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Serkan Saydam1, Onur Vardar1 

 
ABSTRACT: Rock bolts and cable bolts are usually considered to experience static loads under 
relatively low-stress conditions. However, in burst-prone conditions, support elements are 
subjected to dynamic loading. Therefore, it is important to understand cable bolt behaviour 
under dynamic loading conditions, particularly their energy absorption capacity. Rock bolts and 
cable bolts as well as steel mesh are widely used as permanent support elements in tunnelling, 
underground excavations and surface slope stability. This paper aims to determine the amount 
of the dissipated energy which can be taken into account to design combined yielding supports 
when subjected to dynamic loading. A ground support approach is suggested for underground 
excavations undertaking a range of mining-induced coal burst. A bench mark based on the 
largest expected impact loading is considered to conclude the level of coal burst risk and select 
an appropriate approach, whether quasi-static or dynamic, for the mine support. 

INTRODUCTION 

Current coal burst control techniques can be classified into two groups: preventative controls 
and mitigating controls. Preventative controls to avoid occurrence of coal bursts are usually 
implemented at the start of underground mines by optimising the mine design, while mitigating 
controls are applied as risk mitigation measures to minimise the risks of coal bursts during 
mining. Coal burst risks still exist even when preventative controls are implemented (Wei, 
Zhang, Canbulat et al. 2018). Due to the unpredictability of coal burst occurrences, ground 
support is usually the final and most common line of protection to ensure safety in high risk 
zones (Cai, 2013). Ground support has a pivotal role in a dynamic environment, which has 
been well recognised by the mining industry (Cai 2013; Jiang, et al., 2014; Mikula and Brown, 
2018). The dynamic capacity of ground support has been the subject of significant research 
during the last two decades. However, ground support designs (i.e. yielding support) for coal 
burst is an area where rock engineering is still developing (Potvin, et al., 2010).  

A combination of axial and shear is the primary failure mechanism as the bedded strata 
formations move in various directions (Mirzaghorbanali, et al., 2017). Aziz, et al., (2015) 
described that cable bolts are usually installed perpendicular to the sedimentary rock bedding 
planes above coal mine openings. Rock movement caused by complex ground stresses usually 
occur along the bedding planes, resulting in shear stress across the cable bolts. Aziz, et al., 
(2009) conducted a series of double shear tests to investigate the performance of reinforced 
bolts in shear under different axial loading conditions. A total of 22 rock bolts with different 
surface profile configurations were tested, and the effects of various tension loads on the load 
transfer characteristics of the bolts were also studied. The results showed that the level of the 
shear load was affected by the ultimate tensile strength of rock bolts as well as the axial loads 
applied during testing. The shear loads increased with increasing tension loads, and the shear 
load was affected by the bolt profile configuration.  

Rock bolts with energy-absorbing capacities play a critical role in the performance of dynamic 
ground support, and there are a range of products available including D-Bolts, cone bolts, 
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Durabar, Roofex, Garford and CRLD (Cai, 2013; Kabwe and Wang 2015; Pytlik, et al., 2016; 
Wei, Zhang, Canbulat, et al., 2018; Zhou and Zhao, 2011). Of these, the cone bolt, Durabar, 
Garford solid bolt and Roofex are two-point anchored into the rock; the D-Bolt is multi-point 
anchored; and the hybrid bolt and inflatable bolt interact frictionally with the rock mass along 
their entire lengths (Zhou and Zhao, 2011). The dynamic capabilities of ground support are key 
design parameters when selecting yielding elements for highly stressed, burst-prone or high 
deformation environments (Plouffe, et al., 2007). 

STATIC AND DYNAMIC MODELLING UNDER APPLIED SHEAR LOADING  

The proposed three-dimensional finite element model is developed using the commercial 
software ABAQUS, due to its ability to deal with complex contact problems. The structural 
response of the cable bolts using solid elements for all components is examined using the 
modelling (Tahmasebinia et al 2018). One of the main difficulties in the modelling of steel and 
concrete members with ABAQUS is the convergence issues which need to be addressed due 
to the extensive number of contacts required to be implemented between the cable bolt and 
the concrete boxes. For this purpose, the 8-node linear brick element (C3D8R) with a reduced 
integration and hourglass control is adopted, which is the element with three transitional 
degrees of freedom. To validate the finite element models and the developed analytical 
solution, the obtained results were compared with the reported experimental investigation by 
Mirzaghorbanali, et al., (2017). The reported tests were conducted under static loading, which 
was used to calibrate the models. Then, the models were extended to dynamic loading (Figure 
1). 

