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An unsupervised deep learning technique for susceptibility artifact correction in
reversed phase-encoding EPl images

Abstract

© 2020 Elsevier Inc. Echo planar imaging (EPI) is a fast and non-invasive magnetic resonance imaging
technique that supports data acquisition at high spatial and temporal resolutions. However, susceptibility
artifacts, which cause the misalignment to the underlying structural image, are unavoidable distortions in
EPI. Traditional susceptibility artifact correction (SAC) methods estimate the displacement field by
optimizing an objective function that involves one or more pairs of reversed phase-encoding (PE) images.
The estimated displacement field is then used to unwarp the distorted images and produce the corrected
images. Since this conventional approach is time-consuming, we propose an end-to-end deep learning
technique, named S-Net, to correct the susceptibility artifacts the reversed-PE image pair. The proposed
S-Net consists of two components: (i) a convolutional neural network to map a reversed-PE image pair to
the displacement field; and (ii) a spatial transform unit to unwarp the input images and produce the
corrected images. The S-Net is trained using a set of reversed-PE image pairs and an unsupervised loss
function, without ground-truth data. For a new image pair of reversed-PE images, the displacement field
and corrected images are obtained simultaneously by evaluating the trained S-Net directly. Evaluations on
three different datasets demonstrate that S-Net can correct the susceptibility artifacts in the reversed-PE
images. Compared with two state-of-the-art SAC methods (TOPUP and TISAC), the proposed S-Net runs
significantly faster: 20 times faster than TISAC and 369 times faster than TOPUP, while achieving a similar
correction accuracy. Consequently, S-Net accelerates the medical image processing pipelines and makes
the real-time correction for MRI scanners feasible. Our proposed technique also opens up a new direction
in learning-based SAC.
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Abstract

Echo planar imaging (EPT) is a fast and non-invasive magnetic resonance imaging technique that supports data acquisition
at high spatial and temporal resolutions. However, susceptibility artifacts, which cause the misalignment to the
underlying structural image, are unavoidable distortions in EPI. Traditional susceptibility artifact correction (SAC)
methods estimate the displacement field by optimizing an objective function that involves one or more pairs of reversed
phase-encoding (PE) images. The estimated displacement field is then used to unwarp the distorted images and produce
the corrected images. Since this conventional approach is time-consuming, we propose an end-to-end deep learning
technique, named S-Net, to correct the susceptibility artifacts the reversed-PE image pair. The proposed S-Net consists
of two components: (i) a convolutional neural network to map a reversed-PE image pair to the displacement field; and
(ii) a spatial transform unit to unwarp the input images and produce the corrected images. The S-Net is trained using a
set of reversed-PE image pairs and an unsupervised loss function, without ground-truth data. For a new image pair of
reversed-PE images, the displacement field and corrected images are obtained simultaneously by evaluating the trained
S-Net directly. Evaluations on three different datasets demonstrate that S-Net can correct the susceptibility artifacts
in the reversed-PE images. Compared with two state-of-the-art SAC methods (TOPUP and TISAC), the proposed
S-Net runs significantly faster: 20 times faster than TISAC and 369 times faster than TOPUP, while achieving a similar
correction accuracy. Consequently, S-Net accelerates the medical image processing pipelines and makes the real-time
correction for MRI scanners feasible. Our proposed technique also opens up a new direction in learning-based SAC.

Keywords: Susceptibility artifacts, deep learning, unsupervised learning, echo planar imaging, reversed phase-encoding.

1. Introduction are acquired using identical sequences but with opposite
PE directions. The main idea is that the SAs appear
inversely in the pair of reversed-PE images [6, 7, 8;
therefore, the middle version of the reversed-PE image
pair is considered the corrected image [3]. Conventionally,
the reversed-PE SAC methods involve two steps. In the
first step, a displacement field along the PE direction is
estimated by optimizing an objective function of one or
more reversed-PE image pairs. Only the displacement
field! along the PE direction is estimated since the
displacements in the other directions are less significant
[2, 9, 10]. In the second step, the estimated displacement
field is used to unwarp the distorted images and produce
the corrected images. This conventional approach is
time-consuming, especially for input images with large
sizes or severe displacements. Consequently, these SAC
methods are unsuitable for time-sensitive applications, for
example correction on an MRI scanner.

To reduce the processing time, we propose an
unsupervised deep learning technique, called S-Net, for

Echo Planar Imaging (EPI) is the technique of choice
for most functional magnetic resonance imaging (fMRI)
and diffusion-weighted imaging (DWTI) applications due to
its fast imaging capability. Despite its popularity, EPI
is sensitive to the local field inhomogeneities, which are
caused by magnetic susceptibility differences of various
imaged tissues, e.g. air versus bone, and fat versus blood
[1, 2]. The field inhomogeneities affect the spatial encoding
of the signal, resulting in intensity modulations and
local image distortions (i.e. stretching and compressing)
[3].  These distortions are known as susceptibility
artifacts (SAs). They cause the misalignment to the
underlying structural image, subsequently leading to
incorrect localization of analysis results, such as the wrong
activation patterns in the fMRI studies. SAs are more
severe at high field strengths [4, 5], which have become
widely used.

