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Abstract 19 

Individuals vary with respect to their nutritional state and such variation is an important 20 

determinant of the amount of resources individuals allocate towards reproductive 21 

functions. Currently, we have a relatively poor understanding of the downstream 22 

consequences of food deprivation on different traits associated with reproduction. Here, we 23 

address this gap by investigating how food deprivation affected different traits across the 24 

breeding cycle in the burying beetle, Nicrophorus vespilloides; a species that breeds on 25 

carcasses of small vertebrates serving as food for both parents and offspring. We found that 26 

food-deprived females took longer to start egg laying than control females, which may allow 27 

them more time to feed from the carcass. There was no difference between food-deprived 28 

and control females in the number, size, laying pattern or hatching success of eggs, 29 

suggesting that this delay allowed females to compensate for their poor initial state. 30 

However, food-deprived females spent less time providing care, suggesting that this 31 

compensation was incomplete. Finally, we found no evidence for negative effects of food 32 

deprivation on the offspring’s growth or survival, which is surprising given that food-33 

deprived females took longer to initiate egg laying and provided less care to their offspring. 34 

Our results highlight that food deprivation can have complex effects on parental and 35 

offspring traits, and suggest that females face a trade-off between the benefits of mitigating 36 

downstream consequences of nutritional stress and the costs associated with delaying the 37 

start of reproduction. 38 

 39 

Keywords: egg laying, nutritional state, offspring begging, offspring performance, parental 40 

care, reproductive investment  41 
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Introduction 42 

Animals must forage for nutrients to obtain resources for investment into reproduction or 43 

other life history functions. Access to nutrients can vary spatially and temporally, leading to 44 

variation between individuals in nutritional state. Such variation has important implications 45 

because it generates variation in the amount of resources individuals can allocate towards 46 

reproductive functions. Individuals deprived of food will have fewer resources to invest than 47 

well-fed individuals, and the former might therefore produce fewer and smaller eggs and 48 

provide less care for their offspring with detrimental consequences for their offspring’s 49 

performance. In support of this, there is evidence that nutritional stress has negative effects 50 

on traits associated with reproduction in mammals (Atkinson & Ramsay 1995; Koskela et al. 51 

1998; Persson 2005), birds (Clifford & Anderson 2001; Nagy & Holmes 2005; Zanette et al. 52 

2006), fishes (Townshend & Wootton 1985; Tierney et al. 2009; Segers 2011), reptiles 53 

(Warner et al. 2007) and arthropods (Kreiter & Wise 2001; Kyneb & Toft 2006; Wong & 54 

Kölliker 2012). Furthermore, there is evidence that food deprivation in parents has a 55 

negative impact on the offspring’s growth, body size and survival (e.g., Keech et al. 2000; 56 

Laurien-Kehnen & Trillmich 2004; Salomon et al. 2011; Kramer et al. 2017). Thus, there is 57 

good evidence that variation in the nutritional state of parents is a key determinant of 58 

variation in traits associated with reproduction as well as in offspring performance. 59 

Currently, we have a relatively poor understanding of downstream consequences of 60 

food deprivation on suites of traits associated with reproduction. Most prior work has 61 

focused on a relatively limited number of traits associated with reproduction (e.g. Hörnfeldt 62 

& Eklund 1990; Clifford & Anderson 2001; Richardson & Smiseth 2019a). However, in many 63 

species, reproduction involves complex suites of traits expressed in both parents and 64 

offspring. Thus, investigating the downstream consequences of food deprivation on 65 
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complex suites of traits may provide valuable insights into the mechanisms by which food 66 

deprivation affects reproduction. Firstly, the effects of food deprivation at the onset of 67 

reproduction may depend on when in the breeding cycle traits are expressed. This might be 68 

expected in species where the nutritional state of parents either deteriorates or improves 69 

over time. For example, in species where parents acquire resources prior to breeding that 70 

serve as food for both parents and offspring, such as necrophagous or parasitoid insects 71 

(e.g., Heimpel & Rosenheim 1995; Scott 1998), parents may buffer against initial differences 72 

in their nutritional state by feeding from the shared resource, in which case food 73 

deprivation may have little or no effect beyond traits expressed at the very beginning of 74 

breeding. Secondly, the effects of food deprivation may depend on the extent to which 75 

traits are energetically costly. For example, if parents can buffer against initial differences in 76 

their nutritional state, but such buffering is incomplete, food deprivation may have a 77 

stronger effect on traits that are more energetically costly even though they are expressed 78 

at different times in the breeding cycle. Finally, food deprivation of parents may have a 79 

detrimental impact on the offspring’s performance in species where offspring are 80 

dependent on their parents. Furthermore, in species where offspring beg for food from their 81 

parents, food deprivation may even alter the offspring’s begging behaviour by reducing their 82 

nutritional state (Bateson 1994; Kramer & Meunier 2016). Thus, to advance our 83 

understaninding of how food deprivation of parents affects reproductive traits, and 84 

ultimately offspring performance, there is now a need for studies on species where (1) 85 

females have the potential to buffer against effects of food deprivation, and (2) 86 

reproduction involves a complex suite of traits expressed at different times during the 87 

breeding cycle in both parents and offspring.  88 
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Here we use the burying beetle Nicrophorus vespilloides to test for differential 89 

effects of food deprivation at the onset of reproduction on reproductive traits across the 90 

breeding cycle. Burying beetles of the genus Nicrophorus are a suitable system for 91 

