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ABSTRACT: Electrocatalytic water splitting to produce hydrogen and oxygen is regarded as one of the 

most promising methods to generate clean and sustainable energy for replacing fossil fuels. However, the 

design and development of an efficient bifunctional catalyst for simultaneous generation of hydrogen and 

oxygen remains extremely challenging, yet is critical for the practical implementation of water 

electrolysis. Here, we report a facile method to fabricate novel N-doped carbon nanotube frameworks 

(NCNTFs) by the pyrolysis of a bimetallic metal organic framework (MIL-88-Fe/Co). The resultant 

electrocatalyst, Co3Fe7@NCNTFs, exhibits excellent oxygen evolution reaction (OER) activity, 

achieving 10 mA/cm2 at a low overpotential of just 264 mV in 1M KOH solution, and 197 mV for the 

hydrogen evolution reaction. The high electrocatalytic activity arises from the synergistic effect between 

the chemistry of the Co3Fe7 and the NCNTs coupled to the novel framework structure. The remarkable 

electrocatalytic performance of our bifunctional electrocatalyst provides a promising pathway to high-

performance overall water splitting and electrochemical energy devices. 
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1. INTRODUCTION 

The production of hydrogen from electrocatalytic water splitting through the hydrogen evolution 

reaction (HER) is an emerging technology to produce clean and sustainable fuels.[1] Typical water 

electrolysis process consists of two crucial half-reactions; the hydrogen evolution reaction (HER) and the 

oxygen evolution reaction (OER).[2] Therefore, it is critical to design and develop highly active and stable 

electrocatalysts for both HER and OER in order to improve the overall efficiency of a complete 

electrocatalytic water splitting cell.[3] Currently, platinum-based materials are the most efficient catalysts 

for HER while Ir/Ru-group compounds are the state-of-the-art catalysts for OER. [4] However, larger scale 

implementation of these noble metal-based electrocatalysts have been impeded by their scarcity, cost, and 

stability.[5] Thus, it is necessary to develop non-precious metal-based electrocatalysts with high efficiency 

and stability to promote electrocatalytic water splitting. In fact, many studies have attempted the 

development of these non-noble catalysts, using transition metals and their derivatives (i.e. transition 

metal oxides[6], carbides[7], sulfides[8] and phosphides[9]) or nanocarbon-based composites.[10] However, 

most of these materials suffer from poor stability and/or low conductivity.[11] One promising approach to 

enhance the electrocatalytic activity and durability of these non-noble catalysts is by embedding these 

nanoparticles into conductive porous carbon architectures.[12] 

Metal organic frameworks (MOFs) consisting of metal moieties and organic linkers have been 

applied in various energy fields. For example, Dai et al, developed a novel MOF-derived material 

(Co@N-C) for Zn-air battery, which exhibits excellent performance (initial charge and discharge potential 

of 1.81 and 1.28 V under 2 mA cm-2) and high cycling stability.[13] Sun et al, reported a novel metalorganic 

gaseous doping strategy to employ the typical ZIF-8 as template for preparing N-doped carbon 

polyhedron catalyst encapsulated with single Fe atoms for hydrogen-oxygen polymer electrolyte 

membrane fuel cell (PEMFC).[14] The resulting catalyst shows outstanding oxygen reduction reaction 

(ORR) activity and superb single-cell PEMFC performance. Recently, MOFs have been employed as 

templates for the synthesis of porous nanocarbon materials, due to their high porosity, large surface area 

and accessible active sites.[13, 15] However, most of these MOF-based nanocarbons have been found with 

a microporous structure and low degree of graphitization, which are unfavorable for mass transport and 

limit electrical conductivity.[16] A number of interesting works have been reported on using MOFs as 

precursors for the preparation of hybrids with metallic nanoparticles embedded carbon nanotubes 

(CNTs).[17] For instance, Lou et al. verified that using ZIF-67 as precursor for constructing CNT 

frameworks with encapsulated Cobalt nanoparticles resulted in excellent conductivity and stability, 



benefiting from the formation of a robust hollow structure composed of CNTs. [5a] Thomas et al. employed 

a MOF precursor as the template to prepare with metal nanoparticles embedded CNT networks which 

exhibited enhanced electrocatalytic activity.[16] However, in these works, the as-obtained CNTs either 

exhibits poor electrocatalytic activity or do not retain any secondary microstructure. 