Several susceptibility artifact correction (SAC) methods
rely on two reversed phase-encoding (PE) images, which

*Corresponding author IFor the rest of this paper, the term displacement field will refer
Email address: stmd795@uowmail.edu.au (Soan T. M. Duong) to the displacement field in the PE direction.
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correcting the susceptibility artifacts in 3D reversed-PE
images. A convolutional neural network (CNN) is used
to map a pair of reversed-PE images to the displacement
field in the PE direction. Then, a differentiable spatial
transform unit is used to unwarp the input (distorted)
image pair via the predicted displacement field. The S-Net
is trained in an end-to-end manner using a training set
of reversed-PE image pairs. After training, correcting
a new 3D reversed-PE image pair is achieved by simply
evaluating the trained S-Net on the given input images.
This approach, therefore, avoids the highly computational
cost of the existing iterative optimization approaches.

The contributions of this paper are highlighted as
follows.

1. We design a convolutional encoder-decoder network to
map a 3D reversed-PE image pair to the displacement
field. The network consists of an encoder for image
downsampling and a decoder for image upsampling.
The encoder uses a series of convolutional (conv)
layers and leaky rectified linear units (LeakyReLUs)
to extract hierarchical image contents. The decoder
uses a series of conv layers, LeakyReLUs, and
upsampling layers to recover the full-resolution image
features and estimate the displacement field. A
spatial transform unit is designed to unwarp the 3D
input images along the PE direction and produce an
output image pair. To the best of our knowledge,
the proposed technique is the first attempt at using
a learning-based approach with an convolutional
encoder-decoder to correct the susceptibility artifacts.

2. We explore an wunsupervised learning strategy in
design the proposed S-Net. The term unsupervised
learning arises from the fact that the S-Net is trained
without additional ground-truth information, e.g.
the “desired” displacement field or the “desired”
corrected images, which are impractical to acquire.
In our approach, the S-Net is trained by maximizing
the similarity of the output image pairs and the
smoothness of the displacement field, which are
inspired by the traditional reversed-PE based SAC
methods.

3. We evaluate the performance of the proposed
technique and compare it with existing SAC methods
using three datasets. The datasets include one dataset
acquired by our team using a 7 Tesla (T) scanner,
and two public datasets acquired using a 3T scanner
and published by the Human Connectome Project
(HCP) [11]. The experimental results show that
our unsupervised S-Net provides the corrected images
which are comparable to results of state-of-the-art
SAC methods while requiring fewer computational
resources and no additional data, such as structural
images.

The remainder of this paper is organized as follows.
Section 2 presents the related work, and Section 3
introduces the proposed method. Section 4 presents

experiments and analysis of the proposed method and the
related methods. Finally, Section 5 summarizes our work.

2. Related work

In this study, we investigate the reserved-PE based SAC
because of its efficiency and popularity. This SAC
approach is used to correct the fMRI and DWI data in
the biggest MRI neuroimaging dataset - the HCP with
1200 subjects of multiple MRI modalities [12, 13]. Recall
that the reserved-PE SAC first estimates the displacement
field based on a pair of images acquired using an identical
sequence but with opposite PE directions. The corrected
images are then obtained by unwarping the distorted
images via the estimated displacement field.

The conventional reversed-PE approach usually
formulates SAC as an iterative optimization problem
to estimate the displacement field. An overview of the
conventional reversed-PE SAC methods is presented
in Section 2.1. Besides, to the best of our knowledge,
there have not had any reversed-PE SAC method using
deep-learning based approach. Since the reversed-PE SAC
can be cast as a symmetric non-rigid image registration
problem, an overview of the learning-based non-rigid
registration is presented in Section 2.2.

2.1. Conventional reversed-PE SAC

Several reversed-PE methods, as summarized in Table 1,
have been proposed for correcting the susceptibility
artifacts. The reversed-PE based SAC approach
was initially introduced by Chang and Fitzpatrick for
structural images [3]. They proposed a “cumulative
line-integral” method to find the corresponding points,
which are used to determine the displacement in two
corresponding lines along the PE direction of the given
reversed-PE images. An implementation of the method in
[3] for 2D EPI was done by Bowtell et al. [17].

The corrections of the method proposed in [3] are not
smooth since it estimates the displacement in each line
along the PE direction independently, without considering
the surrounding lines. To overcome this problem,
Andersson et al. proposed an alternative method to
estimate the displacement field [9]. They considered the
displacement at a pixel as a function of discrete cosine
basis functions to construct an objective function; this
method is called TOPUP, and it is integrated into the
FSL package”.

Several methods have considered the reversed-PE based
SAC as a registration problem. The two distorted
reversed-PE images are registered so that their corrected
versions are as similar as possible.  Holland et al.
proposed the first registration framework to correct SAs
in the reversed-PE images [8]. To obtain the more
realistic corrected images, Ruthotto et al. introduced

2Website: fsl.fmrib.ox.ac.uk/fsl/fslwiki/topup



Table 1: Representative reversed-PE based methods for correcting SAs.

Authors Year

Description

Chang and 1992

Fitzpatrick
Andersson 2003
et al.