addressing this question because they breed on the carcasses of small vertebrates that 92 

serve as a source of food for parents and offspring. As such, females could buffer against the 93 

effects of food deprivation by feeding from the carcass. In addition, reproduction involves a 94 

complex suite of parental and offspring behaviours and life history traits that are easy to 95 

measure and that are separated in time throughout the breeding cycle. Females lay eggs in 96 

the soil surrounding the carcass, and eggs hatch asynchronously over a period of 16–56 97 

hours (Müller & Eggert, 1990; Smiseth et al. 2006). Thus, it is straightforward to assess 98 

investment during egg laying by measuring the number, size, hatching success and temporal 99 

laying pattern of eggs. After hatching, larvae crawl to the carcass and start feeding inside a 100 

crater cut into the carcass by the parents. Parents provide care by provisioning food to the 101 

larvae and maintaining the carcass as a food source by applying antimicrobial secretions to 102 

the external surface (Scott 1998; Arce et al. 2012; Andrews et al. 2016), and larvae beg for 103 

food from their parents (Smiseth et al. 2003). These reproductive traits have important 104 

consequences for offspring performance as increased hatching asynchrony negatively 105 

affects offspring growth and survival (Ford & Smiseth 2016; Ford & Smiseth 2018), whilst 106 

greater investment in parental care improves offspring growth and survival (Andrews et al. 107 

2016). Prior work shows that nutritional state has important consequences for reproduction 108 

as food-deprived females lay fewer eggs (Steiger et al. 2007), and have fewer adult offspring 109 

(Gray et al. 2018; Richardson & Smiseth 2019a). However, there is a lack of information on 110 

how food deprivation influences suites of reproductive traits that are expressed at different 111 

times in the breeding cycle and in both parents and offspring. In particular, there is a need 112 
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to understand how food deprivation influences egg laying patterns and post-hatching 113 

behavioural traits, such as parental care and offspring begging. Understanding how food 114 

deprivation affects these and other traits across the breeding cycle will advance our 115 

understanding of the potential mechanisms by which the nutritional state of parents 116 

influences offspring performance.  117 

Our aim was to test for effects of food deprivation on suites of traits associated with 118 

reproduction in burying beetles. We deprived females of food prior to breeding and 119 

monitored subsequent effects on reproductive traits during egg laying (clutch size, egg size, 120 

hatching success, time until start of egg laying, and the temporal spread and skew of egg 121 

laying) and post-hatching care (time spent provisioning offspring, time spent consuming 122 

carrion, and time spent maintaining the carcass by females, and time spent begging by 123 

larvae). We also examined the consequences for offspring performance by recording larval 124 

growth and survival, and for female performance by recording female mass change during 125 

breeding and female lifespan. We predicted that nutritional stress would negatively affect 126 

reproductive traits because food-deprived females have fewer resources to invest in 127 

reproduction. If females buffer against the effects of food deprivation by feeding from the 128 

carcass prior to reproduction, there should be a strong negative effect on the delay until the 129 

start of egg laying. However, we predicted little or no effects on traits that occur later in the 130 

breeding cycle, such as egg size, parental care, and offspring begging, given that females can 131 

replenish their energy reserves and thereby compensate for the effects of food deprivation. 132 

If females are unable to completely buffer against the effects of food deprivation, we 133 

predicted negative effects of food deprivation on traits that are costly to express but 134 

expressed later in the breeding cycle, such as post-hatching care.  135 

 136 
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Methods 137 

Origin of study population and animal husbandry 138 

Our experiment used virgin beetles from an outbred laboratory population. We used 9th 139 

generation beetles descended from wild-caught beetles collected in Edinburgh, UK. We kept 140 

all beetles at 20°C under a 16:8 h light:dark cycle. Nonbreeding adults were housed 141 

individually in transparent plastic containers (12 x 8 x 2 cm) filled with moist soil and were 142 

fed twice a week on pieces of raw beef (approximately 0.3 g). 143 

 144 

Experimental design and procedures 145 

We randomly assigned females to one of two treatments 7 days prior to breeding: food-146 

deprived (n = 44) or control females (n = 48). Food-deprived females received no food for 7 147 

days prior to recieving a carcass to initiate reproduction, whereas control females were fed 148 

twice during this period. We deprived females of food at 10 days post-eclosion, which is 149 

after females had reached sexual maturity. We did this to ensure that food deprivation did 150 

not delay sexual maturation (Hopwood et al. 2013; Richardson & Smiseth 2019b). We used 151 

7 days of food deprivation based on prior work showing that deprivation for this length of 152 

time leads to significant weight loss without causing a detectable increase in mortality 153 

(Hopwood et al. 2013; Gray et al. 2018; Richardson & Smiseth 2019a,b). There was no 154 

difference in the body mass of food-deprived and control females before food deprivation 155 

(t1,90 = 1.88, p = 0.17). We weighed all females before providing them with a carcass to verify 156 

that the 7-day food deprivation treatment caused a decline in female nutritional state (see 157 

Results). We later used this measure of pre-breeding mass for each female to estimate mass 158 

change during breeding (see below). 159 
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On day 6 of the food deprivation treatment, we mated females with an unrelated, 160 

virgin male from the stock population. We initiated mating by placing each female in a 161 

transparent plastic container (11 x 11 x 3 cm) lined with 0.5 cm of moist soil together with 162 

her assigned mate for 24 hours. We used this design to ensure that females received 163 

sufficient sperm for fertilizing the eggs, thereby allowing them to breed on their own 164 

without male assistance (Botterill-James et al. 2017). We excluded males to remove any 165 

confounding effects due to male consumption of the carcass or male assistance in parental 166 

care on female or offspring traits (Pilakouta et al. 2016; Keppner et al. 2018). Removal of 167 

males does not affect larval survival or growth under laboratory conditions in this species 168 

