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HYPOCOERCIVITY PROPERTIES OF ADAPTIVE LANGEVIN
DYNAMICS\ast 

BENEDICT LEIMKUHLER\dagger , MATTHIAS SACHS\ddagger , AND GABRIEL STOLTZ\S 

\bfA \bfb \bfs \bft \bfr \bfa \bfc \bft . Adaptive Langevin dynamics is a method for sampling the Boltzmann--Gibbs dis-
tribution at prescribed temperature in cases where the potential gradient is subject to stochastic
perturbation of unknown magnitude. The method replaces the friction in underdamped Langevin
dynamics with a dynamical variable, updated according to a negative feedback loop control law as
in the Nos\'e--Hoover thermostat. Using a hypocoercivity analysis we show that the law of Adaptive
Langevin dynamics converges exponentially rapidly to the stationary distribution, with a rate that
can be quantified in terms of the key parameters of the dynamics. This allows us in particular
to obtain a central limit theorem with respect to the time averages computed along a stochastic
path. Our theoretical findings are illustrated by numerical simulations involving classification of the
MNIST data set of handwritten digits using Bayesian logistic regression.

\bfK \bfe \bfy \bfw \bfo \bfr \bfd \bfs . Langevin dynamics, hypocoercivity, Bayesian inference, stochastic gradients, Nos\'e--
Hoover, sampling

\bfA \bfM \bfS \bfs \bfu \bfb \bfj \bfe \bfc \bft \bfc \bfl \bfa \bfs \bfs \bfi fi\bfc \bfa \bft \bfi \bfo \bfn \bfs . 60J70, 35B40, 46N30, 35Q84, 65C30

\bfD \bfO \bfI . 10.1137/19M1291649

1. Introduction. Langevin dynamics [28, 20, 23] is a system of stochastic differ-
ential equations which is traditionally derived as a model of a coarse-grained particle
system:

(1.1)
dq = M - 1pdt,

dp =
\bigl( 
F(q) - \zeta M - 1p

\bigr) 
dt+ \sigma dW.

Here q \in \BbbR n represents a vector of particle positions, p is the corresponding vector
of momenta, the mass matrix M \in \BbbR n\times n is symmetric positive definite, F is the
force field (normally the negative gradient of a potential energy function U), \zeta \in \BbbR 
is a (constant) friction coefficient, and \sigma \in \BbbR represents the strength of coupling to
the stochastic driving force defined by the Wiener process W. Although conceived
as a dynamical model, Langevin dynamics is among the most versatile and popular
methods for computing the statistical properties in high dimension, e.g., for molecular
systems or, more recently, for many problems in high-dimensional data analysis. In
this approach, the dynamical properties are ignored and the stochastic differential
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equations are discretized to produce ``sampling paths"" with weights approximating
those associated to the (prescribed) Boltzmann--Gibbs stationary distribution with
density \rho \beta \propto e - \beta U , where, in physical settings, \beta is the reciprocal of the temperature
scaled by Boltzmann's constant.

The key benefit of Langevin dynamics for sampling, compared to simpler methods
such as random walk Monte Carlo, is the use it makes of the gradient of the energy
function (or, in the case of data analysis, the ``log posterior""; see section 4.3 for
an example of Bayesian data analysis) which can effectively guide the collection of
sampling paths, resulting in less wasted computation. The use of Langevin dynamics
as a sampling scheme is further supported by its well-understood ergodic properties
(see [24, 34, 4, 32] and references therein), which ensure exponential convergence of
averages to their stationary values, a property which under certain technical conditions
on the potential function U can be shown to carry to numerical discretization [24, 34,
21, 3, 18].

Despite these advantages of Langevin dynamics, in many applications (e.g., mixed
quantum and classical molecular dynamics [35, 20] or ``big data"" [6]) the computation
of the force is itself a very challenging task; thus the gradient may be effectively
corrupted (due to approximation error), which leads to severe biasing of the invariant
distribution. It was for precisely such cases that the Adaptive Langevin dynamics
method [16, 7, 33, 22] was created. Note that in the machine learning literature, this
method goes by the name ``stochastic gradient Nos\'e--Hoover thermostat"" (SGNHT).
In this method, the friction \zeta in (1.1) is reinterpreted as a dynamical variable, defined
by a negative feedback loop control law (as in the Nos\'e--Hoover method [27]). For
concreteness, we suppose the gradient noise to be modeled by an additional stochastic
process. As discussed in [22], this can, in many cases, be interpreted as an additional
(unknown) It\^o perturbation \sigma G dWG, where \sigma 

2
G is unknown and scales linearly with

the stepsize used in the discretization of the respective continuous formulation. The
system of equations now becomes1

(1.2)

dq = M - 1pdt,

dp =
\bigl( 
 - \nabla U(q) - \zeta M - 1p

\bigr) 
dt+ \sigma G dWG + \sigma A dWA,

d\zeta =
1

\nu 

\biggl( 
pTM - 2p - 1

\beta 
Tr
\bigl( 
M - 1

\bigr) \biggr) 
dt,

where \beta , \sigma G, \sigma A, and \nu are positive scalars, andWA,WG are two independent Wiener
processes in \BbbR n with independent components (``A"" stands for ``applied,"" and ``G""
stands for ``gradient""). The auxiliary variable \zeta now acts as a variable friction which
restores the canonical distribution associated with the prescribed inverse tempera-
ture \beta . The system (1.2) admits the invariant probability measure (see section 2)

(1.3) \pi (dq dp d\zeta ) = Z - 1 exp

\biggl( 
 - \beta 
\biggl[ 
pTM - 1p

2
+ U(q) +

\nu 

2
(\zeta  - \gamma )2

\biggr] \biggr) 
dq dpd\zeta ,

where Z is a normalization constant and

(1.4) \gamma =
\beta (\sigma 2

G + \sigma 2
A)

2
.

1The formulation in [22] is slightly different in the form of the control law as a consequence of a
linear transformation of the momenta in the presentation of the frictional force.
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Assuming ergodicity, the system (1.2) allows sampling of the Boltzmann--Gibbs prob-

ability measure with density proportional to e - \beta [\bfp T\bfM  - 1\bfp /2+U(\bfq )], by marginalization,
and proportional to \rho \beta if the momenta are ignored.

The practical value of (1.2) is that it allows simulations to be performed for
complicated systems in which the potential energy function U and its gradient are
the consequence of substantial calculations and thus entail computational errors. The
original motivation of the article of Jones and Leimkuhler [16] was in the context of
multiscale models of molecular systems where the force laws were computed using a
separate numerical method and the error in this process was assumed to have the
character of white noise. More recently, (1.2) has been adopted in the setting of
sampling of Bayesian posterior distributions in large scale data science applications
[5], where the gradient noise is the consequence of incomplete calculation of the log-
likelihood function based on subsampling data points from a large data set, as in
the stochastic gradient Langevin dynamics method [37]. In this setup the potential
function U corresponds to the negative log posterior density of a statistical model;

i.e., for independent observations x1, x2, . . . , x
\widetilde N , the negative gradient of U is of the

form

 - \nabla U(q) = \nabla log p0(q) +

\widetilde N\sum 
j=1

\nabla log p(xj | q)(1.5)

where p0 is a prior density and p(xj | q) is the likelihood of the jth observation. In

order to avoid the linear scaling in \widetilde N of the computational cost per evaluation of the
force (1.5), the gradient force  - \nabla U(q) is commonly replaced by an unbiased estimator

 - \widehat \nabla U(q) in discretizations of (1.2). That is,

(1.6)  - \widehat \nabla U(q) = \nabla log \pi (q) +
\widetilde N
m

\sum 

j\in B

\nabla log p(xj | q),

where B = \{ Jl\} ml=1, m\ll \widetilde N , is a subset of the complete data index set---commonly re-
ferred to as a minibatch---which is comprised of uniformly and independently sampled
data point indices Jl \in \{ 1, . . . , \widetilde N\} , l = 1, . . . ,m, which are resampled with replace-
ment at the beginning of every time step of a discretization of (1.2).

Remark 1.1. We point out that modeling the gradient noise by a white noise of
the form \sigma G dWG assumes that the covariance of the estimation error is constant
in q and isotropic. It is possible to extend the analysis to more general covariance
matrices as long as they do not depend on q. However, the latter assumption is
not satisfied in most likelihood models. While in practice the Adaptive Langevin
formalism nonetheless usually results in good approximations of the target measure,
there are in fact no theoretical guarantees and/or bounds for the incurred error. This
is a well-known limitation of the approach and a subject of current work by the authors
(amongst others).

Although the presence of noise in the Adaptive Langevin model in contact with all
momenta suggests hypoellipticity (as for Langevin dynamics [24]), the way in which
convergence is achieved in the Adaptive Langevin system is not straightforward. Given
a stochastic differential equation system with generator \scrL , let us recall that there are
several well-studied frameworks which can be used to derive exponential convergence
rates for the semigroup et\scrL (or equivalently for the respective adjoint semigroup) in
certain functional spaces.
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First, there are probabilistic techniques, which allow the derivation of exponential
convergence rates of et\scrL when considered as a family of operators on weighted L\infty 

spaces (see, e.g., [25, 26, 24]), or exponential convergence rates of the formally adjoint
semigroup acting on Wasserstein metric spaces (see, e.g., [10, 11]). Second, there are
also functional analytic proofs for exponential convergence for the case of weighted
L\infty spaces; see [30, 12]. The naive application of these methods fails in the case of
(1.2) due to a lack of direct stochastic control of the auxiliary variable \zeta . It was only
very recently shown in [13] that a suitable Lyapunov function can be constructed for
this system which allows us to conclude exponential convergence in a weighted L\infty 

space.
The approach taken here is based on a third method, the alternative hypoco-

ercivity framework of Villani [36], as further developed by Dolbeault, Mouhot, and
Schmeiser [8, 9], which can be used to derive exponential convergence rates of the
semigroup when considered as a family of operators acting on subspaces of L2(\mu ),
where \mu denotes the (unique) invariant measure of the stochastic process under con-
sideration. This technique can be applied to derive geometric convergence estimates
for the underdamped Langevin equation [9, 31, 15]. We show that this framework can
also be applied directly to the system (1.2), thus demonstrating the rapid convergence
in law of the Adaptive Langevin system.

The exponential convergence shown here has important consequences for the sta-
tistics of the samples obtained using the Adaptive Langevin method. In particular
it allows us to establish a central limit theorem (CLT). Our approach also allows us
to characterize the asymptotic scaling of the spectral gap of the generator associated
with (1.2) when considered as an operator on the respective weighted L2 space as
O(min(\gamma , \gamma  - 1, \gamma \nu , \gamma  - 1\nu  - 1)), a qualitative characterization of the spectral gap which
is missing in the analysis in [13]. The derived asymptotic scaling on the lower bounds
of the spectral gap allows us in turn to conclude an asymptotic scaling of the asymp-
totic variance in the above-mentioned CLT as O(max(\gamma , \gamma  - 1, \gamma \nu , \gamma  - 1\nu  - 1)); see the
discussion in Remark 2.5 for an informal motivation of some terms in this asymptotic
scaling.

The remainder of this paper is structured as follows. In section 2 we begin by
rewriting the generators of the dynamics (1.2), where we also check the invariance of
the probability measure (1.3). In subsection 2.1 we normalize the dynamics (1.2) in
order to study limiting regimes associated with vanishing or diverging key parameters
of the dynamics (namely the thermal mass \nu and the magnitude of the fluctuation).
We can then discuss requirements of the potential energy function (subsection 2.2)
and state the exponential convergence of the evolution semigroup in subsection 2.3.
The CLT is derived in section 3, with upper bounds on the asymptotic variance made
precise in terms of the key parameters of the dynamics. Finally, we show in subsec-
tion 3.1 that the asymptotic variance converges in the large thermal mass limit to
the asymptotic variance of standard Langevin dynamics. Section 4 contains numeri-
cal experiments assessing the relevance of parameter scalings used and demonstrating
the CLT in an application to Bayesian sampling.

2. Hypocoercivity of Adaptive Langevin dynamics. We assume that the
potential energy function U is smooth, i.e., U \in \scrC \infty (\BbbR n,\BbbR ), and such that e - \beta U(\bfq ) is
integrable. In particular, (1.3) is a well-defined probability measure. We first show
that the probability measure (1.3) is indeed invariant under the dynamics (1.2).