Holland et al. 2010

Ruthotto et al. 2012
Irfanoglu et al. 2015
2018
2020

Duong et al.

Duong et al.

Introduce the theoretical justification of the correction using reversed-PE images; correct each 1D image
along the PE direction by finding pairs of corresponding points in the given two images.

Model the displacement as a function of discrete cosine basis functions (called TOPUP).

Model the reversed-PE SAC as a diffusion registration problem.

Introduce an additional non-linear regularizer into the diffusion regularized problem (called HySCO).
Use a T2, image and the cross-correlation measure.

Use a T, image and the normalized gradient field measure.

Incorporate a T, image into the reversed-PE registration, and select the regularization parameters

automatically by using the Bayesian optimization (called TISAC).

a regularization term, inspired by the hyper-elastic
registration, into the registration framework [10]. This
method is called HySCO, and its implementation is
included in the SPMI12 toolbox®. To improve the
alignment of the corrected images to the anatomical image,
Irfanoglu et al. added a regularization term based on
the anatomical T, image into the reversed-PE SAC
registration [14]. Instead of using the Tg, image, Duong
et al. introduced the Ty, image into the regularization
term, as the Ty, image is routinely acquired in a brain
study [15]. They also improved their method to select
automatically the regularization parameters by using the
Bayesian optimization [16]; this method is called TISAC.

The main drawback of the reversed-PE based SAC
methods is the high computational cost at test time
because of the optimization step. For example, to
correct a pair of reversed-PE images with a size of
192 x 192 x 36 voxels, TOPUP takes approximately
12 minutes, and TISAC and HySCO take about a
minute [16]. Furthermore, HySCO’s accuracy depends
on the regularization parameters, and TISAC requires an
additional structural image.

2.2. Learning-based non-rigid image registration

Non-rigid image registration is typically formulated as an
optimization problem to seek a non-linear correspondence
for every pixel (or voxel) between a moving image
and a fixed image. This approach could be slow due
to the required iterative optimization. Learning-based
registration is an approach to avoid the iterative
optimization. The recent development in convolutional
neural networks has shown remarkable successes in solving
the image registration problem [18, 19, 20].

Several learning-based image registration methods have
been proposed. Those methods usually consist of two
parts: (i) a network to map the input image pair

3Website: www.diffusiontools.com/documentation/hysco.html

(fixed image and moving image) to displacement fields®;
and (ii) a spatial transform unit to unwarp the input
moving image via the predicted displacement fields. In
term of ground-truth requirement for training, we group
the registration methods into two categories: supervised
registration and unsupervised registration.

The supervised registration methods usually train the
mapping network by minimizing the difference between
the output and desired displacement fields [21, 22, 23,
24, 25]. The desired displacement fields can be real [24];
however, most of them are synthesized using conventional
registration methods, such as LDDMM shooting algorithm
[22, 26] and SimpleITK® [23]. The mapping network
can be designed as a patch-based CNN [21, 22, 23], a
dual-stream CNN [24], or a convolutional encoder-decoder
[25].  The supervised registration methods present a
promising direction. However, artificial displacement fields
are tedious to acquire and can restrict the types of
deformations.

The unsupervised registration methods often combine
the mapping network and the spatial transform unit into
an end-to-end model, which takes an input image pair
(fixed image and moving image) and produces a correction
of the moving image. The network is trained with the
loss function reflecting the smoothness of the displacement
fields and the similarity between the input fixed image and
the corrected moving image [27, 28, 29, 30]. The mapping
network can be designed as a fully convolutional network
[27, 28], or a convolutional encoder-decoder [29, 30].
The spatial transform unit can be implemented with
deconvolutional operators [27], a cubic spline interpolation
scheme [28], or a linear interpolation scheme [29, 30].
Note that the methods with the interpolation schemes are
inspired by the spatial transformer network [31].

4The image registration estimates the displacements in all
dimensions for every pixel (voxel). In the 3D image registration,
thus, three displacement fields are estimated.
Shttp://www.simpleitk.org/
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Figure 1: The proposed learning framework (S-Net) for correcting the SAs in reversed-PE images. The S-Net accepts a pair of reversed-PE

images and produces the displacement field and the corrected images.

3. The proposed deep learning technique for SAC

This paper introduces a deep learning technique, called
S-Net, for correcting a pair of 3D reversed-PE images.
Fig. 1 illustrates an overview of the proposed S-Net. It
consists of two parts: (i) a mapping function to estimate
the displacement field U from a pair of 3D reversed-PE
images I; and Iy; and (ii) a spatial transform unit to
recover the corrected images by unwarping the input
images with the estimated 3D displacement field. Note
that the computations in the S-Net are performed in 3D.

The mapping function fg : (I1,I3) = U is modeled by a
deep CNN, where 0 is the network parameters. Here, U is
the 3D displacement field along the PE direction of image
I to the corrected image. Due to the inverse distortion
property in the PE direction of the SAs, the displacement
field of image I to the corrected image is —U. The detail
of the CNN architecture is presented in Section 3.1.