(Bartlett 1988; Smiseth et al. 2005). After mating, we transferred females to a larger 169 

transparent plastic container (17 x 12 x 6 cm) lined with 1 cm of moist soil, whilst discarding 170 

all males. To initiate breeding, we provided females with a freshly thawed mouse carcass 171 

(Livefoods Direct Ltd., Sheffield, UK) weighing between 8–10 g (mean ± SE = 8.95 ± 0.051 g). 172 

This size of carcass is within the range used by this species (1–40 g; Müller et al. 1990). We 173 

used relatively small carcasses to ensure that females had ample resources to breed 174 

successfully, whilst avoiding an excess of resources that might mask any effects of food 175 

deprivation on reproductive traits (Richardson & Smiseth 2019a). 176 

We collected information on egg laying by placing each container on a flat-bed 177 

scanner (Canon CanoScan 9000F Mark II, Canon Inc., Tokyo, Japan) and scanning the bottom 178 

every hour until the completion of oviposition using VueScan professional edition software 179 

(Hamrick Software, Sunny Isles Beach, Florida, USA) (Ford & Smiseth 2016, Ford & Smiseth 180 

2017; Botterill-James et al. 2017; Ford et al. 2018). Eggs are visible at the bottom of the 181 

container and, because we filled containers with a thin layer of soil, the visible number of 182 

eggs is strongly correlated with the actual clutch size (Monteith et al. 2012). From each 183 
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scanned image, we counted the number of new eggs laid each hour, using this information 184 

to determine the start of egg laying (i.e., the time elapsed since the female received a 185 

carcass until the female laid the first egg), laying spread and laying skew (see below) and 186 

clutch size (i.e., the number of eggs laid) (Ford & Smiseth 2016). 187 

The laying pattern can be characterised in two ways: ‘laying spread’, defined as the 188 

time between the first and last egg being laid (Smiseth et al. 2006; Takata et al. 2015), and 189 

‘laying skew’, defined as the extent to which laying is skewed towards the earlier part of the 190 

laying period (Smiseth et al. 2008; Ford & Smiseth 2016). Both characteristics of the laying 191 

pattern have important consequences for offspring performance as a greater laying spread 192 

and a more negative laying skew negatively affect offspring growth and survival (Ford & 193 

Smiseth 2016; Ford & Smiseth 2018). In accordance with prior work, we calculated a laying 194 

skew index as 𝛴 (
𝑡𝑖− 𝑡𝑚

𝑡𝑚
) × 𝑝𝑖 , where 𝑡𝑖  is the time interval of a given scan in relation to 195 

the start of the laying period, 𝑡𝑚 is the middle of the laying period and 𝑝𝑖 is the proportion 196 

of the total clutch that is laid in a given scan (Smiseth et al. 2008; Ford & Smiseth 2016). 197 

Previous work shows that this index is usually negative, indicating that egg laying is skewed 198 

towards the first half of the laying period. Thus, values closer to –1 indicate a greater laying 199 

skew where a larger proportion of eggs are laid early on, whereas values closer to 0 indicate 200 

a lesser laying skew. In addition, we measured the size of five randomly chosen eggs in each 201 

clutch using ImageJ (Ambràmoff et al. 2004). For each egg, we measured its length and 202 

width in pixels three times. We then converted these measures to metric length (mm), and 203 

used the mean length and width to calculate a prolate spheroid volume for each egg (𝑉) 204 

as 𝑉 = (1 6)⁄ 𝜋𝑤2𝐿, where 𝑤 is width and 𝐿 the length of the egg, respectively 205 

(Berrigan 1991). We checked scans after hatching to record the number of unhatched eggs. 206 
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We estimated hatching success by subtracting the number of unhatched eggs from the 207 

clutch size to estimate the number of hatched eggs, and dividing the number of hatched 208 

eggs by clutch size. 209 

We collected information on female post-hatching parental care and offspring 210 

begging by conducting observations on each female and her brood. In this species, post-211 

hatching parental care and offspring begging peaks at 24 h after offspring hatch (Smiseth et 212 

al. 2003). We therefore conducted observations on each female as close as possible to 24 h 213 

after her first eggs were expected to hatch (on average females were observed 31 ± 0.42 h 214 

after hatching of the first egg). We obtained information on expected time of hatching for 215 

each brood by taking the time at which females started egg laying and adding 59 h, which is 216 

the time taken for eggs to hatch at 20°C (Smiseth et al. 2006). Observations were conducted 217 

using instantaneous sampling every 1 min for 30 min in accordance with established 218 

protocols (Smiseth & Moore 2002; Smiseth et al. 2003; Smiseth et al. 2005). We recorded 219 

female parental behaviour as the number of sampling points out of 30 in which females 220 

were (1) provisioning food to the brood, defined as when females engaged in mouth-to-221 

mouth contact with at least one larva, (2) consuming carrion, defined as when females were 222 

feeding within the carcass crater, and (3) maintaining the carcass, defined as when females 223 

added anal or oral secretions to the external surface of the carcass, excavated the 224 