The generator of (1.2) acts on functions \varphi = \varphi (q,p, \zeta ) with (q,p, \zeta ) \in \BbbR 2n+1. It
can be written as \scrL AdL = \scrL H + \gamma \scrL O + \nu  - 1\scrL NH, where the action of these generators
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can be defined on the core of C\infty (\BbbR 2n+1,\BbbR ) functions with compact support as

(2.1)

\scrL H = pTM - 1\nabla q  - \nabla U(q)T\nabla p =
1

\beta 

\bigl( 
\nabla \ast 

p\nabla q  - \nabla \ast 
q\nabla p

\bigr) 
=

1

\beta 

n\sum 

i=1

\partial \ast pi
\partial qi  - \partial \ast qi\partial pi

,

\scrL O =  - pTM - 1\nabla p +
1

\beta 
\Delta p =  - 1

\beta 
\nabla \ast 

p\nabla p =  - 1

\beta 

n\sum 

i=1

\partial \ast pi
\partial pi

,

and

(2.2)

\scrL NH =  - \nu (\zeta  - \gamma )pTM - 1\nabla p +

\biggl( 
pTM - 2p - 1

\beta 
Tr
\bigl( 
M - 1

\bigr) \biggr) 
\partial \zeta 

=
1

\beta 2

\bigl( 
(\partial \zeta  - \partial \ast \zeta )\nabla \ast 

p\nabla p +\Delta \ast 
p\partial \zeta  - \Delta p\partial 

\ast 
\zeta 

\bigr) 
,

where adjoints are taken on L2(\pi ). A simple computation indeed shows that \partial \ast qi =
 - \partial qi + \beta \partial qiU(q), \partial \ast pi

=  - \partial pi
+ \beta (M - 1p)i, \partial 

\ast 
\zeta =  - \partial \zeta + \beta \nu (\zeta  - \gamma ), and

\Delta \ast 
p = \Delta p  - 2\beta pTM - 1\nabla p + \beta 2

\biggl( 
pTM - 2p - 1

\beta 
Tr
\bigl( 
M - 1

\bigr) \biggr) 
.

The above rewriting in terms of the elementary operators \partial qi , \partial pi , \partial \zeta and their adjoints
immediately shows that \scrL O is symmetric, while \scrL H and \scrL NH are antisymmetric.
Let us however emphasize that this decomposition is only used for mathematical
convenience: the parameter \gamma is in fact unknown since \sigma G is not known in practice.

Another benefit of the rewriting (2.1)--(2.2) is that the actions of the operators
\scrL H,\scrL O,\scrL NH make it clear that the measure with density (1.3) is indeed invariant
since \scrA 1 = 0 for \scrA \in \{ \scrL H,\scrL O,\scrL NH\} , so that (denoting by C\infty 

0 (\BbbR 2n+1,\BbbR ) the space
of C\infty functions with compact support in \BbbR 2n+1)

\forall \varphi \in C\infty 
0 (\BbbR 2n+1,\BbbR ),

\int 

\BbbR 2n+1

\scrA \varphi d\pi = \sigma 

\int 

\BbbR 2n+1

\varphi \scrA 1d\pi = 0,

with \sigma = 1 for \scrA = \scrL O and \sigma =  - 1 for \scrA \in \{ \scrL H,\scrL NH\} , and where we relied for
\scrL NH on the fact that elementary operators acting on different variables commute.
Therefore,

\forall \varphi \in C\infty 
0 (\BbbR 2n+1,\BbbR ),

\int 

\BbbR 2n+1

\scrL AdL\varphi d\pi = 0,

which proves the invariance of \pi under the dynamics (1.2) (see, for instance, [23]).

2.1. Normalization of the dynamics. To simplify the notation we let M = I.
Let us however emphasize that our proofs and results can be adapted in a straight-
forward way to accommodate general mass matrices. As one of our interests in this
work is to understand the limiting regimes \gamma \rightarrow 0 or +\infty and/or \nu \rightarrow 0 or +\infty of the
Adaptive Langevin dynamics, we also need to rescale the friction variable \zeta in order
for the invariant measure to be independent of the parameter \nu . More precisely, we
set \varepsilon =

\surd 
\nu and consider \xi =

\surd 
\nu (\zeta  - \gamma ), i.e.,

\zeta = \gamma +
\xi 

\varepsilon 
.

The latter change of variables is motivated by the fact that the invariant measure (1.3)
now becomes (slightly abusing the notation \pi )

(2.3) \pi (dq dp d\xi ) = Z - 1 exp

\biggl( 
 - \beta 
\biggl[ 
pTM - 1p

2
+ U(q) +

\xi 2

2

\biggr] \biggr) 
dq dpd\xi .
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Let us emphasize that this invariant probability measure does not depend on the
parameters \gamma , \varepsilon . The dynamics (1.2) then becomes

(2.4)

dq = pdt,

dp =

\biggl( 
 - \nabla U(q) - \xi 

\varepsilon 
p - \gamma p

\biggr) 
dt+

\sqrt{} 
2\gamma 

\beta 
dW,

d\xi =
1

\varepsilon 

\biggl( 
| p| 2  - n

\beta 

\biggr) 
dt,

where | p| =
\sqrt{} 
p21 + \cdot \cdot \cdot + p2n is the Euclidean norm of p \in \BbbR n. The generator of this

SDE is

(2.5) \scrL AdL = \scrL H + \gamma \scrL O + \varepsilon  - 1\scrL NH,

with the above definitions (2.1) for \scrL H and \scrL O (upon replacing M with I) and

(2.6) \scrL NH =

\biggl( 
| p| 2  - n

\beta 

\biggr) 
\partial \xi  - \xi pT\nabla p =

1

\beta 2

\bigl( 
(\partial \xi  - \partial \ast \xi )\nabla \ast 

p\nabla p +\Delta \ast 
p\partial \xi  - \Delta p\partial 

\ast 
\xi 

\bigr) 
.

2.2. Assumptions and notation. We denote by \pi q, \pi p, \pi \xi the marginals of the
probability measure (2.3) in the variables q,p, and \xi , respectively, so that \pi (dq dpd\xi ) =
\pi q(dq)\pi p(dp)\pi \xi (d\xi ). Further let \| \cdot \| L2(\pi ) be the norm on the Hilbert space L2(\pi )
induced by the canonical scalar product, and denote by L2

0(\pi ) the subspace of L2(\pi )
of functions with vanishing mean,

(2.7) L2
0(\pi ) =

\biggl\{ 
\varphi \in L2(\pi )

\bigm| \bigm| \bigm| \bigm| 
\int 

\BbbR 2n+1

\varphi d\pi = 0

\biggr\} 
,

and by \Pi 0 : L2(\pi ) \rightarrow L2
0(\pi ) the orthogonal projection operator onto this subspace,

i.e.,

(2.8) \Pi 0\varphi = \varphi  - 
\int 

\BbbR 2n+1

\varphi d\pi .

In the remainder of this article we consider all operators as being defined on L2(\pi )
unless explicitly specified otherwise. The associated operator norm for bounded op-
erators on L2(\pi ) is

\| \scrT \| = sup
\varphi \in L2(\pi )\setminus \{ 0\} 

\| \scrT \varphi \| L2(\pi )

\| \varphi \| L2(\pi )
.

For an operator \scrT on L2(\pi ) with dense domain, we denote by \scrT \ast its L2(\pi )-adjoint.
Throughout the remainder of this article we assume that the potential function U
satisfies the following assumption.

Assumption 1. The potential function is smooth, i.e., U \in \scrC \infty (\BbbR n,\BbbR ), and the
associated probability measure \pi q(dq) = Z - 1

q e - \beta U(\bfq )dq satisfies a Poincar\'e inequality:
there exists \kappa q > 0 such that

(2.9) \forall \varphi \in H1(\pi q),

\bigm\| \bigm\| \bigm\| \bigm\| \varphi  - 
\int 

\BbbR n

\varphi d\pi q

\bigm\| \bigm\| \bigm\| \bigm\| 
L2(\pi q)

\leqslant 
1

\kappa q
\| \nabla \varphi \| L2(\pi q).

Moreover, there exist c1 > 0, c2 \in [0, 1), and c3 > 0 such that

(2.10) \Delta U \leqslant c1 +
c2\beta 

2
| \nabla U | 2, | \nabla 2U | \leqslant c3 (1 + | \nabla U | ) .
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The second condition, taken from [9, section 3], ensures that the operator (1 +
\nabla \ast 

q\nabla q)
 - 1 is bounded from L2(\pi q) to H2(\pi q). It will be used in technical estimates

related to the proof of exponential convergence of the semigroup (see Lemma 2.11).
A sufficient condition on U for \pi q to satisfy a Poincar\'e inequality is for example the
following (see [1, Corollary 1.6]): there exist a \in (0, 1), c > 0, and R \geqslant 0 such that

\forall q \in \BbbR n such that | q| \geqslant R, a\beta | \nabla U(q)| 2  - \Delta U(q) \geqslant c.

The latter condition and (2.10) hold for instance for potentials which behave asymp-
totically as | q| \alpha with \alpha > 1 as | q| \rightarrow \infty .

Remark 2.1 (singular potentials). Note that our set of assumptions excludes
singular potentials. Exponential convergence of Adaptive Langevin dynamics for such
potentials follows from the results in [13], which are based on Lyapunov estimates.

2.3. Exponential convergence of the law and invertibility of the gener-
ator. The following result states the exponential convergence in L2(\pi ) of the semi-
group et\scrL AdL associated with the dynamics (2.4).

Theorem 2.2. There exist C, \lambda such that, for any \varepsilon , \gamma > 0, there is \lambda \varepsilon ,\gamma > 0 for
which
(2.11)

\forall t \geqslant 0, \forall \varphi \in L2(\pi ),

\bigm\| \bigm\| \bigm\| \bigm\| et\scrL AdL\varphi  - 
\int 
\varphi d\pi 

\bigm\| \bigm\| \bigm\| \bigm\| 
L2(\pi )

\leqslant Ce - t\lambda \varepsilon ,\gamma 

\bigm\| \bigm\| \bigm\| \bigm\| \varphi  - 
\int 
\varphi d\pi 

\bigm\| \bigm\| \bigm\| \bigm\| 
L2(\pi )

,

with the lower bound

(2.12) \lambda \varepsilon ,\gamma \geqslant \lambda min

\biggl( 
\gamma ,

1

\gamma 
, \gamma \varepsilon 2,

1

\gamma \varepsilon 2

\biggr) 
.

Theorem 2.2 immediately implies the existence of the inverse of \scrL AdL on L2
0(\pi ) and

allows us to obtain bounds on the norm of the inverse in terms of the parameters \gamma , \varepsilon 
(see [23, Proposition 2.1]).

Corollary 2.3. The operator \scrL AdL considered on L2
0(\pi ) is invertible and

\scrL  - 1
AdL =  - 

\int \infty 

0

et\scrL AdLdt,
\bigm\| \bigm\| \scrL  - 1

AdL

\bigm\| \bigm\| 
\scrB (L2

0(\pi ))
\leqslant 
C

\lambda 
max

\biggl( 
\gamma ,

1

\gamma 
, \gamma \varepsilon 2,

1

\gamma \varepsilon 2

\biggr) 
.

Simple computations show that some of these bounds on the resolvent are sharp.
Indeed,

\scrL AdL

\biggl( 
U +

| p| 2

2

\biggr) 
= \gamma 

\biggl[ 
n

\beta 
 - 
\biggl( 
1 +

\xi 

\gamma \varepsilon 

\biggr) 
| p| 2

\biggr] 
,

which implies that there exists a > 0 such that
\bigm\| \bigm\| \scrL  - 1

AdL

\bigm\| \bigm\| 
\scrB (L2

0(\pi ))
\geqslant a\gamma  - 1 by choosing

\gamma small and \gamma \varepsilon large. Next,

\scrL AdL

\bigl( 
\gamma U + pT\nabla U

\bigr) 
= pT

\bigl( 
\nabla 2U

\bigr) 
p - | \nabla U | 2  - 1

\varepsilon 
\xi pT\nabla U,

which shows that there exists b > 0 such that
\bigm\| \bigm\| \scrL  - 1

AdL

\bigm\| \bigm\| 
\scrB (L2

0(\pi ))
\geqslant b\gamma by choosing \gamma 

large and \varepsilon = 1. Finally,

\scrL AdL

\biggl( 
\gamma \varepsilon \xi +

| p| 2

2
 - 1

\gamma 
pT\nabla U

\biggr) 
=  - 1

\varepsilon 
\xi | p| 2 + 1

\gamma \varepsilon 
pT\nabla U  - 1

\gamma 

\bigl( 
pT
\bigl( 
\nabla 2U

\bigr) 
p - | \nabla U | 2

\bigr) 
,
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which shows that there exists c > 0 such that
\bigm\| \bigm\| \scrL  - 1

AdL

\bigm\| \bigm\| 
\scrB (L2

0(\pi ))
\geqslant c\gamma \varepsilon 2 by choosing

\gamma \gg \varepsilon \gg 1. It is on the other hand not so easy to find functions which saturate
the upper bound 1/(\gamma \varepsilon 2) of the resolvent since this requires a careful analysis in the
regime \varepsilon \rightarrow 0, which corresponds to a singular limit where the dominant part of
the dynamics is the deterministic Nos\'e--Hoover feedback; see Remark 3.3 below. We
however demonstrate numerically the sharpness of the upper bound in section 4.1.

