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Abstract 

To simulate the heat transfer between lithium-ion batteries (LIBs), an electric 

heater with the same size and shape as the LIB is used to trigger thermal runaway event 

in this work. The effect of state of charge (SOC), the power of the heater, the spacing on 

thermal behavior of LIB was investigated as well the amount of transferred heat be-

tween the heater and LIB was calculated. The results indicate that 50% SOC is an un-

stable state for LIB, that a stronger jet flame becomes more likely when the SOC of LIB 

is higher than 50%. Additionally, the increased spacing, lower heating power and SOC 

can contribute to mitigate the severity of thermal runaway behavior. Further, the 

dominant path of heat transfer between the heater and LIB will also vary with operating 

conditions. The heat conduction through air is the main heat transfer path in tests with 

lower heating power. However, heat radiation will replace heat conduction as the pri-

mary heat transfer mode when there is a large temperature difference between the 

heater and LIB in tests with higher heating power. Understanding the leading heat 

transfer path between LIBs can provide valuable guidelines for the safety design of 

lithium-ion battery modules.

Key words: lithium ion battery safety, thermal runaway, side-heating, state of charge, 

electric heater  

1. Introduction

Due to the high density and long cycle life, the lithium-ion battery (LIB) has be-

* Corresponding authors: Q.S. Wang: Tel.: +86 551 6360 6455; fax: +86 551 6360 1669. E-mail: pin-

ew@ustc.edu.cn;



 

 

come a promising choice for powering electric vehicles in recent years. However, the 

fire and explosion accidents related to the thermal runaway event of LIBs were re-

ported from time to time (Lisbona & Snee, 2011). Further, these accidents prompted 

global attention to the potential fire risks of lithium-ion battery in practical applica-

tions.  

Thermal runaway behavior of the single cell under special abnormal conditions 

had been extensively studied (Jhu et al., 2011; Larsson & Mellander, 2014; Peng et al., 

2014; Fu et al., 2015). As the temperature builds up, the solid electrolyte interphase 

(SEI) layer will start to decompose at 90-120 oC (Wang et al., 2012). Then, the reac-

tion of intercalated lithium with electrolyte, the decomposition reactions of electrolyte, 

negative and positive active material will be initiated sequentially with the increasing 

temperature (Wang et al., 2006; Wu et al., 2018). In addition, the heat generated by 

these chemical exothermic reactions from the cells will further accelerate these reac-

tions and release more heat. Lastly, the thermal runaway event will be triggered once 

the temperature value exceeds a certain threshold (Spotnitz & Franklin, 2003). Jhu et 

al. (Jhu et al., 2012) have investigated the thermal runaway potential of the 18650 LIB 

with different cathodes using an adiabatic calorimeter, the peak temperature of the 

LIB with 100% SOC in thermal runaway could reach to 665-709 oC. Liu et al. (Liu et 

al., 2015) have conducted tests to measure the generated heat energy inside the 2.2 Ah 

LIB through Copper Slug Battery Calorimetry (CSBC). The results showed that the 

value of the generated energy increased with increasing state of charge, that the peak 

value is 34.0 ± 1.8 kJ. Furthermore, Wang et al (Wang et al., 2017) have studied the 

combustion behavior of the 50 Ah LiFePO4/graphite battery through the ISO 9705 

combustion room, the present results indicate that the maximum heat release rate 

could reach 64.32 kW and the maximum heat release was 13.74 MJ.  

However, a large amount of LIBs are always connected to form the module in 

practical applications in order to satisfy the demands of power. Thus, if a single cell in 

the module undergoes thermal runaway, the released heat can expose the other LIBs 

to a high temperature environment and even cause the whole battery module get into 

thermal runaway. Lopez et al. (Lopez et al., 2015) have experimental studied thermal 

runaway and propagation behavior in lithium-ion battery module, and the results in-

dicated that the increased spacing and appropriate connected tab style both contribute 

to the prevention of thermal runaway propagation event. Feng et al. (Feng et al., 2015; 

Feng et al., 2015) carried out thermal runaway propagation experiments within lithi-

um-ion battery modules that formed by six LIBs, they revealed the thermal runaway 

propagation mechanism between LIBs. Lamb et al. (Lamb et al., 2015) had conducted 

thermal runaway propagation tests in LIB modules with different electric connection 

styles, and also present the temperature and voltage variations in the experiments 

(Lamb et al., 2015). During these cases, the released intense heat from a single cell in 

thermal runaway will violently heat its neighbors in one side and lead to the signifi-

cant temperature rise of neighbor LIBs. The adjacent LIBs are heated unevenly and 

the significant temperature difference will be formed on the surfaces of the LIBs. 



