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Parametric studies of cable bolts using a 
modified Short Encapsulation Pull-out Test  

 

Danqi Li1, Hossein Masoumi2 

ABSTRACT: The laboratory short encapsulation pull out test (LSEPT) has been widely 
accepted as the most efficient method to characterize the mechanical behaviour of cable bolts 
under axial loading. In this study, a number of LSEPTs was performed on conventional cable 
bolts including Plain SuperStrand and TG cable bolts using the improved pull out test design. 
The effects of several parameters including the uniaxial compressive strength (UCS) of 
confining medium and grout and the borehole diameter on the mechanical behaviour of both 
cable bolts were investigated. Analysis of Variance (ANOVA) was employed to quantify the 
contribution of these parameters on the responses including peak and residual loads and initial 
stiffness. ANOVA revealed that UCS of confining medium and grout is the key contributing 
factor to the mechanical behaviour of Plain SuperStrand cable bolt. Also, it was demonstrated 
that the borehole diameter had a negligible impact on the overall behaviour of TG cable bolt 
while the peak load of SuperStrand cable bolt was increased due to an increase in the diameter 
of borehole. Finally, from a comparative analysis, it was confirmed that TG cable bolt exhibits 
a higher load carrying capacity than Plain SuperStrand cable bolt. 

INTRODUCTION 

Cable bolts, as well as rock bolts, have been increasingly used for strata reinforcement in 
underground coal mines over the past few decades (Aziz et al., 2016; Aziz et al., 2015; Ghadimi 
et al., 2015; Hyett et al., 1995; Jalalifar and Aziz, 2010; Jalalifar et al., 2006; Li et al., 2017; Li 
et al., 2016). The types of cable bolts which are currently used in the mining industry can be 
classified into two main categories, namely conventional and modified (Li et al., 2017). The 
former is made of several plain steel strands (e.g. plain strand cable bolts) while the latter has 
different forms of deformed structure such as bulb, nutcage or birdcage. 

A number of researchers have investigated the effect of different parameters on the 
performance of conventional cable bolts in service (Chen and Mitri, 2005; Goris, 1991; Hyett et 
al., 1995; Reichert, 1991; Stillborg, 1984). The peak load of the load-displacement performance 
of plain strand cable bolts in pull-out tests was found to increase with encapsulation length 
(Chen and Mitri, 2005; Goris, 1991; Hassani et al., 1992; Hyett et al., 1992; Stillborg, 1984). 
Goris (1991), Reichert (1991), and Stillborg (1984) demonstrated that an increase in 
compressive strength of the grout used to embed the cable bolt lead to an increase in peak 
shear strength of the plain strand cable bolt at the grout to cable bolt interface. The effect of 
grout strength on the initial stiffness was inconclusive as on the one hand, Stillborg (1984) 
reported that the initial stiffness increased with grout compressive strength while Reichert 
(1991) reported no meaningful correlation between these two parameters. Rajaie (1990), Chen 
and Mitri (2005) and Mosse-Robinson and Sharrock (2010) concluded that borehole diameter 
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has a negligible effect on the peak load and initial stiffness of load-displacement behaviour of 
plain strand cable bolts. 

In this study, two types of conventional cable bolts including Plain SuperStrand and TG cable 
bolts were investigated. The LSEPT facilities and testing procedures can be referred to the 
study by Li et al. (2018b) as seen in Figure . The advantage of such a testing design is that the 
rotation of the cable bolt steel strands could be restricted during the pull out of the cable bolt 
through using the locking key and locking nut (seen in Figure ) that can prevent the relative 
spinning movement of anchor tube, bearing plate and sample holder tube. Such a device can 
hence leads to a more realistic reflection of the field testing conditions. The details of ANOVA 
can be reffered to the study by Li et al. (2018a). The effects of a range of parameters including 
confining medium strength, grout strength and borehole diameter on the performance of both 
cable bolts were investigated. Finally, an extensive statistical Analysis of Variance (ANOVA) 
was performed to identify the most influential parameter affecting the performance of the two 
cable bolts. 