The proof of Theorem 2.2 relies on the hypocoercive framework of [8, 9]. The
exponential decay is obtained by a Gr\"onwall inequality in a modified norm on L2(\pi ).
The choice of the modified norm is motivated by the fact that \scrL AdL is coercive in the
corresponding scalar product. More precisely, we consider

(2.13) H (\varphi ) =
1

2
\| \varphi \| 2L2(\pi ) + a\varepsilon ,\gamma \langle A\varepsilon \varphi ,\varphi \rangle L2(\pi ),

where A\varepsilon is a bounded operator constructed from the antisymmetric part A\varepsilon :=
\scrL H + \varepsilon  - 1\scrL NH of the generator, and a\varepsilon ,\gamma \in (0, 1) is a constant. Formally, for a
generator \scrL which can be decomposed as the sum of a symmetric part \scrL sym, coercive
on the range of a projector \scrP , and an antisymmetric part \scrL anti, the approach in [8, 9]
suggests considering the regularization operator  - (1  - \scrP \scrL 2

anti\scrP ) - 1\scrP \scrL anti. In order
for the coercivity properties to behave well with \varepsilon , we however need to distinguish
the ``dominant"" part of \scrL anti and possibly renormalize this operator by a factor \varepsilon so
that the antisymmetric part remains of order 1 as \varepsilon goes either to 0 or to +\infty .

More precisely, the expression of A\varepsilon distinguishes whether \varepsilon \leqslant 1 or \varepsilon \geqslant 1. For
\varepsilon \in (0, 1], the small term in A\varepsilon is the Hamiltonian one and the expression of A\varepsilon is

the one suggested in [9], namely  - 
\bigl[ 
1 - \Pi A 2

\varepsilon \Pi 
\bigr]  - 1

\Pi A\varepsilon where \Pi is the orthogonal
projector on L2(\pi ) corresponding to the partial integration with respect to \pi p(dp):

(2.14) (\Pi \varphi ) (q, \xi ) =

\int 

\BbbR n

\varphi (q,p, \xi )\pi p(dp).

For \varepsilon \in [1,\infty ), the small term in A\varepsilon is the one associated with the Nos\'e--Hoover-like
feedback mechanism, in which case one should rescale the generator as \varepsilon \scrL AdL in order
to avoid degeneracies as \varepsilon \rightarrow +\infty . Up to this multiplication by \varepsilon , the regularization

operator is defined as above and therefore reads  - \varepsilon 
\bigl[ 
1 - \varepsilon 2\Pi A 2

\varepsilon \Pi 
\bigr]  - 1

\Pi A\varepsilon . This mod-
ification turns out to be crucial to obtain the key partial coercivity (2.19) with the
appropriate rate (see the discussion following this inequality). We therefore use the
following regularization operator, which reduces to the expressions discussed above
upon distinguishing \varepsilon \leqslant 1 or \varepsilon \geqslant 1:

A\varepsilon :=  - min

\biggl( 
1,

1

\varepsilon 

\biggr) \biggl[ 
min

\biggl( 
1,

1

\varepsilon 2

\biggr) 
 - \Pi A 2

\varepsilon \Pi 

\biggr]  - 1

\Pi A\varepsilon 

=  - min

\biggl( 
1,

1

\varepsilon 

\biggr) \biggl[ 
min

\biggl( 
1,

1

\varepsilon 2

\biggr) 
+\Pi 

\biggl( 
2n

(\beta \varepsilon )2
\partial \ast \xi \partial \xi +

1

\beta 
\nabla \ast 

q\nabla q

\biggr) 
\Pi 

\biggr]  - 1

\Pi A\varepsilon .

The second expression is a consequence of the following equations:

\Pi \scrL 2
H\Pi =  - 1

\beta 2

n\sum 

i=1

\Pi \partial pi
\partial \ast pi

\Pi \partial \ast qi\partial qi =  - 1

\beta 
\nabla \ast 

q\nabla q,

\Pi \scrL 2
NH\Pi =  - 1

\beta 4
\Pi \Delta p\Delta 

\ast 
p\Pi \partial 

\ast 
\xi \partial \xi =  - 2n

\beta 2
\partial \ast \xi \partial \xi ,

\Pi \scrL NH\scrL H\Pi = \Pi \scrL H\scrL NH\Pi = 0,
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which are direct consequences of the expressions (2.1) and (2.6) for the generators in
terms of the elementary operators \partial qi , \partial pi

, \partial \xi , as well as the following rules (which
can be checked by direct computations):

(2.15) \partial pi
\Pi = 0, \Pi \partial \ast pi

= 0, \partial pi
\partial \ast pi

\Pi = \beta \Pi , \partial 2pj

\bigl( 
\partial \ast pi

\bigr) 2
\Pi = 2\beta 2\Pi \delta ij .

It can be shown that the norm of A\varepsilon is bounded by 1/2 (see Lemma 2.6), so
that

\sqrt{} 
H (\cdot ) defines a norm equivalent to the standard norm on L2(\pi ) for any a\varepsilon ,\gamma \in 

( - 1, 1):

(2.16)

\sqrt{} 
1 - | a\varepsilon ,\gamma | 

2
\| \varphi \| L2(\pi ) \leqslant 

\sqrt{} 
H (\varphi ) \leqslant 

\sqrt{} 
1 + | a\varepsilon ,\gamma | 

2
\| \varphi \| L2(\pi ).

By polarization we can define a real valued inner product associated with
\sqrt{} 

H (\cdot ) as

(2.17)
 f, g\downarrow \varepsilon ,\gamma := H (f + g) - H (f) - H (g)

= \langle f, g\rangle L2(\pi ) + a\varepsilon ,\gamma \langle A\varepsilon f, g\rangle L2(\pi ) + a\varepsilon ,\gamma \langle A\varepsilon g, f\rangle L2(\pi ).

Most importantly, the construction of the operator A\varepsilon ensures that \scrL AdL is coercive
for the modified scalar product (2.17), as made precise in the following key result (see
section 2.4 for the proof).

Proposition 2.4. There exist a \in (0, 1) and \widetilde \lambda > 0 such that, for any \varepsilon , \gamma > 0
and upon choosing a\varepsilon ,\gamma = amin(\gamma , \gamma  - 1, \gamma \varepsilon 2, (\gamma \varepsilon 2) - 1) in (2.13),

\forall \varphi \in C\infty 
0 (\BbbR 2n+1) \cap L2

0(\pi ),   - \scrL AdL\varphi ,\varphi \downarrow \varepsilon ,\gamma \geqslant \widetilde \lambda min

\biggl( 
\gamma ,

1

\gamma 
, \gamma \varepsilon 2,

1

\gamma \varepsilon 2

\biggr) 
\| \varphi \| 2L2(\pi ).

Theorem 2.2 then follows from the inequality

d

dt

\Bigl[ 
H
\Bigl( 
et\scrL AdL\varphi 

\Bigr) \Bigr] 
=  \scrL AdLe

t\scrL AdL\varphi , et\scrL AdL\varphi \downarrow \varepsilon ,\gamma \leqslant  - \widetilde \lambda min

\biggl( 
\gamma ,

1

\gamma 
, \gamma \varepsilon 2,

1

\gamma \varepsilon 2

\biggr) \bigm\| \bigm\| \bigm\| et\scrL AdL\varphi 
\bigm\| \bigm\| \bigm\| 2
L2(\pi )

,

upon using the equivalence of norms (2.16) and resorting to a Gr\"onwall lemma.

Remark 2.5. We motivate why three out of the four terms are expected in the
scaling (2.12) of the lower bound. First, if \scrL NH = 0, the remaining part \scrL H + \gamma \scrL O

of the generator corresponds to the underdamped Langevin equation, whose spectral
gap is bounded from above by a term proportional to O(min(\gamma , \gamma  - 1)). Similarly, in
the case \scrL H = 0, it can be verified that the framework of [8] can be directly applied to
\scrL AdL = \varepsilon  - 1(\varepsilon \gamma \scrL O + \scrL NH) considered as an operator on L2(\pi p\pi \xi ), meaning that the
spectral gap of this operator scales as O

\bigl( 
\varepsilon  - 1 min(\gamma \varepsilon , (\gamma \varepsilon ) - 1)

\bigr) 
= O

\bigl( 
min(\gamma , \gamma  - 1\varepsilon  - 2

\bigr) 
.

The only term we do not capture by this simple analysis is \gamma \varepsilon 2. This is not a surprise
since the origin of this limitation on the convergence rate comes from the interaction
between the Hamiltonian and Nos\'e--Hoover parts; see Remark 2.10 below.

2.4. Proof of Proposition 2.4. In the remainder of this section, we use the
shorthand notation

\eta \varepsilon = min(1, \varepsilon  - 1).

We first review a few properties of the operator A\varepsilon (obtained by a straightforward
adaptation of [9, Lemma 1]).

Lemma 2.6. The operators A\varepsilon and A\varepsilon A\varepsilon are bounded, and \Pi A\varepsilon = A\varepsilon . Further-
more, for any f \in L2(\pi ),

\| A\varepsilon f\| L2(\pi ) \leqslant 
1

2
\| (1 - \Pi )f\| L2(\pi ), \| A\varepsilon A\varepsilon f\| L2(\pi ) \leqslant \eta \varepsilon \| (1 - \Pi )f\| L2(\pi ).
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Proof. Consider f \in L2(\pi ) and u = A\varepsilon f . Then, (\eta 2\varepsilon  - \Pi A 2
\varepsilon \Pi )u =  - \eta \varepsilon \Pi A\varepsilon f .

This equality already shows that \Pi u = u, i.e., \Pi A\varepsilon = A\varepsilon . Moreover, upon taking the
scalar product with u, and noting that \Pi A\varepsilon \Pi = 0,

\eta 2\varepsilon \| u\| 2L2(\pi ) + \| A\varepsilon \Pi u\| 2L2(\pi ) =  - \eta \varepsilon \langle A\varepsilon \Pi u, (1 - \Pi )f\rangle L2(\pi )

\leqslant \eta \varepsilon \| A\varepsilon \Pi u\| L2(\pi )\| (1 - \Pi )f\| L2(\pi ) \leqslant 
\eta 2\varepsilon 
4
\| (1 - \Pi )f\| 2L2(\pi ) + \| A\varepsilon \Pi u\| 2L2(\pi ),

which implies the claimed inequalities.

We now fix \varphi \in C\infty 
0 (\BbbR 2n+1) \cap L2

0(\pi ) and evaluate

(2.18)
  - \scrL AdL\varphi ,\varphi \downarrow \varepsilon ,\gamma =  - \gamma \langle \scrL O\varphi ,\varphi \rangle L2(\pi ) + a\varepsilon ,\gamma \langle A\varepsilon A\varepsilon \varphi ,\varphi \rangle L2(\pi )

 - a\varepsilon ,\gamma \langle A\varepsilon A\varepsilon \varphi ,\varphi \rangle L2(\pi )  - \gamma a\varepsilon ,\gamma \langle A\varepsilon \scrL O\varphi ,\varphi \rangle L2(\pi ),

where we have used the fact that \langle \scrL AdL\varphi ,\varphi \rangle L2(\pi ) = \langle \scrL O\varphi ,\varphi \rangle L2(\pi ), and \scrL OA\varepsilon =
\scrL O\Pi A\varepsilon = 0. We next consider the four terms on the right-hand side of (2.18):

\bullet The expression (2.1) shows that - \langle \scrL O\varphi ,\varphi \rangle L2(\pi ) = \beta  - 1\| \nabla p\varphi \| 2L2(\pi ) \geqslant \beta  - 1\kappa 2p\| (1 - 
\Pi )\varphi \| 2L2(\pi ) from a Poincar\'e inequality for the Gaussian measure in p, point-

wise in (q, \xi ) and then integrated with respect to \pi q(dq)\pi \xi (d\xi ) (in fact,

\kappa p =
\sqrt{} 
\beta /m).

\bullet The term \langle A\varepsilon A\varepsilon \varphi ,\varphi \rangle L2(\pi ) is equal to \langle A\varepsilon A\varepsilon \varphi , (1 - \Pi )\varphi \rangle L2(\pi ) since \Pi A\varepsilon \Pi = 0,
and is therefore larger than  - \eta \varepsilon \| (1 - \Pi )\varphi \| 2L2(\pi ) in view of Lemma 2.6.

\bullet We decompose the term - \langle A\varepsilon A\varepsilon \varphi ,\varphi \rangle L2(\pi ) as - \langle A\varepsilon A\varepsilon \Pi \varphi ,\varphi \rangle L2(\pi ) - \langle A\varepsilon A\varepsilon (1 - 
\Pi )\varphi ,\varphi \rangle L2(\pi ). We first observe that the operator A\varepsilon A\varepsilon \Pi can be written, using
spectral calculus, as

A\varepsilon A\varepsilon \Pi = f\varepsilon (\scrT ) , \scrT = \Pi 

\biggl( 
2n

(\beta \varepsilon )2
\partial \ast \xi \partial \xi +

1

\beta 
\nabla \ast 

q\nabla q

\biggr) 
\Pi , f\varepsilon (x) =

\eta \varepsilon x

\eta 2\varepsilon + x
.

