopants, which 

can be also documented by combining theoretical analysis and experimental findings.[91, 129-131] 

Apart from the heteroatom-doped graphene-based catalysts, some dopant-free graphene like defective 

graphene electrocatalysts also show remarkable ORR activity, and even are superior to those of dual-

doped graphene.[132-136] The defective graphene can introduce additional active sites by constructing extra 

edges or structure defects to alter the electronic properties of graphene, and further enhancing the catalytic 

activities. Wang and co-authors discovered that there are more active sites on the edges of graphene than 

that of the basal plane due to the highly charged edge. Further, it can be inferred that there are also similar 

edge sites in various carbon matrixes, such as 0D-graphene quantum dots and 1D-graphene nanoribbons, 

which both are widely investigated as efficient ORR catalysts.[137-138]   

2.3.3.2. Graphitic carbon nitride-based ORR electrocatalysts 

Although bare GCN is nearly inert for electrocatalysis due to the wide band gap (2.7 eV), it possesses 

high-level pyridinic N, which can not only serve as the metal coordination sites, but also help to identify 

the active sites. Some investigations have indicated that the GCN-based ORR electrocatalysts delivered 

high catalytic performance mainly originated from the synergistic effects between GCN and the active 

metal sites or conductive carbonaceous materials (e.g., carbon black, CNT and graphene).[139-142] For 

example, Qiao’s group prepared a g-C3N4@carbon ORR electrocatalyst by uniformly anchoring g-C3N4 

on the carbon to improve the charge-transfer ability of g-C3N4.[139] In fact, the C3N4@CMK-3 

electrocatalyst showed a better catalytic activity than the individual components and physical mixtures. 
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The enhanced ORR activity for C3N4@CMK-3 is ascribed to the incorporation of carbon support, which 

could effciently accumulates electrons on the surface of g-C3N4 to increases the charge transfer kinetics of 

ORR process. Moreover, the Qiao’s group reported a g-C3N4/carbon catalyst with three-dimensional 

interconnected macropores via hard-template method.[143] This resultant samples exhibited a comparable 

ORR performance over the commercial Pt/C because of the strong carbon framework. 

2.4. Engineering protocols for 2D electrocatalysts 

As aforementioned in above parts, most pure 2D electrocatalysts are inactive because of the large reaction 

free energy, low amount of active sites and conductivity.[8, 39, 120] Thus, some efficient optimization 

strategies (including heteroatom doping, surface/interface building, defect constructing, and geometric 

controlling, etc.) are already proposed for 2D electrocatalysts to achieve higher catalytic activities. These 

optimization approaches aim to modulate the surface/interface properties and electronic structures 

correlated with hydrogen adsorption free energy and charge/mass transfer kinetics, which would affect 

catalytic kinetics. In this section, a variety of design strategies for 2D nanomaterial-based electrocatalysts 

are summarized. 

2.4.1. Heteroatom doping 

Heteroatom doping is considered as an efficient approach to modulating the electronic states, controlling 

the surface/interface properties, and altering the elementary compositions of 2D electrocatalysts. So far, 

heteroatom doping method for 2D nanomaterials is mainly applied in the cases of LDHs, graphene, 

transition-metal dichalcogenides (TMDs), and g-C3N4, etc. Both non-metal atoms and metal atoms have 

been extensively studied as the dopants. Doping graphene with one or more non-metal heteroatoms is the 

most efficient way for boosting electrocatalytic performance of graphene-based catalysts. Among the 

single-heteroatom-doped graphene nanomaterials, N-doped graphene-based catalysts are the pioneer of 

non-metal-atom doped 2D electrocatalysts. N atom is the most common and efficient dopant for 

carbonaceous materials. Since the size and electronegativity of N atoms are different from those of C 

atoms, the electronic states of carbonaceous catalysts could be modulated by N doping via the 

conjugation effects between nitrogen lone electronic pairs and carbon π-system.[144-145] Motivated by the 

findings, N, P, S, Br, and O heteroatoms have been provided as the single or dual dopants. These 

heteroatoms commonly substituted or disrupt the carbon atoms at the edge areas and basal planes to form 

the defect sites, which can work as the active sites, facilitating the eletrocatalytic processes. Notably, 
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various types and amount of dopants can induce the differences of active sites, which affects the catalytic 

performance.[129-131,146] In addition to doping the carbon matrix, doping other types of 2D matrix, such as 

O-doped MoS2, alter the electronic structures of matrixes as well, and further affect the electrocatalytic 

activity.[147] On the other hand, metal-atom doping mainly investigated the effects of metal-based particle 

size on the catalytic performance. It has been demonstrated that the catalytic performance depended on 

size effects were generally exhibited in the order, single atoms > sub-nanocluster > nanoparticles. 

Especially, the single-atom catalysts supported on the 2D substrates can create more active sites for 

various catalytic activities. Other than carbon-based 2D electrocatalysts as discussed in the previous 

sections, metal doping can also change the electronic states of TMDs, including the creation of more 

additional active sites and the activation of inert basal planes. For example, doping Fe, Co, and Ni could 

also modulate the electronic states of TMDs, which facilitates the activation of in-plane S sites.[8,148-150] 

This promotion is because Co, Ni could lower the binding strength of edge S induced by a reduced 

occupation of antibonding states. Thus, it is not difficult to find that doping heteroatom is an effective and 

tailorable strategy to modulate 2D nanomaterials for unique electrocatalytic activities. 

2.4.2. Defect engineering                                                                                                                

Engineering defects (nano holes, vacancies, etc.) is an efficient way to the modulation of electronic 

structures and physicochemical properties of 2D nanomaterial-based electrocatalysts, which strongly 

affect the extrinsic and intrinsic activities.[152-153]  Some reports claimed that the catalytic activity of MoS2 

originates from the edge Mo sites. Introducing S vacancies into the basal planes can not only modify the 

band gaps but also create additional exposed Mo edge sites.[154] Xie’s group utilized a large-scale 

approach to introducing defects on the surface of MoS2 to generate more active edges. [155] The HRTEM 

results confirm the formation of disordered atomic arrays on the basal planes, which can cause the crack 

of the basal planes, generating more additional edges. Ajayan’s group constructed abundant defects 

within the monolayer of MoS2 via hydrogen treatment and oxygen plasma exposure. [156] The formation of 

these defects significantly increases the total number of the exposed active edge sites, significantly 

enhancing HER kinetics. Moreover, the constructed defects can cause the lattice strains, which also 

modulate the band gaps of 2D materials. Li et al. introduced S vacancies and strains in the monolayer 2H-

MoS2 basal plane for improved HER activity. [157] The S vacancies with band states approaching the 

Fermi level can facilitate hydrogen adsorption. The ΔGH can be dominated by strains induced by S 

vacancies, and thereby improving the HER kinetics. The synergistic effects of S vacancies and strains 
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lead to an optimal ΔGH = 0 eV and attain significantly enhanced intrinsic HER activity. Thus, 

constructing defects for 2D nanomaterial-based electrocatalysts has been an important strategy for 

accelerating catalytic activity. However, controllable tuning of defects is necessary for the in-depth 

understanding of defects and the effects on reaction mechanisms. For example, Yao’s group engineered 

defect-abundant graphene via removing the doped N.[158] They found that the promoted catalytic 

performance is strongly correlated with the defect contents induced by the removal of nitrogen, and the 

lower nitrogen content, the higher catalytic performance, further indicating that defect-engineering 

strategy is feasible to achieve high catalytic activity for graphene-based catalysts. 

2.4.3. Interface engineering 

Interface engineering is an essential strategy to constructing highly active catalysts with well-defined 

heterointerfaces. Engineering hetero-interface employing different components can modulate the 

surface/interface properties and electronic structures of 2D nanomaterial-based electrocatalysts, inducing 

novel physicochemical properties and synergistic effects, which are beneficial to the enhancement of 

electrocatalytic activities.[159-160] Generally, heterointerface could be classfied into the synergistic 

interaction and heterostructure engineering, which usually involves each other. The different components 

consisting of heterostructures is usually combined by chemical bonds at the interface, while the two 

phases existing in the synergistic interaction with coupled electron transit are physically connected. In 

addition, interface constructing can induce unique physicochemical properties, which also facilitates the 

electrocatalytic performance. The design principles of heterointerface for 2D electrocatalysts are 

commonly following several factors. Firstly, the components should possess similar crystal structure for 

favourably forming the heterostructures. Secondly, at least one component has the target catalytic activity. 

Thirdly, the heterostructured catalysts should be conductive so that meet the demand of electron transfer 

to the reactive intermediates. Finally, the two components can fill the gap of electrocatalytic properties 

each other and synergistically improve the catalytic performance. 

2.4.4. Geometric engineering    

The geometric configurations of 2D electrocatalysts significantly affect the catalytic performance due to 

the following reasons .[133] (1) decreasing the lateral size of 2D electrocatalysts could expose more active 

sites; (2) altering the thickness of 2D nanomaterials could modulate the electronic properties; (3) reducing 

the thickness of 2D nanomaterials to the atomic scale is beneficial to generating more in-plane defects as 

additional active sites, and optimizing the electrical conductivity. Jaramillo’s group controlled the surface 
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morphology of MoS2 at the atomic scale to investigate its effect on the HER performance.[105] They 

discovered that reducing the thickness to sub-nanometres can induce the lattice distortions, which can 

creates many vacancies for enhanced catalytic activities. Another characteristic of tuning thickness can 

possibly expose the maximal areas for the favourable ECSA. Besides, Zheng’s group developed the 

freestanding Pd NSs for plasmonic property and electrocatalytic activity for the oxidation of formic acid. 

The Pd NSs exhibited a higher current density due to the larger ECSA as compared to commercial Pd 

black. According to this concept, a series of synthesis strategies for various metal or metal-based alloys 

NSs have been reported, such as Rh, Pd-Cu, and Pt-Cu.[159-161] 

2.4.5 Phase engineering 

Phase engineering for TMDs (from the semiconducting 2H phase to the metastable metallic 1T phase) can 

alter the bandgaps and enhance electronic conductivity. Generally, the strategies for phase engineering 

include alkali metal intercalation, hydrothermal method , and heterostructure construction, etc.[162-163] 

Chhowalla’s group utilized the solvent free intercalation method to obtain the exfoliated MoS2 nanosheets 

with a large amount of metallic 1T phases as the highly active HER electrocatalysts.[164] The MoS2 

nanosheets of 1T phase deliver superior HER kinetics after the removal of surface excess negative 

charges. Moreover, the HER performance of 2H phase can be significantly promoted by adding the 

conductive SWNTs, indicating the poor conductivity of 2H phase is unfavourable to the catalytic activity. 

The results further demonstrate that 1T phase shows a better electron-transfer property than 2H phase, 

which is an important factor for the enhancement of the HER performance.[165] Therefore, the phase 

transition of TMDs from semiconductor 2H phase to metallic 1T phase via chemical exfoliation is an 

efficient way for the promotion of HER catalytic activity.  
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Chapter 3 

3. Experimental procedure 

3.1. Overview 

The experimental procedures are displayed in Figure 3.1. In general, the electrocatalysts are prepared 

mainly based on liquid methods. Sintering method might be employed for tuning their crystallinity or 

phase structures. Then the material’s constituent, structure, and element states are evaluated based on 

several modern material characterization methods, aiming to provide essential information on the atomic 

and electronic structures of the electrocatalysts. Meanwhile, the electrochemical performance of the 

electrocatalysts is accessed. At last, the in-depth mechanism of the reaction is explored, and the structure-

activity relationship is discussed. 

 

Figure 3.1. The flow chat of general experimental procedures. 

3.2. Chemicals and Materials 

The chemicals and materials used in this thesis are listed in Table 3.1. The chemicals are used as received 

without further purification. Ultrapure deionized water (DI water, 18 MΩ cm−1) was used through this 

thesis work, which is generated using a Milli-Q® systems in ISEM, UOW. 

Table 3.1. Chemicals and materials. 

Chemicals 

Formula/ 

abbreviation Purity (%)  Supplier 

Ethanol C2H5OH/ EtOH 96 Chem-Supply Pty. Ltd. 
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Isopropanol C3H8O/ IPA 99 Chem-Supply Pty. Ltd. 

Ethylene glycol  C2H6O2/ EG 99.8 Sigma-Aldrich 

Sodium borohydride NaBH4 >96 Sigma-Aldrich 

Sodium molybdate Na2MoO4 98 Sigma-Aldrich 

Selenium powder Se  >99.5 Sigma-Aldrich 

Potassium hexachloroiridate(IV) K2IrCl6 Technical grade Sigma-Aldrich 

Chloroplatinic acid hexahydrate H2PtCl6 · 6H2O ACS reagent Sigma-Aldrich 

Cobalt(II) nitrate hexahydrate Co(NO3)2 · 6H2O  >98.5 Sigma-Aldrich 

Nickel(II) nitrate hexahydrate Ni(NO3)2 · 6H2O  >98.5 Sigma-Aldrich 

Nickel (II) chloride hexahydrate NiCl2 · 6H2O ReagentPlus® Sigma-Aldrich 

Ammonium molybdate tetrahydrate (NH4)6Mo7O24 · 4H2O  99.98 Sigma-Aldrich 

Hexamethylenetetramine C6H12N4/ HMTA ≥99.0% Sigma-Aldrich 

Urea CH4N2O ≥98% Sigma-Aldrich 

Thiourea CH4N2S >99 Sigma-Aldrich 

Hexagonal boron nitride h-BN 99 Thermal Scienctific 

Potassium hydroxide KOH 85 Chem-Supply Pty. Ltd. 

Sulfuric acid H2SO4 98 Sigma-Aldrich 

Sodium tetrachloropalladate(II) Na2PdCl4 98 Sigma-Aldrich 

Nafion® 117 solution   5 Sigma-Aldrich 

 

3.3. Materials Preparation 

In this doctoral work, the electrocatalysts are mainly synthesized by wet-chemical method involving 

hydrothermal/solvothermal method, oil bath method, ultrasonic assisted method, etc. Generally, wet-

chemical methods involve dispersing reactants into liquid solvents like water, EtOH, EG, etc., and then 

the reactions occur in the solutions. The morphology of as-prepared materials can be controlled by the 

varying concentration of precursors, the type of solvents, reaction temperature, and reaction time. Owing 

to their versatility, these wet-chemical methods now have been widely used for preparing 2D 

nanomaterials. 

3.4. Characterization Techniques 
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3.4.1. XRD 

XRD, a general and rapid analytical modern technique, can be used to identify the composition and 

crystalline characteristics of materials. Crystals are composed of regular atom arrays, and X-rays can be 

scattered when the incident X-rays interact with these atoms, leading a regular array of waves. When the 

Angle between the X-ray and the crystal changes, the intensity diagram of the scattered X-ray is recorded. 

In some specific directions, these scattered waves may add constructively, leading to well-defined peaks. 