 

 

However, the thermal runaway propagation test is hard to conduct as the complex 

circuit connection and a large amount of measuring points. In addition, these tests also 

have the high fire or even explosive risks as the violent jet flame and a considerable 

amount of combustible and toxic gases (Nedjalkov et al., 2016; Sun et al., 2016; 

Larsson et al., 2018).     

In this work, a heater was used to trigger the thermal runaway of the LIB. In or-

der to simulate the heat transfer process between a LIB in thermal runaway and its 

adjacent LIB, the size and shape of the heater is designed to be the same as sample 

cells. Furthermore, the maximum temperature of the 200 W heater is close to the peak 

temperature of the LIB in thermal runaway (Zhong et al., 2018). The LIBs in this 

work will be heated by the heaters which are placed on one side of lithium-ion battery. 

Therefore, the heater used in this work can be assumed as a lithium-ion battery in 

thermal runaway. The triggered mode in this work significant reduces the operational 

complexity and experimental risks. Besides, the effect of SOC, the power of heater 

and the cell spacing on thermal runaway behavior of the LIB were investigated. The 

calculated value of the transferred heat between the heater and LIB in this work is a 

valuable variable, which can contribute to analyze the dominated path of heat transfer 

between the heater and LIB.    

2. Experimental 

The representative 18650 lithium-ion batteries with Li(NixCoyMnz)O2 cathode 

were selected as the samples to investigate the thermal behavior in side-heating tests. 

In lithium-ion battery module, the intense heat from the cell in thermal runaway can 

result in the significant temperature rise of its neighbors. For the purpose of investiga-

tion, the power of the heater was cut off immediately as soon as the safety venting of 

the LIBs. Similar to the situation in lithium-ion battery module, the LIB in this work 

was heated in one side by the cylindrical electric heater with different powers.  

The arrangement of the devices and the location of the thermocouples are shown 

in Fig. 1. Four 1 mm K-type chromel–alumel thermocouples (T0-T3) with 1 s response 

time and ±1.0 °C accuracy were used to measure the temperature variations of the 

heater and LIB. Three thermocouples (T1-T3) were fixed on surfaces of the cell, in 

which T2 and T3 are the recorded temperature variations of sidewalls of LIB. Because 

of the symmetry of the battery and the position of the thermocouple, T2-3 (the average 

value of T2 and T3) are used to represent temperature variation of the sidewall. Further, 

T1 was mounted on the surface of the LIB that far from the heater. Besides, T0 is the 

thermocouple which was used to measure the temperature of the heater.  



 

 

 

Fig. 1. The arrangement of the devices and the location of thermocouples. 

Fig. 2 shows the experimental devices to record the thermal responses for LIB. 

In order to protect the devices and people from the sputtering materials, these experi-

ments were conducted in a battery safety control cabinet. The size of the safety con-

trol cabinet is 1.32 × 1.0 × 2.2 m, in which was equipped with the safety observation 

windows to monitor the thermal runaway behavior of lithium-ion battery. 

 

Fig. 2. Schematic of the experimental devices; a) photo of the battery safety control 

cabinet; b) photo of the K-type thermocouple; c) photo of the temperature logger 

module. 

The LIB was heated to safety venting in this work, and then the power of the 

heater was cut off immediately. The thermal behavior of the LIB in these tests was 

monitored by a digital camera. The effect of SOC, the power of the heater and the cell 

spacing on thermal runaway behavior were investigated, respectively. As shown in 

Table 1, the cells with various SOCs (0%, 20%, 40%, 50%, 60%, 80%, 100%) were 

heated by a 200 W heater without spacing in Tests 1-7, respectively. Moreover, the 

cells with various SOCs were heated with 2 mm spacing in Tests 8-13. Further, the 

heating power was 400 W in Tests 11-16, but the spacing in Tests 11-13 and 14-16 

was 2 mm and 5 mm, respectively.     