Moreover, from Poincar\'e inequalities for \pi q and \pi \xi (with constants \kappa q and
\kappa \xi =

\surd 
\beta ),

\scrT \geqslant \alpha \varepsilon \Pi (1 - \Pi 0), \alpha \varepsilon = min

\Biggl( 
2n\kappa 2\xi 
(\beta \varepsilon )2

,
\kappa 2q
\beta 

\Biggr) 
,

so that

(2.19) A\varepsilon A\varepsilon \Pi \geqslant \Lambda \varepsilon \Pi (1 - \Pi 0), \Lambda \varepsilon =
\eta \varepsilon \alpha \varepsilon 

\eta 2\varepsilon + \alpha \varepsilon 
.

Note that \Lambda \varepsilon is of order 1 when \varepsilon \leqslant 1, and of order \varepsilon  - 1 for \varepsilon \geqslant 1. It is precisely
at this place that it is crucial to modify the definition of A\varepsilon . Indeed, if one

keeps the regularization operator  - 
\bigl[ 
1 - \Pi A 2

\varepsilon \Pi 
\bigr]  - 1

\Pi A\varepsilon as for \varepsilon \leqslant 1, the rate
\Lambda \varepsilon would be replaced by \alpha \varepsilon /(1 + \alpha \varepsilon ), which behaves as \alpha \varepsilon \sim \varepsilon  - 2 for \varepsilon large.
The quantity \langle A\varepsilon A\varepsilon (1  - \Pi )\varphi ,\varphi \rangle L2(\pi ) = \langle A\varepsilon A\varepsilon (1  - \Pi )\varphi ,\Pi \varphi \rangle L2(\pi ) can be
shown to be larger than  - C1\eta \varepsilon /\varepsilon \| \Pi \varphi \| L2(\pi )\| (1  - \Pi )\varphi \| L2(\pi ) upon proving
that the operator A\varepsilon A\varepsilon (1 - \Pi ) is bounded by C1\eta \varepsilon /\varepsilon ; see Lemma 2.9 below.

\bullet Finally, in order to control \langle A\varepsilon \scrL O\varphi ,\varphi \rangle L2(\pi ) = \langle A\varepsilon \scrL O(1  - \Pi )\varphi ,\Pi \varphi \rangle L2(\pi ) by
\| \Pi \varphi \| L2(\pi )\| (1  - \Pi )\varphi \| L2(\pi ), we prove in Lemma 2.8 that the operator A\varepsilon \scrL O

is uniformly bounded with respect to \varepsilon by some constant C2.
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Gathering all estimates, we obtain, for \varphi \in L2
0(\pi ) (so that (1 - \Pi 0)\varphi = \varphi ),

(2.20)
  - \scrL AdL\varphi ,\varphi \downarrow \varepsilon ,\gamma \geqslant 

\Biggl( 
\gamma \kappa 2p
\beta 

 - a\varepsilon ,\gamma \eta \varepsilon 

\Biggr) 
\| (1 - \Pi )\varphi \| 2L2(\pi ) + a\varepsilon ,\gamma \Lambda \varepsilon \| \Pi \varphi \| 2L2(\pi )

 - a\varepsilon ,\gamma 

\Bigl( 
C1
\eta \varepsilon 
\varepsilon 

+ \gamma C2

\Bigr) 
\| \Pi \varphi \| L2(\pi )\| (1 - \Pi )\varphi \| L2(\pi ),

which can be rewritten as
(2.21)

  - \scrL AdL\varphi ,\varphi \downarrow \varepsilon ,\gamma \geqslant XT\bfitB \varepsilon ,\gamma X, X =

\biggl( 
\| \Pi \varphi \| L2(\pi )

\| (1 - \Pi )\varphi \| L2(\pi )

\biggr) 
, \bfitB \varepsilon ,\gamma =

\biggl( 
B1,1

1
2B1,2

1
2B1,2 B2,2

\biggr) 
,

with

(2.22) B1,1 = a\varepsilon ,\gamma \Lambda \varepsilon , B1,2 =  - a\varepsilon ,\gamma 
\Bigl( 
C1
\eta \varepsilon 
\varepsilon 

+ \gamma C2

\Bigr) 
, B2,2 =

\gamma \kappa 2p
\beta 

 - a\varepsilon ,\gamma \eta \varepsilon .

The result then follows from lower bounds on the smallest eigenvalue of \bfitB \varepsilon ,\gamma , which
reads

(2.23) \lambda (\bfitB \varepsilon ,\gamma ) =
4B1,1B2,2  - B2

1,2

B1,1 +B2,2 +
\sqrt{} 
(B1,1  - B2,2)2 +B2

1,2

.

The scaling of a\varepsilon ,\gamma as a function of \varepsilon , \gamma is obtained by requiring that the determinant

(2.24) B1,1B2,2  - 
B2

1,2

4
=

\Biggl( 
\gamma \kappa 2p
\beta 

 - a\varepsilon ,\gamma 

\Biggr) 
a\varepsilon ,\gamma \Lambda \varepsilon  - 

a\varepsilon ,\gamma 
2

4

\Bigl( 
C1
\eta \varepsilon 
\varepsilon 

+ \gamma C2

\Bigr) 2

is positive.
\bullet For \varepsilon \geqslant 1, the factor \Lambda \varepsilon is of order \varepsilon  - 1 and \eta \varepsilon = \varepsilon  - 1. The matrix \varepsilon \bfitB \varepsilon ,\gamma then

has the same form as for standard underdamped Langevin dynamics, upon
replacing \gamma by \gamma \varepsilon . Indeed, the off-diagonal elements of \varepsilon \bfitB \varepsilon ,\gamma are of order
max(1, \gamma \varepsilon ) since \varepsilon \geqslant 1, while the diagonal terms are respectively of order \gamma \varepsilon 
and 1. This suggests choosing a\varepsilon ,\gamma = amin(\gamma \varepsilon , (\gamma \varepsilon ) - 1) with a > 0 sufficiently
small, and leads to a lower bound for \lambda (\varepsilon \bfitB \varepsilon ,\gamma ) of order min(\gamma \varepsilon , (\gamma \varepsilon ) - 1). Thus,
\lambda (\bfitB \varepsilon ,\gamma ) is of order min(\gamma , (\gamma \varepsilon 2) - 1).

\bullet For \varepsilon \leqslant 1, \eta \varepsilon = 1 and the factor \Lambda \varepsilon is of order 1. The scaling of a\varepsilon ,\gamma as a
function of \varepsilon , \gamma suggested by (2.24) is

(2.25) a\varepsilon ,\gamma = a
\gamma 

(\varepsilon  - 1 + \gamma )2

for a > 0 sufficiently small. We further distinguish two cases: (i) For \gamma \varepsilon \leqslant 1,
the scaling (2.25) leads to the choice a\varepsilon ,\gamma = a\gamma \varepsilon 2 for a > 0 sufficiently small,
in which case the smallest eigenvalue of \bfitB \varepsilon ,\gamma is easily seen to be of order \gamma \varepsilon 2

(since (2.23) is the ratio of a numerator of order \gamma 2\varepsilon 2 and a denominator
of order \gamma ). (ii) For \gamma \varepsilon \geqslant 1, the scaling (2.25) leads to the choice a\varepsilon ,\gamma =
amin(\gamma , \gamma  - 1) for a > 0 sufficiently small, in which case the smallest eigenvalue
of \bfitB \varepsilon ,\gamma is easily seen to be of order min(\gamma , \gamma  - 1).

In conclusion, there exists \lambda > 0 such that the smallest eigenvalue of \bfitB \varepsilon ,\gamma is lower
bounded by \lambda min(\gamma , \gamma  - 1, \gamma \varepsilon 2, (\gamma \varepsilon 2) - 1).
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We conclude this section with the proofs of the two technical lemmas used above.
In these proofs, we denote

(2.26) \scrG \varepsilon =

\biggl( 
\eta 2\varepsilon +\Pi 

\biggl[ 
2n

(\beta \varepsilon )2
\partial \ast \xi \partial \xi +

1

\beta 
\nabla \ast 

q\nabla q

\biggr] 
\Pi 

\biggr)  - 1

,

so that A\varepsilon =  - \eta \varepsilon \scrG \varepsilon \Pi A\varepsilon . We will repeatedly use in the proofs that \scrG \varepsilon , when restricted
to some subspace of L2

0(\pi ), behaves as (1 + \Pi \partial \ast \xi \partial \xi \Pi ) - 1 or (1 + \Pi \nabla \ast 
q\nabla q\Pi ) - 1. More

precisely, we introduce the orthogonal projectors Pq and P\xi , which correspond to a
partial integration with respect to \pi q(dq) and \pi \xi (d\xi ) (they are the counterparts for
the variables q, \xi of the projector \Pi defined in (2.14)):

(2.27) (Pq\varphi ) (p, \xi ) =

\int 

\BbbR n

\varphi (q,p, \xi )\pi q(dq), (P\xi \varphi ) (q,p) =

\int 

\BbbR 
\varphi (q,p, \xi )\pi \xi (d\xi ).

Note that Pq, P\xi both commute with \Pi ,\nabla \ast 
q\nabla q and \partial 

\ast 
\xi \partial \xi (in fact Pq\nabla \ast 

q\nabla q = \nabla \ast 
q\nabla qPq =

0 and P\xi \partial 
\ast 
\xi \partial \xi = \partial \ast \xi \partial \xi P\xi = 0) and therefore also with \scrG \varepsilon , and that

(2.28) \Pi Pq\scrL H = 0, \Pi P\xi \scrL NH = 0,

by the invariance of the measure \pi q(dq)\pi p(dp) by \scrL H, and the invariance of \pi p(dp)\pi \xi (d\xi )
by \scrL NH. Moreover, \Pi \nabla \ast 

q\nabla q\Pi \geqslant \kappa 2q\Pi (1  - Pq) from a Poincar\'e inequality for \pi q; and
similarly, \Pi \partial \ast \xi \partial \xi \Pi \geqslant \kappa 2\xi \Pi (1  - P\xi ) from a Gaussian Poincar\'e inequality for \pi \xi . This
leads to the following result.

Lemma 2.7. The operators \scrG \varepsilon (1+\Pi \nabla \ast 
q\nabla q\Pi )(1 - Pq) and \varepsilon 

 - 2\scrG \varepsilon (1+\Pi \partial \ast \xi \partial \xi \Pi )(1 - 
P\xi ) are uniformly bounded with respect to \varepsilon . More precisely,

(2.29) \| \scrG \varepsilon (1 + \Pi \nabla \ast 
q\nabla q\Pi )(1 - Pq)\| \leqslant \beta 

\bigl( 
1 + \kappa  - 2

q

\bigr) 
,

and

(2.30)
\bigm\| \bigm\| \scrG \varepsilon (1 + \Pi \partial \ast \xi \partial \xi \Pi )(1 - P\xi )

\bigm\| \bigm\| \leqslant 
\beta 2

2n

\Bigl( 
1 + \kappa  - 2

\xi 

\Bigr) 
\varepsilon 2.

Moreover, \scrG 1/2
\varepsilon (1 + \Pi \nabla \ast 

q\nabla q\Pi )1/2(1  - Pq) and \varepsilon  - 1\scrG 1/2
\varepsilon (1 + \Pi \partial \ast \xi \partial \xi \Pi )1/2(1  - P\xi ) are

also uniformly bounded with respect to \varepsilon .

Proof. Denoting Aq = (1 - Pq)\Pi \nabla \ast 
q\nabla q\Pi (1 - Pq),

\scrG \varepsilon (1 + \Pi \nabla \ast 
q\nabla q\Pi )(1 - Pq) = (1 - Pq)\scrG \varepsilon (1 - Pq)(1 + \Pi \nabla \ast 

q\nabla q\Pi )(1 - Pq)

= (1 - Pq +Aq)
1/2 \bigl[ \eta 2

\varepsilon + 2n(\beta \varepsilon ) - 2\Pi \partial \ast 
\xi \partial \xi \Pi + \beta  - 1\Pi \nabla \ast 

q\nabla q\Pi 
\bigr]  - 1

(1 - Pq +Aq)
1/2

= (1 - Pq +Aq)
1/2

\biggl[ 
\eta 2
\varepsilon (1 - Pq) +

2n

(\beta \varepsilon )2
(1 - Pq)\Pi \partial \ast 

\xi \partial \xi \Pi (1 - Pq) + \beta  - 1Aq

\biggr]  - 1

(1 - Pq +Aq)
1/2,

where all operators on the last right-hand side are considered on the subspace (1  - 
Pq)L

2
0(\pi ), on which Aq \geqslant \kappa 2q. Therefore, in the sense of symmetric operators on

(1 - Pq)L
2
0(\pi ),

0 \leqslant \scrG \varepsilon (1 + \Pi \nabla \ast 
q\nabla q\Pi )(1 - Pq) \leqslant (1 +Aq)

1/2
\bigl[ 
\eta 2\varepsilon + \beta  - 1Aq

\bigr]  - 1
(1 +Aq)

1/2 \leqslant g\varepsilon (Aq) ,

with

g\varepsilon (x) =
1 + x

\eta 2\varepsilon + \beta  - 1x
.
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This leads to (2.29) since g\varepsilon (\kappa 
2
q) \leqslant g0(\kappa 

2
q). Similar computations lead to

\bigm\| \bigm\| \scrG \varepsilon (1 + \Pi \partial \ast \xi \partial \xi \Pi )(1 - P\xi )
\bigm\| \bigm\| \leqslant h0(\kappa 

2
\xi )\varepsilon 

2, h\varepsilon (x) =
1 + x

min(1, \varepsilon 2) + 2n\beta  - 2x
,

which gives (2.30). The estimates on \scrG 1/2
\varepsilon (1 +\Pi \nabla \ast 

q\nabla q\Pi )1/2(1 - Pq) and \varepsilon 
 - 1\scrG 1/2

\varepsilon (1 +

\Pi \partial \ast \xi \partial \xi \Pi )
1/2(1 - P\xi ) are obtained in a similar way.