depression in the soil surrounding the carcass, or moved the carcass from below. All other 225 

behaviours, such as self-grooming or being away from the carcass, were recorded as non-226 

parental behaviours and not analysed further.  227 

We also recorded the amount of time spent begging by larvae by counting the 228 

number of begging larvae in each sampling point. A larva was scored as begging when it 229 

raised its head towards the female, waved its legs towards the female, or touched the 230 
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female with its legs. We calculated the average amount of time spent begging by each 231 

individual larvae in the brood (𝑏𝑖) as 𝑏𝑖 = ( 𝛴𝑏 𝑙⁄  )  × (100 𝑑⁄ ), where 𝛴𝑏 is the total 232 

number of begging events occurring during each observation, 𝑙 is the number of larvae at 233 

the time of observation, and 𝑑 is the number of sampling points during an observation that 234 

the female was within a pronotum width of the brood (approximately 5 mm). This 235 

corresponds to the distance from which offspring initiate begging (Rauter & Moore 1999). 236 

After the observations, we left females to rear their broods until the larvae dispersed from 237 

the carcass approximately 7 days later. 238 

When all larvae had dispersed from the carcass, we recorded the number of 239 

dispersing larvae and the total brood mass. We calculated average larval mass at dispersal in 240 

each brood by dividing the total brood mass by the number of larvae in the brood. We then 241 

placed the larvae from each brood into transparent plastic containers (17 x 12 x 6 cm) filled 242 

with moist soil. Approximately 20 days later, we recorded the number of offspring from 243 

each brood that successfully eclosed as adults. At the time of dispersal, we also weighed 244 

each female to measure her post-breeding mass. We then calculated mass change during 245 

breeding for each female by subtracting her pre-breeding mass from her post-breeding 246 

mass. Females were then transferred to individual containers (12 x 8 x 2 cm) filled with 247 

moist soil and maintained following the protocol for beetles in the stock population (see 248 

above) and checked twice weekly until death to record lifespan. All data were collected 249 

blind with respect to female nutritional state. 250 

 251 

Statistical analyses 252 
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We used R version 3.5.1 (R Core Team 2018) for all analyses. We added experimental 253 

treatment (food-deprived or control) as a fixed effect in all models. We used general linear 254 

models for traits with normally distributed errors (time to start of egg laying, laying spread, 255 

laying skew, average egg size, average amount of begging, number of larvae at dispersal, 256 

average larval mass at dispersal, number of offspring at eclosion and female mass change). 257 

We used generalized linear models for traits with Poisson distributed errors (clutch size), 258 

negative binomial distributed errors (female lifespan) or binomial distributed errors 259 

corrected for overdispersion (hatching success). In addition, for the analyses of female 260 

behaviour (time spent provisioning food to larvae, time spent consuming carrion, time spent 261 

maintaining the carcass), we used generalized linear models fitted with a quasibinomial 262 

error structure because our count data was bounded at a maximum value of 30 (i.e. the 263 

maximum number of sampling points a female could be observed performing a given 264 

behaviour) (Ratz & Smiseth 2018). 265 

We included clutch size as an additional covariate in the analyses of laying spread, 266 

laying skew and hatching success to control for any effect of variation in the number of eggs 267 

laid on the laying pattern or hatching success of eggs. The number of larvae at dispersal was 268 

included as an additional covariate in the analyses of female mass change and female 269 

lifespan to account for any effect of variation in the number of offspring a female reared on 270 

female performance. The decision about whether to include these additional covariates in 271 

the analyses of egg laying or female performance were based on comparison of AIC scores 272 

between models, and based on this criterion, clutch size was excluded as an additional 273 

covariate in the final analyses of egg size and time until the start of egg laying. Meanwhile, 274 

the number of larvae in the brood at the time of the observation was included as an 275 

additional covariate in the analyses of female behaviour to account for variation in the 276 
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number of larvae between broods. In addition, we initially included the interaction between 277 

clutch size and treatment (food-deprived vs. control) in the analyses of egg laying traits, and 278 

the interaction between brood size and treatment for analyses on female behaviour and 279 

female performance. There was no effect of this interaction on any traits, and it was 280 

therefore excluded from the final models. Although time elapsed from hatching until the 281 

observation was not equal for all broods, inclusion of this variable had no effect on any 282 

model outputs and it was therefore excluded from the final models. We accounted for 283 

multiple testing using a false discovery rate correction (Benjamini & Hochberg 1995). We 284 

note there was no change in the interpretation of our results after this correction. 285 

 286 

Results 287 

Effects of food deprivation 288 

There was a significant difference between food-deprived and control females in their mass 289 

change during the 7-day long food deprivation treatment (estimate = –0.034 ± 0.004 g, t1,89 290 

= -8.38 , p < 0.001). As intended, food-deprived females lost mass during food deprivation 291 

(mean ± SE: –0.027 ± 0.002 g) whereas control females did not (0.007 ± 0.003 g). 292 

 293 

Female egg laying 294 

As expected, food-deprived females delayed the onset of egg laying compared to control 295 

females (Table 1). Food-deprived females took on average, 37.1 % longer to begin egg laying 296 

than control females (Figure 1). However, there was no significant differences between 297 

food-deprived and control females in clutch size, average egg size, hatching success, laying 298 

spread or laying skew (Table 1). 299 
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 300 

Female parental behaviour 301 

Food deprivation had a significant effect on maternal behaviour (Table 2). Food-deprived 302 

females spent, on average, 43.9 % fewer sampling points provisioning food to their larvae 303 

and 43.1 % fewer sampling points maintaining the carcass than did control females (Figure 304 