When the X-rays arrive at the lattice planes of the crystal materials, interference will occur as the Bragg's 

law: , where d represents the lattice spacing, θ is the incident angle of X-ray, n stands for 

any integer, and λ is the wavelength of X-ray. By comparing the measured peak positions with standard 

PDF cards, the crystal phases of the tested materials can be confirmed.  

In this doctoral work, the crystalline characteristics of the as-prepared materials were recorded using a 

GBC enhanced mini-materials analyzer with CuKα radiation at a scan rate of 2 ° min−1 (Scientific 

Equipment LLC, Hampshire, IL, USA, λ = 1.541 Å, 25 mA, 40 kV) in AIIM, UOW.  

3.4.2. XPS 

XPS is a typical quantitative spectroscopic technique, it can be used for characterizing the materials 

surface composition and chemical state. Typically, a beam of X-rays irradiates the tested materials, and 

then the electrons within the materials obtain energy from the X-rays and escape from the surface of the 

material. The XPS spectra are recorded by irradiating the sample with a beam of X-rays, while 

simultaneously measuring the kinetic energy and number of electrons. XPS can be used to confirm the 

kind of elements in the measured material, and accordingly provide basic information on the chemical 

state of the elements. XPS is also an indispensable tool for accessing the interfacial electron interactions 

between different components of heterostructures. Typically, the electronic interaction modifies the 

chemical states of the interface, manifesting as a binding energy shift in XPS spectra. In this doctoral 

work, the XPS measurements were performed using a Thermo ESCALAB 250Xi instrument, and the 

binding energies were calibrated using the advantageous C 1s signal at 284.8 eV as a reference. 

3.4.3. SEM 

SEM is an electron microscopy technique for the surface morphology characterization. The incident 

electron beam scans the surface of samples, and the generated secondary electrons are used for creating 

image. The morphology and elemental composition of the materials can be observed via interaction 

between the electrons and the atoms in the materials. In this thesis, the sample morphologies were 
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characterized by a JEOL JSM-7500FA field-emission scanning electron microscope (FESEM) at an 

accelerating voltage of 5 kV in the EMC, UOW. 

3.4.4. TEM 

TEM is another important microscopy technique for material characterization including morphology, 

crystal structure, and electronic structure of a specimen, in which a beam of accelerated and focused 

electrons is transmitted through the sample to form an image. The sample should be less than 100 nm 

thickness, if not, the electron beam cannot successfully transmit through the material, leading to the 

failure of sample characterization. SAED is a crystallographic experimental technique that can be used 

inside the TEM. SAED can be applied to identify the crystal defects and crystal structures. SAED is 

different from conventional TEM, in which the electron beam is focused on a size-limited spot and scans 

over the sample in a raster pattern. The raster of the beam across the sample makes it available for various 

analysis techniques such as mapping by EDS, EELS, and HAADF imaging. These signals can be 

acquired simultaneously for the direct correlation of the image and quantitative data. In this doctoral work, 

TEM images are recorded by a JEM-2010 microscopy operating at a working voltage of 200 kV. STEM 

images are acquired on a probe-corrected JEOL ARM200F TEM operated at 80 kV equipped with a 

thermal field emission gun and an ultrahigh resolution pole-piece. Energy disperse X-ray mappings (EDS) 

were acquired on FEI Talos F200X equipped with four symmetrical EDS signal detectors, operated at 200 

kV. 

3.4.5. XAFS 

XAFS is a widely used technique for the characterizing the electronic structures as well as the coordinate 

environment of selected elements. XAFS is a bulk-sensitive technique which provides averaged 

information. Based on the kinetic energy range, the XAFS spectra can be divided into XANES and 

EXAFS. The kinetic energy of XANES in the range from 10 to 150 eV above the chemical potential, 

called "shape resonances" in molecular spectra since the final states of short lifetime degenerate to the 

continuum with the Fano line-shape. EXAFS spectra dominated in the high kinetic energy range of the 

photoelectron the scattering cross-section with neighbor atoms, is obtained due to the interference 

between the excited and the single-backscattered photoelectrons, which provide details on coordination 

number, bond distance, and neighbor species of the absorbed atoms. 

In this work, XAFS measurements at Pd k-edge in both transmission (for Pd foil) and fluorescence (for 

samples) mode were carried out at beamline BL14W1 in Shanghai Synchrotron Radiation Facility (SSRF). 
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The operation energy of storage ring was 3.5 GeV and at the current around 240 mA. The white X-ray 

was monochromatized using a fixed-exit double-crystal Si (111) monochromator and the energy was 

calibrated by using Pt foil. Pd standards and the prepared samples were compacted and collected in 

transmission mode at room temperature. 

3.4.6. FT-IR 

FT-IR is a spectroscopic technique which can be used to analyse the molecular structures and chemical 

compositions via detecting the material-characteristic absorption of infrared radiation with different 

wavelengths. The molecules, especially the organic molecules, and atoms that consist of the chemical 

bonds or functional groups are in the state of constant vibration. Because the vibration frequency is 

equivalent to the infrared vibration frequency, when the molecule is irradiated by infrared, the chemical 

bonds or functional groups in the molecule will vibrate and absorb. Different chemical bonds or 

functional groups possess different absorption frequencies, which are corresponding to characteristic 

peaks in the FT-IR spectrum. Thus, the information of the chemical bonds or functional groups can be 

acquired. In this work, the FT-IR spectrum was characterized by using a Shimadzu FTIR Prestige-21 in 

UOW with the range from 4000 cm-1 to 500 cm-1. 

3.5 Electrochemical Measurements 

3.5.1. Three electrode system setup 

In this work, The electrochemical measurements were performed on electrochemical workstation 

(Multichannel potentiostat/galvanostat VSP-300, BioLogic Science Instrument) connected to rotating disk 

electrode (Pine Research Instruments, Inc). Before the HER measurement, the electrolyte should be 

continuously feed by high purity N2 for 30 min to remove the dissolved oxygen gas so as to prevent from 

occurring ORR. The Hg/HgO and Ag/AgCl reference electrode can be employed in different pH 

electrolyte according to their special properties. A Pt mesh electrode was used as the counter electrode for 

the HER ,OER and ORR. For the preparation of catalyst dispersions, 2 mg of catalysts are added into the 

mixture of 16 μL 5% Nafion solution, 100 μL IPA and 384 μL DI water, followed by ultrasonication for 

2 h. The working electrode was prepared by dropping 10 μL aliquot of catalyst dispersion on a glassy 

carbon rotating electrode with a diameter of 5 mm (effective working area, 0.19625 cm–2). The mass 

loading of all catalysts on glassy carbon was 0.203 mg cm–2. 

3.5.2. Overpotential 

Overpotential, is the potential difference (voltage) between a half-reaction's thermodynamically 
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determined reduction potential and the potential at which the redox event is experimentally observed. It is 

regarded as one of the most important parameters for accessing the catalytic performance of water 

splitting system. Generally, it is the larger overpotential that will lead to the lower energy conversion 

efficiency of the electrochemical water electrolysis system. Linear sweep voltammetry (LSV) is 

commonly used to obtain the overpotential to evaluate the catalytic activity at a certain current density of 

10 mA cm–2, The current density is usually determined with respect to the geometric area of the electrode, 

which can also be calculated based on the specific geometric area of the catalyst, the electrochemical 

active specific area (ECSA) of the catalyst, or the catalyst mass. LSVs can be performed on a rotate disk 

electrode (RDE) system. The electrode continuously rotates when recording linear sweep voltammetry 

(LSV) curves to efficiently minimize the diffusion overpotential. The overpotential could activate the 

reaction to diffuse charge carriers. Meanwhile, the resistance overpotential can be corrected by IR 

compensation (eq. 3.1), where I is the current flowing in the circuit and Rs is the series resistance. 

                                             (3.1) 

3.5.3. Tafel slope and exchange current density 

Tafel slope, a linear relationship between overpotential and log-current, are an inherent property of multi-

step heterogeneous electrocatalytic reactions, which can uncover the reaction mechanism of HER on the 

catalyst surface. Generally, determining the Tafel slope derivatives to the theoretical Tafel slope can infer 

the reaction order and rate determining step (RDS). For HER process, the ideal Tafel slope for the Volmer 

step, the Heyrovsky step and the Tafel step is 120, 40 and 30 mV dec–1, respectively. When the actual 

Tafel slope on the surface of the commercial Pt in 0.5 M H2SO4 is close to 30 mV dec–1, demonstrating 

that the reaction pathway is dominated by the Volmer-Tafel process and the RDS for the reaction is the 

Tafel step. Following the generally accepted mechanism of the HER involving the initial proton discharge 

step to form the adsorbed hydrogen intermediate, which is desorbed either chemically or 

electrochemically, generalized expressions for the Tafel slope, reaction order and the a.c. impedance for 

the hydrogen evolution reaction are derived using the steady-state approach, taking into account the 

forward and backward rates of the three constituent paths and the lateral interactions between the 

chemisorbed intermediates. 

The exchange current density is the rate of hydrogen evolution per surface area at the electrode potential, 

where the reaction is at equilibrium. It also represents the catalytic ability of a given metal to catalyze. 

Specifically, exchange current density reflects the intrinsic activity of charge transfer between electrode 
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and electrolyte, and to catalyze a reaction is to promote the exchange current density. It can be read out 

from the intersection of the extrapolated linear part of Tafel plots and the X-axis. The exchange current 

density tends to be larger on the surface of catalysts with higher catalytic activity.  

3.5.4. Turnover frequency 

The turnover frequency (TOF) is the number of the product molecule generated per active site in unit time 

(equation 10).[194–195] According to the definition, H2 should be collected to evaluate the number of the H2 

molecules. Assuming the Faradic efficiency of 100%, the theoretical number of H2 can be calculated from 

the charge flowing through the circuit based on the Faraday's laws of electrolysis (equation 11), where n 

is the amount of substance (mol), I is current (A), z is electron number transferred per molecule, and F is 

the Faraday constant (96485 C mol–1). Then a TOF vs. overpotential curve can be achieved (eq. 3.2) 

according to eq. 3.3 together with eq. 3.4. Consequently, calculating TOF largely hinge on determining 

the number of active sites, which can be evaluated by various methods including the copper 

underpotential deposition method, calculating the number of molecules on the exposed surface,[196–198] or 

quantifying from CV tests.[106, 199–200] Apparently, to achieve a reasonable TOF or TOF-overpotential 

curve depends on how to define and evaluate the number of active sites. It is noteworthy that the 

overpotential value should always be indicated when reporting the TOF values since TOF increases with 

increasing overpotentials. 

                                                 (3.2) 

                                                                                       (3.3) 

                                                             (3.4) 

 

3.5.5. Half-wave potential 

Half-wave potential (E1/2) is a potential at which polarographic wave current is equal to one half of 

diffusion current. In a given supporting electrolyte, the half-wave potential is unique for each 

element and its different valence states and chemical forms. Generally, it can be used to evaluated 

the catalytic kinetic, higher E1/2 value, better catalytic kinetics.
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Chapter 4 

4. Electrochemically Inert g-C3N4 Promotes Water Oxidation Catalysis 

4.1 Introduction 

Recently, ever-increasing research interest has been focused on developing alternative strategies to 

efficiently utilize sustainable renewable energy worldwide. In addition to grid-scale energy storage, 

energy conversion, which means converting renewable energy into various chemical energies, is another 

important avenue. Water electrolysis (electrochemical water splitting) is one typical chemical process that 

converts electricity derived from renewable energy into hydrogen, and also presents a clean and 

potentially cost-effective pathway to achieve renewable energy conversion.[1] Compared with hydrogen 

evolution reaction (HER), oxygen evolution reaction (OER) is much more sluggish because four electrons 

need to be removed to form oxygen, and hence water electrolysis efficiency is greatly hindered by 

kinetically sluggish OER. On the other hand, OER is also an important half reaction involved in 

rechargeable metal–air batteries, and the corresponding OER reaction kinetics determines the battery 

performance as well.[2] Therefore, developing highly-efficient catalysts for OER are extremely urgent to 

address the challenges in artificial water-splitting systems and metal-air batteries.[3] Some noble-metal 

catalysts such as Ru- and Ir-based materials are state-of-the-art OER electrocatalysts; however, the 

considerable scarcity and high cost seriously limit their practical applications.[4] It is thus critical to 

explore low-cost and stable alternatives with promising catalytic performance towards water oxidation. 

To date, numerous efforts have been undertaken to design non-precious OER catalysts,[5] and non-

precious metal-based oxides,[6] hydroxides,[7] and carbonaceous materials[8] have drawn much reacearch 

attention. In particular, Ni-based hydroxides and oxides demonstrated outstanding OER catalytic 

activities with a low overpotential and high electrolysis current in alkaline electrolytes.[5a, 7a] 

In order to further enhance the electrocatalytic activity of the aforementioned Ni-based catalysts, current 

strategies mainly focuse on heteroatom doping, designing and synthesizing highly efficient 

nanostructures/nanocomposites.[7b, 7c, 9] It should be mentioned that most approaches aim to improve the 

intrinsic activity, expose more active sites, and/or enhance charge transfer ability of the catalysis. As is 

already known, in addition to exposed active sites and charge transfer ability, the electrocatalytic 

performance of the heterogeneous catalysis has close correlation with the adsorption and desorption 
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properties of the electrode surface, which determine the mass-diffusion kinetics of both the reactants and 

products. The adsorption of reactants/intermediate and desorption of products on the catalyst surface is 

forcefully affected by the catalyst wettability.[10] Bhaumik et al. displayed the hydroxylation of benzene to 

increase the hydrophobicity, which more profitably adsorbs and transfers the hydrophobic benzene 

reactant in the triphasic system.[10a] Li et al. successfully achieved enhanced water oxidation catalysis on 

phosphorylated NiFe hydroxide by tuning catalyst wettability.[10d] In this regard, engineering electrode 

materials with superwettability has a prominent aspect on promoting electrolyte penetration, mass 

diffusion and charge transfer as well, thereby achieving enhanced electrocatalytic activity. 