Lemma 2.8. The operator A\varepsilon \scrL O is uniformly bounded for \varepsilon > 0: There exists
C2 > 0 such that \| A\varepsilon \scrL O\| \leqslant C2.

Proof. Since A\varepsilon \scrL O =  - \eta \varepsilon \scrG \varepsilon \Pi \scrL H\scrL O  - \eta \varepsilon \varepsilon 
 - 1\scrG \varepsilon \Pi \scrL NH\scrL O, it suffices to prove that

each operator in the right-hand side of this equality is uniformly bounded with respect
to \varepsilon > 0. First, in view of (2.28), the operator

\scrG \varepsilon \Pi \scrL H\scrL O = \scrG \varepsilon \Pi (1 - Pq)\scrL H\scrL O = \scrG \varepsilon (1+\Pi \nabla \ast 
q\nabla q\Pi )(1 - Pq)(1+\Pi \nabla \ast 

q\nabla q\Pi ) - 1\Pi (1 - Pq)\scrL H\scrL O

is the product of the operator \scrG \varepsilon (1 + \Pi \nabla \ast 
q\nabla q\Pi )(1  - Pq) (uniformly bounded in \varepsilon 

from (2.29)) and the operator (1 + \Pi \nabla \ast 
q\nabla q\Pi ) - 1\Pi (1  - Pq)\scrL H\scrL O, which is bounded

(see for instance [31, Proposition A.3]). We next consider

\eta \varepsilon \varepsilon 
 - 1\scrG \varepsilon \Pi \scrL NH\scrL O = \eta \varepsilon \varepsilon 

 - 1\scrG \varepsilon (1 + \Pi \partial \ast \xi \partial \xi \Pi )(1 - P\xi )(1 + \Pi \partial \ast \xi \partial \xi \Pi ) - 1\Pi (1 - P\xi )\scrL NH\scrL O.

Note first that the norm of the operator \eta \varepsilon \varepsilon 
 - 1\scrG \varepsilon (1 + \Pi \partial \ast \xi \partial \xi \Pi )(1  - P\xi ) is of or-

der min(1, \varepsilon ) by (2.30). It remains to prove that (1 +\Pi \partial \ast \xi \partial \xi \Pi ) - 1\Pi (1 - P\xi )\scrL NH\scrL O is
bounded. We note for this that

\Pi (1 - P\xi )\scrL NH\scrL O =  - 1

\beta 3
(1 - P\xi )\Pi 

\bigl( 
(\partial \xi  - \partial \ast \xi )\nabla \ast 

p\nabla p +\Delta \ast 
p\partial \xi  - \Delta p\partial 

\ast 
\xi 

\bigr) 
\nabla \ast 

p\nabla p

=
1

\beta 3
(1 - P\xi )\partial 

\ast 
\xi \Pi \Delta p\nabla \ast 

p\nabla p

where we used (2.15). The conclusion then follows from the fact that \Pi \Delta p\nabla \ast 
p\nabla p is

bounded (see Lemma 2.12 below) as well as \scrT \xi = (1 + \Pi \partial \ast \xi \partial \xi \Pi ) - 1\Pi (1  - P\xi )\partial 
\ast 
\xi (by

computing \scrT \xi \scrT \ast 
\xi and using spectral calculus together with the lower bound \partial \ast \xi \partial \xi \geqslant 

\kappa 2\xi (1 - P\xi ) on (1 - P\xi )L
2
0(\pi )).

Lemma 2.9. There exists C1 > 0 such that, for any \varepsilon > 0, \| A\varepsilon A\varepsilon (1  - \Pi )\| \leqslant 
C1\eta \varepsilon /\varepsilon .

Proof. We prove that the adjoint operator \eta  - 1
\varepsilon (A\varepsilon A\varepsilon (1 - \Pi ))\ast = \eta  - 1

\varepsilon (1 - \Pi )A\varepsilon A
\ast 
\varepsilon =

(1 - \Pi )A 2
\varepsilon \Pi \scrG \varepsilon is uniformly bounded with respect to \varepsilon > 0. In fact, using \scrL H\Pi Pq = 0

and \scrL NH\Pi P\xi = 0,

(2.31)
\eta  - 1
\varepsilon A\varepsilon A

\ast 
\varepsilon = \scrL 2

H\Pi (1 - Pq)\scrG \varepsilon +
1

\varepsilon 
\scrL NH\scrL H\Pi (1 - Pq)\scrG \varepsilon 

+
1

\varepsilon 
\scrL H\scrL NH\Pi (1 - P\xi )\scrG \varepsilon +

1

\varepsilon 2
\scrL 2
NH\Pi (1 - P\xi )\scrG \varepsilon .

Let us consider successively the various terms on the right-hand side. First, in view
of the rules (2.15),

\beta 2\scrL 2
H\Pi (1 - Pq)\scrG \varepsilon =

n\sum 
i=1

n\sum 
j=1

\Bigl( 
\partial 2
qi,qj

(1 - Pq)\scrG \varepsilon 

\Bigr) \Bigl( 
\partial \ast 
pi
\partial \ast 
pj

\Pi 
\Bigr) 
 - 

n\sum 
i=1

n\sum 
j=1

\bigl( 
\partial \ast 
qi
\partial qj (1 - Pq)\scrG \varepsilon 

\bigr) \Bigl( 
\partial pi\partial 

\ast 
pj

\Pi 
\Bigr) 
,

which is a sum of bounded operators in view of Lemmas 2.11 and 2.12. Similarly,

1

\varepsilon 2
\scrL 2
NH\Pi (1 - P\xi )\scrG \varepsilon \Pi =

1

\beta 4

1

\varepsilon 2
\bigl[ 
(\partial \xi  - \partial \ast \xi )\partial \xi \nabla \ast 

p\nabla p + \partial 2\xi \Delta 
\ast 
p  - \partial \ast \xi \partial \xi \Delta p

\bigr] 
\Delta \ast 

p\Pi (1 - P\xi )\scrG \varepsilon 
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is a sum of bounded operators in view of Lemmas 2.11 and 2.12. Consider now the
terms involving both \scrL H and \scrL NH. We need to introduce projectors 1  - Pq and
1 - P\xi in order to rely on Lemma 2.7. We note to this end that \scrL NH\scrL H\Pi (1 - Pq) =
\scrL NH(1  - P\xi )\scrL H\Pi (1  - Pq) + \scrL NHP\xi \scrL H\Pi (1  - Pq) and \scrL H\scrL NH\Pi (1  - P\xi ) = \scrL H(1  - 
Pq)\scrL NH\Pi (1 - P\xi ) + \scrL HPq\scrL NH\Pi (1 - P\xi ). Straightforward computations show that

\scrL NHP\xi \scrL H\Pi (1 - Pq)\varphi =  - \xi pT\nabla q (\Pi P\xi (1 - Pq)\varphi ) ,

which is the product of two functions depending on the variables \xi ,p and q, respec-
tively, with (p, \xi ) \mapsto \rightarrow \xi p belonging to L2(\pi p \pi \xi ). A similar reasoning shows that

\scrL HPq\scrL NH\Pi (1 - P\xi ) =  - 2pT\nabla V \partial \xi (\Pi Pq(1 - P\xi )\varphi ) .

In addition,

1

\varepsilon 
\scrL NH(1 - P\xi )\scrL H\Pi (1 - Pq)\scrG \varepsilon 

=
1

\beta 3

\biggl[ 
1

\varepsilon 
(\partial \xi  - \partial \ast 

\xi )(1 - P\xi )\nabla \ast 
p\nabla p +

1

\varepsilon 
\partial \xi (1 - P\xi )\Delta 

\ast 
p  - 1

\varepsilon 
\partial \ast 
\xi (1 - P\xi )\Delta p

\biggr] 
\nabla \ast 

p\nabla q(1 - Pq)\scrG \varepsilon ,

and

1

\varepsilon 
\scrL H(1 - Pq)\scrL NH\Pi (1 - P\xi )\scrG \varepsilon =

1

\beta 3

1

\varepsilon 
(\nabla \ast 

p\nabla q  - \nabla \ast 
q\nabla p)(1 - Pq)\partial \xi (1 - P\xi )\scrG \varepsilon \Delta 

\ast 
p\Pi 

are sums of bounded operators in view of Lemma 2.11. Therefore, \varepsilon  - 1\scrL NH\scrL H\Pi (1  - 
Pq)\scrG \varepsilon and \varepsilon 

 - 1\scrL H\scrL NH\Pi (1 - P\xi )\scrG \varepsilon both have operator norms of order 1/\varepsilon . This finally
gives the claimed result.

Remark 2.10. Among the various terms in the decomposition of A\varepsilon A\varepsilon (1 - \Pi ) we
consider in the proof of Lemma 2.9, the only ones which are not bounded as \varepsilon \rightarrow 0 are
\varepsilon  - 1\scrL NHP\xi \scrL H(1 - Pq)\Pi \scrG \varepsilon and \varepsilon  - 1\scrL HPq\scrL NH(1 - P\xi )\Pi \scrG \varepsilon . These terms arise from the
interaction between the Hamiltonian and Nos\'e--Hoover parts of the dynamics, and are
responsible for the factor \eta \varepsilon /\varepsilon in the expression of B1,2 in (2.22), which itself leads to
the extra term \gamma \varepsilon 2 in the scaling of the lower bound of Proposition 2.4.

Note that, crucially, operators in the \xi variable in the computations of the proof
of Lemma 2.9 always appear with a prefactor \varepsilon  - 1. The fact that this is the correct
scaling for the boundedness of these operators comes from the following result.

Lemma 2.11. The operators \partial 2qi,qj (1 - Pq)\scrG \varepsilon , \partial 
\ast 
qi\partial qj (1 - Pq)\scrG \varepsilon , \varepsilon 

 - 1\partial \ast \xi (1 - P\xi )\partial qi(1 - 
Pq)\scrG \varepsilon , \varepsilon 

 - 1\partial qi(1  - Pq)\partial \xi (1  - P\xi )\scrG \varepsilon , \varepsilon 
 - 1\partial \ast qi(1  - Pq)\partial \xi (1  - P\xi )\scrG \varepsilon , \varepsilon 

 - 2\partial 2\xi (1  - P\xi )\scrG \varepsilon ,

\varepsilon  - 2\partial \ast \xi \partial \xi (1 - P\xi )\scrG \varepsilon are uniformly bounded with respect to \varepsilon > 0.

Proof. Consider for instance \partial 2qi,qj (1  - Pq)\scrG \varepsilon . It is sufficient by Lemma 2.7 to

prove that \partial 2qi,qj (1  - Pq)(1 + \Pi \nabla \ast 
q\nabla q\Pi ) - 1 is bounded, and in fact that operators of

the form \scrT i = \partial qi(1  - Pq)(1 + \Pi \partial \ast qi\partial qi\Pi ) - 1/2 and \partial 2qi(1  - Pq)(1 + \Pi \nabla \ast 
q\nabla q\Pi ) - 1 are

bounded. The first statement is clear by calculating \scrT \ast 
i \scrT i and using spectral calculus;

for the second one we use [9, section 3]. Similar reasonings can be used to bound
\partial \ast qi\partial qj (1  - Pq)\scrG \varepsilon . Bounds on \varepsilon  - 2\partial 2\xi (1  - P\xi )\scrG \varepsilon , \varepsilon 

 - 2\partial \ast \xi \partial \xi (1  - P\xi )\scrG \varepsilon are obtained in
a similar way, considering the specific case of quadratic potentials in \xi (so that the
estimates similar to those of [9, section 3] hold in the \xi variable).