The spatial transform unit unwarps images I; and I
using the computed displacement field. The unwarping
returns the corrected images, expressed as [I 1®(G+U )}
and [I, ® (G — U)], where G is the identity transform
(i.e. the regular grid), and ® is the sampling operator.
The detail of the spatial transform unit is presented in
Section 3.2.

In the training phase, the network parameters 6 are
learned to produce the best estimation of the displacement
field and the corrected images. The displacement field is
good if unwarping the input images using it produces the
corrected images as similar to each other as possible. The
goal of training is to minimize a loss function with respect
to the network parameters 0 on a training dataset. In this
work, the loss function is unsupervised. It captures the
similarity of the corrected images and the smoothness of
the displacement field. The detail of the unsupervised loss
function is presented in Section 3.3.

Although the proposed S-Net is inspired by the
VoxelMorph network presented in [29], we provide several
new contributions. First, the loss function in [29] is

computed from the input image and the output image
of VoxelMorph, while our loss function is computed from
the two output images of S-Net. Second, VoxelMorph is
designed for registering a moving T;-weighted (T1,,) image
to a fixed Ty, image, while S-Net is designed for correcting
the susceptibility artifacts in a pair of EPI images
acquired with reversed phase encoding. In VoxelMorph,
the deformation is caused by affine transformations or
anatomy differences between subjects. In contrast, in
S-Net the deformation is caused by intrinsic magnetic
susceptibility differences of tissues when putting in a
magnetic fields.

3.1. CNN architecture for mapping

The mapping CNN architecture used in our method (see
Fig. 2) is inspired by the U-Net [32], the VoxelMorph
[29], and the DL-GP [33]. It accepts a two-channel image
formed by concatenating two 3D reversed-PE images, and
produces a 3D displacement field of the same size as the
input images. The mapping network consists of an encoder
(left side) and a decoder (right side). Both the encoder and
decoder use a kernel size of 3 for their 3D conv layers.

Encoder Decoder

R Skip_connegtion__________ - D4 5 5

sabew jndu|
n pley dsia

1 1 1 1 1

Figure 2: The convolutional neural network for mapping a pair of
reversed-PE images to the displacement field. Boz: output feature
maps of a unit. Number inside each box: the number of feature maps
in the unit. Number below each box: feature map size relative to the
full input image size.

The encoder consists of four units E1, E2, E3 and E4;
each unit consists of a conv layer and a LeakyReLU with
a slope coefficient of 0.2. In the encoder, the conv layers



have a stride of 2 to reduce the size of their input feature
maps by half. With this scheme, succeeding units of the
encoder extract hierarchical features of the input image
pair.

The decoder consists of seven units D1 to D7. Units
D1, D2, D3, and D4 each consists of a conv layer, a
LeakyReLU, and an upsampling layer. Each upsampling
layer doubles the size of its feature maps, so the output
feature maps of D4 have the same size as the input images
I, and I. Units D5, D6, D7 each consists of a conv layer
and a LeakyReLU. To retain more local information when
upsampling and reduce the effects of vanishing gradients in
training, skip connections are introduced in the network,
as indicated in Fig. 2. For example, the 3D input images
I and Iy are concatenated to the outputs of D5 before
being fed to the next unit. The output feature maps of E1
are concatenated to the outputs of D3 before being fed to
the next unit.

3.2. Spatial transformation unit for unwarping

This section presents the spatial transformation unit
(STU), which is used to unwarp the distorted images
and form the corrected images. The S-Net is trained
by minimizing the loss function via a gradient-based
algorithm, so the STU must be differentiable. Inspired
by the spatial transformer network [31], we construct a
differential STU unit, as illustrated in Fig. 3.

Regular grid G Uncorrected img. /

Corrected img.

Sampling grid
G+U 1® (G +U)

Displ. field U
—

D—
Sampling grid
generator

Sampler

Figure 3: Spatial transformation unit for unwarping distorted image
via the displacement field.

In unwarping operations, the value for voxel p =
(pz, Py, p2) of the corrected image [I ® (G + U)] is taken
from the distorted image I at voxel p’ = (po+U(P), Py, P=)-
This paper uses the convention that the PE direction is
in the first dimension. Because p’ may have continuous
coordinates, image interpolation is required. In this study,
we use the linear interpolation to estimate the output voxel
value:

[I&(G+U)|(p) = 1—(ph—q1,2) I (a1)+[1—(g2,.—P,)] I (q2)

(1)
where q; and qo are two neighbors of voxel p’ along
the first dimension with ¢; ., < Pl < 2. The linear
interpolation is selected due to its differentiability and
computational efficiency.

8.8. Loss function for unsupervised network learning

This section introduces an unsupervised loss function
to train the S-Net. Note that the proposed loss
function is based on the output of the S-Net, i.e. the
displacement field and two output images. It consists
of two components: Lgm and Lgmooth- Lsim penalizes
the differences between two estimated-corrected images,
whereas Lqmootn penalizes the local spatial variations in
U. For 3D input images I; and Is, let E; and E5 be the
two corresponding 3D output (corrected) images. The loss
function is defined as

£(Il, I27 U) = Esim(Eh EQ) +A ‘Csmooth(U)7 (2)

where A is a positive regularization parameter.