Recently, 2D graphitic carbon nitride g-C3N4 (GCN) has been widely implemented in the photocatalysis 

field due to its unique electronic band structure and high physicochemical stability.[11] Some effort has 

already been made to study GCN-based composites as electrocatalysts for water splitting.[12] It was found 

that bare GCN is nearly inert for OER and hydrogen evolution reaction (HER), and the delivered catalytic 

performance is mainly ascribed to the synergistic effect of GCN and the conductive carbonaceous 

materials (e.g., CNT and graphene). Nevertheless, some unique physicochemical properties of GCN make 

it an attractive component for constructing high-performance electrocatalysis occurred in aqueous 

environment. It is worth noting that proton-functionalized GCN nanosheets show excellent water 

dispersion stability, and this would substantially improve the wettability of the composites containing 

such GCN nanosheets.[13] Besides, the GCN nanosheets can help achieve good dispersion and hinder 

agglomeration of active materials, ensuring substantial exposure of the active sites. Moreover, the 

excellent chemical stability enables GCN to function as a robust substrate for active materials towards 

durable performance.[14] Based on the aforementioned statement, we speculate that the catalyst 

hydrophicility would be greatly improved over bare Ni(OH)2 by constructing GCN/Ni(OH)2 (GCNN) 

hybrid. Besides, the introduction of GCN would efficiently realize good dispersion and hinder 

aggregation of Ni(OH)2. These two unique properties together with the excellent stability of GCN would 

help the GCNN hybrid to achieve highly efficient and durable water oxidation catalysis. Herein, 2D 

GCNN hybrid with monodispersed Ni(OH)2 nanoplates strongly coupled with GCN nanosheets were 

prepared by a facile one-pot hydrothermal process. As expected, the Ni(OH)2 nanoplates are uniformly 

dispersed on GCN nanosheets, and the GCNN hybrid shows superhydrophilicity. Although the intrinsic 

electrocatalytic ability of GCN is negligible and less catalytic active material Ni(OH)2 is present, the 

GCNN hybrid delivers significantly enhanced electrocatalytic ability for OER as compared with bare 
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ultrathin Ni(OH)2 nanosheets. The excellent electrochemical performance suggests that, in addition to 

improve intrinsic catalytic ability and expose more active sites, engineering an efficient catalyst surface is 

also vital to gain accelerated catalytic reaction kinetics. 

4.2. Experimental Section 

4.2.1. Materials 

All the chemicals were purchased from Sigma-Aldrich (A.R) and were used as received without further 

purification. 

4.2.2. Materials Preparation 

4.2.2.1. Preparation of Functionalized GCN 

Bulk GCN powders were prepared by calcining melamine as precursor in air at 550 °C for 2 h with a 

heating rate of 2.3 °C min–1. For the functionalization of GCN, bulk GCN powders were dispersed in 6 M 

HCl with ultrasonication for 1 h, and then stirred for 4 h at room temperature.[13] The functionalized GCN 

was centrifuged and washed with deionized water for several times. 

4.2.2.2. Preparation of GCNN Nanocomposites 

 

Figure 4.1. TGA curves of GCNN, GCN and Ni(OH)2. 

The as-prepared samples are named as GCNN:x, where “x” means the mass percentage content of 

Ni(OH)2 in the hybrid, which is calculated based on the TGA results (Figure 4.1). Take the synthesis of 

GCNN:65 for an example, 20 mg functionalized GCN and 250 mg Ni(NO3)2·6H2O were dispersed in 15 

ml ethylene glycol followed by adding 20 ml deionized water with unltrasonication for 4 h. Then 103.2 

mg urea was added into the above mixture under magnetic stirring to become homogeneous suspension. 

Next, the above reaction mixture was transferred to a Teflon stainless-steel autoclave with a capacity of 
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50 mL. The autoclave was sealed and heated at 120 °C for 10 h in an electric oven. The resulting products 

were collected by centrifugation and washed with ethanol and deionized water for three times respectively, 

and were eventually dried at 60 °C in oven overnight. Similarly, GCNN:x (x=44, 60, 77) was synthesized 

following the same procedure by adding different quantities of precursors (50, 30, 10 mg GCN, 156.2, 

187.5, 281.7 mg Ni(OH)2 and  64.5, 77.4, 116.3 mg urea for GCNN:44,  GCNN:60, GCNN:77, 

respectively). 

4.2.2.3. Preparation of Ni(OH)2 and Co(OH)2 

Pure Ni(OH)2 and Co(OH)2 nanosheets were synthesized via a similar hydrothermal process. For Ni(OH)2, 

250 mg Ni(NO3)2·6H2O and 103.2 mg urea were dissolved in mixed solvent containing15 ml ethylene 

glycol and 20 ml deionized water under magnetic stirring. For Co(OH)2, 261.9 mg Co(NO3)2·6H2O and 

252.3 mg hexamethylenetetramine (HMT) worked as precursors instead. Then, the solution was 

transferred to a Teflon stainless-steel autoclave with a capacity of 50 mL. The autoclave was sealed and 

heated at 120 °C for 10 h in an electric oven. The resulting products were collected by centrifugation and 

washed with ethanol and deionized water for three times respectively, and were eventually dried at 60 °C 

in oven overnight. 

4.2.3. Materials Characterization 

X-ray diffraction (XRD) was carried out using GBC MMA X-ray diffractometer (λ = 1.5406 Å, 25mA, 

40 Kv, step size of 0.02 ° s-1). Fourier transform infrared (FTIR) spectra of the samples employed KBr as 

the background were determined by a Shimadzu FTIR Prestige-21 spectrometer in the frequency range of 

4000–650 cm-1 with a resolution of 4 cm-1. The morphology and microstructures of the samples were 

characterized by the field emission scanning electron microscope (FESEM, JEOL JSM-7500FA) 

equipped with energy-dispersive X-ray spectroscopy (EDS) and resolution transmission electron 

microscopy (HRTEM, JEM-2010, working voltage 200 kV) and selected area electron diffraction 

(SAED). X-ray photoelectron spectroscopy (XPS) measurements were carried out on a Thermo 

ESCALAB 250Xi instrument, using monochrome Al Ka (hv =1486.6 eV) as the X-ray excitation source. 

Contact angles were measured by Dataphysics OCA15 with 2 μL 1 M KOH solution for each testing. 

Three different spots per substrate on three different areas were measured. Thermogravimetric analysis 

(TGA): TGA (Mettler Toledo TGA/DSC 1) were performed from 30 to 780 °C at a heating/cooling rate 

of 10 °C min-1 in air to characterize the thermophysical properties. 
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4.2.4. Electrochemical Measurement 

Rotating disk electrode and WaveDriver 20 bipotentiostat/galvanostat system (Pine Instruments) were 

used for electrochemical measurement. All electrocatalytic measurements were conducted in 1 M KOH 

aqueous solution employing Ag/AgCl (saturated KCl solution) as the reference electrode, a platinum wire 

as the counter electrode, and the glassy carbon electrode (0.196 cm-2 of effective working area) coated 

with different catalysts as the working electrodes. For the preparation of working electrodes, 2 mg 

catalysts were dispersed in a mixed solution containing 16 μL Nafion solution (Aldrich Co., 5 wt%), 384 

μL deionized water and 100 μL isopropanol via sonicating for 30 min to obtain a homogeneous ink. Then 

10 μL of the catalyst ink (containing 40 μg of catalyst) was cast onto the polished glassy carbon electrode, 

and subsequently the electrode was dried in ambient air. During the measurements, the working electrode 

was constantly rotated at 1600 rpm to remove generated O2. LSV polarization curves were performed at 5 

mV s-1 to demonstrate the OER activity. All LSV curves were corrected with 95% iR-compensation. 

Cyclic voltammetry (CV) was first conducted from 1.02 V to 1.62 V vs RHE at a scan rate of 10 mV s-1 

to activate the catalysts before LSV test. Chronoamperometry measurement was conducted under the 

same potential of 0.6 V (vs. Ag/AgCl) to study the durability. Electrochemical impedance spectra (EIS) 

were measured at 0.6 V (vs. Ag/AgCl) in the frequency range of 0.1−100 kHz. The electrochemically 

active surface area (ECSA) is estimated based on the measured double-layer capacitance (CDL) of the 

synthesized electrodes in 1 M KOH according to the reported method.[4c] The ECSA values were 

calculated according to the following equations: 

                       

(4.1) 

Where the charging current , is equal to the product of the electrochemical double layer capacitance  

and the scan rate . 

                                                                                                                                             (4.2) 

Here we can calculate the ECSA with CDL and a general Cs = 0.04 mF cm-2 in 1 M KOH based on a 

typical reported value. 

4.3. Results and Discussion 
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Figure 4.2. Schematic illustration of the synthesis of GCNN nanocomposites. 

The schematic illustration of the synthetic route toward 2D GCNN hybrids is displayed in Figure 4.2. 

Firstly, Ni2+ ions are intercalated into the interlamination via ultrasonication treatment and this could 

effectively promote the exfoliation of functionalized GCN with lots of protons and aminos.[15] During the 

hydrothermal process, the adsorbed Ni2+ cations participate into the homogeneous precipitation reaction 

and form Ni(OH)2 nanoplates on GCN nanosheets. It should be noted that the hydrothermal process also 

facilitates the exfoliation of GCN.  
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Figure 4.3. (a) XRD, (b) TEM image (inset: statistical result of the diameters of Ni(OH)2 nanoplates), (c) 

SAED, (d) HRTEM, and (e) Dark-field STEM image and corresponding elemental mappings of 

GCNN:65. 
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Figure 4.4. (a) XRD patterns of GCNN:77, GCNN:60, GCNN:44, pure Ni(OH)2, functionalized GCN 

and bulk GCN. 

 

Figure 4.5. (a) FTIR of GCNN:65, pure Ni(OH)2 and GCN. 
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Figure 4.6. Typical SEM image of (a) the GCNN:65 and (b) pure Ni(OH)2. 

 

Figure 4.7. (a-d) SEM images of GCNN:44, GCNN:60, GCNN:65, GCNN:77 (scale bar: 100 nm). (e-h) 

TEM images of GCNN:44, GCNN:60, GCNN:65, GCNN:77 (scale bar, 50 nm). 

Figure 4.3a shows the X-ray diffraction (XRD) pattern of the as-prepared GCNN:65 (65 wt% Ni(OH)2) 

nanocomposite. It can be seen that the XRD pattern contains typical diffraction peaks of hexagonal phase 

α-Ni(OH)2 and GCN, reflecting that the formation of GCNN.[16] Notably, the intensity of the GCN (002) 

peak at 27.4°, corresponding to the  characteristic interlayer stacking structure, is evidently reduced 

compared to bulk GCN (Figure 4.4), indicating the formation of few-layered nanosheets.[13] Besides, all 

the other GCNN samples possess similar crystal structures (Figure 4.4). Fourier-transform infrared 

spectroscopy (FTIR)  (Figure 4.5) further confirms the formation of GCNN:65. The broad band locating 

from 3200 cm−1 to 3600 cm−1 corresponds to the O-H vibration of hydrogen-bonded hydroxyl groups of 

Ni(OH)2.[17] The strong absorption band located at 2202 cm-1 is the typical vibration of C N triple bonds 
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in the OCN− anions produced in the urea hydrolysis.[18] The distinctive stretch mode of aromatic CN 

heterocycles from 1100 to 1600 cm-1 coupled with the breathing mode of the triazine units at 810 cm-1 

evidence the presence of GCN.[19] Scanning electron microscopy (SEM) and transmission electron 

microscopy (TEM) characterizations were conducted to investigate the sample morphology. The SEM 

(Figure 4.6a) result suggests that GCNN:65 have flexible nanosheets morphology. As shown in Figure 

4.3b, Ni(OH)2 nanoplates (around 10-30 nm in lateral size) are strongly coupled with GCN nanosheets. 

As a functional substrate similar to graphene-like structures, the GCN nanosheets could effectively 

prevent Ni(OH)2 nanoplates from agglomeration, ensuring the maximum exposure of active sites. 

Comparably, GCNN:44, GCNN:60, GCNN:77 exhibit disciplinary changes with increased amount of 

nickel precursors, the Ni(OH)2 nanoplates tend to be dispersed on the surface of GCN nanosheets based 

on the extent of darkness (Figure 4.7). In contrast, bare Ni(OH)2 nanosheets synthesized via similar 

process show flexible nanosheets morphology, which is several micro in lateral size (Figure 4.6b). The 

selected area electron diffraction (SAED) pattern can be fully indexed to the hexagonal α-Ni(OH)2 phase  

(Figure 4.3c). A lattice spacing of 0.236 nm determined from the HRTEM image (Figure 4.3d) can be 

assigned to the (101) plane of Ni(OH)2. Furthermore, the scanning transmission electron microscopy 

(STEM) elemental mappings (Figure 4.3e) show the uniform distribution of C, N, O and Ni across the 

GCNN:65 composite nanosheet, indicating the uniform hybridization of Ni(OH)2 nanoplates and GCN 

nanosheets.  
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Figure 4.8. XPS spectra of GCNN:65: (a) survey spectrum, (b) C 1s, (c) N 1s  and (d) Ni 2p. 

 

Figure 4.9. O 1s spectrum of GCNN:65. 

The elemental composition and chemical states of GCNN:65 nanocomposite was also investigated by X-

ray photoelectron spectra (XPS) analysis. The survey spectrum (Figure 4.8a) reveals the co-occurrence of 
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C, N, O and Ni elements.[20] C 1s spectra of GCN and GCNN:65, as shown in Figure 4.8b, show totally 

distinct profiles. The peaks of C 1s at 284.7 eV and 288.3 eV can be assigned to the typical graphitic sp2 

C–C and C–N=C bonds for GCN, respectively.[21] Two oxygenic groups (C-O at 286.2 eV and C=O at 

288.7 eV) appear in GCNN:65, which can be attributed to the formation of oxygen functional bridges 

between Ni(OH)2 nanoplates and GCN. Notably, C–O–Ni band rather than C–Ni–O is formed since the 

C–Ni bonds at 283.5 eV is absented in the C 1s spectrum.[22] The O 1s peak at 531.7 eV as shown in 

Figure 4.9 confirms the presence of the O–Ni bond.[22-23] The present results suggest the formation of 

chemical bonding between GCN and Ni(OH)2. The N 1 s spectrum  (Figure 4.8c) shows three peaks at 

binding energies of 398.5, 399.6 and 400.9 eV, which is corresponding to the graphitic N, pyrrolic N and 

pyridinic N in GCN, respectively.[12b] In Figure 4.8d, besides two satellite peaks, two peaks with binding 

energies of 855.7 and 873.3 eV can be assigned to Ni 2p3/2 and Ni 2p1/2, respectively, and the spin-energy 

separation of 17.6 eV is the characteristic of Ni2+ in Ni(OH)2.[24] 
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Figure 4.10. (a) LSV polarization curves (with IR-correction) measured at a scan rate of 5 mV s-1. (b) 

Tafel plots (potential versus log(current density)) derived from LSV curves. (c) LSV curves plotted based 

on Ni(OH)2 mass-normalized current density. (d) Current densities at 1.8 V vs. RHE. (e) 

Chronoamperometry at a constant potential of 0.55 V (vs. Ag/AgCl) without IR compensation.  

 

Figure 4.11. (a) LSV curves of GCNN:65, pure Ni(OH)2 and physical mixture GCN-Ni(OH)2:65 (35 wt% 

GCN) at a scan rate 5 mV s-1. (b) LSV curves based on active Ni(OH)2 mass-normalized current density. 

 

Figure 4.12. CV profiles of GCNN:65 at 10 mV s-1 during different cycles. 