Consider next \varepsilon  - 1\partial \xi (1 - P\xi )\partial 
\ast 
qi(1 - Pq)\scrG \varepsilon = \scrT \xi RqiSq,\xi with

Sq,\xi = \varepsilon  - 1(1 - P\xi )(1 + \Pi \partial \ast \xi \partial \xi \Pi )1/2(1 - Pq)(1 + \Pi \nabla \ast 
q\nabla q\Pi )1/2\scrG \varepsilon 
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uniformly bounded in \varepsilon by Lemma 2.7, \scrT \xi = \partial \xi (1  - P\xi )(1 + \Pi \partial \ast \xi \partial \xi \Pi ) - 1/2 bounded
by considering \scrT \ast 

\xi \scrT \xi and resorting to spectral calculus, and Rqi = \partial \ast qi(1  - Pq)(1 +

\Pi \nabla \ast 
q\nabla q\Pi )

 - 1/2. To prove that the latter operator is bounded, we write it as the sum

of  - \partial qi(1  - Pq)(1 + \Pi \nabla \ast 
q\nabla q\Pi ) - 1/2 (which is bounded by the same reasoning as the

one used to prove that \scrT \xi is bounded) and \beta \partial qiV (1  - Pq)(1 + \Pi \nabla \ast 
q\nabla q\Pi ) - 1/2, which

is bounded in view of the inequality

\| | \nabla V | h\| L2(\pi q) \leqslant C
\bigl( 
\| h\| L2(\pi q) + \| \nabla h\| L2(\pi q)

\bigr) 

provided by [36, Lemma A.24]. The boundedness of \varepsilon  - 1\partial qi(1 - Pq)\partial \xi (1 - P\xi )\scrG \varepsilon and
\varepsilon  - 1\partial qi(1 - Pq)\partial 

\ast 
\xi (1 - P\xi )\scrG \varepsilon follows by similar arguments.

The proof of the following lemma is obtained by straightforward computations
based on integration by parts in the integral involved in the definition of \Pi .

Lemma 2.12. For any \alpha 1, \alpha 2, \alpha 3 \in \BbbN and i, j, k \in \{ 1, . . . , n\} , the operators

\Pi \partial \alpha 1
pi

\Bigl( 
\partial \ast pj

\Bigr) \alpha 2

\partial \alpha 3
pk

are bounded (and so are their adjoints on L2(\pi p) and L2(\pi )). In

particular, \partial \ast pi
\partial \ast pj

\Pi and \partial pi
\partial \ast pj

\Pi are bounded.

3. Pathwise ergodicity and functional central limit theorem. Consider,
for \varphi \in L1(\pi ) given, the trajectory average of \varphi evaluated along a realization of the
solution of the SDE (2.4):

(3.1) \widehat \varphi t :=
1

t

\int t

0

\varphi (qs,ps, \xi s) ds.

The almost-sure convergence of this estimator to \BbbE \pi (\varphi ) holds by the results of [17]
since the dynamics admits an invariant probability measure with a positive density,
and the generator is hypoelliptic [14]. The latter property follows from the following
computations on commutators: [\scrL H, \partial pi ] =  - \partial qi , and [\scrL NH, \partial pi ] =  - 2pi\partial \xi + \xi \partial pi so
that [[\scrL NH, \partial pi ], \partial pi ] = 2\partial \xi .

In fact, according to the results of [2], a natural CLT is a consequence of the
boundedness of the inverse of the generator obtained in Corollary 2.3.

Corollary 3.1 (CLT for AdL). Consider \varphi \in L2(\pi ). Then

(3.2)
\surd 
t (\widehat \varphi t  - \BbbE \pi \varphi )

law -  -  -  - \rightarrow 
t\rightarrow +\infty 

\scrN (0, \sigma 2
\varepsilon ,\gamma (\varphi )),

where the asymptotic variance reads

\sigma 2
\varepsilon ,\gamma (\varphi ) = 2

\int 

\BbbR 2n+1

\bigl( 
 - \scrL  - 1

AdL\Pi 0\varphi 
\bigr) 
\Pi 0\varphi d\pi .

Corollary 2.3 provides the following bounds on the asymptotic variance:

(3.3) 0 \leqslant \sigma 2
\varepsilon ,\gamma (\varphi ) \leqslant 

2C\| \varphi \| 2L2(\pi )

\lambda 
max

\biggl( 
\gamma ,

1

\gamma 
, \gamma \varepsilon 2,

1

\gamma \varepsilon 2

\biggr) 
.

This inequality shows that integration times of order t = \tau max
\bigl( 
\gamma , \gamma  - 1, \gamma \varepsilon 2, (\gamma \varepsilon 2) - 1

\bigr) 

should be considered in order for the estimator (3.1) to have a variance of order 1/\tau .
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3.1. Langevin limit \bfitvarepsilon \rightarrow +\infty . We consider in this section the convergence
of the asymptotic variance in the limit when \varepsilon \rightarrow +\infty , which should be thought of
as being somewhat similar to overdamped limits of Langevin dynamics. We do not
consider the regime \varepsilon \rightarrow 0 which is a mathematically a singular limit (see however
Remark 3.3 below), and is also not a regime which is numerically convenient because
of the stiffness of the resulting dynamics, which typically calls for integration schemes
with timesteps of order \varepsilon (or the construction of dedicated numerical schemes based
on averaging ideas for instance).

In the limit \varepsilon \rightarrow +\infty , for a given test function \varphi \in C\infty 
0 (\BbbR 2n+1), the function

\scrL AdL\varphi converges to \scrL Lang\varphi where \scrL Lang = \scrL H+\gamma \scrL O is the generator of the standard
underdamped Langevin dynamics. To understand the behavior of the limiting asymp-
totic variance, we restrict ourselves to functions of (q,p) only, since the variable \xi 
evolves very slowly and should therefore not be of interest. Since the slow convergence
to equilibrium is due to the relaxation of the \xi variable in the regime \varepsilon \rightarrow +\infty , we
expect that restricting the attention to such observables allows the variance to remain
bounded. In fact, the following result holds (see section 3.2 for the proof).

Proposition 3.2. Fix \gamma > 0. Assume that U satisfies Assumption 1, is semi-
convex (there exist a bounded smooth function U1 with bounded derivatives and a
smooth convex function U2 such that U = U1 + U2), grows at most polynomially at
infinity and its derivatives as well, and that there exist K > 0, R \in \BbbR , and a \in (0, 1)
such that

1

2
qT\nabla U(q) \geqslant aU(q) + \gamma 2

a(2 - a)

8(1 - a)
| q| 2  - K, U(q) \geqslant R| q| 2.

Consider a smooth function \varphi = \varphi (q,p) growing at most polynomially in (q,p) and
whose derivatives grow at most polynomially. Then there exists C > 0 (depending
on \gamma , \varphi ) such that the asymptotic variance \sigma 2

\varepsilon ,\gamma (\varphi ) defined in Corollary 3.1 satisfies

\forall \varepsilon \geqslant 1,
\bigm| \bigm| \sigma 2

\varepsilon ,\gamma (\varphi ) - \sigma 2
\infty ,\gamma (\varphi )

\bigm| \bigm| \leqslant C

\varepsilon 
,

where \sigma 2
\infty ,\gamma (\varphi ) involves only asymptotic variances of underdamped Langevin dynamics.

More precisely,

\sigma 2
\infty ,\gamma (\varphi ) =

2

\beta 

\Biggl( 
\gamma \| \nabla p\Phi 0\| 2L2(\pi q\pi p)

 - \gamma 
\langle \nabla p\Phi  - 1,\nabla p\Phi 0\rangle 2L2(\pi q\pi p)

\| \nabla p\Phi  - 1\| 2L2(\pi q\pi p)

+
\beta 2\langle \Phi  - 1,\scrL H\Phi 0\rangle 2L2(\pi q\pi p)

\gamma \| \nabla p\Phi  - 1\| 2L2(\pi q\pi p)

\Biggr) 

where \Phi 0 =  - \scrL  - 1
Lang\Pi 0\varphi and \Phi  - 1 =  - \scrL  - 1

Lang

\Bigl( 
p2  - n

\beta 

\Bigr) 
.

Note that the first term on the right-hand side of the expression of \sigma 2
\infty ,\gamma (\varphi ) cor-

responds to the asymptotic variance of a standard underdamped Langevin dynamics.
The Nos\'e--Hoover-like thermostat adds two terms in the large \varepsilon limit, one nonpositive
and one nonnegative, so that it is not clear in general whether \sigma 2

\infty ,\gamma (\varphi ) is larger than
2\gamma \beta  - 1\| \nabla p\Phi 0\| 2L2(\pi q\pi p)

. Overall, it however still holds that \sigma 2
\infty ,\gamma (\varphi ) \geqslant 0 as expected

since a Cauchy--Schwarz inequality shows that the sum of the two first terms in the
brackets on the right-hand side is indeed nonnegative.

The extra conditions on the potential, taken from [18], are satisfied for potentials
growing at infinity as | q| \alpha with \alpha > 2. They ensure that \scrL  - 1

Lang stabilizes the vector
space of smooth functions of (q,p) with mean zero with respect to \pi q \pi p, growing at
most polynomially at infinity, and whose derivatives grow at most polynomially at
infinity.
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It is in fact possible to write an expansion in inverse powers of \varepsilon for the difference
\sigma 2
\varepsilon ,\gamma (\varphi )  - \sigma 2

\infty ,\gamma (\varphi ), and in particular to make precise the leading order term in this
expansion. We however refrain from doing so because the expressions are cumbersome.
Note also that the proof of Proposition 3.2 allows us to write the action of \scrL  - 1

AdL

on L2
0(\pi ) at leading order \varepsilon  - 2 (in a similar fashion to the results presented in [21,

Theorem 2.5], which provides an expansion of the resolvent of the generator of the
underdamped Langevin dynamics in inverse powers of \gamma ); see Remark 3.4.

Remark 3.3. In the limit \varepsilon \rightarrow 0, the dynamics (2.4) is described by the ODEs:
dp =  - \xi 

\varepsilon pdt; d\xi = 1
\varepsilon (| p| 

2  - n
\beta )dt (with q constant). The only equilibrium points

correspond to | p| 2 = n\beta  - 1 and \xi = 0. A simple computation shows that \Phi (q,p, \xi ) =
\xi 2+ | p| 2 - 2n

\beta ln | p| 2 is an invariant of the dynamics. It is therefore expected that (2.4)
corresponds to a fast averaging on the level sets of \Phi , with a superimposed slow
variation of the values of \Phi induced by the Langevin part of the dynamics. Since the
dynamics is at leading order a dynamics on the two one-dimensional variables P = | p| 2
and \xi only, it may be possible to adapt the techniques from [29] in order to determine
the dominant behavior of the asymptotic variance in the regime \varepsilon \rightarrow 0.

3.2. Proof of Proposition 3.2. The idea of the proof is to construct an ap-
proximate solution \psi \varepsilon to the Poisson equation  - \scrL AdL\phi \varepsilon = \Pi 0\varphi , using asymptotic
analysis. The scaling of the resolvent  - \scrL AdL as given by Corollary 2.3 suggests that,
in the limit \varepsilon \rightarrow +\infty ,

(3.4) \psi \varepsilon = \varepsilon 2\Psi  - 2 + \varepsilon \Psi  - 1 +\Psi 0 + \varepsilon  - 1\Psi 1 + . . . .

The various functions in (3.4) formally satisfy, by identifying powers of \varepsilon ,

 - \scrL Lang\Psi  - 2 = 0,  - \scrL Lang\Psi  - 1 = \scrL NH\Psi  - 2,  - \scrL Lang\Psi 0 = \Pi 0\varphi + \scrL NH\Psi  - 1,

 - \scrL Lang\Psi i = \scrL NH\Psi i - 1 for i \geqslant 1.

The strategy of the proof is to construct the leading order terms \Psi  - 2,\Psi  - 1, . . . ,\Psi 2 \in 
L2
0(\pi ) in order to obtain some approximate solution \psi \varepsilon (obtained by a truncation

of (3.4)), and then to use resolvent estimates to conclude that \phi \varepsilon  - \psi \varepsilon is small.
We will repeatedly use the fact that the unique solution G of  - \scrL LangG = g

for g a smooth function with average 0 with respect to \pi p(dp)\pi q(dq) growing at
most polynomially at infinity and whose derivatives also grow at most polynomially
at infinity is a well-defined smooth function, which grows at most polynomially at
infinity and whose derivatives also grow at most polynomially at infinity (by the
results of [18]).

Construction of the leading order terms in the expansion. The equation - \scrL Lang\Psi  - 2

= 0 shows that \Psi  - 2 only depends on \xi , i.e., \Psi  - 2(q,p, \xi ) = f - 2(\xi ) for some function
f - 2. Next,  - \scrL Lang\Psi  - 1 = \scrL NH\Psi  - 2 = (p2  - n\beta  - 1)f \prime  - 2(\xi ), so that

\Psi  - 1(q,p, \xi ) = f \prime  - 2(\xi )\Phi  - 1(q,p) + f - 1(\xi ), \Phi  - 1(q,p) =  - \scrL  - 1
Lang

\biggl( 
p2  - n

\beta 

\biggr) 
.