 

Figure 1: An example of a 3-D finite element model under static and dynamic loading. 

One of the significant contributions of this study is the development of an analytical solution to 
assess the behaviour of the cable bolt under quasi-static loading (Tahmasebinia et al 2018). 
An equation based on the plastic analysis is proposed. The plastic hinge concept stems from 
the ability of steel to be idealised as elastic-perfectly plastic. Integrating the fully plastic section 
is equated to taking the moments of the fully plastic stress block forces about the plastic neutral 
axis. The principle of virtual work is used to calculate the load magnitude at which the plastic 
mechanism develops and failure occurs. It means that the external work done by the applied 
load must equal the internal work done by the plastic hinges in the cable section (Figure 2). 
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Figure 2: Plastic collapse load of a cable bolt. 

The applied shear load versus shear displacement can be calculated by Equation 1 
2
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where  

uN  is design axial tension capacity;  

uM  the design bending capacity,  
L     the cable bolt length,  
d     the cable bolt diameter; and  

yf     the cable yielding stress.  

iy    displacement increments can be obtained by Equation.  
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Mirzaghorbanali, et al. (2017) conducted a series of double shear tests on different cable bolts 
by developing a new double shear apparatus without contact between concrete blocks to 
determine the pure shear strength of pre-tensioned fully grouted cable bolts. Figure 3 and 4 
illustrate the failure procedure of the cable bolt which is embedded inside the concrete blocks 
starting from initial deformation until pure shear failure. This can be one of the advantages of 
using numerical modelling to assess the local behaviour of cable bolts under static loading in 
the different stages of the failure.  After calibrating the numerical models under static loading, 
the structural behaviour of the simulated models under dynamic loading was also studied. Since 
preparing the laboratory experiments to simulate the behaviour of cable bolts under dynamic 
loading is demanding, a validated and novel numerical simulation was developed. To simulate 
the behaviour of the cable bolts under impact loading, a 110 kg mass at the velocity of 0.2 m/s 
was dropped on top of the concrete blocks. Figure 5 presents the structural behaviour of the 
cable bolts under impact loading. As illustrated, the momentum energy from the dropped mass 
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is initially transferred to the concrete surfaces, and the transmitted energy due to the impulsive 
loading reaches the cable bolt. 

 
Figure 3: Shear ductile failure in the cable bolt under static loading, shown in different 

stages. 

 
Figure 4: Combination of the bending and shear failure (Mirzaghorbanali, et al., 2017). 
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Figure 5: Shear ductile failure in the cable bolt under impact loading, shown in different 

failure stages. 

SIMULATION OF THE BEHAVIOUR OF THE STEEL MESH UNDER DYNAMIC IMPACT 
LOADING 

A similar way to simulate the dynamic behaviour of the steel mesh due to the applied dynamic 
loading was taken into account. The mesh steel reinforcement sizes 20 mm diameter arranged 
by 100 mm distance centre to centre of the steel bars were tested under free fall of the dropped 
hammer. The dropped hammer used in the last section was used for this simulation. The 110 
kg drop hammer at velocity of 1.5 m/s was dropped on top of the steel reinforcement. Figure 6 
illustrates the experimental set up used to simulate the structural behaviour of the steel mesh 
under impact loading. Steel mesh can play a significant role as part of the yielding support in a 
coal mine, as it can mitigate the effect of the destructive released kinetic energy due to a 
possible coal burst. In coal mines, it was observed that both rock bolts and cable bolts might 
lose the initial bond stiffness at the early stage of the applied dynamic loading due to the failure 
and separation of the anchored zone in the cable and rock bolts inside embedded coal. The 
anchorage length in a post-tensioned member and the magnitude of the transverse forces (both 
tensile and compressive), that act perpendicular to the longitudinal prestressing force, depend 
on the magnitude of the prestressing force and on the size and position of the anchorage hooks. 
Both single and multiple anchorages are commonly used in coal mining. Prestressing force 
anchors transfer large forces to the coal in concentrated areas. Coal is a very brittle material 
which can cause localised bearing failure or split open the end of members. Thus, the steel 
mesh can considerably reduce the effect of the induced dynamic loading due to coal burst. In 
the current simulation, the tensile stress for the steel mesh was f y = 500 MPa and the ultimate 
stress for the steel mesh f u = 700 MPa was taken into account. The post failure of the steel 
mesh which may rupture the steel bars was also defined. The ductile damage function was 
determined to simulate the post failure of the steel mesh. Also, the rupturing strain ε rupture = 
0.3% was assumed. As the weld properties of the steel mesh can also influence the overall 
deformation as well as energy absorption of the yielding support, the weld properties were 
specifically defined in the present steel mesh simulations. The allocated fracture energy which 
has a considerable role in determining the separation of the welded steel was specified by 
computing the area of the obtained stress-strain curves from the weld properties.  
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Figure 6: The test set up for simulating the behaviour of the steel mesh under impact 
loading 