In this work, we developed a strategy for the synthesis of non-noble metal based, MOF-derived, 

bifunctional electrocatalysts. This was achieved via the in-situ growth of N-doped carbon nanotube 

(NCNT) frameworks with embedded Co3Fe7 nanoparticles (denoted Co3Fe7@NCNTFs) through a one-

pot carbonization of a bimetallic MIL-88-Fe/Co precursor. The as-synthesized Co3Fe7@NCNTFs 

perfectly retain the structure of the original framework (MIL-88-Fe/Co) with many interlaced NCNTs 

grown within the architectures. Benefiting from the merits of robust N-doped CNTs (NCNTs), the 

resulting Co3Fe7@NCNTFs electrocatalyst exhibits remarkable bifunctional catalytic activities, showing 

an overpotential of 264 mV (OER) and 197 mV (HER) to reach a current density of 10 mA/cm2 in 1M 

KOH solution, respectively. Its superior water electrolysis performances outperform various reported 

nanocarbon materials so far, making it be a promising high-efficiency non-precious bifunctional catalyst 

for water splitting.  

2. EXPERIMENTAL SECTION   

2.1. Chemical and Materials. terephthalic acid (BDC), Co(NO3)2·6H2O and FeCl3·6H2O were 

purchased from Macklin. Ethanol (C2H5OH), N,N-Dimethylformamide (DMF) and sodium hydroxide 

(NaOH) were obtained from Beijing Chemical Work. All chemical reagents were used without any further 

purification. Ultrapure water (resistance of 18.2 MΩ·cm at 25 °C) was used for all experiments. 

2.2. Preparation of Electrocatalysts. 2.2.1. Synthesis of MIL-88-Fe/Co nanorods. Briefly, a mixture 

of 0.66 mmol FeCl3∙6H2O, 0.33 mmol Co(NO3)2∙6H2O and 0.99 mmol terephthalic acid were dissolved 

in 10 mL N,N-dimethylformamide (DMF) with continuously stirring for 15 min to obtain a clear solution. 

Then, 2 mL 0.4 M NaOH solution was injected dropwise into the above mixture solution under stirring. 

After stirring for 30 min, the mixture solution was transferred to the 25 mL Teflon-lined stainless-steel 

autoclave and the autoclave was heated in an electric oven at 115 ℃ for 24 h, later naturally cooled down 

to the room temperature. Finally, the resulting brown product was centrifuged and watered with DMF and 

ethanol for 4 times and dried at 50 °C in vacuum for overnight. 

2.2.2. Synthesis of Co3Fe7@NCNTFs Catalyst. The obtained MIL-88-Fe/Co was fully ground with 

equal quality dicyandiamide (DCDA) in a quartz mortar. The mixed powder was then placed in a ceramic 



boat and heated to 600 °C at a heating rate of 2 °C/min and maintained this temperature for 3 hours in 

vacuum in the tube furnace.  

2.2.3. Synthesis of Co3Fe7@C Catalyst. In order to show the role of DCDA for generating N-doped 

carbon nanotubes (NCNTs), the Co3Fe7@C was also obtained as a comparison which was obtained 

according to the same method as Co3Fe7@NCNTFs but without DCDA addition. 

2.2.4. Synthesis of Co-Fe@NC-powder. As a comparison, the Co-Fe@NC-powder was prepared by 

mixing FeCl3∙6H2O, Co(NO3)2∙6H2O, terephthalic acid (BDC) and DCDA (equal mass with as-prepared 

MIL-88-Fe/Co), and then grinded to obtain homogeneous solid. The resulting solid powder was 

transferred to the tube furnace at the same heat condition as Co3Fe7@NCNTFs. 