The equation for \Psi 0 then becomes

 - \scrL Lang\Psi 0 = \Pi 0\varphi + f \prime \prime  - 2(\xi )

\biggl( 
p2  - n

\beta 

\biggr) 
\Phi  - 1 + f \prime  - 1(\xi )

\biggl( 
p2  - n

\beta 

\biggr) 
 - \xi f \prime  - 2(\xi )p

T\nabla p\Phi  - 1.

The solvability condition for this equation is that the right-hand side has average 0
with respect to the probability measure \pi q(dq)\pi p(dp). Integration by parts shows
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that, for any test function \phi ,

\int 

\BbbR n

pT\nabla p\phi d\pi p = \beta 

\int 

\BbbR n

\phi 

\biggl( 
p2  - n

\beta 

\biggr) 
d\pi p,

so that the solvability condition is
(3.5)

a\scrL eff,\xi f - 2 =  - 
\int 

\BbbR 2n

\Pi 0\varphi d\pi p d\pi q = 0, a =

\int 

\BbbR 2n

\biggl( 
p2  - n

\beta 

\biggr) 
\Phi  - 1 d\pi p d\pi q \geqslant 0,

where \scrL eff,\xi is the generator of an effective Ornstein--Uhlenbeck process acting on
functions u = u(\xi ) as \scrL eff,\xi u = u\prime \prime  - \beta \xi u\prime . In fact a > 0 since a = \gamma \beta  - 1\| \nabla p\Phi 1\| 2 = 0
would imply that \Phi  - 1 is constant in p, which is in contradiction to the definition of
\Phi  - 1 because

( - \scrL Lang\Phi  - 1) (q,p) = pT \cdot \nabla q\Phi  - 1(q) \not =
\biggl( 
p2  - n

\beta 

\biggr) 
.

The fact that a is nonzero implies that the first equality in (3.5) holds if and only if
f - 2 = 0, so that \Psi  - 2 = 0 and \Psi  - 1 = f - 1. Moreover,

\Psi 0(q,p, \xi ) = \Phi 0(q,p) + f \prime  - 1(\xi )\Phi  - 1(q,p) + f0(\xi ), \Phi 0 =  - \scrL  - 1
Lang\Pi 0\varphi .

Remark 3.4. The equality (3.5) shows that the action of leading order of the
resolvent for Adaptive Langevin for functions \varphi \in L2

0(\pi ) is a
 - 1\varepsilon 2\scrL  - 1

eff,\xi \Pi Pq\varphi (with Pq

defined in (2.27)).

The condition at the next order is

 - \scrL Lang\Psi 1 = \scrL NH\Psi 0 =  - \xi pT\nabla p\Phi 0  - \xi f \prime  - 1p
T\nabla p\Phi  - 1 +

\biggl( 
p2  - n

\beta 

\biggr) \bigl[ 
f \prime 0 + f \prime \prime  - 1\Phi  - 1

\bigr] 
.

The solvability condition reads a\scrL eff,\xi f - 1 = \xi b0 with b0 = \Pi Pq(p
T\nabla p\Phi 0), so that

f - 1(\xi ) =  - \xi b0/(a\beta ), and

\Psi 1(\bfq ,\bfp , \xi ) = f \prime 
0(\xi )\Phi  - 1(\bfq ,\bfp )+\xi \Phi 1(\bfq ,\bfp )+f1(\xi ), \Phi 1 =  - \scrL  - 1

Lang

\biggl( 
b0
a\beta 

\bfp T\nabla p\Phi  - 1  - \bfp T\nabla p\Phi 0

\biggr) 
.

Next,

 - \scrL Lang\Psi 2 = \scrL NH\Psi 1 =  - \xi f \prime 0pT\nabla p\Phi  - 1  - \xi 2pT\nabla p\Phi 1 +

\biggl( 
p2  - n

\beta 

\biggr) 
[\Phi 1 + f \prime 1 + f \prime \prime 0 \Phi  - 1] ,

for which the solvability condition reads a\scrL eff,\xi f0 = (\xi 2 - \beta  - 1)b1 with b1 = \Pi Pq(p
T\nabla p\Phi 1).

Therefore, f0(\xi ) = (\beta  - 1  - \xi 2)b1/(2\beta a), so that

\Psi 2(q,p, \xi ) = \scrL  - 1
Lang

\biggl[ \biggl( 
p2  - n

\beta 

\biggr) \biggl( 
b1
\beta a

\Phi  - 1  - \Phi 1

\biggr) \biggr] 
+ \xi 2\scrL  - 1

Lang

\biggl( 
pT\nabla p\Phi 1  - 

b1
\beta a

pT\nabla p\Phi  - 1

\biggr) 

+ f \prime 1(\xi )\Phi  - 1(q,p) + f2(\xi ).

Obtaining bounds on the difference of the variances. We now choose f1 = f2 = 0
and compute

\scrL AdL

\biggl( 
\varepsilon \Psi  - 1 +\Psi 0 +

1

\varepsilon 
\Psi 1 +

1

\varepsilon 2
\Psi 2  - \phi \varepsilon 

\biggr) 
=

1

\varepsilon 3
\scrL NH\Psi 2.
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We deduce, in view of Corollary 2.3, that there exists a constant C\gamma \in \BbbR + such that,
for any \varepsilon \geqslant 1,

\bigm\| \bigm\| \bigm\| \bigm\| \varepsilon \Psi  - 1 +\Psi 0 +
1

\varepsilon 
\Psi 1 +

1

\varepsilon 2
\Psi 2  - \phi \varepsilon 

\bigm\| \bigm\| \bigm\| \bigm\| 
L2(\pi )

\leqslant 
C\gamma 

\varepsilon 
\| \scrL NH\Psi 2\| L2(\pi ) ,

and in fact \| \varepsilon \Psi  - 1 +\Psi 0  - \phi \varepsilon \| L2(\pi ) \leqslant R\gamma ,\varphi /\varepsilon , for some constant R\gamma ,\varphi \in \BbbR +. The

asymptotic variance \sigma 2
\varepsilon ,\gamma (\varphi ) then coincides up to an error of order \varepsilon  - 1 with

\widetilde \sigma 2
\varepsilon ,\gamma (\varphi ) = 2

\int 

\BbbR 2n+1

(\varepsilon \Psi  - 1 +\Psi 0)\Pi 0\varphi d\pi = 2

\int 

\BbbR 2n+1

\biggl( 
\Phi 0  - 

b0
a\beta 

\Phi  - 1

\biggr) 
\Pi 0\varphi d\pi ,

where we used for the second equality the fact that the average with respect to \pi 
of the product of a function of \xi and \Pi 0\varphi vanishes. Finally, by integrating in \xi and
expressing a, b0 in terms of the generator of the Langevin dynamics, namely,

a =  - 
\int 

\BbbR 2n

(\scrL Lang\Phi  - 1) \Phi  - 1 d\pi q d\pi p =
\gamma 

\beta 
\| \nabla p\Phi  - 1\| 2L2(\pi q\pi p)

,

b0 = \beta 

\int 

\BbbR 2n

\biggl( 
p2  - n

\beta 

\biggr) 
\Phi 0 d\pi q d\pi p =  - \beta 

\int 

\BbbR 2n

(\scrL Lang\Phi  - 1) \Phi 0 d\pi q d\pi p,

it follows that

\widetilde \sigma 2
\varepsilon ,\gamma (\varphi ) = 2

\Biggl( \int 

\BbbR 2n

\Phi 0\Pi 0\varphi d\pi q d\pi q  - 
\beta \langle \scrL Lang\Phi  - 1,\Phi 0\rangle L2(\pi q\pi p)\langle \scrL Lang\Phi 0,\Phi  - 1\rangle L2(\pi q\pi p)

\gamma \| \nabla p\Phi  - 1\| 2L2(\pi q\pi p)

\Biggr) 
.

Now,

\langle \scrL Lang\Phi  - 1,\Phi 0\rangle L2(\pi q\pi p) =  - \gamma 
\beta 
\langle \nabla p\Phi  - 1,\nabla p\Phi 0\rangle L2(\pi q\pi p)  - \langle \Phi  - 1,\scrL H\Phi 0\rangle L2(\pi q\pi p),

\langle \scrL Lang\Phi 0,\Phi  - 1\rangle L2(\pi q\pi p) =  - \gamma 
\beta 
\langle \nabla p\Phi  - 1,\nabla p\Phi 0\rangle L2(\pi q\pi p) + \langle \Phi  - 1,\scrL H\Phi 0\rangle L2(\pi q\pi p),

so that

\widetilde \sigma 2
\varepsilon ,\gamma (\varphi ) =

2

\beta 

\Biggl( 
\gamma \| \nabla p\Phi 0\| 2L2(\pi q\pi p)

 - \gamma 
\langle \nabla p\Phi  - 1,\nabla p\Phi 0\rangle 2L2(\pi q\pi p)

\| \nabla p\Phi  - 1\| 2L2(\pi q\pi p)

+
\beta 2\langle \Phi  - 1,\scrL H\Phi 0\rangle 2L2(\pi q\pi p)

\gamma \| \nabla p\Phi  - 1\| 2L2(\pi q\pi p)

\Biggr) 
,

which gives the claimed result.

4. Numerical results. In this section, we present the results of several numer-
ical experiments. First, we consider a simple illustration to demonstrate the scaling
of the spectral gap as a function of \gamma and \varepsilon as predicted in section 2. Second, we
demonstrate the scaling of the asymptotic variance, as predicted in section 3. We also
verify the existence of an asymptotic CLT for the case of a Bayesian data analysis
problem.

4.1. Spectral gap in Galerkin subspace. Let U : \BbbR \rightarrow \BbbR , U(q) = 1
2q

2.
Moreover, denote by hl the lth Hermite Polynomial, i.e.,

(4.1) hl(x) =
1\surd 
l!
\widetilde Hl

\Bigl( \sqrt{} 
\beta x
\Bigr) 
, \widetilde Hl(x) = ( - 1)lex

2/2 dl

dxl

\Bigl( 
e - x2/2

\Bigr) 
,
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and consider for prescribed integers L \in \BbbN the finite dimensional Galerkin subspace
\scrG L spanned by polynomials of the form

(4.2) \psi k,l,m(p, \xi ,q) = hk(p)hl(\xi )hm(q), 0 \leqslant l, k,m \leqslant L - 1,

and the associated projection operator

(4.3) \Pi L
Galerkin : L2(\pi ) \rightarrow \scrG L, \varphi \mapsto \rightarrow 

L - 1\sum 

k=0

L - 1\sum 

l=0

L - 1\sum 

m=0

uk,l,m\psi k,l,m,

where uk,l,m := \langle \varphi ,\psi k,l,m\rangle L2(\pi ). In order to simplify notation we consider a linear
indexing of the coefficients uk,l,m and the polynomials \psi k,l,m using a hash map of
the form I : (k, l,m) \mapsto \rightarrow 1 + m + Lk + L2l so that we can write the action of the
Galerkin operator on functions \varphi \in L2

0(\pi ) in the compact form \Pi L
Galerkin\varphi = \bfitu \cdot \bfitpsi ,

where \bfitu = [\widetilde ui]1\leqslant i\leqslant L3 and \bfitpsi = [ \widetilde \psi i]1\leqslant i\leqslant L3 , where \widetilde u and \widetilde \psi are such that \widetilde ui = uk,l,m
and \widetilde \psi i = \psi k,l,m for i = I(k, l,m).

Let \scrG L
0 := \scrG L \cap L2

0(\pi ). For observables \varphi \in \scrG L
0 , standard procedures allow us to

derive a stiffness matrix \bfitA \in \BbbR L3\times L3

in terms of which the action of the generator
\scrL AdL = \scrL H+\gamma \scrL O+\varepsilon  - 1\scrL NH can be written as \scrL AdL\varphi = \scrL AdL (\bfitu \cdot \bfitpsi ) = (\bfitA \bfitu ) \cdot \bfitpsi (see
section SM1 of the Supplementary Material for details). Consequently, the spectrum
of \scrL AdL in the respective Galerkin subspace is exactly given by the eigenvalues of
\bfitA and we can numerically compute the spectral gap \widehat \lambda \varepsilon ,\gamma of  - \scrL AdL restrained to
the respective Galerkin subspace by diagonalizing the matrix \bfitA . Figure 1 shows the
spectral gap of  - \bfitA for L = 10. As suggested by (2.12) we observe for all considered

values of \gamma a scaling of \widehat \lambda \varepsilon ,\gamma as O(\varepsilon 2) when \varepsilon \rightarrow 0 and as O(\varepsilon  - 2) when \varepsilon \rightarrow \infty (see

Figure 1, Panel A). Similarly, for fixed values of \varepsilon we observe a scaling of \widehat \lambda \varepsilon ,\gamma as O(\gamma )
when \gamma \rightarrow 0 and as O(\gamma  - 1) when \gamma \rightarrow \infty (see Figure 1, Panel B). Finally, consider

the scaling of the spectral gap \widehat \lambda \alpha ,\alpha as a function of the single scalar \alpha . As \alpha \rightarrow \infty ,

we expect \widehat \lambda \alpha ,\alpha = O(\alpha  - 3), and as \alpha \rightarrow 0, we expect \widehat \lambda \alpha ,\alpha = O(\alpha 3). Indeed, this is
what we observe (see Figure 1, Panel C).

