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Highlights: 

 Three different Manganese-based contrast agents produced enhancement in the 
pancreas of normal rats. 

 Enhancement after glucose challenge was greater than enhancement after saline 
challenge 

 Both Mangafodipir and Manganese gluconate show potential for clinical translation 
investigating beta cell imaging of the pancreas in diabetic patients. 
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Abstract 

Mangafodipir was approved for use as an MRI contrast agent in the late 1990s for liver and 

pancreas imaging but it was removed from the European market for commercial reasons in 

2012.  Previously, preliminary work in mice and in diabetic patients showed that Mn2+ ions 

could be used as a contrast agent to monitor the function of insulin-producing β-cells by 

acting as a calcium analogue.  Clinical translation of this work was hampered by a lack of 

available Mn contrast agents, but both mangafodipir and Mn gluconate are currently being 

used in clinical trials. 

As a first step towards using Mn in diabetic patients to monitor treatment or disease 

progression, we imaged the pancreas of healthy rats using mangafodipir, Mn gluconate and 

Mn chloride (as a control).  The hypothesis was that Mn gluconate produces pancreatic 

enhancement similar to that seen previously with mangafodipir and Mn chloride, with 

greater enhancement following glucose challenge vs saline challenge.  18 Wistar rats were 

imaged at 7 T and normalised plateau pancreatic enhancement over baseline was compared 

for saline vs glucose challenge, calculated from a sigmoid fit to the enhancement curve.  For 

saline vs glucose challenge, mean increases in plateau height ± sd were: 22 ± 18% for Mn 
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chloride, 31 ± 29% for mangafodipir and 41 ± 17% for Mn gluconate.  A paired t-test 

indicated that enhancement was greater for glucose vs saline (p=0.01) and that there was 

no significant difference in the percentage enhancement between any of the compounds 

(p>0.2).  In conclusion, all three contrast agents produced similar enhancement, with 

greater plateau height under glucose challenge vs saline challenge.  Mangafodipir and Mn 

gluconate show potential for translation into a clinical study investigating beta cell imaging 

of the pancreas in type 1 diabetes mellitus and type 2 diabetes. 

Keywords 

Manganese, Diabetes, Pancreas, β-cells, pancreatic islets 

1. Introduction 

Manganese ions (Mn2+) are strongly paramagnetic, and have been used in magnetic 

resonance (MR) contrast agents since the 1980s [1].  In the pancreas, Mn2+ ions can act as a 

calcium analogue and enter insulin-producing β-cells through voltage-gated calcium 

channels [2].  Type 1 diabetes mellitus is an autoimmune disease that results in the gradual 

destruction [3–5] of these insulin-producing β-cells, therefore T1 enhancement with Mn 

chloride has been proposed as a method for evaluating β-cell mass and function in mice [6–

9].  In humans, one study has investigated Mn-enhanced MRI in patients with type 2 

diabetes [10], a disease characterised by relative insulin deficiency and diminished β-cells 

[5].  This study showed that Mn-enhanced imaging could be used to distinguish 

normoglycaemic from type 2 diabetic patients by comparing T1w signal enhancement in the 

pancreas.   

                  



 5 

Further work in this area has been limited by a lack of clinically available Mn-based contrast 

agents, but a Mn agent previously marketed for use in liver and pancreas imaging in humans 

(mangafodipir) as well as a new agent being evaluated in humans for cardiac applications 

[11] (Mn gluconate) are both licensed for human usage.  In both cases, Mn2+ ions are the 

source of signal enhancement, but the delivery of unchelated Mn2+ (as in the case of 

manganese chloride) depresses myocardial function, reduces heart rate and causes 

vasodilation [12], making it unsuitable for use as a routine clinical agent.  Mn gluconate was 

developed to mitigate this by simultaneously providing cardioprotective calcium gluconate 

in the Mn2+ solution [13].  In the case of mangafodipir, the Mn2+ ions are chelated with 

dipyridoxyl diphosphate (DPDP), but approximately 80% of Mn2+ ions dissociate from the 

DPDP molecule allowing entry into cells [14].  It is unclear how these different formulations 

might impact on enhancement of the pancreas.  Whilst not currently being marketed at the 

time of this study, the agents are available to be manufactured and used in humans.  Before 

using one of these agents in a study of diabetic patients, we wanted to confirm the 

equivalence of Mn gluconate and mangafodipir (the agent used in the previous human 

study) [10] as a pancreatic contrast agent in healthy rats subject to a glucose challenge, 

using Mn chloride as a control.  This work was previously presented at the ISMRM 2018 

Annual Meeting [15]. 