2.3. Materials Characterizations. The X-ray diffraction (XRD) of MOF precursors and pyrolysis 

products were measured on Rigaku D/max 2500 with a Cu Kα radiation source (λ = 1.54056 Å) at a 

generator voltage of 40 kV and a generator current of 200 mA with a scanning speed of 5 °/min from 5° 

to 50° for MOF precursor (powder) and from 5° to 90° for samples (powder). Raman spectroscopy was 

conducted on Horiba Scientific-LabRAM HR Evolution with an excitation wavelength of 532 nm. A 

scanning electron microscope (ZEISS-SUPRA55) at an operating voltage of 10 kV and a transmission 

electron microscope (JEOL, JEM-2100) at an operating voltage of 200 kV were used to obtain the SEM 

and TEM images, respectively. X-ray photoelectron spectroscopy (XPS) was performed on a Thermo 

Scientific ESCALab 250Xi with 150 W monochromatic Al Kα radiation. The base pressure in the analysis 

chamber was approximately 1 × 10-10 mbar. The hydrocarbon C 1s line at 284.8 eV from adventitious 

carbon was used for binding energy referencing. 

2.4. Electrochemical Measurements. All electrochemical measurements except the overall water 

splitting reaction were conducted in a standard three-electrode cell on a CHI650D electrochemical 

workstation at room temperature. The catalyst ink was obtained as a mixture of 5 mg catalyst powder, 

750 μL ethanol, 200 μL DI water and 50 μL 5% Nafion solution. The as-synthesized powder catalysts 

were examined by coating the catalyst ink onto the glassy carbon electrode (diameter: 3.0 mm, area: 

0.0706 cm2) with a mass loading of 0.35 mg/cm2 as the working electrode. Prior to measurement, the 

coated glassy carbon electrode/catalyst ink was allowed to air dry overnight. A Hg/HgO (1M KOH) 

electrode and graphite rod were used as the reference and counter electrode, respectively, with 1M KOH 

used as the electrolyte. The hydrogen evolution reactions (HER) and oxygen evolution reactions (OER) 

were performed via linear sweep voltammetry with a scan rate of 2 mV/s with 85% iR-correction. All 



electrochemical potential values for the three-electrode configuration used in this study were changed 

from E (Hg/HgO) to E (RHE) via the following equation: 

E (RHE) = E (Hg/HgO) +0.098+ 0.05916 × pH 

where EHg/HgO was the measured potential against the reference electrode.[18]  

Electrochemical impedance spectroscopy (EIS) was carried out at the overpotential at a current 

density of 10 mA/cm2 (as determined by linear sweep voltammetry described above) with a frequency 

range from 0.01 Hz to 100 kHz. The stability test of Co3Fe7@NCNTFs was carried out with a i-t curve at 

the potential of current density at 10 mA/cm2. 

The overall water splitting performance was tested by employing a two-electrode configuration in 1 

M KOH solution with a scan rate of 2 mV/s without any iR-compensation. The cathode and anode for 

overall water splitting were obtained by coating the catalyst ink onto 1×1 cm Ni foam and keeping the 

same mass loading of 0.35 mg/cm2. 

3. RESULTS AND DISCUSSION  

3.1. Physicochemical Analysis. The typical two-step synthetic route of Co3Fe7@NCNTFs is 

schematically illustrated in Figure 1a. Firstly, the MIL-88-Fe/Co precursor was prepared by a 

solvothermal method at 115 ºC for 24 h (Figure S1). Then, the as-prepared MIL-88-Fe/Co powder was 

physically ground together with dicyandiamide (DCDA) powder (at 1:1 mass ratio) to form a uniform 

mixture. The obtained mixed powder was transferred to a quartz boat and pyrolyzed at 600 °C for 3 h 

under vacuum to synthesize the nitrogen-doped carbon nanotube frameworks (NCNTFs) with embedded 

Co3Fe7 nanoparticles (denoted Co3Fe7@NCNTFs). Field-emission scanning electron microscopy 

(FESEM) clearly demonstrates the phase transformation from the homogeneous rod-shaped MIL-88-

Fe/Co precursor (Figure 1b) to the final as-obtained Co3Fe7@NCNTFs (Figure 1c) with the appearance 

of interlaced CNTs grown out of MOF rod structures. 