The electrocatalytic performances of 2D GCNN hybrids together with bare Ni(OH)2 and  GCN for OER 

were investigated under alkaline conditions using a typical three-electrode system. Figure 4.10a shows 

the iR-corrected linear sweep voltammetry (LSV) curves conducted in 1 M KOH aqueous solution at a 

scan rate of 5 mV s-1. In the polarization curves, the peak located at around 1.43 V versus RHE can be 

ascribed to the redox reaction of Ni2+/Ni3+ in Ni(OH)2.[9] Clearly, GCN is inert to the water oxidation 

reaction, but the catalytic activity of the Ni(OH)2 is dramatically enhanced by incorporating moderate 
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GCN nanosheets. The catalytic activity of the GCNN composites varies significantly with altering the 

content of GCN, and GCNN:65 containing around 35 wt.% GCN delivers the best performance. The 

GCNN:65 requires the lowest overpotential of 290 mV to achieve a current density of 10 mA cm-2, which 

is significantly decreased as compared with Ni(OH)2 (350 mV). In order to further evaluate the OER 

kinetics of the catalysts, Tafel plots are obtained from the polarization curves, as presented in Figure 

4.10b. The Tafel slope initially decreases with increasing GCN content and reaches the smallest value for 

GCNN:65, and then increases accordingly. The Tafel slope of GCNN:65 is determined to be 77 mV dec-1, 

and is much smaller than that of Ni(OH)2 (103 mV dec-1), confirming superior OER kinetics of GCNN:65. 

In addition, at a potential of 1.8 V (vs. RHE), GCNN:77, GCNN:65, GCNN:60, GCNN:44 and bare 

Ni(OH)2 delivers 73, 152, 92, 29 and 55 mA cm-2, respectively (Figure 4.10d). The performance of 

GCNN:65 is nearly triple that of Ni(OH)2. In order to clearly distinguish the promotion effect of GCN on 

the electrocatalytic ability of Ni(OH)2, the LSV curves presenting the mass activity (based on active 

Ni(OH)2 mass) are plotted, as shown in Figure 4.10c. Much more significant performance enhancement 

can be observed when the performance is compared based on active Ni(OH)2 mass. At the same potential 

of 1.8 V (vs. RHE), the current density is calculated to be 773, 1900, 1249, 540 and 440 mA mg-1 for 

GCNN:77, GCNN:65, GCNN:60, GCNN:44 and bare Ni(OH)2, respectively (Figure 3d). Impressively, 

the electrochemical performance of active Ni(OH)2 is increased more than three times after incorporating 

35 wt% functionalized GCN. Even for the simply mixed GCN-Ni(OH)2:65 sample (35 wt% GCN), it also 

exhibits improved catalytic performance over Ni(OH)2, and the current density reaches 65 mA cm-2 and 

823 mA mg-1 at 1.8 V (Figure 4.11). The long-term stability of a catalyst is another crucial factor to 

consider for commercial applications. Continuous chronoamperometry (CA) at a constant potential of 

0.55 V (vs. Ag/AgCl) was carried out in 1 M KOH to evaluate the cycling stability of GCNN:65. As 

shown in Figure 3e, the current density steadily increases over time and retains 102% of the initial current 

(96% of the peak current density) after 10-h operation. In contrast, the current density of Ni(OH)2 at the 

same potential decays quickly after 1-h operation and eventually only 65% current density is retained. 

The CV profiles conducted at 10 mv s-1 nearly overlap each other over 500 cycles (Figure 4.12), further 

revealing the good cycle stability of GCNN:65. 

Generally, OER in alkaline solution involves migration of hydroxyl groups, oxidation of hydroxyl groups, 

and oxygen release. Migration and oxidation of hydroxyl groups takes place at solid-liquid (electrode-

electrolyte) interface, and oxygen release occurs at solid-gas (electrode-oxygen) interface. Therefore, 
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developing efficient electrode surface chemistry is of great importance towards enhanced catalytic 

performances. Basically, the oxidation kinetics of hydroxyl is determined by the intrinsic catalytic activity 

of the catalyst and the density of the active sites. The efficiency of migration of hydroxyl groups and 

oxygen release are closely associated with the catalyst wettability. Apparently, for a specific OER catalyst, 

creating more active sites and engineering superhydrophilic surface are vital to improve the overall 

electrochemical reaction kinetics. In this work, the GCNN:65 nanocomposite  simultaneously has these 

two key characteristics, and hence delivers substantially improved catalytic performance as compared 

with bare Ni(OH)2. 

 

Figure 4.13. CV curves measured in a non-Faradaic region of the voltammogram at scan rates from 20 to 

120 mV s-1 in 1 M KOH: (a) GCN, (b) pure Ni(OH)2, (c) GCNN:65, and (d) comparison of  the CV 

curves of the three samples measured at a scan rate of 80 mV s-1. 
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Figure 4.14. (a) The current at 0.325 V (vs. Ag/AgCl) versus scan rate measured in a non-Faradaic range. 

(b) Electrochemical impedance spectra of GCNN:65 and Ni(OH)2 recorded at 0.6 V (vs. Ag/AgCl) (inset: 

equivalent circuit model). Contact angle measurements of Ni(OH)2 (c), GCNN:65 (d), and GCNN (e). 

Firstly, the incorporation of functionalized GCN effectively prevents Ni(OH)2 from agglomeration, and 

monodispersed Ni(OH)2 nanoplates are strongly coupled with the ultrathin GCN nanosheets, ensuring the 

maximum exposure of active sites and high electrochemical active surface areas (ECSA). The ECSA of 

the catalysts are estimated by determining the double-layer capacitance (CDL) based on CVs measured in 

a non-Faradaic region (Figure 4.13a-c). As shown in Figure 4.13d, the GCNN:65 hybrid catalyst shows 

much higher current than that of bare Ni(OH)2 and GCN. The ECSA of GCNN:65, bare Ni(OH)2 and 

GCN is calculated to be 6.83, 1.25 and 4.85 cm2, respectively, based on the CDL values of the catalysts, as 

present in Figure 4.14a. The results suggest that the ECSA of Ni(OH)2 in GCNN:65 nearly doubles that 

of bare Ni(OH)2 nanoplates, revealing that more accessible active sites are created after introducing GCN, 

thereby resulting in greatly enhanced catalytic performance.  
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Figure 4.15. Contact angle measurement of physical mixture GCN-Ni(OH)2:65 (35 wt% GCN). 

 

Figure 4.16. Electrochemical impedance spectra of functionalized GCN measured at 0.6 V (vs. Ag/AgCl). 

Secondly, the surface wettability of GCNN:65 is greatly improved after combining Ni(OH)2 with GCN, 

resulting in fast diffusion of hydroxyl ions and desorption of oxygen gas. The static contact angle 

measurements were performed to investigate the surface wettability of the catalysts. Ni(OH)2 is 

hydrophilic with a contact angle of 21° (Figure 4.14c). As shown in Figure 4.14d, the contact angle of 

GCNN:65 nanocomposite is dramatically decreased to 0° after incorporating functionalized GCN (Figure 

4.14e), suggesting the formation of a superhydrophilic catalyst surface. The simply mixed GCN-

Ni(OH)2:65 sample (35 wt% GCN) also has a superhydrophilic surface (Figure 4.15). Considering that 

Ni(OH)2 in GCN-Ni(OH)2:65 sample shows nearly identical physicochemical properties, in particular the 

density of active sites, with bare Ni(OH)2, it can be concluded that the enhanced catalytic performance of 

GCN-Ni(OH)2:65 is induced by the substantially improved wettability. The superhydrophilic surface 
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would ensure fast electrolyte penetration to the catalyst surface and accelerated diffusion of hydroxyl-

based reactants.[10d] In addition, the superhydophilic surface is very beneficial to rapid removal of gas 

bubbles and to maintain sufficient electrode working area.[10b] All the unique functionalities are of great 

significance to deliver enhanced electrocatalytic performance. Furthermore, as can be seen from the 

electrochemical impedance spectra (Figure 4.14b), the charge transfer (Rct) resistance of GCNN:65 is 

around 5.3 Ω, and it is much smaller than that of Ni(OH)2 (17.6 Ω) and GCN (up to 143.2 Ω) (Figure 

4.16), revealing accelerated charge transfer and surface reaction kinetics at the GCNN:65 

electrode/electrolyte interface. The enhanced reaction kinetics of GCNN:65 can be attributed to the 

synergistic effect of the significantly improved wettability and monodispersed Ni(OH)2 nanoplates with 

substantial exposure of active sites. 

 

Figure 4.17. (a) XRD and (b) TEM of Co(OH)2 nanosheets. All characteristic peaks are in accordance 

with the standard card of hexagonal layered α-Co(OH)2 (JCPDS NO. 51-7131). From the TEM image, we 

can see that the α-Co(OH)2 possesses flexible ultrathin nanosheet morphology. 
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Figure 4.18. (a) LSV curves and (b) Tafel curves of pure Co(OH)2 and physical mixture GCN-

Co(OH)2:65 (35 wt% GCN) at a scan rate of 5 mV s-1 in 1 M KOH. Contact angle measurements of (c) 

pure Co(OH)2 and (d) physical mixture GCN-Co(OH)2:65 (35 wt% GCN). 

Similar performance promotion resulting from the wettability improvement induced by the incorporation 

of hydrophilic functionalized GCN is also successfully demonstrated on Co(OH)2. Pure Co(OH)2 

nanosheets (Figure 4.17) and simply mixed GCN-Co(OH)2:65 sample (35 wt% GCN) were prepared and 

the corresponding OER performances were evaluated in 1 M KOH. As shown in Figure 4.18a and b, the 

GCN-Co(OH)2:65 sample exhibits lower overpotential and Tafel slope (332 mV at 10 mA cm-2, 62 mV 

dec-1) than that of bare Co(OH)2 (388 mV at 10 mA cm-2, 65 mV dec-1), clearly demonstrating improved 

catalytic performance after incorporating GCN. Obviously, although GCN-Co(OH)2:65 contains less 

active material, it shows higher current density than bare Co(OH)2 under same operating potentials. 

Notably, the GCN/Co(OH)2 hybrid will no doubt deliver more exceptional performance if similar well-

defined structure like GCNN:65 is prepared. As compared with bare Co(OH)2 (contact angle 22°), the 

contact angle of GCN-Co(OH)2:65 is 0°, revealing a superhydrophilic surface  (Figure 4.18c and d). 

Therefore, it can be concluded that introducing hydrophilic functionalized GCN can significantly promote 

water oxidation catalysis by delivering a superhydrophilic catalyst surface. 

4.4. Conclusion 
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In summary, we reported that electrochemically inert functionalized GCN can substantially promote 

water oxidation catalysis by improving the wettability and active site exposure of the catalysts. As a 

proof-of-concept demonstration, superhydrophilic GCNN hybrid nanosheets were synthesized towards 

efficient water oxidation catalysis. In addition to the superhydrophilic catalyst surface, plenty of 

monodispersed Ni(OH)2 nanoplates were strongly coupled with GCN, ensuring the maximum exposure of 

active sites. Consequently, the GCNN hybrid with moderate GCN content exhibited significantly 

enhanced electrocatalytic performance as compared with bare Ni(OH)2 nanosheets. Similar performance 

enhancement was also successfully demonstrated on Co(OH)2 after integrating with superhydrophilic 

GCN. This work opens a new avenue for the development of highly efficient catalysts for electrochemical 

reactions taking place in aqueous and non-aqueous medium. 
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Chapter 5 

5. Electrocatalytically Inactive SnS2 Promotes Water 

Adsorption/Dissociation on Molybdenum Dichalcogenides for 

Accelerated Alkaline Hydrogen Evolution 

5.1 Introduction 

Our severe energy and environmental crisis makes it imperative to search for clean and sustainable energy 

sources as alternatives to traditional fossil fuels.[1-3] Owing to its having the highest gravimetric energy 

density and carbon-free emissions, hydrogen produced by renewable energy sources is considered to be 

the most promising energy carrier for our future society’s energy.[4-5] Currently, hydrogen is mostly 

produced from fossil fuels by steam reforming.[6] Alternatively, photocatalytic, photoelectrocatalytic, or 

electrocatalytic water splitting driven by renewable energy would make hydrogen a real carrier for clean 

energy.[7-9] With regards to electrocatalytic water splitting, electrocatalytic performance remains 

unsatisfactory for both the cathodic hydrogen evolution reaction (HER) and the anodic oxygen evolution 

reaction (OER), although numerous research efforts have been devoted to developing efficient 

electrocatalysts. Currently, precious metal-based materials are the state-of-the-art catalysts for both the 

HER (e.g., Pt) and the OER (e.g., IrO2), but they suffer from high cost and scarcity.[10-17] Therefore, 

developing earth-abundant and low-cost alternatives, such as transition metal chalcogenides, metal 

oxides/hydroxides, and metal alloys, is critically necessary to address this challenge for practical water 

splitting systems.[18-21]  

Molybdenum dichalcogenides, in particular MoS2 and MoSe2, are very promising nonprecious-metal-

based electrocatalysts for the HER.[22-24] Both density functional theory (DFT) calculations and 

experimental findings have demonstrated that the HER catalytic activity of molybdenum dichalcogenides 

is mainly derived from their edge sites.[25-29] In this regards, various strategies have been focused on 

increasing the number of exposed active sites of molybdenum-dichalcogenide-based electrocatalysts 

through building various nanostructures, engineering surface defects, or heteroatom doping.[30-32] 

Unfortunately, although the molybdenum dichalcogenide-based electrocatalysts thus developed display 

impressive catalytic activity in acidic media, they exhibit inferior HER activity in alkaline media due to 

the sluggish water dissociation kinetics. Basically, alkaline HER involves water adsorption, water 
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dissociation, and hydrogen recombination and release.[33] Water adsorption and dissociation take place at 

the beginning of the alkaline HER process and are considered to represent the rate-determining step for 

the alkaline HER.[34-37] Therefore, designing electrocatalysts with enhanced water adsorption and 

dissociation capability is the key for the promotion of alkaline HER catalytic activity. Recently, 

molybdenum-dichalcogenide-based heterostructures with an additional phase (e.g., Ni(OH)2) anchored on 

MoS2 or MoSe2 nanosheets were reported as efficient alkaline HER catalysts.[38-40] The second phases 

usually possess strong water affinity and water adsorption capability, which are of great significance for 

accelerating the water dissociation kinetics of the heterostructured catalysts.[41] Meanwhile, in some cases, 

the presence of the second phase can also modulate the electronic structure of Mo and optimize the 

hydrogen adsorption energy.[42-44] On the other hand, heteroatom doping (e.g., Ni, Co) was also 

demonstrated to be an effective strategy for enhancing alkaline HER kinetics.[45-46]  

In this work, we propose a new heterostructured design concept in order to improve the alkaline HER 

activity of molybdenum dichalcogenides. MoSe2/SnS2 and MoS2/SnS2 heterostructures with SnS2 

quantum dots decorated on the basal planes are synthesized by a universal wet-chemical strategy for 

enhanced alkaline HER. DFT calculations reveal that the incorporation of SnS2 brings in the substantial 

enhancement of water adsorption capability of MoSe2 both on the edge sites and basal planes. Benefiting 

from the improved water adsorption/dissociation capability, the well-defined heterostructures delivered 

significantly enhanced hydrogen evolution kinetics in alkaline media.  

5.2. Experimental Section 

5.2.1. Materials 

All the chemicals were purchased from Sigma-Aldrich (A.R) and were used as received without further 

purification. 