In this study, we use the local cross-correlation (LCC)
for Lgm for two reasons. First, LCC is suitable to
measure the similarity of images with the same modality
(i.e. the corrected images). Second, LCC is more robust to
intensity variations found across scans and datasets [35].

The LCC measure can be explained as follows. Consider
an image X. Let X be the local mean image obtained by
applying an n X n X n averaging filter on X. The local
mean-removed image X is computed as

X=X-X. (3)

For a given voxel p, let W(p) denote the set of voxels in
the n X n x n volume centered on p. For a pair of images
FE; and Es, we compute an image C':

S Bip) Bapn)

pi€W(p) .
> B Y [Ea(pa)]?

PiEW(p) piEW(p)

C(p) = (4)

The LCC measure for 3D images E; and F5 is now
computed as

LCC(Ey, Bz) = C(p), (5)

where the summation is over all image voxels. A higher
LCC indicates more similarity between two output images.
We now can express Lgim (E1, E2) as

Esim(Ela EQ) =1- LCC(E1, EQ) (6)

Minimizing Lgmn increases the similarity between the
output images F; and FE5, but it may generate a
non-smooth and physically unrealistic displacement field
U. 1In this paper, we enforce the smoothness of the
displacement field U using the diffusion regularizer on the
spatial gradient of the displacement field U

Lamoon(U) = Y VU (D)%, (7)

pEQ



8 ) ) .
where VU (p) = ( %i‘”, %LW, Zgz") ). The voxel difference

is used to approximate VU (p), for example

9 (p)

) Ulpaspsp). (8)

~U(pe +1,py,p2) —
The proposed S-Net is trained by optimizing the loss
function with respect to (w.r.t.) the trainable parameters
6. This is often done using stochastic optimization
algorithms. In this paper, we adopt the adaptive moment
estimation, known as Adam, [36]. This algorithm starts
with an initial guess of 8. The next estimate of 0 is
computed iteratively as
0t+1 = 0t —

my
Vo + € )
where subscript ¢ is the iteration number, o is a
positive learning rate, m; is the estimator of the first
bias-corrected moment, and v; is the estimator of the
second bias-corrected moment. Here, ¢ is a very small
positive scalar used to avoid the division by zero resulted
from the vanishing gradients. Let VgL; be the gradient
of the loss function on the mini-batch at step ¢ w.r.t. the
parameters 6. The estimators at step t are defined as

— Brmg—1 + (1 — B1)VeL,
o AL ’

(10)

2
vy = Bavi_1 —&-1(1?6552[%9&] 7 (11)

where hyper-parameters 8 and (2 are the exponential
decay rates for the first and the second estimators. Kingma
and Ba suggested the following hyper-parameter values:

By =0.9 and B, = 0.999 [36].

4. Experiments and analysis

This section presents the experiments and analysis of the
proposed S-Net. Section 4.1 describes the datasets used in

the experiments, and Section 4.2 explains the experimental
methods. Section 4.3 analyzes the regularization and
learning rate parameters. Sections 4.4 and 4.5 compare the
correction accuracy and processing time of the proposed
method with other representative methods, respectively.
Finally, Section 4.6 discusses the experimental results.

4.1. Description of datasets

The S-Net technique was evaluated using three datasets:
fMRI-7T, fMRI-3T, and DWI-3T. The datasets are diverse
in the acquisition sequence, modality, distortion property,
field strength, resolution, image size, and dataset size. A
summary of these datasets is presented in Table 2.

The fMRI-7T is a sub-millimeter dataset, which was
acquired by our team for a retinotopic mapping fMRI
study. It includes data of three healthy subjects acquired
using a 7T scanner. Each subject was scanned in seven
to ten experimental runs with the PE direction from
left-to-right (LR). Each subject was also scanned in two
short runs with the PE direction from right-to-left (RL),
20 seconds each. Each experimental run produced 183 or
187 images, and each short run produced 10 images. All
images were motion-corrected using SPM12 tools [37]. To
remove redundancy, we computed the mean image of each
scan. The mean image of each experimental run was paired
with the mean image of its respective inverse, resulting in
25 reversed-PE image pairs in total.

The fMRI-3T is a subset of the unpreprocessed 3T fMRI
data in the public HCP dataset for studying functional
connectivity of the human brain [12]. It includes data
of 182 healthy subjects from the group Subjects with 7T
MR Session Data. Each subject was scanned in 11 to 18
runs, using a customized Siemens 3T scanner. Each run
contained two spin-echo images acquired by an identical
sequence but with the PE direction alternated between
RL and LR.

The DWI-3T is a subset of the unpreprocessed 3T DWI
data in the public HCP dataset for reconstructing the
complex axonal fiber architecture [12, 38]. It includes

Table 2: A summary of the datasets used in the experiments.