Further investigation using transmission electron microscopy (TEM) was carried out to confirm the 

structure of the CNT networks protruding the rod-like morphology of pyrolyzed frameworks (Figure 2a), 

highlighting the intimate connections between the structures. In addition, the high-resolution TEM 

(HRTEM) also reveals that Co3Fe7 nanoalloys are embedded in the highly graphitized carbon shells of 

the carbon nanotubes, showing an interplanar distance of ~0.37 nm corresponding to (002) lattice plane 

of graphitic carbon (Figure 2b). The encapsulated nanoparticle has an interplanar distance of 0.200 nm 

(Figure 2c, d), which corresponds to the (110) lattice plane of Co3Fe7 nanoalloys. Such unique 



architectures with nanoalloys embedded in the NCNT frameworks provides several clear potential 

advantages for electrocatalysis. The unique architectures could enhance the electrical conductivity and 

improve the charge transfer from the catalyst to the electrode, while also avoiding the aggregation of 

Co3Fe7 nanoparticles by the physical separation achieved by coverage with multi-graphitic layers.  

 

Figure 1. (a) Schematic illustration of two-step synthesis of Co3Fe7@NCNTFs; (b and c) high-resolution SEM images 

of as-prepared (b) MILF-88-Fe/Co and (c) Co3Fe7@NCNTFs. 

The role of DCDA during the annealing step for the preparation of Co3Fe7@NCNTFs has been 

further investigated via the comparison with control sample of Co3Fe7@C, which was prepared by the 

direct pyrolysis of MIL-88-Fe/Co precursor without DCDA. No CNTs growth has been observed on the 

surface of the carbon framework in the absence of DCDA (Figure S2), further only partially reduced 

metal nanoparticles are embedded in the carbon framework for Co3Fe7@C (Figure S3). Previous studies 

have demonstrated that reduction atmosphere is essential for the formation of CNTs when MOFs are 

employed as precursors.[5a] In this work, it can be reasonably assumed that DCDA plays a critical role in 

not only introducing a N source but providing the reducing atmosphere required for the growth of N-

doped CNTs. Typically, during the annealing process, DCDA was firstly decomposed into NH3, which 

then was quickly reduced the surface metal ions of MIL-88-Fe/Co into metal nanoparticles. Then, these 

nanoparticles further catalyzed the NCNTs growth from the MOF surface to form the expected 

Co3Fe7@NCNTFs.[19] On the other hand, in order to study the effect of MOF precursor’s crystal structure 

and morphology on final catalyst’s electrocatalytic performance, a comparative experiment (which 



avoided the use of the synthesized MIL-88-Fe/Co) used Co(NO3)2·6H2O, FeCl3·6H2O, terephthalic acid, 

mixed with DCDA, were directly annealed under the identical pyrolysis conditions (denoted Co-Fe@NC-

powder, for detailed information see Figure S4) as control.   

 

Figure 2. HRTEM images of (a, b) Co3Fe7@NCNTFs; and (c, d) the embedded of Co3Fe7 nanoalloy. 

Powder X-ray diffraction (PXRD) measurements were conducted to identify the crystal structure 

and phases of the final electrocatalysts. As Figure 3a shows, Co3Fe7@NCNTFs shows a distinct graphitic 

carbon peak near 26° which is not sharp or clear in Co3Fe7@C, indicating the higher graphitic degree 

in Co3Fe7@NCNTFs. However, for the Co-Fe@NC-powder sample, this traditional graphitic carbon peak 

is not observed at all. In fact, this has been confirmed by the electron microscopy analyses, showing no 

carbon framework in the pyrolyzed Co-Fe@NC-powder (Figure S4). Furthermore, the peaks at 44.7°, 

65.1° and 82.4° for all three samples are assigned to (110), (200) and (211) diffractions of Co3Fe7 alloy 

(JCPDS no. 48-1817),[20] which is consistent with the TEM results. In addition, there are additional peaks 

related to CoFe2O4 (JCPDS no.22-1086) observed in the Co-Fe@NC-powder sample. Raman 

spectroscopy was also used to probe the degree of graphitization of Co3Fe7@NCNTFs and Co3Fe7@C. A 

widely applied method to evaluate the degree of graphitization is to use the intensity ratio of D band to G 

band, namely ID/IG.[21] As shown in Figure 3b, the D-band and G-band in our samples are at 

approximately 1350 cm-1 and 1580 cm-1, respectively. The ID/IG ratio of Co3Fe7@C is 1.45 but decreases 



to 0.98 for Co3Fe7@NCNTFs, indicating the higher graphitization degree for Co3Fe7@NCNTFs, owing 

to the thermally induced metal catalyzed formation of CNTs.[22]   