5.2.2. Materials Preparation 

5.2.2.1. Synthesis of MoSe2 Nanosheets 

MoSe2 nanosheets were synthesized by a modified hydrothermal process.[32] Briefly, 241.95 mg 

Na2MoO4∙2H2O was added to 20 ml deionized water (DI water) under magnetic stirring as the Mo 

precursor. Then, 0.1 g NaBH4 was dissolved in 15 ml Ar saturated DI water in a three-neck bottle. 

Subsequently, 0.16 g Se powders were dispersed into the NaBH4 aqueous solution under Ar flow with 

mild shaking until Se powders were fully dissolved to form a homogeneous transparent NaHSe solution, 

which was used as the Se source. Next, the Mo and Se source solutions were transferred into a 50 ml 
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Teflon-lined stainless steel autoclave, purged with Ar for 30 min, and then heated in an oven at 180 °C for 

24 h. After cooling down to room temperature, the as-prepared product was collected by centrifugation, 

washed with DI water and ethanol for several times, and dried at 60 °C under vacuum overnight. 

5.2.2.2. Synthesis of MoSe2/SnS2 Heterostructures 

For the preparation of MoSe2/SnS2-2.5, 7.12 mg SnCl4·5H2O and 6 mg thioacetamide (TAA) were added 

together into the as-obtained MoSe2 dispersion solution (0.36 mg ml-1 in the mixture of 15 ml DI water 

and 20 ml ethylene glycol). After 1 h sonication, the mixed solution was transferred into a 50 ml Teflon-

lined stainless steel autoclave and heated in an electric oven at 180 °C for 24 h. After cooling down to 

room temperature, the obtained MoSe2/SnS2-2.5 was collected by centrifugation at 8000 rpm for 5 min, 

then repeatedly washed with DI water and ethanol, and finally dried at 60 °C under vacuum overnight. 

MoSe2/SnS2-x (x = 1.5, 5.0, 10) was prepared following the same procedure as for MoSe2/SnS2-2.5 with 

different molar ratios of Mo and Sn precursors (Mo/Sn = 1.5, 5.0, and 10). The Mo/Sn atomic ratios in the 

MoSe2/SnS2 heterostructures (MoSe2/SnS2-1.5: Mo/Sn = 3.5; MoSe2/SnS2-2.5: Mo/Sn = 4.7; MoSe2/SnS2-

5.0: Mo/Sn = 7.0; MoSe2/SnS2-10: Mo/Sn = 12.6) were determined using inductively coupled plasma ‒ 

optical emission spectrometry (ICP-OES, Perkin-Elmer, Optima 7300DV) with mass spectrometry. 

5.2.2.3. Synthesis of MoS2/SnS2 Heterostructures 

For the preparation of pure MoS2, 72.6 mg Na2MoO4 2H2O and 45.7 mg thiourea were firstly added into 

DI water (35 ml) under sonication for 10 mins. Then, the homogeneous solution was transferred into a 50 

mL autoclave for hydrothermal reaction at 180 °C for 24 h. After cooling down to room temperature, the 

as-prepared MoS2 was collected by centrifugation, washed with DI water and ethanol several times, and 

dried at 60 °C under vacuum overnight. For the preparation of MoS2/SnS2-2.5, 7.12 mg SnCl4·5H2O and 

6 mg TAA were added together into the as-obtained MoS2 dispersion solution (0.232 mg ml-1 in the 

mixture of 15 ml DI water and 20 ml ethylene glycol). After 1 h sonication, the mixed solution was 

transferred into the 50 ml Teflon-lined stainless steel autoclave and heated in an electric oven at 180 °C 

for 24 h. Finally, the MoS2/SnS2-2.5 product was collected after centrifugation, washing, and drying. 

MoS2/SnS2-x (x = 1.5 and 5.0) was prepared following the same procedure as for MoS2/SnS2-2.5 with 

different molar ratios of Mo and Sn precursors (Mo/Sn = 1.5 and 5.0). 

5.2.3. Physical Characterization 

X-ray diffraction (XRD) was carried out using a GBC MMA X-ray diffractometer (λ = 1.5406 Å, 25mA, 

40 Kv, step size of 0.02° s-1). The morphology and microstructures of the samples were characterized by 
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transmission electron microscopy (TEM, JEM-2010, working voltage 200 kV). The scanning 

transmission electron microscopy (STEM) elemental mappings were conducted on the JEOL ARM-200F 

at 200 kV equipped with an EDS detector. X-ray photoelectron spectroscopy (XPS) measurements were 

performed on a Thermo ESCALAB 250Xi instrument with monochrome Al Kα (hv =1486.6 eV) as the 

X-ray excitation source. The Mo/Sn atomic ratios in the MoSe2/SnS2 heterostructures were obtained by 

ICP-OES. 

5.2.4. Electrochemical Measurement 

All the electrochemical measurements were performed with a typical three-electrode electrochemical cell 

equipped with the rotating disk electrode (Pine Research Instruments, Inc.) and electrochemical 

workstation (Multichannel potentiostat/galvanostat VSP-300, BioLogic Science Instrument). Hg/HgO (1 

M KOH solution) and Ag/AgCl (saturated KCl solution) were used as the reference electrode in 1 M 

KOH and 0.5 M H2SO4 aqueous solution, respectively. The platinum wire was employed as the counter 

electrode, and the glassy carbon electrode (0.196 cm2) coated with different catalyst inks was used as the 

working electrode. The catalyst inks were prepared as follows. 2 mg catalyst was dispersed into a mixed 

solvent composed of 16 μL Nafion solution (Aldrich Co., 5 wt%), 384 μL deionized water, and 100 μL 

isopropanol under sonication for 30 min. 10 μL of catalyst ink (containing 40 μg of catalyst) was coated 

onto the polished glassy carbon electrode and dried at room temperature. The electrolyte was 

continuously purged with N2 to remove O2 during the measurements. The working electrode was 

constantly rotated at 1600 rpm to remove the generated H2 and eliminate concentration polarization of 

electrolyte ions during electrochemical testing. Linear sweep voltammetry (LSV) polarization curves 

were collected at a scan rate of 5 mV s-1. All LSV curves were corrected with 95% iR-compensation. 

Electrochemical impedance spectra (EIS) were collected at -0.1 V (vs. RHE) in the frequency range of 1.0 

−100 kHz.  

The electrochemical active surface area (ECSA) was evaluated by calculating the double-layer 

capacitance (Cdl) in 1 M KOH.[47] The cyclic voltammetry (CV) curves were performed at scan rates from 

40 to 140 mV s-1 in the range of -100  0 mV vs. RHE. The Cdl values were calculated according to the 

equation:                          

(5.1) 

Where the capacitive current j (A) can be obtained by . Ja and Jc represent anodic current and 

cathodic current at -50 mV vs. RHE, respectively, and  (mV s-1) is the scan rate. 
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The turnover frequency (TOF) was calculated according to the following equation:  

                                                                                  (5.2) 

Where q = 1.6 × 10-19 C stands for the elementary charge, j represents current (A) from the linear sweep 

measurement, N stands for the number of total Mo atoms, and 2 represents that two electrons are required 

to generate one H2 molecule. 

5.2.5. Computational Methods 

All DFT calculations were performed using the plane-wave pseudopotential method with the CASTEP55 

module in the Materials Studio software package.56 We adopted the Perdew−Burke−Ernzerhof (PBE) 

exchange–correlation functional57 corrected by the semi-empirical Grimme scheme (PBE-D)58, ultrasoft 

pseudopotentials59, and an energy cut-off of 300 eV. The convergence criteria of energy and forces for 

geometry optimization were 2 × 10-5 eV and 0.05 eV/Å, respectively. The Brillouin zone was sampled 

with a Monkhorst−Pack60 grid of 4 × 4 × 1 k-points. All calculations were non-spin-polarized. The (002) 

planes of bulk MoSe2 and SnS2 were adopted to model the MoSe2 and SnS2 nanosheets, respectively. 

Two-dimensional rhombic periodic boundary conditions and slab models were applied. The vacuum layer 

(> 30 Å) was added to avoid interaction between adjacent images. The surface models and cell parameters 

are shown in Figures S7-S8 and Table S1, respectively.  

Table 5.1. Cell parameters (a, b, c in Å; α, β, γ in º) for the studied systems. 

 a b c α β γ 

MoSe2 basal plane 19.96 19.96 36.07 90 90 120 

SnS2 basal plane 21.83 21.83 35.94 90 90 120 

MoSe2 edge 19.96 46.00 23.07 90 90 120 

SnS2 edge 21.83 43.66 22.94 90 90 120 

MoSe2/SnS2 edge 19.96 46.00 23.07 90 90 120 

 

5.3. Results and Discussion 
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Figure 5.1. Illustration of the synthesis of MoSe2/SnS2 heterostructures. 

 

Figure 5.2. (a) XRD patterns of pure MoSe2, pure SnS2, and MoSe2/SnS2. TEM images of (b) pure 

MoSe2 and (c) MSSS-2.5 composite. 



 
 
 
 
Chapter 5 Electrocatalytically Inactive SnS2 Promotes Water Adsorption/Dissociation on 
Molybdenum Dichalcogenides for Accelerated Alkaline Hydrogen Evolution 

75 
 

 

Figure 5.3. (a, b) TEM images and (c) the corresponding FFT pattern of MoSe2/SnS2-2.5 heterostructure; 

(d) STEM-EDS elemental mapping of Mo, Se, Sn, and S; XPS spectra of (e) Mo 3d, (f) Se 3d, and (g) Sn 

3d. 
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Figure 5.4. TEM images of MoSe2/SnS2-1.5 (a), MoSe2/SnS2-2.5 (b), MoSe2/SnS2-5.0 (c), and 

MoSe2/SnS2-10 (d). 

The molybdenum dichalcogenide heterostructures were prepared via a two-step hydrothermal method, as 

illustrated in Figure 5.1. The molybdenum dichalcogenide nanosheets were first prepared, and then SnS2 

quantum dots were uniformly anchored on the nanosheet surfaces via an in-situ precipitation process (See 

Experimental Section for more details). The X-ray diffraction (XRD) pattern of MoSe2/SnS2 (Figure 5.2a) 

presents typical diffraction peaks that can be well indexed to SnS2 (JCPDS No. 23-0667) and MoSe2 

(JCPDS No. 29-0914). Figure 5.2b, 5.2c, and 5.3a shows the transmission electron microscopy (TEM) 

analysis, SnS2 quantum dots with a size of 3-5 nm were uniformly grown on the surfaces of MoSe2 

nanosheets, which could reduce agglomeration. Also, the typical lattice spacings of 0.32 and 0.26 nm 

could be indexed to the (100) planes of SnS2 and the (102) planes of MoSe2, respectively. In Figure 5.3b, 

the high-resolution transmission electron microscopy (HRTEM) image provides more detailed structural 

information. It can be shown that the markedly striped patterns are in good agreement with the MoSe2 

edge surface of (002) planes, while the SnS2 quantum dots were aligned along the [001] c-axis in 

intimately contact with the MoSe2 surface. The corresponding Fast Fourier transform (FFT) pattern 

(Figure 5.3c) clearly indicates the co-existence of (102) and (002) planes of MoSe2, and (100) and (101) 

planes of SnS2, further revealing the formation of MoSe2/SnS2 heterostructures. The scanning 

transmission electron microscopy (STEM) elemental mapping results further reveal the spatial 
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distribution of Mo, Se, Sn, and S in the MoSe2/SnS2 heterostructures (Figure 5.3d). Moreover, the 

MoSe2/SnS2 heterostructures with different Mo/Sn atomic ratios could be precisely controlled by varying 

the ratio of pthe recursors (Figure 5.4a-d).  

 

Figure 5.5. XPS survey spectrum of MoSe2/SnS2-2.5. 

The X-ray photoelectron spectroscopy (XPS) survey spectrum of the MoSe2/SnS2 heterostructures 

confirmed the coexistence of Mo, Se, Sn, and S elements (Figure 5.5). After deposition of the SnS2, the 

binding energies of Mo 3d and Se 3d are shifted negatively by 0.2 and 0.3 eV, respectively (Figure 5.3e-

f). Along with the negative shift in the binding energy, the surface negative charge density of MoSe2 will 

be increased. As a result, the H atoms of water molecules are more accessible to the negative charges, so 

that an attractive interaction between water molecules and the surface of MoSe2 is enhanced 

accordingly.[26, 48] In other words, the negative shift in the binding energy for Mo and Se effectively 

promotes the adsorption capability of water molecules. Also, the negative shift in the binding energy for 

MoSe2 demonstrates the transfer of electrons from SnS2 to MoSe2, which helps to improve the 

conductivity of MoSe2.[43-44] Moreover, a positive shift of 0.5 eV can be observed for the binding energy 

of Sn 3d in MoSe2/SnS2 as compared to SnS2 (Figure 5.3g). These results demonstrate that the charge 

redistribution across the interfaces of MoSe2/SnS2 heterostructures is beneficial to increase the water 

adsorption capability and improve the conductivity of MoSe2.   
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Figure 5.6. (a) LSV polarization curves measured at a scan rate of 5 mV s−1; (b) Overpotential at the 

current density of 10 mA cm-2; (c) LSV curves plotted based on MoSe2 mass-normalized current density 

(inset: current densities at -0.45 V (vs. RHE) ); (d) Tafel plots (potential vs. log(current density)) derived 

from LSV curves. 

 

Figure 5.7. (a) LSV curves of MoSe2/SnS2-2.5, pure MoSe2, and the physical mixture MoSe2+SnS2-2.5 at 

a scan rate of 5 mV s-1. (b) LSV curves based on active MoSe2 mass-normalized current density. 

The HER activities of the as-prepared MoSe2 and MoSe2/SnS2 heterostructured catalysts were evaluated 

in 1 M KOH aqueous electrolyte in a standard three-electrode system. Figure 5.6a shows the polarization 

curves after 95% iR correction carried out at a scan rate of 5 mV s-1. For the pure SnS2, the linear sweep 

voltammetry (LSV) curve displays a weak current response, demonstrating its electrocatalytic inertness in 
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alkaline media. The pure MoSe2 needs an overpotential of 367 mV to reach a current density of 10 mA 

cm-2. Compared to MoSe2, all the MoSe2/SnS2 heterostructured catalysts show substantially enhanced 

catalytic activities. Specifically, the MoSe2/SnS2-2.5 heterostructured catalyst exhibits optimal HER 

activity and a much lower overpotential of 285 mV at 10 mA cm-2
 (Figure 5.6b). Also, MoSe2/SnS2-2.5 

shows the best mass activity (559 mA mg-1) at 0.45 V among all the catalysts, which is superior to 

MoSe2/SnS2-1.5 (309 mA mg-1), MoSe2/SnS2-5.0 (291 mA mg-1), MoSe2/SnS2-10 (235 mA mg-1), and 

pure MoSe2 (147 mA mg-1) (Figure 5.6c and the inset). These results indicate that SnS2 plays a key role 

in promoting the HER kinetics of MoSe2 in alkaline media. It is worth noting that the physically mixed 

sample with a molar ratio of MoSe2:SnS2 = 2.5: 1 (MoSe2+SnS2-2.5) deliveres decreased geometric and 

mass activities (14 mA cm−2 and 87 mA mg−1 at 0.45 V), as compared to MoSe2/SnS2-2.5 and bare MoSe2 

(Figure 5.7), revealing that the unique heterostructure morphology and interaction between MoSe2 and 

SnS2 are of great importance to the accelerated alkaline HER kinetics. Tafel slopes give further insights 

into the HER kinetics. As shown in Figure 5.6d, pure MoSe2 shows a Tafel slope of 149 mV dec-1, 

indicating that the kinetic rate-limiting step is the Volmer step, in which step water molecules dissociate 

into hydrogen intermediates and hydroxyls. Compared to MoSe2, the Tafel slope of MoSe2/SnS2-2.5 is 

reduced to 109 mV dec-1, demonstrating that the HER kinetics are determined by the Volmer step and 

subsequent Heyrovsky step. The enhanced kinetics can be attributed to the accelerated water dissociation 

process (Volmer step).[45] 
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Figure 5.8. (a) TOFs of MoSe2/SnS2 heterostructures and pure MoSe2 at the overpotential of 0.3 V (vs. 