2A-B). In addition, food-deprived females spent, on average, 148.8 % more sampling points 305 

consuming carrion than did control females (Figure 2C). When caring for a larger number of 306 

offspring, females spent more time provisioning food to the brood and more time 307 

maintaining the carcass (Table 2). The number of larvae in the brood at the time of 308 

observation had no effect on the amount of time females spent consuming carrion (Table 2). 309 

Food-deprived females might spend more time consuming carrion to replenish their 310 

own energy reserves or to regurgitate pre-digested carrion to their offspring. To test 311 

between these two alternative explanations, we examined the correlations between time 312 

spent consuming carrion and time spent provisioning offspring and between time spent 313 

consuming carrion and female weight change separately for food-deprived and control 314 

females. We found a significant positive correlation between time spent consuming carrion 315 

and time spent provisioning food to offspring for control females (Pearson’s correlation: r = 316 

0.28, t = 2.02, p = 0.048), but no such correlation for food-deprived females (Pearson’s 317 

correlation: r = -0.16, t = -1.08, p = 0.28; Figure 3). In contrast, there was a significant 318 

positive correlation between time spent consuming carrion and female mass change for 319 

food-deprived females (Pearson’s correlation: r = 0.31, t = 2.13, p = 0.038), but no such 320 

correlation for control females (Pearson’s correlation: r = 0.14, t = 0.97, p = 0.33; Figure 3). 321 

 322 

Offspring begging behaviour 323 
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Food deprivation of females had a significant effect on offspring begging behaviour (Table 2) 324 

as larvae reared by food-deprived females spent, on average, 52.2 % more time begging 325 

than larvae reared by control females (mean ± SE: 9.68 ± 1.40 vs 6.36 ± 0.42; Figure 2D). 326 

 327 

Offspring performance 328 

We found no significant difference between food-deprived females and control females in 329 

the number of dispersing larvae, average larval mass at dispersal or the number of offspring 330 

at eclosion (Table 3). 331 

 332 

Female weight gain and post-breeding performance 333 

There was a significant difference between food-deprived and control females in terms of 334 

female mass change over the breeding attempt (Table 3; Figure 4). Food-deprived females 335 

gained on average, 3500 % more mass (mean ± SE: 0.035 g ± 0.002) during reproduction 336 

than did control females. In addition, there was a significant effect of the number of larvae 337 

in the brood at dispersal on female mass change. Females caring for a larger number of 338 

offspring gained less mass than females caring for a smaller number of offspring (Table 3). 339 

Food deprivation also had a significant effect on the mass of females at larval dispersal 340 

(estimate ± SE = 0.021 ± 0.008 g, t = 2.41, p = 0.018), as food-deprived females were 6.7 % 341 

heavier (mean ± SE: 0.298 ± 0.0064 g) than control females (0.278 ± 0.0062 g). There was no 342 

significant difference between the lifespan of food-deprived females and control females 343 

(Table 3). 344 

 345 

Discussion 346 
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We examined downstream consequences of food deprivation on a complex suite of traits 347 

associated with reproduction in the burying beetle N. vespilloides; a species where females 348 

acquire resources for breeding prior to reproduction and provide elaborate care to their 349 

offspring. Females that had been deprived of food for 7 days lost more mass than control 350 

females, confirming that food deprivation had caused a deterioration in female nutritional 351 

state by the onset of reproduction. Food-deprived females delayed the onset of egg laying 352 

for 37.1 % longer than control females. However, food deprivation had no effect on other 353 

pre-hatching traits, such as the number, size and hatching success of eggs or the pattern of 354 

egg laying. Food-deprived females spent less time provisioning food to their larvae and 355 

maintaining the carcass than control females. Food deprivation affected offspring behaviour 356 

as larvae of food-deprived females spent more time begging than larvae of control females. 357 

Food-deprived females spent more time consuming carrion and gained more weight during 358 

breeding. However, there was no difference in the subsequent lifespan of food-deprived 359 

and control females and no difference in the number or size of larvae produced by food-360 

deprived and control females. We conclude that, even though food-deprived females 361 

consumed more food from the shared resources, they were unable to completely buffer 362 

against the effects of food deprivation. Furthermore, even though food-deprived females 363 

spent less time providing care for the larvae, there were no detectable effects of food 364 

deprivation on offspring performance. Below we provide a more detailed discussion of our 365 

results and their implications for our understanding of downstream consequences of food 366 

deprivation on different traits associated with reproduction. 367 

As expected, food-deprived females delayed the onset of egg laying compared to 368 

control females. In this species, females do not mature their oocytes before finding a 369 

carcass (Scott & Traniello 1987), and females feed from the carcass to obtain nutrients for 370 
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egg production (Wilson & Knollenberg 1984). Thus, this finding suggests that food-deprived 371 

females delayed the start of egg laying to spend more time acquiring nutrients to invest in 372 

egg production, which is in keeping with prior work on this species (Gray et al. 2018) and the 373 

congener N. orbicollis (Trumbo & Xhihani 2015). By delaying the start of egg laying, females 374 

may replenish their nutrient reserves, thereby allowing them to mitigate any negative 375 

consequences of nutritional stress on subsequent traits associated with reproduction. In 376 

support of this suggestion, we found no evidence that food deprivation affected other traits 377 

associated with egg laying, such as clutch size, egg size, hatching success, laying spread and 378 

laying skew. Furthermore, prior work shows that food-deprived females have recovered 379 

their lost mass by the time larvae hatch (Trumbo & Xhihani 2015; Gray et al. 2018). 380 