10−3 10−2 10−1 100 101 102 103

ε

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

A

λ̂ε,γ , γ =10−1

λ̂ε,γ , γ =1

λ̂ε,γ , γ =101

10−3 10−2 10−1 100 101 102 103

γ

B

λ̂ε,γ , ε =10−1

λ̂ε,γ , ε =1

λ̂ε,γ , ε =101

10−2 10−1 100 101 102

α

C

λ̂α,α

Fig. 1. Spectral gap, \widehat \lambda \varepsilon ,\gamma , of  - \scrL AdL when considered as an operator on \scrG L
0 , with L = 10.

Panel A shows \widehat \lambda \varepsilon ,\gamma as a function of \varepsilon for fixed \gamma . Panel B shows \widehat \lambda \varepsilon ,\gamma as a function of \gamma for fixed

\varepsilon . Panel C shows \widehat \lambda \alpha ,\alpha as a function of the scalar \alpha .
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4.2. Scaling of asymptotic variance and demonstration of CLT. We next
consider a simple skewed double-well potential U : \BbbR \rightarrow \BbbR , of the form U(q) =
b
a

\bigl( 
q2  - a

\bigr) 2
+ cq, which we parameterize as b = 1, a = 1, c = 1/2. We use the

BADODAB symmetric splitting scheme from [22] (see also section SM3 of the supple-
mentary material) to simulate trajectories of the SDE (2.4). In a first set of simula-
tions we consider different parameterizations with \varepsilon taking values within the interval
[10 - 2, 10] and \gamma taking values within the interval [10 - 4, 102]. For each parameter-
ization we simulate N = 10, 000 independent replicas for K = 100, 000 time steps
at unit temperature using a stepsize \Delta t = 2 \times 10 - 3. We randomly initialized each
replica according to the associated equilibrium measure \pi using a simple rejection
sampling algorithm. We denote by \widehat \varphi K = 1

K

\sum K - 1
k=0 \varphi 

\bigl( 
q(k),p(k), \xi (k)

\bigr) 
the time av-

erage of the observable \varphi evaluated along a finite trajectory (q(k),p(k), \xi (k))1\leqslant k\leqslant K

of the discretized process which we use as a (biased, due to discretization) Monte

Carlo estimate of the expectation \BbbE \pi (\varphi ). Let \widehat \varphi (n)
K denote the Monte Carlo estimate

obtained from the trajectory of the nth replica, and denote by

(4.4) \varphi K :=
1

N

N\sum 

n=1

\widehat \varphi (n)
K

the empirical mean of the respective estimates over the N independent replicas. We
estimate the asymptotic variance of \varphi under the discretized dynamics using

\widehat \sigma 2
\varepsilon ,\gamma (K) =

1

N

N - 1\sum 

n=0

\Bigl( 
\widehat \varphi (n)
K  - \varphi K

\Bigr) 2
.

Figure 2 shows such computed estimates of the asymptotic variance as a function of \varepsilon 
(Panel A), and as a function of \gamma (Panel B), respectively. We confirm the qualitative
behavior predicted in section 3 for the asymptotic variance: for fixed \gamma = 1, the
asymptotic variance \widehat \sigma 2

\varepsilon ,\gamma (K) of observables scales at most quadratically in \varepsilon as \varepsilon \rightarrow \infty .
Similarly, as \varepsilon \rightarrow 0, the estimated asymptotic variance \widehat \sigma 2

\varepsilon ,\gamma (K) of the observables we
consider remains of order 1 (while it could increase as \varepsilon  - 2 at most according to (3.3)).
For fixed \varepsilon = 1, the estimated asymptotic variance of observables scales as at most
linearly in \gamma as \gamma \rightarrow \infty . For the considered model system and observables the increase
of the estimated asymptotic variance \widehat \sigma 2

\varepsilon ,\gamma (K) is sublinear in \gamma  - 1 as \gamma \rightarrow 0. We provide
additional results for a slightly modified version of the model system considered here
in section SM2, where the increase of the asymptotic variance of certain observables
is indeed observed to be asymptotically linear in \gamma  - 1 as \gamma \rightarrow 0. We use a second set
of simulations to demonstrate the CLT obtained in Corollary 3.1 for estimates \widehat \varphi K

obtained as Monte Carlo estimates from the discretization of the SDE (2.4). That is,
we show that for sufficiently large K \in \BbbN the law of the estimated rescaled residual
error

(4.5)

\sqrt{} 
K\Delta t

\sigma 2
\varepsilon ,\gamma (\varphi )

(\widehat \varphi K  - \BbbE \pi (\varphi ))

is approximately Gaussian with vanishing mean and variance \widehat \sigma 2
\varepsilon ,\gamma (\varphi ) (we treat any

systematic bias induced by the discretization as negligible). For parameter values
\gamma = \varepsilon = 1, we simulate N = 500, 000 independent trajectories for up to Kmax = 1000
steps using the stepsize \Delta t = 10 - 1. For each trajectory we compute an estimate of
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Fig. 2. Estimated asymptotic variance \widehat \sigma 2
\varepsilon ,\gamma (K) for various observables with fixed \gamma = 1 as a

function of \varepsilon (Panel A), and with fixed \varepsilon = 1 as a function of \gamma (Panel B), respectively. The dashed
line in Panel A corresponds to the slope of a quadratic function in \varepsilon . The dashed line in Panel B
indicates the slope of a linear function in \gamma .

the rescaled residual errors by replacing \BbbE \pi (\varphi ) and \sigma 
2
\varepsilon ,\gamma (\varphi ) in the expression (4.5) by

the Monte Carlo estimates \varphi Kmax
and \widehat \sigma 2

\varepsilon ,\gamma (Kmax), respectively. Figure 3, Panel A,
and Figure 3, Panel B, show the empirical probability density function of the rescaled
residual errors of the estimated mean and the estimated variance of the position
variable q, respectively. The empirical probability density functions are plotted for
different values of K. As K increases we observe that for sufficiently large K the
computed empirical probability density functions indeed closely follow the predicted
Gaussian limiting distributions.

Fig. 3. Empirical probability distribution (EPDF) of the rescaled residual error at different
times T = K\Delta t. Panel A shows the EPDF of the residual error of the estimated mean of the
position variable \bfq , i.e., \varphi : (\bfq ,\bfp , \xi ) \mapsto \rightarrow \bfq . Panel B shows the residual error of the estimated second
moment of the position variable, i.e., \varphi : (\bfq ,\bfp , \xi ) \mapsto \rightarrow \bfq 2. Dotted lines show the density \scrN (0, \sigma 2(\varphi )),
where \sigma 2(\varphi ) corresponds to the asymptotic variance of the respective observable, which is estimated
using the complete trajectory data up to index K = 1000.

4.3. Application to Bayesian logistic regression. For the purpose of demon-
strating the CLT in a Bayesian posterior sampling application we consider a Bayesian
logistic regression trained on a subset of the MNIST benchmark data set [19] of hand-
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written digits for binary classification of the digits 7 and 9. Let us however warn
the reader that Adaptive Langevin may not completely remove the minibatching
bias in this case (see Remark 1.1). We preprocess the data by means of a princi-
pal component analysis. After centering the mean of each pixel, we retain the first
100 principal components and whiten the obtained data by normalizing the variance
of the corresponding loadings. The corresponding data points are denoted by xj .
Pictures corresponding to the number 7 are associated with yj = 0, while yj = 1
corresponds to pictures of 9. Training is run on a subset of 12,251 data points and
testing on a separate subset of 2000 data points. Assuming a weakly informative
Gaussian prior distribution on the parameters q \in \BbbR 100 to sample, with density
p0(q) \propto exp( - qTq/(2\sigma 2)), where \sigma 2 = 100, and a likelihood

p(yj , xj | q) =
exp

\bigl( 
yj(xj)Tq

\bigr) 

1 + exp ((xj)Tq)
,

where \widetilde N = 12251, yj \in \{ 0, 1\} , xj \in \BbbR 100, the corresponding posterior distribution is
of the form

\pi (q) dq \propto p0(q)

\widetilde N\prod 
j=1

p(yj , xj | q) dq =: exp( - U(q)) dq.(4.6)

We use the ODABADO scheme described in the Supplementary Material (section
SM3) in order to numerically discretize (1.2) in combination with an unbiased esti-

mator  - \widehat \nabla U(q) of the gradient force which we obtain by subsampling data points as
specified in (1.6) using minibatches of size m = 100. Besides the introduced gradient
noise we do not apply additional random forces, i.e., \sigma A = 0.

Fig. 4. Typical images from the MNIST data set. The upper row shows the original images as
obtained from the repository [19]; the lower row shows the projection of the same images onto the
first 100 principal components which were used for inference.

In a first set of simulations we generate N = 10, 000 independent trajectories
for a total number of K = 10, 000 steps using a stepsize of \Delta t = 10 - 2 with coupling
parameter \nu = 1. We initialize the position variable of all replicas at the same location
which is a point close to the mode of the target distribution, we set the initial value
\xi (0) of the friction variable to 0, and for each trajectory we independently sample
the initial momenta from the stationary measure, i.e., p(0) \sim \scrN (0, In). Following
the same steps as described above in the demonstration of the CLT in the previous
example we compute the appropriately rescaled residual errors of the estimated mean
and the estimated variance at various time points of the single coordinate variable
qi whose index i = 65 we randomly selected. Figure 5 shows the histograms of
the empirical distribution of the residual error of these estimates after an increasing
number of time steps. Again, as in the example of the previous section we observe
that for a sufficiently large number of time steps, the distribution of the residual error
follows closely the anticipated Gaussian distribution. We confirm that we observe
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Fig. 5. Empirical probability distribution (EPDF) of the rescaled residual error at different
times T = K\Delta t in the case of the Bayesian logistic regression posterior sampling problem. Panel A
shows the EPDF of the rescaled residual error of the estimated mean of the 65th regression variable.
Panel B shows the residual error of the estimated variance of the same regression variable.

that also for other choices of the coordinate index i the empirical law of the residual
error converges to a centered Gaussian distribution.

In a second set of simulations we investigate the effect of different values of the
thermal mass \nu on the convergence speed of the estimates of expectations of certain
observables obtained from single trajectories. We consider the same setup as described
above but generate single trajectories for different values of the coupling parameter,
i.e., \nu = \varepsilon 2 \in \{ 1, 10, 100\} . As observables we consider again the projection onto a
single coordinate variable, and the average likelihood over the test set, a quantity
commonly used for benchmarking purposes in machine learning applications, i.e.,

\varphi (q,p, \xi ) =
1

\^N

\^N\sum 

i=1

p(yj , xj | q) = 1

\^N

\^N\sum 

i=1

exp
\bigl( 
yj(xj)Tq

\bigr) 

1 + exp ((xj)Tq)
,

where \^N = 2000, and (xi, yi), i = 1, . . . , \^N , are the data points of the test data set.
Figure 6 shows the time evolution of the corresponding Monte Carlo estimates of

the mean of the 65th component (Panel A), and the average likelihood over the test set
(Panel B). As one may have anticipated based on the asymptotic scaling of the spectral
gap as O(\nu  - 1) as \nu \rightarrow \infty , the convergence of the respective cumulative averages (in
time) of the observables under consideration becomes slower with increasing values
of \nu . We mention that estimates appear to converge to different values in the limit
T = \Delta tK \rightarrow \infty . This observation can be explained by the fact that the invariant
measure of the discretized dynamics can be expected to depend on the value of the
coupling parameter \nu . We refer the reader to [22] for a detailed analysis of this
dependency in the case of the similar BADODAB splitting scheme. A reduction of
this discrepancy can be achieved by a reduction of the stepsize \Delta t.

Acknowledgments. This work was initiated during the authors' stay at the
Institut Henri Poincar\'e-Centre Emile Borel during the trimester ``Stochastic Dynamics
Out of Equilibrium"" (April--July 2017). The authors warmly thank this institution for
its hospitality. G.S. also benefited from the scientific environment of the Laboratoire
International Associ\'e between the Centre National de la Recherche Scientifique and
the University of Illinois at Urbana-Champaign.



HYPOCOERCIVITY PROPERTIES OF ADAPTIVE LANGEVIN 1221

Fig. 6. Simulated time T = K\Delta t versus value of the Monte Carlo estimate of the mean of the
65th regression variable (Panel A), and the value of the estimated average likelihood over the test
set (Panel B).
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