RHE); (b) Current versus scan rate measured at 0 V (vs. RHE); (c) The LSV curves and (d) Tafel plots 

measured in 0.5 M H2SO4. 

 

Figure 5.9. CV curves measured in a non-Faradaic region at scan rates from 40 to 140 mV s-1 in 1 M 

KOH: (a) MoSe2/SnS2-1.5, (b) MoSe2/SnS2-2.5, (c) MoSe2/SnS2-5.0, (d) MoSe2/SnS2-10, and (e) pure 

MoSe2. 
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Figure 5.10. EIS spectra of MoSe2/SnS2 hybrid catalysts and MoSe2 recorded at -0.1 V (vs. RHE). The 

curves correspond to the fitted results and the scatter plots to measurements. The inset represents the 

equivalent circuit model. 

Table 5.2. TOFs and charge-transfer resistance values for MoSe2/SnS2 and MoSe2. 

  TOF (s-1) 
Charge-transfer 

resistance ( ) 

MoSe2/SnS2-1.5 0.07 38.2 

MoSe2/SnS2-2.5 0.11 27.4 

MoSe2/SnS2-5.0 0.06 42.5 

MoSe2/SnS2-10 0.04 66.4 

MoSe2 0.02 96 

 

Turnover frequencies (TOFs) provide important insights in evaluating the intrinsic activity of HER 

catalysts. Generally, it is supposed that TOFs reflect the formation rate of hydrogen molecules per Mo 

atom during the HER process.[49-50] Here, we identify the TOF value of MoSe2/SnS2 catalysts based on 

MoSe2 which provides intrinsic active sites for the HER. Although the TOF calculation here employs the 

total Mo atoms in the electrode as the benchmark, which may not exactly reflect the performance of the 

MoSe2/SnS2 heterostructures, it provides a general comparison of the HER kinetics between MoSe2 and 

MoSe2/SnS2 composites. The MoSe2/SnS2-2.5 achieves the highest TOF as compared with other samples 

(Figure 5.8a and Table 5.2). Meanwhile, the electrochemically active surface area (ECSA), as another 
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critical factor for estimating the activity of electrocatalysts, was determined by measuring the double-

layer capacitance (Cdl) in the potential range of -0.1 0 V (vs. RHE) (Figure 5.9). As shown in Figure 

5.8b, all the MoSe2/SnS2 heterostructured catalysts display larger Cdl values than that of pure MoSe2, 

indicating that the introduction of SnS2 endows the heterostructured catalysts with higher active site 

density.[51] Moreover, the enhanced catalytic activity of MoSe2/SnS2 heterostructures was confirmed by 

electrochemical impedance spectroscopy (EIS). The Nyquist plots are well fitted to an equivalent circuit 

model (Figure 5.10), which consists of electrolyte resistance (Rs), charge-transfer resistance (Rct), and 

constant phase element (CPE). All the heterostructured catalysts show much lower Rct than that of bare 

MoSe2 (Table 5.2), further demonstrating that the incorporation of SnS2 is beneficial for accelerating the 

charge transfer and mass diffusion kinetics of MoSe2/SnS2 heterostructures under alkaline conditions.[52]  

To further confirm the effect of incorporating SnS2 on the enhanced alkaline HER activity of the 

MoSe2/SnS2 heterostructured catalysts, the acidic HER performances of MoSe2/SnS2 and bare MoSe2 

catalysts were tested in 0.5 M H2SO4 electrolyte. According to previously reported volcano plots, the 

HER kinetics of a catalyst in acidic conditions is strongly correlated with its hydrogen adsorption 

capability.[53-54] In sharp contrast to the bare MoSe2, all the MoSe2/SnS2 heterostructures show higher 

overpotentials with larger Tafel slopes (Figure 5.8c-d). The reduced acidic catalytic activities of the 

MoSe2/SnS2 heterostructured catalysts demonstrate that the introduction of SnS2 had no positive effect on 

optimizing the hydrogen adsorption capability. It can be inferred that the enhanced alkaline HER activity 

of the MoSe2/SnS2 heterostructures can be mainly attributed to the accelerated water 

adsorption/dissociation process. 

 

Figure 5.11. Top view of the basal plane and side views of three edge models: Mo-edge, Se-edge with 50% 
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selenium coverage (Se50-eg), and Se-edge with 100% selenium coverage (Se100-eg) of pure MoSe2 (a) and 

MoSe2/SnS2 (b). The cyan and orange balls represent Mo and Se atoms, respectively. 

 

Figure 5.12. Water adsorption energy diagram of MoSe2/SnS2 and MoSe2 (a) on the basal planes and (b) 

on the edge sites. 

  

Figure 5.13. Top view of the SnS2 basal plane and side views of three SnS2 edge models: Sn-edge, S-

edge with 50% sulfur coverage (S50-eg), and S-edge with 100% sulfur coverage (S100-eg). The grey and 

yellow balls represent Sn and S atoms, respectively. 

Basically, water adsorption takes place prior to water dissociation during the alkaline HER process. 

Therefore, to further verify the influence of SnS2 quantum dots on the alkaline HER kinetics of MoSe2, 

DFT calculations were conducted to determine the water adsorption energy (Ead) of the basal planes and 

edges of pure MoSe2, SnS2, and MoSe2/SnS2 (Figure 5.11). As shown in Figure 5.12a, the Ead of the 

basal planes of MoSe2 is -0.12 eV. After incorporating SnS2, the Ead of the basal planes of MoSe2/SnS2 

decreases to -0.23 eV, suggesting that SnS2 efficiently enhances the water adsorption capability on the 

basal planes of MoSe2. The Mo edges, as the most stable sites for water adsorption, displays a lower Ead (-

0.82 eV) for MoSe2/SnS2 than that of MoSe2 (-0.71 eV) (Figure 5.12b). Meanwhile, the Se edges with 

100% and 50% Se coverage (Se100-eg and Se50-eg) of MoSe2/SnS2 heterostructures also show decreased Ead 

values relative to that of pure MoSe2. These results clearly demonstrate that the incorporation of SnS2 

significantly enhances the water adsorption capability of MoSe2 in the heterostructures, which is greatly 
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beneficial to accelerating the subsequent water dissociation kinetics. In addition, the basal planes and 

edges of SnS2 also show promising water adsorption capability (Figure 5.13), which can further improve 

the water adsorption and dissociating kinetics of the MoSe2/SnS2 heterostructures.  

Figure 5.14. (a) XRD patterns and (b, c) TEM images of MoS2/SnS2-2.5 hybrid. 

 

Figure 5.15. LSV curves (a) and Tafel plots (b) of MoS2/SnS2 and pure MoS2 at 1 M KOH media. 

 

Figure 5.16. LSV curves (a) and Tafel plots (b) of MoS2/SnS2 and pure MoS2 in 0.5 M H2SO4. 

MoS2/SnS2 heterostructures with SnS2 quantum dots decorated on the basal planes (Figure 5.14a-c), 

which were synthesized by a similar process to that for MoSe2/SnS2 heterostructures, were also evaluated 

as the catalysts for the alkaline HER. As shown in Figure 5.15a-b, the alkaline HER activity of the 

heterostructured catalysts is also greatly enhanced after the introduction of SnS2. The optimal MoS2/SnS2-

2.5 catalyst delivers the lowest overpotential of 343 mV at 10 mA cm−2 with a Tafel slope of 157 mV dec-
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1, while pure MoS2 has an overpotential of 419 mV at 10 mA cm−2 with a Tafel slope of 216 mV dec-1. 

Similar to the case of MoSe2/SnS2, the acidic HER performance of the MoS2/SnS2 heterostructures gets 

worse with increasing the content of inactive SnS2 (Figure 5.16a-b). These results demonstrate that 

decorating SnS2 quantum dots on basal planes to construct heterostuctures is a universal approach to 

promote the alkaline HER kinetics of molybdenum dichalcogenide-based catalysts. 

5.4. Conclusion 

In summary, molybdenum dichalcogenide heterostructures with SnS2 quantum dots decorated on the 

basal planes were designed and synthesized as efficient alkaline HER electrocatalysts. The optimal 

MoSe2/SnS2 heterostructured catalyst delivered a substantially lower overpotential of 285 mV as 

compared with MoSe2 (367 mV) at 10 mA cm-2. The significant improvement in alkaline HER activity is 

mainly due to the accelerated water adsorption/dissociation kinetics. The DFT calculations reveal that the 

incorporation of SnS2 can significantly improve the water adsorption capability of MoSe2, which is 

critical for the subsequent water dissociation process. This work opens up a new direction for the 

development of efficient alkaline HER electrocatalysts by engineering heterostructures. 
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Chapter 6 

6. Hexagonal Boron Nitride as a Multifunctional Substrate for 

Engineering Durable Electrocatalysts towards Enhanced Oxygen 

Reduction Reaction 

6.1. Introduction 

Noble metal nanoparticles (NPs) have been the focus of intense research in the catalysis field due to the 

advantages of large surface-to-volume ratio and high utilization of noble metals.[1-2] Numerous studies 

have concentrated on enhancing the catalytic performance of noble metal NPs via a variety of 

nanostructure engineering strategies, including but not limited to tuning particle size, morphology and 

chemical composition. Basically, noble metal NPs are usually loaded on the supports to mitigate the 

aggregation and to achieve long-term performance durability with the aids of the strong coupling between 

NPs and the supports, like Pt/C electrocatalyst for fuel cells. However, although it has been well 

established that the supports play a pivotal role in modulating and stabilizing the NPs, there is a lack of 

specific research attention focused on developing new functional supports and modulating the 

physicochemical properties of the functional supports.  

As is well-known, carbon-based materials (e.g., activated carbon, carbon nanotubes, reduced graphene 

oxide) are extensively deployed as functional supports for noble metal NPs and other non-noble metal 

catalysts due to their high conductivity and proper chemical stability. Unfortunately, a big challenge 

remains regarding thermodynamics instability of carbon materials, and they tend to be oxidized at high 

operation potentials, which would consequently damage the structural integrity of the catalyst, cause 

agglomeration of noble metal NPs, and eventually result in degradation of catalytic activity.[3-4] Notably, 

the instability of carbon support is considered to be one of the critical reasons for the inferior durability of 

the commercial Pt/C electrocatalyst for oxygen reduction reaction (ORR) in fuel cells. Graphene 

analogues, particularly reduced graphene oxide, have been extensively investigated as the active phases or 

functional supports for constructing hybrid electrocatalysts. Graphene-like 2D hexagonal boron nitride (h-

BN), however, has not drawn intense attention in the electrocatalysis field, which is in great part due to its 

wide band gap (low conductivity) and electrochemical inertness. Nevertheless, h-BN is a compound 

possessing exceptional chemical stability and anti-oxidation/corrosion capability in harsh environments.[5-
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7] We recently found that, compared to other typical carbon-based materials, h-BN exhibits superior anti-

oxidation property at high potentials (Figure 6.1), strongly suggesting that h-BN has great potential to 

work as a robust support for confining the active noble metal NPs and constructing durable 

heterostructured catalysts. More importantly, h-BN contains large quantities of B and N, which would 

provide unique chemical coordination environment and electronic interaction at the interfaces of the 

heterostructured catalysts. On the other hand, h-BN is superhydrophobic (superaerophilic), which means 

it has excellent affinity with gas bubbles in aqueous solutions.[8-9] This kind of surface property is of great 

importance for accelerating the kinetics of ORR, which is a typical gas-consuming reaction occurring at 

liquid/gas/solid interface and is closely associated with the effective adsorption of O2.[10-12] On this basis, 

we hypothesize that h-BN could serve as a potential multifunctional substrate for constructing noble 

metal-based heterostructured electrocatalysts, particularly for electrochemical reactions occurring at high 

potentials or under other harsh conditions. In order to prove the hypothesis, we designed and synthesized 

h-BN/Pd heterostructures with Pd NPs anchored on ultrathin h-BN nanosheets towards ORR application. 

Interestingly, the h-BN/Pd heterostructured catalyst delivered exceptional catalytic performance in terms 

of specific activity and durability, and the interface chemistry in the heterostructures was also unravelled, 

clearly evidencing that h-BN is a multifunctional substrate for engineering durable and highly active ORR 

electrocatalysts.  
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Figure 6.1. CV curves measured with different oxidation time in a non-Faradaic region in 0.1 M KOH at 

scan rates of 100 mV s-1: (a) Carbon black, (b) graphene, (c) carbon nanotubes (CNTs), and (d) h-BN. (e) 

Normalized capacitance (Cdl) estimated by CV curves at different chronoamperometry (CA) test time of 

the samples.  

6.2. Experimental Section 

6.2.1. Materials 

All the chemicals were purchased from Sigma-Aldrich (A.R) and were used as received without further 

purification. 

6.2.2. Materials Preparation 

6.2.2.1. Exfoliation of h-BN Nanosheets 

The bulk h-BN was exfoliated according to the reported method with a slight modification.[46] In brief, 1 g 
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bulk h-BN (purchased from Alfa Aesar, Thermo Fisher Scientific, purification of 99.5%) in quartz tube 

was heated in a 800 C muffle furnace for 10 min and immediately immersed into liquid N2 taken in a 

special tin until the liquid N2 completely gasified. The above procedures were repeated for five times. The 

exfoliated h-BN was transferred into isopropanol (IPA) and sonicated for 1 h and centrifuged at 1500 

r.p.m. for 15 min. Then the supernatant was centrifuged 10000 r.p.m. for 10 min and dried in vacuum 

oven overnight. 