Nevertheless, our results contrast with those of a prior study on the same species, reporting 381 

that food-deprived females laid fewer eggs than control females (Steiger et al. 2007). A 382 

potential explanation for this discrepancy is that the period of food deprivation differed 383 

between studies (Steiger et al. 2007: 14 days; our study: 7 days), suggesting that the effects 384 

of food deprivation may depend on whether females have been exposed to moderate 385 

versus extreme levels of starvation. 386 

Contrary to what we expected if delaying the onset of egg laying allowed females to 387 

buffer against the effects of food deprivation, food-deprived females spent less time 388 

provisioning food to larvae and maintaining the carcass. This finding suggests that food-389 

deprived females only partially compensated for the effects of food deprivation by delaying 390 

the onset of egg laying. There are two potential explanations for why we found a differential 391 

effect of food deprivation on traits associated with egg laying (clutch size, egg size, hatching 392 

success, laying spread and laying skew) and post-hatching parental care. First, this 393 

differential effect may reflect that parental care incurs higher energetic costs than egg 394 
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laying (Monteith et al. 2012). If so, delaying the onset of egg laying to obtain more nutrients 395 

may have allowed food-deprived females to offset the lower costs associated with egg 396 

laying but not the higher costs associated with parental care. Second, this differential effect 397 

may reflect that nutritional stress triggers an increase in investment in somatic maintenance 398 

at the expense of costly post-hatching parental care. Individuals may alter how they 399 

prioritise investment in survival versus reproduction based on past experiences of adverse 400 

conditions (Cotter et al. 2011; Billman et al. 2014). If so, food-deprived females may have 401 

prioritised their own condition to ensure that they had sufficient nutrient reserves to 402 

tolerate future starvation. Our results raise the question as to why food-deprived females 403 

did not delay egg laying even longer to fully compensate for the effects of nutritional stress? 404 

One potential answer is that delaying the start of egg laying for too long is associated with 405 

significant costs. For example, in our study species, such a delay is associated with further 406 

decomposition of the carcass, which negatively impacts egg survival (Jacobs et al. 2014) and 407 

larval growth (Rozen et al. 2008). Thus, food-deprived females may need to balance the 408 

benefits of delaying the onset of egg laying to themselves against the costs to their 409 

offspring. 410 

Food-deprived females spent more time consuming carrion than control females. In 411 

burying beetles, consuming carrion serves a dual purpose: boosting the parent’s nutrient 412 

reserves for investing in future reproduction (Billman et al. 2014) and providing a source of 413 

pre-digested carrion for regurgitation to offspring (Mattey & Smiseth 2015; Pilakouta et al. 414 

2016). Prior work suggests that females regurgitate most of the carrion they consume and 415 

that carrion consumption is a form of care (Walling et al. 2008; Pilakouta et al. 2016; 416 

Andrews et al. 2016). In contrast, males consume carrion primarily to boost their own 417 

reserves (Mattey & Smiseth 2015; Pilakouta et al. 2016). We found a positive correlation 418 
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between time spent consuming carrion and time spent provisioning food to offspring for 419 

control females but not for food-deprived females. In contrast, there was a positive 420 

correlation between time spent consuming carrion and weight gain for food-deprived 421 

females but not for control females. Taken together, these results suggest that control 422 

females consumed carrion primarily to regurgitate pre-digested carrion to their offspring, as 423 

suggested by prior work (Mattey & Smiseth 2015; Pilakouta et al. 2016), whilst food-424 

deprived females consumed carrion primarily to boost their own nutrient reserves. In 425 

support of this interpretation, food-deprived females gained more weight during breeding 426 

and were heavier at the end of breeding than control females. Thus, our results suggest that 427 

consuming carrion can be considered a form of parental care for control females but not 428 

food-deprived females. 429 

There was no evidence that food deprivation of females influenced offspring 430 

performance, as there was no difference between food-deprived and control females with 431 

respect to number of dispersing larvae, average larval mass or number of offspring at 432 

eclosion. This result is somewhat surprising given that food-deprived females took longer to 433 

initiate egg laying and provided less care to their offspring, both of which should negatively 434 

affect offspring performance (Ford & Smiseth 2016; Smiseth et al. 2003). Our results also 435 

contrast with those of a prior study on the same species, reporting that offspring of food-436 

deprived mothers have reduced fitness (Keppner et al. 2018). These contrasting results may 437 

reflect that the prior study examined effects of food deprivation in the context of biparental 438 

care, whilst our study examined such effects in the context of uniparental female care. Thus, 439 

increased female feeding from the carcass may only have a detrimental effect on offspring 440 

in the presence of a male partner, presumably due to sexual conflict over feeding from the 441 

shared resource (Pilakouta et al. 2016). There are a number of potential explanations for 442 
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why we found no evidence for a negative impact on offspring performance. First, the 443 

beneficial effects of post-hatching parental care to offspring are small in this species (an 444 

increase in time spent providing direct care of 1 sampling point translates to a 1.6 mg 445 

increase in larval mass; Andrews et al. 2016). Thus, we may not have had sufficient 446 

statistical power to detect such small effects (statistical power of our study for detecting the 447 

effect size reported by Andrews et al. (2016): 1–β = 0.35). Furthermore, even if detectable, 448 