Table 1 Experimental conditions of side-heating tests. 

qrad

qcond

Electric heater Lithium-ion battery

w

s

rh ,

ε1

rh , 

ε2

T0

Temperature of middle walls (T2)

Temperature of middle walls (T3)

Battery safety control 

cabinet

Extinguishing agent 

tank

(a) (b) (c)



 

 

No. Spacing / mm SOC The power of the heater / W 

1 

0 

0% 

200 

2 20% 

3 40% 

4 50% 

5 60% 

6 80% 

7 100% 

8 

2 

0% 

200 9 50% 

10 100% 

11 

2 

0% 

400 12 50% 

13 100% 

14 

5 

0% 

400 15 50% 

16 100% 

3. Results and discussion 

3.1 The thermal response of the lithium-ion batteries with various SOCs   

The thermal responses of the lithium-ion batetry during these experiments can be 

roughly divided into three stages. Fig. 3 shows the representative temperature and 

temperature rate responses for the LIB with 100% SOC in Test 7. In stage I，the 

temperature of the LIB was increased constantly by the heater, and  a significant 

temperature difference between T1 and T2-3 was observed. At around 119 s, the LIB 

vented and released some hot gases when T1 was 140 oC and T2-3 was 159 oC, that 

resulting in the slight decreased of temperature rise rate. And then the LIB got into the 

“smolding period” in stage II, that no smoke was observed. However, the temperature 

of the LIB increased constantly in this stage due to the generated heat from 

exothermic reactions inside the LIB. Approximately at 150 s, the LIB underwent 

thermal runaway in stage III at 209-228 oC. Further, the temperature value quickly 

peaked at 626-673 oC at 155 s.  



 

 

 

Fig. 3. The measured temperature and temperature rate responses for the LIB with 100% 

SOC in Test 7 without spacing. 

Fig. 4 delineate the temperature and temperature rate variation profiles as a 

function of time for the cell with various SOCs in Tests 1-6. The results confirm that 

the increased SOC can significantly exacerbate thermal runaway behavior, which is 

manifested by the increased value of peak temperature and temperature rise rate 

values. 

   

 

Fig. 4. The temperature and temperature rise rate in Tests 1-6 with the 200 W heater 

and various SOCs. 

Based on these studies, the venting (Tv) and maximum temperature (Tmax) are 

summarized as shown in Table 2. The results indicate that venting and maximum 

temperature are both determined by SOC of the LIB, and the relationships are shown 

in Fig. 5. It can be seen that the maximum temperature of the LIB in thermal runaway 

increased linearly with the increasing SOC. The higher SOC means that more electric 
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energy was stored in the cell. And the large scale inner short circuit will be induced 

when the separator is melt inside the LIB, then the electric energy could be released at 

a short time and contributes to the increased of temperature. In previous studies, the 

thermal stability of the separator inside the sample LIB was investigated using C80 

calorimeter under adiabatic environment (Wu et al., 2018). The separator started to 

melt at 119.5 oC and collapsed at 138.0 oC.  

Further, the increased SOC also could slightly decrease the value of venting 

temperature. As the temperature builds up, the exothermic reactions inside the LIB 

will be induced sequently. Especially, the intercalated lithium will directly react with 

the electrolyte solvent when the negative material loses the protection of the SEI layer 

and releases some combustible gases (Biensan et al., 1999; Lopez et al., 2015). Thus, 

the negative electrode of a LIB with higher SOC has more intercalated lithium, which 

will generated more gases and quickly cause the safety venting.      

Table 2 Venting (Tv) and maximum temperature (Tmax) of the LIB in Tests 1-7 with 

various SOCs. 

Test No. SOC Tv Tmax 

1 0% 193 258 

2 20% 202 442 

3 40% 191 570 

4 50% 180 641 

5 60% 186 672 

6 80% 183 739 

7 100% 159 673 
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Fig. 5. Fitting curve of the maximum and venting temperature during thermal runa-

way as a function of SOC. 

From the observed thermal behavior in these tests, the 50% SOC is an unstable 

state for the LIB under abuse conditions. As shown in Fig.6 (a), the LIB with lower 

SOC (50% or less) would experience several typical events as follows:(1) the cell was 

heated until safety venting and released some gases; (2) the cell entered “smoldering 

period” and release some gases at a lower rate; (3) the cell got into thermal runaway 

without jet flame and generated a considerable amount of smoke; (4) the cell is cooled 

to surrounding temperature. However, the LIB with a higher SOC (above 50%) in 

thermal runaway shows violent jet flame behavior as shown in Fig.6 (b). Besides, the 

effect of SOC on thermal runaway behavior is shown in Fig. 7. The mechanism of this 

difference may relate to the maximum temperature value of the cell and the 

decomposition rate of the cathode material. The decompostion reaction of cathode 

will release some oxygen (Kong et al., 2005), which could mix with the electrolyte 

solvents and then be ignited as the maximum temperature exceeds the threshold. For 

the LIB with lower SOC, the amounts of oxygen and generated combustible gases as 

well the maximum temperature may not enough to induce the jet flame.  