6.2.2.2. Synthesis of h-BN/C/Pd 

To enhance the conductivity of heterostructures, the carbon layer was firstly wrapped on the surface of h-

BN. 6 mg exfoliated h-BN and 100 mg glucose were together dispersed into 35 ml mixing solvent (the 

volume ratios of IPA/water equal to 3:4 ) and sonicated for 30 min. Next, the homogeneous solution was 

transferred into 50 ml Teflon lined stainless steel autoclaves for a hydrothermal process at 180 °C for 4 h. 

The products were further graphitized at 1000 °C for 4 h to attain h-BN/C. For the preparation of h-

BN/C/Pd:17, 6 mg h-BN/C and 28.2 l Na2PdCl4 (0.5 M) aqueous solution were added into 40 ml IPA 

solution with a sonication of 1 h. Then the homogeneous solution was reacted by reflux condensation for 

30 mins at 80 °C. The h-BN/C/Pd catalyst was collected after centrifugation, washing, and drying. The h-

BN/C/Pd:10 catalyst was prepared by the same procedure as for h-BN/C/Pd:17 with decreasing Na2PdCl4 

(0.5 M) to 14.1 l. The accurate mass ratios of Pd in h-BN/C/Pd heterostructures (Pd wt.% = 10 % for h-

BN/C/Pd:10; Pd wt.% = 17 % for h-BN/C/Pd:17; Pd wt.% = 17 % for h-BN/Pd:17) were determined by 

inductively coupled plasma‒optical emission spectrometry (ICP-OES, Perkin-Elmer, Optima 7300DV) 

with mass spectrometry. 

6.2.2.3. Synthesis of Pd Nanoparticles 

28.2 l Na2PdCl4 (0.5 M) aqueous solution was dispersed in 40 ml IPA solvent and sonicated for 10 min. 

The uniform solution was raised to 80 °C and kept reflux condensation for 30 min. The Pd NPs were 

collected after centrifugation, washing, and drying. 

6.2.3. Physical Characterization 

X-ray diffraction (XRD) measurement was conducted on GBC MMA X-ray diffractometer (λ = 1.5406 Å, 

25 mA, 40 Kv, step size of 0.02° s-1). The morphology characteristic of all samples were carried out by 

transmission electron microscopy (TEM, JEM-2010, working voltage 200 kV). The scanning 

transmission electron microscopy (STEM) elemental mappings and electron energy loss spectra (EELS) 

were collected on the JEOL ARM-200F at 200 kV equipped with an EDS detector. X-ray photoelectron 
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spectroscopy (XPS) testing was carried out on a Thermo ESCALAB 250Xi instrument with monochrome 

Al Kα (hv = 1486.6 eV) as the X-ray excitation source.  

6.2.4 X-ray Absorption Fine Structure (XAFS) Spectra Characterizations 

XAFS measurements at Pd k-edge in both transmission (for Pd foil) and fluorescence (for samples) mode 

were carried out at beamline BL14W1 in Shanghai Synchrotron Radiation Facility (SSRF). The operation 

energy of storage ring was 3.5 GeV and at the current around 240 mA. The white X-ray was 

monochromatized using a fixed-exit double-crystal Si (111) monochromator and the energy was 

calibrated by using Pt foil. Pd standards and the prepared samples were compacted and collected in 

transmission mode at room temperature. The data analysis was performed using software Demeter as the 

standard data analysis procedures.[41-42] This qualitative analysis was primarily focused on the nature of 

the backscattering atoms as well as the bond lengths and complemented the conventional Fourier 

transform (FT) analysis by connecting contributions in the EXAFS spectra to the FT peaks. 

6.2.5. Electrochemical Measurement 

Electrochemical measurements were performed on a VSP-300 electrochemical workstation (BioLogic 

Science Instrument, France) connected to a rotating disk electrode (Pine Research Instruments, U.S.). All 

electrochemical measurements were conducted in 0.1 M KOH aqueous solution. Hg/HgO (1 M KOH 

solution) electrode and a platinum wire were employed as the reference electrode and counter electrode, 

respectively. The working electrodes were prepared by coating catalyst inks on the surface of glassy 

carbon electrode. The mass loading of all samples on the polished glassy carbon electrode were 200 g 

cm-2. To prepare the catalyst ink for h-BN/Pd/C:17 and commercial Pd/C (20 wt.% Pd), 2 mg catalysts 

were dispersed in the mixture of 16 μL Nafion solution (Aldrich Co., 5 wt.%), 384 μL deionized water 

and 100 μL isopropanol and treated with ultrasonication for 3 h. To prepare the catalyst inks for Pd NPs 

and h-BN/Pd:17, 1.88 mg catalysts were first mixed with 0.12 mg Vulcan XC-72 carbon black (same 

carbon amount with the amount of carbon layer in h-BN/Pd/C:17), and then the mixed powders were 

dispersed in the mixture of 16 μL Nafion solution, 384 μL deionized water and 100 μL isopropanol and 

treated with ultrasonication for 3 h.  

Stability tests (25 °C) were carried out by 10000 cyclic voltammetry (CV) cycles between 0.4 and 1.0 V 

at a scan rate of 100 mV/s. Electrochemically active surface area (ECSA) was evaluated by the hydrogen 

underpotential deposition (Hupd) method.[35] The CV curves of the samples were recorded at the scan rate 

of 50 mV s-1 in N2-saturated 0.1 M KOH solution. Electrochemical impedance spectra (EIS) were 
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measured at 0.87 V (vs. RHE) within the frequency range of 100 kHz-1Hz. 

  

The kinetic current (Jk) can be calculated by the Koutecky–Levich equation which is represented by 

                                                                                                                                                      

(6.1) 

Where J stands for the measured current and Jd for the diffusion limited current. 

The number of electrons transferred (n) can be estimated by the Levich equation: 

                                                                                                             (6.2) 

where F stands for Faraday’s constant (96485 C mol−1). A is the area of electrode (0.196 cm2), and D is 

the diffusion coefficient of O2 in 0.1 M KOH solution (1.93×10−5 cm2 s−1). υ stands for the kinematic 

viscosity of the electrolyte (1.01×10−2 cm2 s−1). ω represents the angular frequency of rotation: ω = 2πf/60, 

f in r.p.m. is the RDE rotation rate, and  is the concentration of molecular oxygen in 0.1M KOH 

electrolyte (1.26×10−6 mol cm−3). 

6.3. Results and Discussion 

 

Figure 6.2. (a) Schematic illustration showing exfoliation of h-BN and preparation of h-BN/C/Pd. (b) 

TEM of h-BN/C/Pd:17, (inset: particle size distribution of Pd NPs). (c) HRTEM of h-BN/C/Pd:17, (inset: 

corresponding FFT image). (d) The HRTEM images and intensity profiles of Pd NPs (  and ), and h-

BN/C/Pd:17 (  and ), respectively. 
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Figure 6.3. The TEM images of (a) bulk h-BN and (b) exfoliated h-BN. 

 

Figure 6.4. Thermogravimetry (TG) of h-BN/C. 
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Figure 6.5. XRD patterns of Pd NPs, h-BN/C/Pd:17, h-BN/C, and h-BN. 

The h-BN/Pd heterostructures were synthesized as illustrated in Figure 6.2a (See Experimental Section 

for details). Firstly, h-BN nanosheets were prepared by exfoliation with the assistance of cryogenic 

liquid-N2 gasification (Figure 6.3). Notably, abundant N-vacancies and B-vacancies were created during 

the exfoliation process. Then, Pd NPs were deposited on h-BN nanosheets via a solution reduction 

process to obtain h-BN/Pd heterostructure. In another approach, to improve the conductivity of 

heterostructured catalysts, the exfoliated h-BN nanosheets were functionalized by coating thin carbon 

layers (h-BN/C) before the deposition of Pd NPs, which was achieved through a typical hydrothermal 

process with glucose as the carbon source followed by high-temperature graphitization. The content of 

carbon layer is estimated to be around 6 wt.% determined by thermogravimetric analysis (Figure 6.4). 

The heterostructure based on this functionalized substrate is referred as h-BN/C/Pd. The XRD patterns 

(Figure 6.5) reveal that all the diffraction peaks can be correspondingly assigned to h-BN (JCPDS No. 

34-0421) and Pd (JCPDS No. 46-1043).   

 

Figure 6.6. The TEM image of h-BN/Pd:17. 
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Figure 6.7. (a) The HRTEM images of h-BN/Pd:17, (inset: corresponding FFT images). (b) The intensity 

profile corresponding to Pd NPs of (a). 

 

Figure 6.8. The STEM elemental mapping of h-BN/C/Pd:17. 

The bright-field transmission electron microscopy (TEM) images show that Pd NPs (2-6 nm) are 

successfully anchored on h-BN and h-BN/C nanosheets (Figure 6.2b and 6.6), and the content of Pd is 

determined to be 17 wt% (h-BN/Pd:17 and h-BN/C/Pd:17). As can be seen from the high-resolution TEM 

(HRTEM) image and corresponding Fast Fourier transformation (FFT) pattern (Figure 1c), the lattice 

spacing of 0.217 and 0.34 nm are matched well with the (100) and (002) planes of h-BN, respectively. 

Meanwhile, as shown in Figure 6.2d and 6.7, the d-spacing of 0.282 and 0.258 can be assigned to the 

(111) planes of Pd in heterostructures while 0.236 agrees well with the (111) plane of Pd NPs. Clearly, 

there is a significant lattice contraction up to 3.5% and 4.4% (I could obtain contraction percentage 

related to the bulk Pd lattice: i.e. (a-aPd)/aPd 100%, where a stands for lattice spacing) on Pd (111) plane 

after the hybridization with h-BN as compared with Pd NPs, indicating the formation of compressive 

lattice strain for Pd due to the confinement of h-BN. The lattice strain can be used as a main structure-

relevant factor to dominate the electrocatalytic activity.[24-26] And the compressed lattice can lead to a 

downshift of d-band centre for Pd, which could weaken the adsorbate bond strength and accordingly 

facilitate the desorption of intermediates to form H2O.[25] The scanning transmission electron microscopy 

(STEM) elemental mappings further demonstrate that the surface of h-BN nanosheets is decorated with 

uniform Pd NPs (Figure 6.8).  
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Figure 6.9. The XPS survey spectrum of h-BN/C/Pd:17. 

 

Figure 6.10. (a) XPS spectra of Pd 3d core levels for Pd NPs and h-BN/C/Pd:17. (b) and (c) XPS of B 

and N 1s for h-BN/C and h-BN/C/Pd:17. (d) XANES spectra measured in transmission mode near the Pd 

K-edge and (e) the corresponding zoom-in edge spectra. (f) The Pd K-edge k3-weighted EXAFS 

oscillations. 
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Figure 6.11. The XPS of B 1s and N 1s core levels for h-BN and h-BN/C. 

The survey X-ray photoelectron spectroscopy (XPS) spectrum of h-BN/C/Pd:17 confirms the coexistence 

of B, N, C and Pd elements (Figure 6.9). Figure 6.10a shows high-resolution Pd 3d spectra for h-

BN/C/Pd:17 and Pd NPs. Compared to the Pd NPs, the binding energy of Pd 3d3/2 and Pd 3d5/2 for h-

BN/C/Pd:17 shifts positively by 0.7 eV and 0.8 eV, respectively, indicating that the electron density 

surrounding Pd atoms is reduced in the heterostructures. It should be noted that the upshift of binding 

energy indicates the downshift of d-band centre of Pd. Such electronic structure modulation of Pd is 

beneficial to optimize (weaken) the adsorption energy of the reaction intermediates (e.g. Oad and OHad) 

and hence facilitate the formation of H2O.[27-28] Meanwhile, it is clear that the ratio of oxidized Pd atoms 

(Pd2+) to metal Pd atoms (Pd0) in the heterostructure is increased accordingly as compared with bare Pd 

NPs. Basically, the change of Pd electronic structure is closely associated with the presence of h-BN, 

which provides unique B- and N-abundant chemical coordination environment at the heterostructure 

interface. Correspondingly, the binding energies of N 1s and B 1s both display evident negative shift by 

0.3 eV after depositing Pd NPs (Figure 6.10b-c), further suggesting the strong electronic interaction 

between h-BN and Pd NPs at the heterostructure interface.  

To further investigate the local electronic structure of Pd in the heterostructures, the Pd K-edge X-ray 

absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) spectra 

were carried out. As displayed in Figure 6.10d, the Pd K-edge XANES spectra of h-BN/C/Pd:17 and h-

BN/Pd:17 resemble those of Pd NPs and Pd foil, demonstrating that Pd mainly exists in the metallic state 

in the heterostructures. Meanwhile, the shift of XANES edge position demonstrates the variations in the 

valence state.[29-30] Clearly, the adsorption edges of both h-BN/C/Pd:17 and h-BN/Pd:17 shift positively 

compared with that of Pd NPs (Figure 6.10e), demonstrating the higher valence state as well as the 

decreased electron density of the Pd 4d states in the heterostructures.[31] Intriguingly, the reduced 
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occupation in the Pd 4d states reduces the energy of antibonding orbitals, and hence increase the filling of 

the antibonding, which subsequently weakens the bonding strength with the Oad and OHad 

intermediates.[32-33] The results are in good consistence with the XPS spectra as well. In the meantime, the 

B 1s XPS results demonstrate the interaction between carbon layer and boron atoms (Figure 6.11). 

However, the similar adsorption edge of h-BN/Pd:17 and h-BN/C/Pd:17 proves no apparent electronic 

interaction between Pd and the carbon layer. The Fourier transforms EXAFS (FT-EXAFS) spectra of the 

Pd K-edge is shown in Figure 6.10f, and the peak at around 2.5 Å is attributed to Pd–Pd bonds, further 

verifying the presence of metallic Pd. With regard to atom coordination at the interface, we can observe 

the formation of chemical bonding between Pd and h-BN. However, the bond lengths of Pd-N and Pd-B 

bonds are too similar to be distinguished, and thus the interfacial bonding is described as Pd-N/B (Table 

6.1). Considering N has higher electronegativity than B, Pd-N bonding is probably dominant in the 

chemical coordination chemistry at the heterostructure interface. Moreover, the bond lengths of Pd-Pd in 

h-BN/C/Pd:17 (2.71 Å) and h-BN/ Pd:17 (2.72 Å) heterostructures are compressive in comparison with 

Pd NPs (2.73 Å). It has been well established that the change of bond length cause the generation of 

strain.[34] Accordingly, the compressed Pd-Pd bond results in compressed strain weaken the chemisorption 

of oxygenous intermediates, and thus benefiting the final formation of H2O.[35-36] The intensity of Pd-Pd 

peak is decreased compared to that of Pd foil due to smaller particle size.[37-38] 

Table 6.1. EXAFS fitting parameters at the Pd K-edge for various samples Ѕ0
2=0.829

Note. aN: coordination numbers; bR: bond distance; cσ2: Debye-Waller factors; d ΔE0: the inner potential 

correction. R factor: goodness of fit. Ѕ0
2 was set to 0.829, according to the experimental EXAFS fit of Pd 

foil reference by fixing CN as the known crystallographic value. 