 

Figure 3. (a) XRD patterns of as-pyrolyzed catalysts and the comparison with Co3Fe7 (orange vertical line, JCPDS no. 48-

1817) and CoFe2O4 (green vertical line, JCPDS no. 22-1086); (b), Raman spectra of Co3Fe7@NCNTFs and Co3Fe7@C. High-

resolution XPS spectra of C 1s, N 1s, Fe 2p and Co 2p, respectively; in (c), the fitted peaks correspond to graphitic carbon 

(284.8 eV), C-N (286.0 eV) and C=O (287.7 eV); (d), the fitted peaks correspond to pyridinic N (398.7 eV) and graphitic N 

(400.6 eV); (e) Co0 (778.6 eV) and Co2+ (780.6 eV). (f), the fitted peaks correspond to Fe0 (707.3 eV) and Fe2+ (711.0 eV). 

X-ray photoelectron spectroscopy (XPS) measurements were conducted to investigate the valence 

state of the bimetallic particles and elucidate the influence of N doping. The survey scan on 

Co3Fe7@NCNTFs reveals the existence of C, N, O, Fe, Co elements (Figure S5), the atomic percentages 

of these elements can be seen in Table S1. The deconvolution of the high-resolution C 1s spectrum shows 

three peaks, which can be assigned to graphitic carbon at ∼284.8 eV, C-N at ∼286.0 eV, and the C=O at 

∼287.7 eV (Figure 3c).[23] According to the XPS analysis, the atomic percentage of N element in 

Co3Fe7@NCNTFs powder is up to 9.69%, confirming the successful N doping. The high-resolution N 1s 

spectrum can be deconvolved into two peaks, corresponding to pyridinic N at ~398.7 eV and graphitic N 

at ~400.6 eV (Figure 3d).[24] In addition, the content of pyridinic N is up to ~67%. Previous studies have 

pointed out that pyridinic nitrogen (N atom is located at the edge of an atomic vacancy) doped in nanotube 

walls can increase the structural defects of CNTs.[25] These structural imperfections in CNTs are believed 

to form the adsorption sites for reactants during electrocatalysis.[26] For the Co 2p spectrum, the existence 

of Co (0) at 778.6 eV of Co 2p3/2 and Co (Ⅱ) at 780.6 eV of Co 2p3/2 are also confirmed (Figure 3f).[27] 

In the Fe 2p spectrum (Figure 3e), the two Fe 2p3/2 peaks located at 707.3 eV and 711.0 eV can be 

assigned to the Fe (0) and Fe (II) in Co3Fe7 nanoparticles, respectively. [27-28] 



3.2. Electrochemical Oxygen Evolution and Hydrogen Evolution Activity. According to the 

above materials characterization analysis, the resulting Co3Fe7@NCNTFs demonstrates a unique 

framework structure composed of interconnected N-doped carbon nanotubes with numerous highly 

dispersed Co3Fe7 nanoparticles, which has the potential to be a promising candidate for water splitting. 

Firstly, the OER electrocatalytic activity of as-prepared Co3Fe7@NCNTFs and control samples were 

evaluated in 1.0 M KOH alkaline solution using the typical three-electrode device. As shown by the iR-

corrected polarization curves (Figure 4a), the Co3Fe7@NCNTFs has the lowest overpotential of 264 mV 

at 10 mA/cm2, which is much lower than those of Co-Fe@NC-powder (412 mV) and Co3Fe7@C (345 

mV). This performance is almost comparable to the commercial RuO2 electrocatalyst (252 mV at 10 

mA/cm2) and most reported bifunctional electrocatalysts (Table S2). The relevant Tafel slopes of all three 

samples were investigated to analyze the kinetics of the proposed OER reactions (Figure 4b). The 

Co3Fe7@NCNTFs exhibits the lowest Tafel slope of 79 mV/dec, while Co3Fe7@C and Co-Fe@NC-

powder shows a Tafel slope of 93 mV/dec and 186 mV/dec, respectively. This indicates that 