 

 

Fig. 6. The development of thermal runaway behavior in Test 1, 4 and 7; (a) photos of 

thermal runaway development of LIB with 0% SOC in Test 1; (b) photos of the ther-

mal runaway development of LIB with 50% SOC in Test 4; (c) photos of the thermal 

runaway development of LIB with 100% SOC in Test 7. 
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Fig. 7. The thermal runaway behaviors in Tests 1-7 with various SOCs. 

3.2 The thermal response of LIBs under various heating power 

In many battery modules, the certain spacing is also kept to prevent thermal 

runaway propagation between cells. When the heater starts to work in this work, the 

heat is transferred from the heater to LIB mainly by the radiation and the conduction 

through the surrounding air (Bergman et al., 2011; Lopez et al., 2015). For the system 

of two cylinders as shown in Fig. 1, the heat conduction through surrounding air can 

be accounted by a shape factor (Bergman et al., 2011).  

0

( )

t
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where S is the shape factor, kair is the air thermal conductivity, L is length of the bat-

tery, w is the spacing between the center axis of heater and adjacent battery, d1 is the 

diameter of heater and d2 is the diameter of battery.  

Besides, the heat radiation has much contribution to the increased temperature of 

the lithium-ion battery. For the cylindrical heater and sample cell, the amount of radi-

ation heat could be considered as (Bergman et al., 2011)  
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where qrad is the heat transfer rate via radiation, σ is the Stefan-Boltzmann constant, ε1 

and ε2 is the emissivity of the heater and battery, respectively, A1 and A2 is the surface 



 

 

area of the heater and battery, respectively. rh and rb are the radius for the heater and 

lithium-ion battery, respectively, F12 is the view factor of two cylinders and s is the 

distance between heater and the battery.  

The LIB in Tests 8-10 vented at 136-150 oC as show in Fig. 8, and then the tem-

perature of the LIB started to decrease as the power of the heater was cut off immedi-

ately. Further, the thermal runaway event was not observed after the safety venting in 

Tests 8-10 with 200 W heater. It can be seen that the increased power of the heater can 

heat LIB more violently in Tests 11-13 with 400 W heater, and then cause the steep 

temperature rise of LIB. Thus, the venting temperatures of Tests 9-11 are relatively 

high, around 330-360 oC. Then, the generated heat rate of the LIB exceeds its heat 

dissipation rate to surroundings as the high surface temperature of the heater and the 

LIB. And the LIBs in Tests 9 and 10 had undergone thermal runaway though the 

power of the heater was cut off.          

 

Fig. 8. The temperature response for the tests with various SOCs that the LIB are 

heated at 2mm spacing by 200 W and 400 W heaters, respectively. 

It makes sense to understand the main heat transfer path between heater and the 

LIB, which can contribute to the safety design for the battery module. In Tests 8-16, 

the amount of heat transfer between heater and LIB from the beginning of the 

experiment to safety venting is calculated according to Eq. (5)-(11) as shown in Fig. 9. 

In Tests 8-10, the heat conduction through the surrounding air is the primary heat 

transfer path while the amount of radiation heat accounts for about 11.7-12.3% of the 

total transferred heat. And this ratio is around 56.1-61.0% in Tests 11-13. The result 

indicates that the heating power shows great effect on radiation heat, as well the total 
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amounts of the conduction and radiation heat in Tests 11-13 is also larger than the 

value in Tests 8-10. 
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Fig. 9. The radiation and conduction heat in Tests 8-13 with with various SOCs (0%, 

50%, 100%), and the cells are heated by 200 W heater in Tests 8-10 while 400 W 

heater in Tests 11-13. 

3.3 The thermal response of LIBs with various spacing 

The LIBs in Tests 8-10 were heated at 2 mm spacing and the temperature 

responses were compared with the results in Tests 1-7 that the spacing was 0 mm. 