 
Figure 7 demonstrates direct brittle failure in the steel mesh under impact loading in different 
failure stages. As illustrated, at the initial contact between the dropped hammer and steel mesh, 
the momentum energy was transferred from the common surfaces. The transferred energy due 
to the dropped test was distributed in different layers of the steel mesh. The transmitted kinetic 
energy can induce both shear and bending stresses in the steel mesh. As soon as any steel 
mesh or welding elements reached the yielding and ultimate stresses, permanent deformation 
of the steel mesh occurred. This permanent deformation might be followed by the rupturing 
strain which leads to element separation in the simulated model. In general, connections 
between the steel bars or location of the weld elements are the weakest position in the steel 
meshes. Thus, the expected failure can occur around the welded connections. This is one of 
the main reasons why weld properties can play a significant role in generating the overall 
ductility, the deformability of the steel mesh, and the amount of the energy absorption in both 
the yielding and combined supports.   

 
 

Figure 7: Direct brittle failures in the steel mesh under impact loading, shown in four 
stages. 

Figure 8 shows the interaction between the steel plate and welded wire mesh. This figure 
indicates that steel plates may be subjected to high levels of stress concentrations. Thus, steel 
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plate buckling capacity in different modes is one of the key factors that may be taken into 
account when computing overall capacity of a combined support.  

 

Figure 8: The interaction between the steel plate and weld mesh. 

A similar failure pattern can also be observed in a full scale combined support under loading 
due to rock ejection. The failure process is illustrated in four stages in Figure 9. The tensile 
stress caused by the ejected rock mass is transferred on to the steel mesh. Also, while some 
parts of the steel plates are subjected to the tension, the parts are subjected to the compression 
due to a combination of the bending and shear reactions around the connections of plates. 
Similar to the conclusions in the previous section, it is also evident that steel plates can play an 
important role in controlling the deformability of the steel mesh. Details of the failure stages 
from the initial steel mesh deformation and buckling of the steel plates are demonstrated in 
Figure 9. This figure also indicates that the deformed shape of the steel plate can enhance the 
overall deformability of the welded wire mesh when it is subjected to the impact loading. 
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Figure 9: The deformation of the combined support when subjected to the arbitrary 
fractural rock fall. 

 
CONCLUSIONS 

 
This study tested different key elements in combined support under virtual impact loading to 
complimentary replace testing under real impact loading conditions which is very time 
consuming and requires access to special impact facilities. The existing impact testing facilities 
in Western Australia, Canada, Chile and South Africa are expensive and require significant 
space for the testing facilities.  Individual shock absorber equipment must be installed next to 
the impact frame facilities to create safe and secure testing conditions in the adjacent buildings 
due to the possible deconstructive effect of the induced impact loading. Special attention should 
also be devoted to selecting proper measuring equipment to measure induced impact loading 
as well as the critical displacement in tested samples. For instance, calibrating the load cell 
located in the head of the impact hammer is a significant task in preparing the impact facilities. 
Similar complexity can be found when adapting the load cell to the data acquisition system. 
Filtering and calibrating the data acquisition system due to the effect of the impulsive loading is 
very cumbersome and requires particular practical experience. The influence of the inertia 
forces due to the applied impact loading may lead to misjudgment in evaluating the structural 
performance of the tested sample in the combined support. Thus, developing novel and well 
validated numerical models to simulate the effect of impact loading on the different key support 
elements can play a crucial role in designing a combined support in coal mines which might be 
affected by coal burst.  
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