Datasets No.. Gender dist. Age dist. Image size Resolution Acq. Field . PE.
subjs. sequences |strength| directions
26-30 years: ! 0.833 x 0.833 3D-GRE EPI
. . . x 0. -
fMRI-7T 3 Males: 3|31-35 years: 1] 192 x 192 x 48 % 0.810 mm3 (WIP1080 [34]) 7T LR and RL

over 36 years: 1

22-25 years: 24
26-30 years: 85
31-35 years: 71

over 36 years: 2

Males: 72
fMRI-3T | 182
Females: 110

90 x 104 x 72

Single-band 2D

spin-echo EPI 3T LR and RL

2 X 2 x 2 mm3

22-25 years: 23
26-30 years: 84
31-35 years: 71

over 36 years: 2

Males: 71
DWI-3T 180

Females: 109

144 x 168 x 111

Single-band 2D

3
1.25 x 1.25 x 1.25 mm spin-echo EPT

3T LR and RL

Abbreviations: LR = left-to-right; RL = right-to-left.
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Figure 4: Validation loss of S-Nets versus the regularization parameter A and learning rate . The value pairs (o, A) are found by the TPE
algorithm. The color indicates the value of the validation loss; the star indicates the pair (o, A) with the lowest validation loss.

data of 180 healthy subjects from the group Subjects
with 7T MR Session Data. Each subject has three pairs
of reversed-PE images. Each image pair was acquired
using an identical spin-echo sequence but with the PE
direction alternated between RL and LR. The fMRI-3T
and DWI-3T datasets used different spin-echo sequences,
and consequently had different image modalities.

Table 3: A summary of the training set and test set for each of the
three datasets.

Training set Test set
Datasets
No. subjects| No. pairs [No. subjects| No. pairs
fMRI-7T 2 13 1 9
fMRI-3T 156 2774 26 624
DWI-3T 150 436 30 90

4.2. Experimental methods

This section describes the S-Net implementation and the
experimental setup. To implement the S-Net, we used
Keras [39] with TensorFlow as the backend [40].

To evaluate the S-Net models, we split each dataset into
a training set and a test set, as summarized in Table 3. The
training set was used to select the hyper-parameters and
train S-Net models, and the test set was used to evaluate
the network performance.

To analyze the hyper-parameters, including the learning
rate o of the Adam optimizer and the regularization
parameter A of the loss function in (2), we trained
the S-Net model with multiple trials of hyper-parameter
values. The trials were selected using the Tree of Parzen
Estimator (TPE) algorithm from the Hyperopt library
[41, 42, 43]. The objective function used in the TPE
algorithm was the validation loss, which is the mean of
the LCC measures between the pairs of output images
from subsets of the training sets. For each dataset, the
hyper-parameter values with the best validation loss were

selected for training the S-Net. Network training was done
with a batch size of 3 for 1500 epochs.

To measure the correction accuracy of the proposed
method, we computed the corrected images of the test sets
using the S-Net and two state-of-the-art SAC methods,
i.e. TOPUP [9] and TISAC [16]. The S-Net output
images were then compared with the uncorrected images,
and the output images produced by the two existing
SAC methods. For accuracy comparison, we considered
two types of similarity: (i) EPI similarity between the
pair of reversed-PE images; and (ii) anatomical similarity
between the EPI image and its corresponding T1,, image.
The normalized mutual information (NMI) is used to
measure the similarity. The NMI value range is from 0
(no mutual information) to 1 (complete correlation). In
summary, we used two accuracy measures: FPI-NMI and
anatomical-NMI.

To evaluate the processing speed, for each of the three
SAC methods, we measured the times for two main tasks:
(i) correcting the distorted image pair; and (ii) unwarping
the distorted images given the displacement field. For
the S-Net, image correction was done by evaluating the
trained model with the input reversed-PE images, and
unwarping was done via the spatial transformation unit.
This experiment was conducted on the DWI-3T dataset.
As shown in Table 2, this dataset has the largest image size
and also the second largest number of subjects. All timings
were reported on an Ubuntu 18.04.3 LTS workstation with
an Intel Core i5-9600K Processor 3.6 GHz, 32 GB RAM,
and an NVIDIA GeForce RTX 2080 GPU.

4.3. Analysis of hyper-parameters

This section analyzes the effects of two hyper-parameters
of the model: the learning rate a of the Adam optimizer
and the regularization parameter A of the objective
function in (2). Fig. 4 shows the validation loss for
different values of o and A for the three datasets. The



Figure 5: Representative visual results of SAC methods. Column 1:
input uncorrected images. Columns 2, 3, and 4: output corrected
images produced by TOPUP, TISAC, and S-Net, respectively. Rows
1 and 2: left-right and right-left phase-encoding EPI images,
respectively. Row 3: absolute difference of LR and RL images.

dot represents the values of the pair (a, A) produced by
the TPE algorithm. The color of the dot encodes the
validation loss: a dark color denotes a low validation
loss, and a light color denotes a high validation loss. In
each plot, the star (x) indicates the value pair (a, A) that
provides the lowest validation loss for the dataset.

Table 4: Hyper-parameter values used in training the S-Net models
for the three datasets.

Hyper-params fMRI-7T fMRI-3T DWI-3T
o 5.6e-4 7.87e-5 8e-5
A 0.017 1.344 0.333

Fig. 4 shows that for the fMRI-7T dataset, the
validation loss is small when o € (0.0003,0.001) and
A € (0,0.0001). For the fMRI-3T dataset, the validation
loss is small when « € (0,0.0001) and A € (0,2). For
the DWI-3T dataset, the validation loss is small when
a € (0,0.0001) and X € (0,1). These results show that
there are several choices for (a, A) that can give acceptable
performances. The suitable values for (o, A) as indicated
by the TPE algorithm are summarized in Table 4.