it is unlikely that such a small effect would be biologically meaningful. To illustrate this, the 449 

reduction in time spent provisioning food by an average of 3.18 sampling points by food-450 

deprived females would translate into a decrease in average larval mass by 2.81 %. Second, 451 

offspring of food-deprived mothers may compensate for any reduction in parental care by 452 

obtaining more nutrients through self-feeding. Such compensation may even be a by-453 

product of food-deprived females consuming more carrion, thereby exposing fresher and/or 454 

more nutritious parts of the carcass to the larvae. Third, although food-deprived females 455 

provided less parental care, they might have provided higher quality care. For example, 456 

given that food-deprived females consumed more carrion, they may have transferred a 457 

larger amount of pre-digested carrion during each provisioning event. Finally, parental food 458 

provisioning is associated with transfer of bacterial symbionts, which may have important 459 

consequences for offspring fitness by improving resistance towards pathogens (Ziadie et al. 460 

2019). However, such benefits may only be apparent when offspring are exposed to harsher 461 

conditions with more pathogens than those experienced in a laboratory environment. Thus, 462 

one avenue for future work is to examine if food-deprived and control females differ in the 463 

type or quantity of bacterial symbionts they transfer to their offspring.  464 

We found no evidence that food-derived females produced fewer offspring than 465 

control females. In contrast, two recent studies on N. vespilloides reported that food-466 
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deprived females have fewer adult offspring than control females, but only when breeding 467 

on larger carcasses (i.e. >20 g; Gray et al. 2018; Richardson & Smiseth 2019a). Our results 468 

are consistent with this work as we bred females on smaller carcasses (i.e., 8–10 g). Food-469 

deprived females may have fewer offspring on larger carcasses because such carcasses 470 

support more microbial growth, which is detrimental to offspring survival (Rozen et al. 471 

2008). In support of this, we found that food-deprived females spent less time maintaining 472 

the carcass (i.e. applying anti-microbial secretions). Thus, offspring of food-deprived females 473 

may suffer higher mortality on larger carcasses as a result of reduced carcass maintenance. 474 

These findings are intriguing because they suggest that the benefits of parental care are 475 

greater on larger carcasses. Previous work has assumed that larger carcasses are beneficial 476 

as they provide more resources, thereby allowing females to produce more offspring (e.g., 477 

Smiseth et al. 2014). However, larger carcasses may also represent a more harmful 478 

environment for offspring. Our results have important implications as they suggest that the 479 

parent’s nutritional state may determine how the benefits of care vary with environmental 480 

conditions. 481 

Our study adds to our understanding of downstream consequences of food 482 

deprivation by demonstrating that food deprivation can have complex effects on traits 483 

associated with reproduction. Firstly, food-deprived females buffered against some of the 484 

consequences of food deprivation by delaying the start of egg laying given that food 485 

deprivation had no effects on clutch size, egg size, hatching success, laying spread and laying 486 

skew. However, this buffering was incomplete as food-deprived females provided less post-487 

hatching parental care than control females. Given that parental care occurred later in the 488 

breeding cycle than egg laying, this finding highlights that food deprivation can affect traits 489 

regardless of when they occur in the breeding cycle and regardless of whether food-490 
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deprived females had regained their initial body mass. Such complex effects would be 491 

missed when considering effects on single traits, or traits occurring at one stage of the 492 

breeding cycle. Thus, we encourage future work to examine effects on suites of traits in 493 

species where reproduction involves traits that are expressed at different times during the 494 

breeding cycle and that include both parental and offspring traits. Our results also suggest 495 

that, when females compensate for the effects of food deprivation, there is a trade-off 496 

between the benefits of mitigating downstream consequences of nutritional stress and the 497 

costs associated with delaying the start of reproduction. Such a trade-off is likely to be 498 

ubiquitous, but the factors that influence how individuals balance these benefits and costs 499 

may vary both between and within species. Such variation may depend on how effectively 500 

parents mitigate the downstream consequences, how detrimental the costs of delaying 501 

reproduction are to offspring, as well as a range of additional factors such as the parent’s 502 

state (e.g. age or inbreeding) and environmental conditions (i.e. competition or resource 503 

availablity). Future work in this field should now consider examining factors that influence 504 

trade-offs in reproductive decision-making and the consequences this has for reproduction.  505 

Finally, we found no evidence that offspring suffered fitness consequences when 506 

reared by a food-deprived mother, despite such females delaying the onset of reproduction 507 

and providing less parental care. This finding contrasts with prior work on a variety of other 508 

species, reporting that offspring suffer fitness costs when reared by a food-deprived mother 509 

(e.g., Keech et al. 2000; Laurien-Kehnen & Trillmich 2004; Salomon et al. 2011; Kramer et al. 510 

2017). This finding suggests that detrimenral effects to offspring are not inevitable, 511 

presumbably reflecting that parents and/or offspring adjust their behaviour to compensate 512 

for the detrimental effects of food deprivation. Given how important offspring growth is for 513 

fitness in this species (Otronen 1988), there is likely to be strong selection on mechanisms 514 
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that compensate for any detrimental effects due to reduced parental care. Such 515 

mechanisms could include increased self-feeding by offspring as well as increased 516 

investment to parental care by the partner when females are assisted by a partner. Future 517 

work should examine the role such mechanisms play in compensating for the effects of 518 

parental food deprivation on offspring performance. 519 
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Figure legends  537 