Co3Fe7@NCNTFs has the favorable rapid reaction kinetics for the OER process, which was further 

supported by the electrochemical impedance spectroscopy (EIS) shown in Figure 4c. Typical EIS consists 

of the Nyquist plots (spots) and corresponding fitted curves (solid) through applying the inset equivalent 

circuit. The Rs, Rct and CPE in the equivalent circuit represent the overall ohmic resistance, the charge 

transfer resistance and the constant phase element, respectively.[29] The fitted results (Table S3) reveal 

that the Rs of Co3Fe7@NCNTFs is only 1.5 Ω·cm2, which is much lower than that of Co3Fe7@C (8.6 

Ω·cm2) and Co-Fe@NC-powder (10.9 Ω·cm2), showing the rather low overall ohmic resistance of 

Co3Fe7@NCNTFs. It is widely accepted that the Rct is correlated to the electrocatalytic kinetics, which 

means that a smaller Rct indicates a faster reaction rate.[30] From the fitted EIS results, the Rct of 

Co3Fe7@NCNTFs (14.3 Ω·cm2) is negligible, compared to that of Co3Fe7@C (102.5 Ω·cm2) and Co-

Fe@NC-powder (137.2 Ω·cm2). The smallest charge transfer resistance suggests that the interlaced CNT 

network structure can significantly enhance the OER reaction kinetics of Co3Fe7@NCNTFs.  

As a potential candidate to be a bifunctional catalyst, Co3Fe7@NCNTFs was further investigated for 

catalytic HER performance in the identical alkaline environment and electrode configuration employed 

to OER. As shown in Figure 4d, Co3Fe7@NCNTFs also shows good HER activity with an overpotential 

of 197 mV at the current density of 10 mA/cm2, much lower than that of Co3Fe7@C (308 mV) and Co-

Fe@NC-powder (372 mV). The promising HER activity of Co3Fe7@NCNTFs was further demonstrated 

by the low Tafel slope. In Figure 4e, the Co3Fe7@NCNTFs catalyst exhibits the lowest Tafel slope of 62 



mV/dec, implying faster reaction kinetics during the electrocatalytic process. It is widely believed that 

the predominant HER mechanism can be decided by the value of Tafel slope. In alkaline condition, the 

HER mechanism could be either Volmer-Tafel mechanism or Volmer-Heyrovsky mechanism. The Tafel 

slope of as-obtained Co3Fe7@NCNTFs suggests the favorable HER kinetics following the Volmer-

Heyrovsky mechanism[30]  

2 ( ) +* * ( )H O l e H OH aq− −+ +  Volmer reaction (1) 

2 2* ( ) ( ) ( )+*H H O l e H g OH aq− −+ + +  Heyrovsky reaction (2) 

where, * and H* represent the catalytic sites and absorbed H-species, respectively. The favorable 

electrocatalytic kinetics of Co3Fe7@NCNTFs can also be illustrated by the EIS results (Figure 4f). 

According to the fitted results (Table S4), Co3Fe7@NCNTFs exhibits significantly small Rct value (23.1 

Ω·cm2), indicating rapid electron transfer process during HER process. The chronoamperometric 

measurement indicates that both OER and HER exhibit high stability with current retention of 89% and 96%, respectively 

after being tested for 15 hours (Figure S6).  

Figure 4. OER electrochemical test. (a) OER polarization curves of samples in 1 M KOH solution at a scan rate of 2 mV/s; 

(b) OER Tafel slope plots of samples; (c) EIS spectra of corresponding catalysts. (symbols, experimental data; solid lines, 

fitted results; inset, equivalent circuit). And HER electrochemical test. (d) HER polarization curves of samples in 1 M KOH 

solution at a scan rate of 2 mV/s; (e) HER Tafel slope plots of samples; (f) EIS spectra of corresponding catalysts. (symbols, 

experimental data; solid lines, fitted results; inset, equivalent circuit). 

3.4. Overall Water Splitting Activity. According to the combined analyses discussed above, the as-

obtained Co3Fe7@NCNTFs is electrocatalytically active for both OER and HER in alkaline media. 

Therefore, the overall water splitting activity of the catalyst was studied using Co3Fe7@NCNTFs coated 



nickel foam as both cathode and anode (Figure 5a, Figure S7). In a typical process, at the cathode, Co3Fe7 

nanoparticles are the main active sites for the HER, where the absorbed H2O was reduced to H2 molecules. 