Taking into account the differences in thermal runaway behavior, the LIBs with 

various SOCs (0%, 50%，100%) were selected as the samples to investigate the 

impact of the spacing on thermal runaway behavior, respectively. The results of the 

tests with 200 W heater are shown in Fig. 10. The result indicates that the increased 

cell spacing has a great mitigation effect on its thermal behavior. The cell spacing is 

kept at 2 mm in Tests 8-10, and the thermal runaway event was not initiated. 

Moreover, the venting time was also delayed significantly in Tests 8-10, which was 

approximately 400-584 s. Besides, Eq. (5)-(11) indicate that the rate of the heat 

transfer could decrease significantly with increasing spacing between heater and LIB. 

This will certainly result in a significant delay in the rupture time of the safety valve. 

Besides, the increased spacing could also contribute to the heat dissipation of the LIB. 

Thus, the temperature of the LIB will starts to decrease when the heat dissipation rate 

exceeds its self-heating rate and the external heating rate. And the thermal runaway 

event can be avoided although the LIB was vented.  

 



 

 

 

Fig. 10. The temperature response for the tests with different SOCs that the cell are 

heated by 200 W heater at 0 mm and 2mm spacing, respectively. 

The LIBs with various SOCs were heated by 400 W heater in Tests 11-16, in 

which the spacing in Tests 11-13 and 14-16 is 2 mm and 5 mm, respectively. The 

temperature responses in Tests 11-16 are shown in Fig. 11, the venting temperature 

was approximately 322-376 oC, which is much higher than that of tests with 200 W 

heater. Because the 400 W heater could heat the LIB violently, which results in the 

phenomenon that the inner temperature is still low despite the high surface 

temperature of the LIB. The LIB undergone thermal runaway after the safety venting 

in Tests 12 and 13 as the spacing was kept at 2 mm. Further, the thermal runaway 

event was not triggerred when the spacing was increased to 5 mm. Besides, the 

venting time was also delayed around 334-669 s due to the increased spacing. 

 

0 100 200 300 400 500 600 700 800 900 1000 1100 1200
0

100

200

300

400

500

600

700

T
v
=136 

o
C

t
delay

= 400 s

T
v
=152 

o
C

100% SOC, 200 W

 

 

T
em

p
er

at
u

re
(o

C
)

time(s)

 T
1
 (0 mm)

 T
1
 (2 mm)

0 100 200 300 400 500 600 700 800 900 1000 1100 1200
0

100

200

300

400

500

600

700

T
v
=142 

o
C

t
delay

= 583 s

T
v
=165 

o
C

50% SOC, 200 W

 

 

T
em

p
er

at
u
re

(o
C

)

time(s)

 T
1
 (0 mm)

 T
1
 (2 mm)

0 100 200 300 400 500 600 700 800 900 1000 1100 1200
0

100

200

300

400

500

600

700

T
v
=150 

o
C

 

 

T
em

p
er

at
u
re

 (
o
C

)

time(s)

 T1 (0 mm)

 T1 (2 mm)

T
v
=152 

o
C

t
delay

= 584 s

0% SOC, 200 W(a) (b)

(c)



 

 

 

Fig. 11. The temperature response for the tests with different SOCs that the cell are 

heated by 400 W heater at 2 mm and 5mm spacing, respectively. 

The values of transferred heat from heater to LIB through conduction and 

radiation in Tests 11-16 are shown in Fig. 12. The result indicates that the total 

transferred heat was approximately 9.94-13.73 kJ in Tests 11-13 with 2 mm spacing. 

When the spacing was increased to 5 mm in Tests 14-16, the transferred heat was 

approximately 20.52-30.12 kJ due to the improved heat dissipation condition and the 

delayed venting time. Besides, it can be seen that the radiation was the dominated way 

to trigger the safety venting of LIB as the large temperature difference between the 

surfaces of heater and LIB. The heat transferred by radiation accounts for 72.1%-73.6% 

in Tests 14-16 with 5 mm spacing, which was 56.1-61.0% for Tests 11-13 with 2 mm 

spacing.   
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Fig. 12. The radiation and conduction heat in Tests 11-16 with with various SOCs (0%, 

50%, 100%), and the cells are heated at 2 mm spacing in Tests 11-13 while 5 mm in 

Tests 14-16. 