2. Materials and methods 

2.1. Ethics statement 

All animal studies were ethically reviewed by the University of Edinburgh Animal Welfare 

and Ethical Review Board and carried out in accordance with the Animals (Scientific 

Procedures) Act 1986 and the GSK Policy on the Care, Welfare and Treatment of Animals.   
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2.2. Animals and diet 

Eighteen male adult Wistar rats 12-14 weeks old with a mean ± SD weight of 280 ± 22 g 

were housed four per cage under a standard 12 hr light/dark cycle at a constant 

temperature (24 ± 2 °C) with ad libitum access to standard chow diet and water. After two 

weeks of acclimation, rats were fasted overnight, and tail venous blood glucose levels were 

measured by OneTouch glucometer before each scan.  At the end of the first imaging 

session the rats were placed in an incubator under close observation until they regained 

consciousness (within 30 min).  After the second imaging session they were euthanised. 

2.3. Image acquisition 

Each rat (18 Wistar rats in total) underwent two imaging sessions 1-2 weeks apart at 7 T 

(Agilent Technologies, Santa Clara, USA).  In each imaging session, the animals were 

weighed and anaesthetised using Isofluorane (4% in O2 for induction and 1.5-2% in air:O2 

(50:50) for maintenance).  The tail vein was cannulated and the animal was placed in the 

magnet using a volume coil for signal reception.  Respiration, heart rate and temperature 

were continuously monitored.  The imaging protocol included anatomical T1w and T2w 

multislice TSE (1.5 mm slice thickness).  These images were used to plan a coronal slice 

through the pancreas for the dynamic series, which was a respiratory-gated 2D T1w spoiled 

gradient echo acquisition (TR=100 ms, TE=1.35 ms, α=60°, slice thickness=2 mm, 

matrix=128x128, FOV=60 mm).  After approximately 10 dynamic images, either saline (first 

imaging session, 2 ml/kg) or glucose (second imaging session, 50% glucose, 2 ml/kg, i.e. 

1g/kg body weight glucose) was injected using a syringe driver over 1 minute, followed after 

2 minutes by the contrast agent injection.  Each subject received either Mn chloride, (100 

mol/kg, 6 rats), Mn gluconate (100 mol/kg, 7 rats) or mangafodipir (125 mol/kg, 5 rats).  
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A higher dose of mangafodipir was used to ensure an equal amount of Mn ions available for 

uptake, because 80% dechelation occurs after injection [14] .  In each case, the contrast 

agent was injected over 20 minutes using an infusion pump, and dynamic imaging continued 

for 40 minutes after the Mn injection was complete, making a total of approximately 60 

minutes (140-180 frames). 

2.4. Image analysis 

For each visit, the anatomical images were used as a guide to outline the pancreas and the 

liver on the dynamic image stack, avoiding large vessels in the liver.  The mean signal in the 

pancreas and liver regions was calculated and plotted vs time, then the mean signal in the 

baseline was subtracted from the whole curve.  A sigmoid function (equation 1) was fitted 

to each curve using python (ver 3.6.0) and the scipy module (1.1.0): 

  
 

(     (    ))
 (1) 

Where y is the baseline-subtracted signal intensity, A is the plateau value, b is the slope, t is 

the timepoint number and t0 is a time offset parameter.  The free parameters in the fit were 

A, b and t0, and uncertainties in the fitted parameters were calculated from the fit 

covariance matrix. 

The fitted plateau height for the pancreas was normalised by dividing by the plateau height 

for the liver [6], and this normalised plateau height was compared for glucose vs saline 

challenge over all agents using a paired t-test.  The percentage difference in normalised 

plateau height for saline and glucose challenges was compared between agents using an 

unpaired t-test.  A p value of <0.05 was considered significant. 
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3. Results 

One rat died in an early experiment where Mn chloride was infused over 10 minutes, 

leading to the 20 minute infusion used for all subsequent experiments.  All other rats 

appeared fit and healthy after the first imaging session.  Five rats were removed from 

analysis due to technical issues with the injections or imaging in either the saline or the 

glucose examinations, leaving 12 complete datasets (3 Mn chloride, 5 mangafodipir, 4 Mn 

gluconate).  The mean time between the two imaging sessions was 8.8 days, and mean 

blood glucose was 6.6  0.7 mmol/l before scan 1 (saline infusion) and 6.4  0.8 mmol/l 

before scan 2 (glucose infusion), within normal limits. 