Sample Shell Na R(Å)b σ2(Å2)c ΔE0(eV)d R factor 

Pd foil Pd-Pd 12 2.74 0.0056 3.6 0.0013 

Pd Pd-Pd 8.5 2.73 0.0067 -4.9 0.0028 

h-BN/C/Pd:17 

 

Pd-N/B 0.5 2.33 0.0008 -6.1 

 

0.0013 

 Pd-Pd 8.6 2.71 0.0063 

h-BN/Pd:17 

 

Pd-N/B 0.4 2.32 0.0008 -6.6 

 

0.0010 

 Pd-Pd 8.4 2.72 0.0060 
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Figure 6.12. The comparison of electrochemical performance for as-prepared h-BN/C/Pd, h-BN/Pd, Pd 

NPs and commercial Pd/C. (a) The LSV curves performed at 1600 r.p.m. (b) The corresponding half-

wave potential and ECSA (surface area normalized to mass). (c) The specific and mass activities 

normalized by the ECSA or the total mass of the loaded Pd, respectively. (d) The number of transfer 

electron determined by the LSV curves measured from 400 to 2025 r.p.m (i.e. the inset). (e) and (f) The 

LSV curves of h-BN/C/Pd:17 and commercial Pd/C before and after 10000 cycles in O2-saturated 0.1M 

KOH, respectively. 

 

Figure 6.13. The comparison of polarization profiles for h-BN/C/Pd:17, h-BN/Pd:17, h-BN/Pd:17+C, and 
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h-BN+C+Pd:17. 

 

Figure 6.14. EIS of h-BN/C/Pd, h-BN/Pd, Pd NPs and commercial Pd/C tested at 0.87 V (vs. RHE). 

 

Figure 6.15. The CVs test in N2-saturated 0.1M KOH for ECSA calculation of (a) h-BN/C/Pd:10, (b) h-

BN/C/Pd:17, (c) h-BN/Pd:17, (d) Pd NPs and (e) Commercial Pd/C. Scan rates: 50 mV s-1. 
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Figure 6.16. (a) The LSV curves of h-BN/Pd:17 measured from 400 to 2025 r.p.m and (b) the numbers of 

transfer electron calculated from (a). 

 

Figure 6.17. (a) The polarization profiles measured from 400 to 2025 r.p.m and (b) the numbers of 

transfer electron calculated from (a). 

 

Figure 6.18. The LSV curves of (a) Pd NPs, and (b) h-BN/Pd:17+C before and after 10000 cycles in O2-

saturated 0.1M KOH. 
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The ORR catalytic activities of the electrocatalysts were evaluated in 0.1 M KOH aqueous solution by the 

typical rotating disk electrode (RDE) method. Figure 6.12a displays that the h-BN/C/Pd:17 and h-

BN/Pd:17+C (adding 6 wt% conductive carbon (Vulcan XC-72)) heterostructured electrocatalysts deliver 

the best catalytic activity, much superior to Pd NPs and commercial Pd/C (20 wt.%). It can be also found 

that h-BN and h-BN/C nanosheets are electrochemically inert for ORR. As shown in Figure 6.12b, h-

BN/C/Pd:17 and h-BN/Pd:17+C exhibit much higher half-wave potential (E1/2) of 0.91 V vs. RHE than 

that of h-BN/C/Pd:10 (0.89 V), Pd NPs (0.89 V) and commercial Pd/C (0.90 V). These results clearly 

infer that the promotion of catalytic activity for h-BN/C/Pd:17 heterostructures should be closely 

associated with the inactive h-BN nanosheets. Notably, the ORR activity of h-BN/Pd:17 without coating 

carbon layer on h-BN nanosheets is much more inferior (Figure 6.13), while the activity is substantially 

enhanced and reaches as high as that of h-BN/C/Pd:17 after adding 6 wt% conductive carbon. Besides, as 

compared with h-BN/C/Pd:17 and h-BN/Pd:17+C, the lower activity of  h-BN+C+Pd:17 (17% Pd and 6% 

conductive carbon physically mixed with h-BN) further reveal that the electronic modulation between Pd 

and h-BN is greatly important to the enhanced ORR kinetics. According the EIS results, the h-

BN/C/Pd:17 and h-BN/Pd:17+C show close charge-transfer resistances, indicating that the carbon layer 

and carbon black make similar contributions to the charge transfer process (Figure 6.14). The results 

reveal that both the carbon layer and electronic structure modulation at the interface play negligible roles 

in the enhancement of catalytic activity. The electrochemical active surface area (ECSA) normalized to 

active Pd mass was determined by cyclic voltammograms (Figure 6.12b and 6.15). The h-BN/C/Pd:17, 

h-BN/Pd:17+C, h-BN/C/Pd:10, bare Pd NPs, and commercial Pd/C samples display the ECSA of 288, 

298, 350, 446, and 135 cm2 mg-1
Pd, respectively. For a better evaluation of catalytic activity, the mass 

activity (MA) and specific activity (SA) normalized by Pd metal at 0.9 V (vs. RHE) can be calculated 

(Figure 6.12c). The MA of h-BN/C/Pd:17 reaches up to 0.25 mA g-1
 Pd, around 2 times higher than 

those of h-BN/C/Pd:10 and commercial Pd/C, and even 10 times greater than that of Pd NPs. The SA of 

h-BN/C/Pd:17 is 0.86 mA cm-2
Pd, which is also dramatically superior to those of commercial Pd/C and Pd 

NPs. To further assess the reaction kinetics of the heterostructured catalysts, the linear sweep 

voltammetry (LSV) curves were collected at various rotation rates from 400 to 2,025 r.p.m in O2-

saturated 0.1 M KOH solution. Figure 6.12d shows that the electron transfer number of ORR on h-

BN/C/Pd:17, which is calculated according to the Koutecky–Levich equation, is around 4.0 at 0.7–0.8 V. 

Meanwhile, the electron transfer is also 4.0 for the h-BN/Pd:17+C, while the value of Pd NPs 
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approximates 3.7 (Figure 6.16 and 6.17), revealing that the heterostructured catalysts achieve an 

enhanced selectivity toward 4e− reaction process and almost complete reduction of O2 to H2O. In order to 

evaluate the durability of the electrocatalysts, CV measurements were performed at a sweep rate of 100 

mV s-1. After 10000 sweeping cycles, the E1/2 for h-BN/C/Pd:17 and h-BN/Pd:17+C show very little 

negative shift of ~12 and ~10 mV before and after durability test. In contrast, Pd NPs and commercial 

Pd/C exhibit significant activity degradation, which decays the E1/2 of ~22 and ~27 mV, respectively 

(Figure 6.12d, e and 6.18). Therefore, it can come to a conclusion that the incorporation of h-BN 

substrate could efficiently promote the ORR activity, selectivity and durability of Pd active centers. 

 

Figure 6.19. (a) Schematic illustration of the wetting state of superhydrophobic surface in air and water, 

respectively. (b) The measurement of the contact angle for h-BN/C/Pd:17, h-BN, h-BN/C and Pd NPs. (c) 

TEM image for h-BN/C/Pd:17 after 10000 cycles. 

 

Figure 6.20. The contact angle of h-BN/Pd:17. 

The exceptional catalytic performance of the h-BN/C/Pd:17 heterostructure can be ascribed to several 

synergistic factors as detailed below, all of which are closely related to the incorporation of 

multifunctional h-BN nanosheets.  

Firstly, the h-BN nanosheets provide B- and N-abundant coordination environment and induce intense 
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electronic interaction with Pd at the heterostructure interface. The h-BN substrate can induce compressive 

strain on Pd surface and decrease the electron density of Pd, which efficiently lead to a downshift of Pd d-

band centre. The modulations are beneficial to weaken the bonding strength of the reaction intermediate 

species on Pd surface accordingly. The reduced bonding strength can effectively accelerate the 

intermediates desorption and facilitate the formation of water.[24, 39] On the other hand, the h-BN 

nanosheets, serving as the catalyst supports, can uniformly disperse Pd NPs, and this could ensure the 

maximum exposure of active sites and hence higher ECSA. Therefore, the h-BN nanosheets can not only 

enhance the intrinsic activity but also improve the density of active sites of Pd.  

Secondly, the hydrophobicity (aerophilicity) of the heterostructured catalysts is substantially improved 

after incorporating superhydrophobic h-BN nanosheets, which means much better gas affinity in the KOH 

solution (Figure 6.19a). Basically, superhydrophobicity (superaerophilicity) is a highly desired property 

of electrocatalysts for gas reduction and oxidation reactions, which is crucial for achieving fast gas 

diffusion at the catalyst surface.[21, 23] As shown in Figure 6.19b-6.20, the contact angle increases from 

28  for bare Pd NPs to ~130  and ~132  for the heterostructures, very close to h-BN nanosheets (133 ).  

Under this circumstance, the hydrophobic heterostructured catalyst surface is highly beneficial to promote 

the adsorption of O2 and hence facilitate ORR kinetics. 

 

Figure 6.21. TEM images for h-BN/Pd:17+C after 10000 cycles. 
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Figure 6.22. TEM images for Pd NPs before and after 10000 cycles. 

 

Figure 6.23. TEM images for commercial Pd/C before and after 10000 cycles. 

Finally, the highly stability of h-BN nanosheets is another vital reason for the exceptional catalytic 

activity, particularly the durability of the heterostructured catalysts. The TEM images show that Pd still 

maintains the uniform dispersion on h-BN support after long cycling as compared with Pd NPs and 

commercial Pd/C (Figure 6.19c and 6.21-23),   indicating the excellent structure stability of h-

BN/C/Pd:17 and h-BN/Pd:17. These results further suggest that the h-BN can efficiently confine the Pd 

NPs via strong interfacial coupling to assure the structure integrity of heterostructures and high catalytic 

activity. 

6.4. Conclusion 

In summary, h-BN nanosheets are for the first time demonstrated as a multifunctional support for 

engineering durable and efficient heterostructured electrocatalysts for ORR. The multifunctional h-BN as 

a platform not only suppresses the agglomeration of Pd NPs, maximizing the exposure of active sites, but 

also endows the heterostructures with a superhydrophobic surface, facilitating the adsorption capability 

and diffusion kinetics of O2. More importantly, due to the strongly chemical confinement of robust h-BN 

NSs, Pd achieves compressive strain and descending surface electron density, which lead to the downshift 
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of Pd d-band center, and accordingly weakening the adsorption capability of intermediates on Pd active 

centers. Therefore, these results further demonstrate that engineering heterostructures with well-defined 

interface provides a feasible strategy for the application in catalytic field. 
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Chapter 7  

7. General Conclusions and Outlook 

7.1. General Conclusions 

In this doctoral thesis work, heterostructured electrocatalysts with well-defined interface towards 

enhanced OER, HER, and ORR kinetics are summarized. The construction of heterointerface in three 

heterostructured electrocatalysts has created a series of novel physicochemical properties and synergistic 

effects, efficiently optimizing the affinity of reactants, intermediate species, or products, and facilitating 

the electrocatalytic kinetics. 

Specifically, in GCNN heterostructures, owing to the superhydrophilicity of functionalized GCN, the 

surface wettability of GCNN (contact angle 0°) was substantially improved as compared with bare 

Ni(OH)2 (contact angle 21°). Besides, GCN nanosheets can effectively suppress Ni(OH)2 aggregation to 

help expose more active sites. Benefiting from the well-defined catalyst surface/interface, the optimal 

GCNN hybrid showed significantly enhanced electrochemical performance over bare Ni(OH)2 nanosheets, 

although GCN is electrochemically inert.  

For the MoSe2/SnS2 heterostructures, due to the presence of SnS2 quantum dots, the dissociation kinetics 

of the heterostructures and water adsorption capability of MoSe2 nanosheets can be significantly 

enhanced. Meanwhile, the coupled SnS2 via strong chemical bonds at the interface of heterostructures 

efficiently avoids the agglomeration of active MoSe2 nanosheets, facilitating to maintain the exposure of 

active sites. As a results, the optimal MoSe2/SnS2 heterostructured catalysts delivers a much lower 

overpotential of 285 mV than MoSe2 (367 mV) to reach a current density of 10 mA cm-2 in 1 M KOH. 

DFT calculations further reveal that the presence of SnS2 significantly promotes the water adsorption 

capability of MoSe2 nanosheets. 

In h-BN/Pd heterostructured electrocatalysts, the robust h-BN were served as a durable platform to ensure 

the structural integrity of the heterostructured catalyst, uniform distribution of Pd NPs and maximal 

exposure of the active sites. More importantly, the h-BN is capable of modulating the electronic structure 

of Pd active centers by establishing unique heterostructrued interfaces, downshifting the position of Pd d-

band center accordingly and eventually optimizing the affinity with the reaction intermediates for faster 

reaction kinetics. Meanwhile, due to the presence of superhydrophobic h-BN, an unique 
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superhydrophobic surface of the heterostructures have been created, which promoted the adsorption 

capability and diffusion kinetics of O2. As a results, benefiting from the favorable characters of 

constructing well-defined heterointerface, the optimal heterostructured catalyst delivers exceptional ORR 

catalytic performance with a high half-wave potential, enhanced mass and specific activity, and decent 

durability. Therefore, engineering well-defined heterointerface based on 2D-material-based 

heterostructures is a promising strategy for electrocatalysis applications. 

 

7.2. Outlook 

Even though substantial efforts have been devoted to the design and development of 2Dmaterial-based 

heterostructured electrocatalysts with well-defined interface, the precisely controllable synthesis and cost-

effective commercial applications remain challenging. Therefore, more attentions should be paid to 

developing 2D material-based heterostructures in the following aspects: 

Firstly, one of the greatest challenges relies on how to achieve precisely controllable construction and 

understanding of hetero-interface in 2D nanomaterial-based heterostructures with desired chemical 

composition, coordination chemistry, and geometric structure. 

Secondly, although there have been remarkable progresses in the development of high-performance 2D 

heterostructured electrocatalysts, some fundamental principles for their activity origins and relevant 

structure-property relationships in many electrocatalytic processes are still unclear. For example, the 

obstacles facing the alkaline HER and acidic OER are their inconclusive activity descriptors. This is 

mainly because of the limited approaches to monitoring the real electrocatalytic reaction processes and 

the complex interface chemistry of the heterostructured electrocatalysts. 

Thirdly, ex-situ advanced characterizations have been extensively applied in the investigation of the 

structure evolution of the electrocatalyst over the electrochemcial reactions. However, these technologies 

cannot probe the most important factors, i.e. the reaction intermediates, during the electrocatalytic 

processes. Appropriate in-situ and operando characterization techniques (such as in-situ TEM, XAS, XPS, 

IR, and Raman) need to be developed to gain more in-depth understanding of the electrochemical 

reactions and to clearly unravel relevant fundamental mechanisms.  

Finally, the practical application of 2D material-based heterostructured electrocatalysts is still a big 

concern. The large-scale production and cost of electrocatalysts are still bottlenecks towards commercial 

application. Further, specific efforts should also be made to evaluate the catalytic performance in 



 
 
 
 
Chapter 7 General conclusions and outlook 

113 
 

prototype devices.  
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