4. Conclusions 

A series of experiments were carried out to investigate the impact of SOC, the 

power of the heater and cell spacing on thermal behavior of the lithium-ion battery on 

side-heating condition. The venting and maximum temperature of LIB in thermal 

runaway was measured as well the heat transfer path between heater and LIB was in-

vestigated. The primary conclusions are summarized as follows:   

a) Thermal runaway behavior of lithium-ion battery was significantly alleviated 

with the decreasing SOC. In these experiments, the 50% SOC is an unstable state of 

the LIB that the ejected flame occurred frequently while the SOC of lithium-ion bat-

tery was higher than 50%. However, this jet flame phenomenon was totally replaced 

by a considerable amount of smoke when the SOC of LIB is less than 50%.  

b) The maximum temperature of LIB in thermal runaway is linearly related to 

its SOC as more electric energy was stored in the LIB with higher SOC. However, the 

SOC shows slight effect on venting temperature as this behavior was determined by 

the reaction between the intercalated lithium and electrolyte solvents, that the venting 

temperature was approximately 136-165 oC in tests with 200 W heater.    

c) The increased spacing and lower heating power both contribute to the pre-

venting of thermal runaway behavior. The maximum temperature of the 200 W heater 

is around 700-800 oC, which is close to the peak temperature of the LIB in thermal 

runaway. And the result indicates that 2 mm spacing can significant prevent the ther-

mal runaway propagation event between two LIBs system. 



 

 

d) The amount of transferred heat between heater and LIB was calculated in this 

work. It indicates that the heat conduction through the air accounts for around 

87.7-88.3% of the total transferred heat in tests with 2 mm spacing and 200 W heater. 

However, the radiation heat was the dominated way to transfer heat in tests with 400 

W heater as the significant temperature difference between the heater and the LIB, 

that around 56.1-61.0% in tests with 400 W heater and 2 mm spacing while 

approximately 72.1%-73.6% in tests with 400 W heater and 5 mm spacing.        

This work investigates the nature of hazards for LIB in side-heating condition, 

which is similar to the thermal runaway propagation process between LIBs. The 

dominated heat transfer path between the two cylinders system including the heater 

and LIB was analyzed, and the results can provide valuable guidelines for safety de-

sign of lithium-ion battery modules. In addition, there are also some deficiencies in 

this work. The temperature variation of the heater is different from the LIB in thermal 

runaway although the shape and size of the heater are designed to be the same as 

18650 LIB. The critical heat energy on the battery thermal runaway behavior of lith-

ium-ion battery will be further investigated in our future work. 
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Table captions 

Table 1 Experimental conditions of side-heating tests. 

Table 2 Venting (Tv) and maximum temperature (Tmax) of the LIB in Tests 1-7 with 

various SOCs. 

  



 

 

 

 

Figure captions 

Fig. 1. The arrangement of the devices and the location of thermocouples. 

Fig. 2. Schematic of the experimental devices; a) photo of the battery safety control 

cabinet; b) photo of the K-type thermocouple; c) photo of the temperature logger 

module. 

Fig. 3. The measured temperature and temperature rate responses for the LIB with 100% 

SOC in Test 7 without spacing. 

Fig. 4. The temperature and temperature rise rate in Tests 1-6 with the 200 W heater 

and various SOCs. 

Fig. 5. Fitting curve of the maximum and venting temperature during thermal runa-

way as a function of SOC. 

Fig. 6. The development of thermal runaway behavior in Test 1, 4 and 7; (a) photos of 

thermal runaway development of LIB with 0% SOC in Test 1; (b) photos of the thermal 

runaway development of LIB with 50% SOC in Test 4; (c) photos of the thermal 

runaway development of LIB with 100% SOC in Test 7. 

Fig. 7. The thermal runaway behaviors in Tests 1-7 with various SOCs. 

Fig. 8. The temperature response for the tests with various SOCs that the LIB are 

heated at 2mm spacing by 200 W and 400 W heaters, respectively. 

Fig. 9. The radiation and conduction heat in Tests 8-13 with with various SOCs (0%, 

50%, 100%), and the cells are heated by 200 W heater in Tests 8-10 while 400 W 

heater in Tests 11-13. 

Fig. 10. The temperature response for the tests with different SOCs that the cell are 

heated by 200 W heater at 0 mm and 2mm spacing, respectively. 

Fig. 11. The temperature response for the tests with different SOCs that the cell are 

heated by 400 W heater at 2 mm and 5mm spacing, respectively.  

Fig. 12. The radiation and conduction heat in Tests 11-16 with with various SOCs (0%, 

50%, 100%), and the cells are heated at 2 mm spacing in Tests 11-13 while 5 mm in 

Tests 14-16. 

 