 
Figure 1: Pull-out test facility 

 

Figure 2: Concept design of anti-rotation devices 

Locking nut

Sample holder tube

Anchor tube

Locking keyBearing plate
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PLAIN SUPERSTRAND CABLE BOLTS 

Experimental design 

The confining medium compressive strength and borehole diameter were nominated as the 
parameters for the investigation of the Plain SuperStrand cable bolt. The experimental program 
design is shown in Table 1. It should be noted that three replication tests were conducted under 
each testing condition. 

Table 1: Experimental design for Plain SuperStrand cable bolt 
Testing 

condition 
Compressive strength of 
confining medium (MPa) 

Compressive strength of 
grout (MPa) 

Borehole 
diameter (mm) Replications 

1 64 71 27 3 
2 64 71 37 3 
3 11 71 27 3 
4 11 71 37 3 

Test results 

Both the peak and residual loads increased with compressive strength of the confining medium 
(see Table 2). It is noted that the increase in confining medium compressive strength from 
11 MPa to 64 MPa led to 50% increase in the peak and residual loads of the Plain SuperStrand 
cable bolt.  

Table 2:  Effect of compressive strength of confining medium on the peak and 
residual loads of Plain SuperStrand cable bolt tested at 27 mm borehole diameter 

Variables Number 
of tests 

Mean 
load (kN) 

Standard 
deviation (kN) 

Coefficient 
of variation 

 Peak load obtained from the test 
with strong confining medium 3 

97 2.5 2.6 

Residual load obtained from the 
test with strong confining 

 

86 11.1 12.9 

Peak load obtained from the test 
with weak confining medium 3 

63 9.5 14.9 

Residual load obtained from the 
test with weak confining medium 

60 4 6.7 

With the 10 mm increase in borehole diameter it was observed that the peak and residual loads 
increased regardless of the type of confining medium. The combined effect of borehole 
diameter and compressive strength of confining medium on peak load of Plain SuperStrand 
cable bolts are illustrated in Figure . In addition, Figure  shows that a 10 mm increase in 
borehole diameter led to an increase in the initial stiffness and residual load. This might in part 
be due to the significant difference in mechanical properties of resin grout compared to that of 
the confining medium. 
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Figure 3: Effect of borehole diameter on peak load of Plain SuperStrand cable bolts 

 

Figure 4: Examples of load-displacement curves resulted from pull-out test on Plain 
SuperStrand cable bolts with strong confining medium to assess the effect of borehole 

diameter on its performance 

Analysis of variance (ANOVA) for plain SuperStrand cable bolt test results 

The contribution of each parameter (confining medium compressive strength and borehole 
diameter) to the variation in each response (peak load and initial stiffness) was weighted and 
the results are shown in Table 3 and Table 4. As a result, the borehole diameter was found to 
be the most influential factor to peak load of the performance of Plain SuperStrand cable bolt 
in pull-out tests. This is attributed to the significant difference between the confining medium 
and resin grout leading to the great variation in the confinement when changing the borehole 
diameter. 

On the contrary, the compressive strength of the confining medium was revealed to be the most 
influential factor to the initial stiffness of the performance of Plain SuperStrand cable bolt. This 
is related to the greater stiffness of the confining medium resulted from the higher compressive 
strength. It is hypothesized that the stiffness of the confining medium has the direct effect on 
the initial stiffness of the Plain SuperStrand cable bolt. 
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Table 3: Summary of ANOVA for peak load of Plain SuperStrand cable bolt 

Source Sum of 
square 

Degree of 
freedom 

Mean 
square F value Contribution 

weighting (%) 
Confining 
medium 

compressive 
strength 

2436.75 1 2436.75 30.62 41% 

Borehole 
diameter 3570.75 1 3570.75 44.87 59% 

Table 4: Summary of ANOVA for initial stiffness of Plain SuperStrand cable bolt 

Source Sum of 
square 

Degree of 
freedom Mean square F value Contribution 

weighting (%) 
Confining 
medium 

compressive 
strength 

114.083 1 114.083 2.56 97% 

Borehole 
diameter 4.083 1 4.083 0.09 3% 

 

TG CABLE BOLTS 

Experimental Design 

The grout compressive strength and borehole diameter were nominated as the parameters for 
the investigation of the TG cable bolt. The experimental program design is shown in Table 5. It 
should be noted that three replication tests were conducted under each testing condition.  