Figure 1 shows example images, normalised pancreatic enhancement curves and fits from 

one subject. Figure 2 shows sigmoid fit plateau height within the pancreas normalised to 

that from the liver for saline and glucose challenges for each rat.  A paired t-test for saline vs 

glucose normalised plateau height showed a significantly greater enhancement during 

glucose challenge (p = 0.0004), with only one rat showing smaller plateau enhancement 

with mangafodipir.  

For glucose vs saline challenge, the mean percentage increases in plateau height ± sd were: 

22 ± 18% for Mn chloride, 31 ± 29% for mangafodipir and 41 ± 17% for Mn gluconate, with 

no difference between these values (t-test, p > 0.2).   

4. Discussion 

Manganese-based contrast agents were proposed in the 1980s, and have been used in 

humans in a limited number of applications (Liver [16], cardiovascular [17,18], Pancreatic 

masses [19]).  Mangafodipir was used in a study of diabetes [10] where T1w signal 
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enhancement could distinguish normoglycaemic patients from those with type II diabetes, 

but it was subsequently removed from the market for commercial reasons.  Manganese 

gluconate is currently undergoing clinical trials (NCT01989195) and in our institution it is 

currently being clinically evaluated for use in the assessment of myocardial viability [11]. 

In a preclinical setting, Mn-based contrast agents have been used to study murine diabetes 

models, showing decreased Mn-induced signal enhancement in the pancreas of diabetic 

mice [6] that correlated with loss of beta-cell mass [9].  Further studies used change in 

relaxation rate [8] and modelling of intracellular relaxation rates [7] to quantify loss of beta 

cell mass and function. 

As a first step towards continuing this work in humans with diabetes with either the 

previously-used mangafodipir or Mn gluconate, we aimed to examine whether these agents 

resulted in similar enhancement in the rat pancreas.  Our results show that there is greater 

enhancement in the rat pancreas with Mn-based contrast agents after glucose challenge vs 

saline challenge, as predicted, and that Mn chloride, mangafodipir and Mn gluconate all 

result in similar increases in enhancement for glucose challenge vs saline challenge.  It is 

unclear why one rat showed a smaller enhancement on glucose with mangafodipir.  Our 

finding of a 20-40% change of normalised plateau signal enhancement between saline and 

glucose challenges is of similar range (50%) as found by Antkowiak et al [6], though this was 

in mice rather than rats and would depend heavily on injection (intraperitoneal in these 

mice) and imaging protocols. 

The limitations of this study are that the number of subjects in each group was small, 

outlining the pancreas was challenging in some cases, and we used signal enhancement as a 

surrogate for change in T1 rather than measuring it directly.  In addition, the amount of 
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pancreas included in the dynamic imaging slice (and hence the amount noise and partial 

volume effect) varied between subjects.  Despite the small number of subjects and difficulty 

in outlining the pancreas, we still saw significantly larger enhancement in the pancreas for 

glucose vs saline challenge.  In future work, a direct measurement of the change in T1 could 

provide more robust quantification of enhancement [8]. 

An obvious next step would be to apply these contrast agents in a rat model of diabetes.  

However, our increasing experience with mangafodipir in human cardiovascular imaging has 

led us directly to human studies of diabetes and we feel that it would be unnecessary and 

unethical to continue preclinical work. 

5. Conclusions 

This study has shown that, in healthy rats, Mn gluconate produced pancreatic enhancement 

similar to the Mn contrast agent used previously in humans with type 2 diabetes 

(mangafodipir).  This was a first step in verifying its potential as a marker of beta cell 

function, which will be the focus of future clinical studies of type 1 and type 2 diabetes at 

our centre. 
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Figures (2-column) 

Figure 1. Example images and curves 

 

(A) example anatomical T2w image with pancreas outlined in red, (B) subtraction image for 

pre vs post contrast dynamic image, (C) enhancement curves (normalised to liver plateau 

value) from one subject. Blue curve – saline challenge, green curve - glucose challenge.  

Figure 2. Plateau height normalised to liver for saline and glucose 

challenges. 
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For each subject, Sal indicates saline challenge, Glu indicates glucose challenge.  Error bars 

show parameter uncertainty calculated from fit covariance matrix  

                  