4.4. Comparison with other methods in correction

accuracy

This section presents both visual results and quantitative
metrics of the proposed S-Net technique on the test sets.
Fig. 5 shows one representative slice of uncorrected and
corrected images from each of the three test sets. Each
example includes the two reversed-PE images (Rows 1 and
2) and the absolute difference of the image pair (Row 3). It
can be seen from Fig. 5 that S-Net removes the distortions
in the uncorrected images. In addition, S-Net produces
the comparable output images as TOPUP and TISAC.

Table 5 summarizes the statistical comparison of S-Net
versus the uncorrected data (i.e. no correction) and the
two SAC methods on the test sets. The p-values are
computed by the paired t-tests on the NMI measures
between the S-Net outputs and the compared images. The
null hypothesis is Hg : mg.Net = Mother- A p-value smaller
than .05 indicates that the null hypothesis is rejected at
a confidence level of 95%. In other words, there is a
significant difference in the NMI measures between the
S-Net outputs and the compared images.

Table 5 indicates that the S-Net technique improves
both the EPI-NMI and anatomical-NMI measures of the
uncorrected images significantly. The S-Net improves the
NMI measures in most cases when compared to the other
SAC methods. However, differences in the mean NMI
measures between S-Net and the two SAC methods are
small (see the visual comparisons in Fig. 6). In summary,
S-Net is able to remove the geometric distortions in the
reversed-PE images, and produce the corrected images at
the same accuracy level of TOPUP and TISAC.



Table 5: Statistical comparisons of the NMI measures between the S-Net technique versus the uncorrected data and other two existing SAC

methods on the test sets.

EPI-NMI Anatomical-NMI
Datatypes fMRI-7T fMRI-3T DWI-3T fMRI-7T fMRI-3T DWI-3T
mean £ std |p-valug mean + std |p-value] mean £ std |p-value| mean + std |p-value] mean + std |p-value| mean + std |p-value
Uncorrected|0.302 £ 0.003 | 0.000 |0.442 £+ 0.023 | 0.000 |0.282 £ 0.017| 0.000 |[0.147 £+ 0.014| 0.000 |0.733 £ 0.014| 0.000 [ 0.675 £ 0.012| 0.000
TOPUP |0.943 £ 0.008 | 0.000 |0.995 + 0.001 | 0.000 |0.984 £ 0.003| 0.000 |0.259 + 0.002| 0.000 |0.917 £ 0.011| 0.000 {0.910 + 0.013| 0.000
TISAC 0.990 + 0.001| 0.000 {0.992 £+ 0.002| 0.296 [0.990 £ 0.001| 0.000 |0.250 £ 0.001 | 0.000 | 0.920 £ 0.013]| 0.000 |0.915 £ 0.013 | 0.000
S-Net 0.976 + 0.002 0.992 + 0.000 0.991 + 0.001 0.254 + 0.003 0.924 + 0.012 0.918 + 0.013

The null hypothesis Ho

1.00 0.30
—_—
0.98 028
&
T 0.96 : 026 —em——
)
[t ]
S 094 E=m== 0.24
0.92 0.22
TOPUP  TISAC S-Net TOPUP  TISAC S-Net
1.00 0.96
i _ —
0.98 0.94
=
2 096 0.92
—
o
2 094 0.90
0.92 0.88
TOPUP  TISAC S-Net TOPUP  TISAC S-Net
1.00 0.96
% e ——
093 == 0.94
.
=
? 0.96 0.92
=
A 0.94 0.90
0.92 0.88
TOPUP  TISAC S-Net TOPUP  TISAC S-Net

(a) In EPI-NMI measure (b) In anatomical-NMI measure

Figure 6: Visual comparisons of the accuracy between the S-Net
technique versus other two existing SAC methods on the test sets.
Left column: similarity between the corrected EPI images. Right
column: similarity between the Ti, image and corrected EPI
images. Because of differences in the datasets, the plots are drawn
in different y-axis ranges for clarity.

4.5. Comparison with other methods in processing speed

This section compares the speed of the proposed S-Net
method versus the two state-of-the-art SAC methods.
Table 6 presents the average processing time of SAC
methods for correcting a pair of reversed-PE images.
To correct one reversed-PE image pair, S-Net required
an average of 2.80 seconds, whereas TOPUP required
an average of 1033.03 seconds and TISAC required an
average of 56.49 seconds. Hence, S-Net is 369 times faster
than TOPUP and 20 times than TISAC. Furthermore,
when using the GPU, S-Net took only only 0.96 seconds
to produce the corrected images. To the best of our
knowledge, there is no GPU implementation for TOPUP
and TISAC methods.

Table 7 shows the average runtimes taken to unwarp
a pair of distorted images. To unwarp an image pair,

{ MS_Net = Mother- A p-value below .05 indicates that the null hypothesis is rejected at a confidence level of 95%.

Table 6: Elapsed time (in second) of SAC methods for correcting a
pair of reversed-PE images with a size of 144 x 168 x 111.