Table 5: Experimental design for TG cable bolt 

Testing 
condition 

Compressive 
strength of confining 

medium (MPa) 

Compressive 
strength of 
grout (MPa) 

Borehole 
diameter 

(mm) 
Replications 

1 11 80 42 3 
2 11 62 42 3 
3 11 80 52 3 
4 11 62 52 3 

Test results 

The means of the peak load and initial stiffness of the performance of TG cable bolts in pull-out 
tests were summarised in Table 6 with the corresponding CV values. It shows that the 18 MPa 
increase in the grout compressive strength led to approximately 50 KN increase in the peak 
load. Such behaviour is associated with the higher shear strength of the stronger grout leading 
to the higher resistance against the axial displacement of the cable bolt. 
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Table 6: Results obtained from pull-out tests on TG cable bolts 

Experiment 
Condition 

Borehole 
diameter 

(mm) 

Grout 
compressive 

strength 
(MPa) 

Mean 
peak 
load 
(KN) 

CV (%) 

Mean 
initial 

stiffness 
(kN/mm) 

CV (%) 

1 42 80 293 0.0 78.5 8.6 
2 42 62 232 11.2 75.1 2.5 
3 52 80 262 6.1 85.0 4.8 
4 52 62 216 8.1 74.0 3.4 

By contrast, Figure  shows that the borehole diameter has negligible effect on the full load-
displacement performance of TG cable bolt despite of some minor deviations during the large 
displacement. Such an effect might be attributed to the mechanical properties of the confining 
medium and grout. 

 

Figure 5: Example of full load-displacement performance of TG cable bolt with grout 
compressive strength of 80 MPa 

Analysis of variance (ANOVA) for TG cable bolt test results 

The contribution of each parameter (grout compressive strength and borehole diameter) to the 
variation in each response (peak load and initial stiffness) was weighted and the results are 
shown in Tables 7 and 8. As a result, the grout compressive strength was found to be the most 
influential factor to peak load and initial stiffness of the performance of TG cable bolt in pull-out 
tests. On the contrary, the overall performance of TG cable bolt was insensitive to the borehole 
diameter in which 10 mm change had negligible effect on either the peak load or the initial 
stiffness. Such a finding might be attributed to the mechanical properties of the confining 
medium and grout. 

Table 7: Summary of ANOVA for peak load of TG cable bolt 

Source Sum 
of square 

Degree of 
freedom 

Mean 
square 

F 
value 

Weighting contribution 
(%) 

Borehole 
diameter 1633.3 1 1633.3 5.24 15 

Grout UCS 8748 1 8748 28.06 83 
Residual 161.3 1 161.3 0.52 2 
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Table 8: Summary of ANOVA for initial stiffness of TG cable bolt 

Source Sum of 
square 

Degree of 
freedom 

Mean 
square 

F 
value 

Weighting 
contribution (%) 

Borehole 
diameter 21.87 1 21.87 1.22 10 

Grout UCS 156.963 1 156.963 8.75 71 
Residual 42.563 1 42.563 2.37 19 

CONCLUSIONS 

Extensive parametric studies on the performance of Plain SuperStrand and TG cable bolts were 
conducted followed by in-depth analysis of the experimental result using ANOVA technique. It 
was found that the confining medium strength is the most influential parameter to the initial 
stiffness of Plain SuperStrand by contrast to borehole diameter as the most influential variable 
to the peak load. For TG cable bolts, grout strength has a more significant effect on the peak 
load and initial stiffness of the cable bolt than borehole diameter.  
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