Figure 1 – Effect of food deprivation on the time taken (hours) from being provided with a 538 

mouse carcass to the time the first egg was laid. Smaller grey points represent each 539 

individual brood. Larger black points represent the mean (± SE) for each treatment.   540 

 541 

Figure 2 – Effect of food deprivation on the number of sampling points (out of 30) that 542 

females spent provisioning offspring (A), maintaining the carcass (B), and consuming carrion 543 

(C) and the average time spent begging by offspring (D). Behaviour was recorded using 544 

instantaneous sampling every 1 minute for 30 minutes. Smaller grey points represent each 545 

individual female or brood. Larger black points represent the mean (± SE) for each 546 

treatment. 547 

   548 

Figure 3 – Relationship between (A) time spent consuming carrion and female mass change  549 

and (B) time spent consuming carrion and time spent provisioning food to offspring. Black 550 

points and lines (± 95% CI) represent data on food-deprived females whilst grey points and 551 

lines  (± 95% CI) represent data on control females.  552 

 553 

Figure 4 – Effect of food deprivation on female mass change (g) over the breeding attempt. 554 

Smaller grey points represent each individual female. Larger black points represent the 555 

mean (± SE) for each treatment.556 
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Table 1 – Effects of female nutritional condition (control or food-deprived) on egg laying. We provide parameter estimates (± SE), test 
statistics, p-values and means (± SE) for control and food-deprived females. 
 

 

 

 

 

 

 

  

 

Effect of female nutritional condition Effect of clutch size 
Mean ± SE for control 

females  

Mean ± SE for 

food-deprived 

females  Estimate ± SE 
Test 

statistic 
p-value Estimate ± SE 

Test 

statistic 
p-value 

Time until start of laying (h) 6.89 ± 2.29 t = 3.01 0.003 – – – 18.60 ± 1.12 25.50 ± 2.05 

Laying spread (h) 2.67 ± 2.81 t = 0.95 0.34 -0.05 ± 0.18 t = -0.29 0.77 28.70 ± 1.40 31.50 ± 2.46 

Laying skew 0.01 ± 0.05 t = 0.31 0.76 -0.001 ± 0.003 t = -0.27 0.79 -0.262 ± 0.033 -0.244 ± 0.036 

Clutch size -0.06 ± 0.04 t = -1.73 0.08 – – – 27.70 ± 1.11 25.90 ± 1.09 

Egg size (mm3) -0.02 ± 0.05 t = -0.65 0.52 – – – 1.75 ± 0.032 1.72 ± 0.033 

Hatching success (%) -0.52 ± 0.40 t = -1.29 0.19 0.01 ± 0.03 t = 0.37 0.71 95.40 ± 1.33 94.4 ± 1.30 
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Table 2 - Effects of female nutritional condition (control or food-deprived) on female post-hatching care and offspring begging. We provide 
parameter estimates (± SE), test statistics, p-values and means (± SE) for control and food-deprived females. 

 

  

 

Effect of female nutritional 

condition 

Effect of brood size at time of 

observation Mean for control 

females ± SE 

Mean for food-

deprived females ± 

SE 
Estimate ± 

SE 

Test 

statistic 
p-value Estimate ± SE 

Test 

statistic 
p-value 

Time spent provisioning 

larvae (sampling points)  

-0.68 ± 

0.13 
t = -4.94 <0.001 0.04 ± 0.009 t = 4.39 <0.001 7.25 ± 0.52 4.07 ± 0.40 

Time spent consuming 

carrion (sampling points) 

1.17 ± 

0.18 
t = 6.17 <0.001 -0.01 ± 0.01 t = -0.94 0.35 4.10 ± 0.45 10.20 ± 0.88 

Time spent maintaining 

carcass (sampling points) 

-0.65 ± 

0.17 
t = -3.69 <0.001 0.03 ± 0.01 t = 3.01 <0.001 6.40 ± 0.60 3.64 ± 0.41 

Mean begging by 

offspring  

3.31 ± 

1.41 
t = 2.34 0.021 – – – 6.36 ± 0.42 9.68 ± 1.40 
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Table 3 - Effects of female nutritional condition (control or food-deprived) on female mass change and lifespan as well as on offspring 
performance. We provide parameter estimates (± SE), test statistics, p-values and means (± SE) for control and food-deprived females. 
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Effect of female nutritional condition Effect of brood size at dispersal 
Mean for 

control 

females ± SE 

Mean for 

food-

deprived 

females ± SE 

Estimate ± SE 
Test 

statistic 
p-value Estimate ± SE 

Test 

statistic 
p-value 

Female mass change during 

breeding (g) 
0.03 ± 0.005 t = 6.29 <0.001 

-0.001 ± 

0.0005 
t = -2.93 0.004 0.001 ± 0.003 0.036 ± 0.005 

Female lifespan (days) -0.04 ± 0.07 t = -0.54 0.59 0.003 ± 0.005 t = 0.57 0.56 109 ± 5.6 105 ± 5.0 

Number of dispersing larvae  -0.85 ± 1.24 t = -0.68 0.50 – – – 14.40 ± 0.79 13.50 ± 0.96 

Mean larval mass at dispersal 

(g) 
-0.003 ± 0.009 t = -0.29 0.77 – – – 0.181 ± 0.006 0.173 ± 0.007 

Number of offspring at eclosion -0.60 ± 1.21 t = -0.49 0.62 – – – 13.60 ± 0.80 13.00 ± 0.94 
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