Processor TOPUP TISAC S-Net
(mean =+ std.) (mean =+ std.) (mean =+ std.)
GPU - - 0.96 £+ 0.07
CPU 1033.03 £ 382.03 | 56.49 £ 11.71 2.80 £ 0.10

Table 7: Elapsed time (in second) of SAC methods for unwarping
separately two reversed-PE images with a size of 144 x 168 x 111.

Processor TOPUP TISAC S-Net
(mean =+ std.) (mean =+ std.) (mean =+ std.)
GPU - - 1.33 £+ 0.03
CPU 3.65 + 0.06 3.40 &+ 0.06 1.75 £ 0.09

TOPUP and TISAC required about 3.50 seconds, while
S-Net on CPU required an average of 1.75 seconds,
i.e. about two times faster than TOPUP and TISAC.
S-Net on GPU required an average of 1.33 seconds,
i.e. about 2.5 times faster than TOPUP and TISAC.
The processing time results demonstrate that S-Net is
orders of magnitude faster than both TOPUP and TISAC
for correcting a reserved-PE image pair. Unwarping by
the spatial transform unit employed by S-Net require less
time than the unwarping procedures used in TOPUP
and TISAC. A reason for the fast processing is that
once trained, the proposed S-Net can directly correct the
reversed-PE images. In contrast, existing methods, such
as TOPUP and TISAC, require an additional optimization
step for each test pair of images. Furthermore, the
proposed S-Net has a GPU implementation which can run
significantly faster than the CPU implementation.

Table 8: Training time (in second) of the proposed S-Net model on
different datasets.

Datasets 1 epoch (mean =+ std.) 1500 epochs
Image size
fMRI-7T
18.58 £ 0.24 27,874.11 (0.32 days)
192 x 192 x 48
fmri-3T
mr 238.90 + 2.41 358,356.89 (4.15 days)
90 x 104 x 72
DWI-3T
291.87 £+ 4.97 437,804.00 (5.07 days)
144 x 168 x 111

For completeness, Table 8 summarizes the training time



of the proposed S-Net model for the three datasets. Note
that this training time is incurred only once, and it does
not affect the time for correcting images in the test phase.
In contrast, as shown in Table 6 the existing methods
require significant processing time (iterative optimization)
for each new test image.

4.6. Discussion

This section discusses the proposed S-Net in three aspects:
feasibility, scalability, and limitations. In terms of the
feasibility, the proposed S-Net is able to learn the features
of the reversed-PE images from the training set. The
trained S-Net model can then be applied to unseen data
to obtain the corrected images. The experiment results
on the three different datasets show that the S-Net is
not limited by the image resolution, image size, image
modality, and training set size. Furthermore, it can cope
with different acquisition sequences, such as spin-echo,
gradient-echo, sequences optimized for fMRI (i.e. short
TE, no diffusion gradient), and sequences optimized for
DWI (i.e. long TE, diffusion gradients).

In terms of the scalability, the trained S-Net can produce
equally good corrected images, in comparison to the
state-of-the-art SAC methods. Importantly, to correct
a pair of distorted images, S-Net takes only 3 seconds
using CPU or 1 second using GPU. This fast processing
is desirable as it opens new applications. For example,
the trained S-Net models can be integrated into the
MRI scanner to correct SAs in near real-time, while the
traditional reversed-PE SAC methods are too slow for this
purpose. The trained S-Net models can be used to correct
large-scale datasets, such as the HCP with 1200 subjects,
in a reasonable time and on modest computing platforms.
For example, to correct 1200 image pairs with a size of
144 x 168 x 111 voxels, TOPUP requires an average
of 1,239,636 seconds (about 14 days), while the S-Net
needs only 1,152 seconds (about 19 minutes) on GPU, or
3,360 seconds (56 minutes) on CPU.

The proposed S-Net still has some limitations. First,
as with deep learning it requires significant time to train,
especially for large-scale training sets. Second, arbitrary
input images need to be resized to the image size selected
for training the S-Net. However, robustness to image sizes
can be enhanced by training the S-Net on resized images
from various sources. Furthermore, the training time does
not affect the time for correcting the test image pairs.

5. Conclusion

This paper introduced a novel unsupervised deep learning
technique, S-Net, for correcting susceptibility artifacts in
reversed-PE EPI images in an end-to-end setting. The
proposed S-Net contains a convolutional encoder-decoder
to map a reversed-PE image pair to the displacement
field. The displacement field is then fed to spatial
transform units to unwarp the input images, resulting
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in the corrected images. The S-Net is trained in an
unsupervised manner, without requiring the ground-truth
data. The loss function of S-Net is derived from its outputs
to reflect the similarity of the corrected images, and the
smoothness of the displacement field.

Evaluations on three different datasets demonstrate
that the proposed S-Net technique can provide corrected
images that are comparable with those provided by the
state-of-the-art SAC methods, i.e. TOPUP and TISAC.
Notably, it runs significantly faster than the traditional
SAC methods: about 369 times faster than TOPUP and
20 times faster than TISAC. This speed improvement
allows new applications of the proposed S-Net, such as
the integration into the MRI scanner console.
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