Similarly, at the anode, the oxygen molecules were also obtained by oxidizing the absorbed OH-. For 

comparison, the water electrocatalysis test was also conducted on bare Ni foam electrodes (NF || NF) and 

Pt/C||RuO2 electrodes (Pt/C powder coated on nickel foam as cathode, RuO2 coated on nickel foam as 

anode).[16] Figure 5b shows that a potential of 1.64 V using Co3Fe7@NCNTFs is needed to reach a current 

density of 10 mA/cm2, which is slightly higher than Pt/C||RuO2 electrode (1.61 V). In a sharp contrast, to 

achieve a current density of 10 mA/cm2, the NF || NF electrode needs to have a high potential of 1.97 V 

applied to it, which implies that as a substrate, its effect on tested powder catalysts is negligible. The 

stability/durability of overall water splitting was also evaluated at a potential of 1.64 V (Figure 5c). It 

suggests that the fabricated Co3Fe7@NCNTFs, as the bifunctional catalyst, maintains a significantly high 

electrocatalytic activity after 10 h. The remarkable electrocatalytic performance and high durability of 

our Co3Fe7@NCNTFs powder catalyst are comparable to many state-of-the-art bifunctional 

electrocatalysts (Table S2).  

 

Figure 5. (a) Schematic diagram of the two-electrode configuration for overall water splitting; (b) LSV polarization curve of Co-

NCNFTs//NF working as both cathode and anode electrode in a 1 M KOH solution for overall water splitting at a scan rate of 2 mV/s; (c) 

Durability test at 1.64 V.  

3.5. Mechanistic study on electrocatalyst activity. The chemical composition and the unique 



structure of N-doped carbon nanotube frameworks are believed to contribute to the exceptional 

electrocatalytic activity for both HER and OER. The Co3Fe7 nanoparticles embedded in the top of NCNTs 

play a key role in enhanced electrocatalytic performance for both HER and OER. The highly dispersed 

and concentrated Co3Fe7 nanoparticles, protected and encapsulated by NCNTs, provide a high density of 

active sites for the studied electrochemical reactions. In addition, the N-doped CNTs also partly 

contributed to the OER and HER activity. In this work, the content of nitrogen is up to 9.69%, which is 

significantly higher than most N-doped nanocarbon electrocatalysts.[5a, 16] As mentioned previously, 

previous studies have confirmed that introducing N atoms can produce structural defects in CNTs and 

these structural imperfections have been verified being absorption sites for reactant during electrocatalytic 

process.[26b, 31] In addition, through inducing electronic interactions with neighboring carbon/metal atoms, 

N doping can also provide active sites for electrocatalytic process. Furthermore, the unique porous and 

interconnected structure of NCNT frameworks facilitates the mass transport during electrocatalytic 

process without sacrificing electronic conductivity, owing to the high surface area derived from the MOF 

precursor.[32] The robust three-dimensional (3D) framework, and protective graphitic shell surrounding 

the Co3Fe7 nanoparticles, also endows the electrocatalyst high stability even after working for a long 

period.  

4. CONCLUSIONS  

In summary, we have synthesized a high-efficiency bifunctional bimetallic electrocatalyst for overall 

water splitting (264 mV and 197 mV overpotentials at 10mA/cm2 current density for OER and HER, 

respectively) based on the unique micro and nanostructure of our MOF-derived catalysts. The novel 

hybrid structure of Co3Fe7@NCNTFs was produced by employing MIL-88-Fe/Co as starting material 

and pyrolyzing it with DCDA. During the annealing synthesis, the MIL-88-Fe/Co particles not only 

provide C source for growth of CNTs catalyzed by the in-situ-reduced metallic Co3Fe7 nanoparticles but 

work as template for formation of nanocarbon frameworks. The resultant Co3Fe7@NCNTFs 

electrocatalyst displays efficient HER and OER electrocatalytic activity with high durability, and 

outperforms most existing nanocarbon-based catalysts due to the chemical compositions, remarkable 

conductivity, and robust 3D framework structure. This facile strategy for synthesizing hybrid 

nanostructure can be employed to develop many other MOF-derived nanocarbon materials and offers a 

new route for the design of highly efficient and robust electrocatalysts for various electrochemical energy 

devices.  
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