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Highlights

• We discuss the benefit of application of various Omics technologies to the NCLs
• We discuss the functional Omics based studies so far applied to NCLs
• We summarise the findings of biomarker-based Omics studies for NCL
• We show a comparative systems biology analysis of data from published NCL Omics

studies
 
Abstract
The neuronal ceroid lipofuscinoses are a group of severe and progressive neurodegenerative
disorders, which generally present during childhood. With new treatments emerging on the
horizon, there is a growing need to understand the specific disease mechanisms as well as
identify prospective biomarkers for use to stratify patients and monitor treatment. The use of
Omics technologies to NCLs have the potential to address this need. We discuss the recent
use and outcomes of Omics to various forms of NCL including identification of interactomes,
affected biological pathways and potential biomarker candidates. We also identify common
pathways affected in NCL across the reviewed studies.  
Keywords: Neuronal ceroid lipofuscinoses; Batten disease; CLN1-14; proteomics;
metabolomics;
 
Introduction
In recent years there has been a revolution in the field of biological understanding driven by
technological advances in mass screening approaches. This has resulted in an ever-expanding
list of available “Omics” technologies. Omics include the genome (DNA) through to the
transcriptome (RNA) and the proteome (protein), and more recently the metabolome
(metabolic products). It is the integrated study of data derived from investigations of these
distinct Omics that gives rise to systems biology, allowing us to use the data to answer basic
fundamental questions and when applied to a disease context, to identify affected biological
pathways and potential disease mechanisms or drug targets.
Genomics technologies have progressed significantly over the last few years with the rapid
development of next-generation sequencing (NGS) and enabling the initiation of national
programmes such as the 100, 000 genomes project in the UK  [1] and the Precision Medicine
initiative in the US to sequence 1 million genomes [2].
Transcriptomic technologies have also advanced in recent years. Such technologies largely
consist of microarray platforms and high throughput RNA sequencing (RNA-Seq) [3]. Such
technologies confer profound traction in the field given that a high degree of coverage of the
transcriptome may be achieved routinely. By comparison, technologies for studying the other



transcriptome may be achieved routinely. By comparison, technologies for studying the other
Omics are not nearly as automated. However, given the large volumes of data emerging from
transcriptomic initiatives, there is a foreseeable need for the biochemical validation of many
findings. Ultimately, investigation at the protein level is required to gain the most accurate
insight into the molecular dynamics of the cell. For example, it has recently been reported
that transcriptomic output is heavily influenced by epigenetic factors whilst this is not the
case for the proteome [4].
Mass spectrometry-based technologies are typically used for the study of proteomics and
metabolomics and their offshoot Omics such as peptidomics and glycomics. However,
advances in their analysis have not been as rapid in development when compared to the other
Omics already discussed. This is partially due to the complexity of the sample mixture. For
example, there are approximately eight splice variants per gene, and potentially ten post-
translational modifications per splice variant. There are other confounding factors for
proteomics which must be accounted for in terms of the technological development [5]. For
example, unlike genomics or transcriptomics methods, there is no equivalent to the DNA
polymerase reaction; therefore, while the endogenous protein signal or “starting material”
may be enriched, it cannot be amplified [6]. It should also be noted that approximately 97%
of cellular protein (w/w) is encoded by only 3% of the genome.
Metabolomics is the most downstream and last of the “core” Omics and typically performed
using either (or both) 1H NMR or mass spectrometry-based platforms. Untargeted
metabolomics in IEM is a growing area as the emergence of NGS has resulted in the increase
of diagnostic testing to confirm Variants of Unknown Significance (VUS). For new or
uncharacterised disorders there are no clinical tests available and this is where untargeted
metabolic profiling is proving valuable [7].
 
Why apply Omics technologies to the Neuronal Ceroid Lipofuscinoses (NCLs)?
The NCLs are part of a larger group of the IEM and occur due to mutations in over a dozen
individual genes [8]. While Omics approaches have been traditionally utilised in the study of
common diseases, they have only more recently been applied to rare conditions, in particular
in the IEMs/NCLs. Critically, the study of rare diseases including the NCLs is confined by
comparably small patient populations and accompanying complications, such as limited
tissue sampling availability and poor public awareness. Consequentially, the research support
network and associated available funding for the NCLs and other rare diseases are not as well
developed as those for conditions which are more prominent in the public eye, i.e. diseases
associated with advancing age (e.g. Alzheimer’s, Parkinson’s, or diabetes). While the NCLs
are clinically stratified by their causative gene mutation, outlined previously in this review
and in the table below, their aetiological diversity appears to converge upon a spectrum of
common clinical phenotypes. It is therefore likely that the molecular origins underpinning the
individual NCLs also converge upon common pathological cascades, resulting in unifying
cellular pathogeneses including defects in lysosomal function, mitochondrial dysfunction,
and alterations in the endoplasmic reticulum and endo-lysosomal trafficking [9-11]. Table 1
highlights some recent studies incorporating these Omics technologies and some of the
exciting findings from these studies will be discussed in more detail below. This work
represents a window into what is achievable in terms of Omics application to such disorders.
Critically, due to advances in the tools and technologies underpinning these -omics
investigations we can likely expect a dramatic increase in our understanding of the molecular
mechanisms underpinning these conditions in the coming years.
 

Omics to characterise the NCL interactome
Proteomic technologies can be used not only to look at the proteome at the level of whole
tissues or cells but also through the application to functional studies of proteins. For example,
extensive work at the University of Helsinki using interactome-centric proteomics has
elucidated interacting partners of CLN3, CLN5 [12] and CLN1 [13]. In these studies, the
authors used neuronal SH-SY5Y cells a twice-subcloned cell line derived from the SK-N-SH
neuroblastoma cell line which serves as a model for neurodegenerative disorders. SH-SY5Y
were transfected with tagged CLN proteins and subjected to a technique known as tandem
affinity purified mass spectrometry (TAP-MS).  Tagged CLN proteins were isolated from the
SH-SY5Y cells by affinity purification. Isolated CLN complexes were analysed using
proteomic techniques. Analysis of the CLN3 interactome confirmed 16 known interactors as
well as identifying a further 43 novel candidates. Functional annotation of these CLN3
interactors revealed ‘transmembrane transport’ as a key annotated function for the interacting



interactors revealed ‘transmembrane transport’ as a key annotated function for the interacting
proteins. This same procedure was applied to CLN5 protein and identified 31 interactors.
Interestingly eighteen of these were identified as being in common with the CLN3
interactome. Many of these overlapping CLN3/5 common interactors were mitochondrial
carriers associated with neurological disease and calcium binding roles.
In a separate study the same group used TAP-MS methodology to characterise the binding
partners of palmitoyl protein thioesterase 1 (PPT1) the affected gene in CLN1. Scifo et al
[12] identified 23 other proteins in complex with PPT1. Three of these proteins were
predicted to be palmitoylated substrates whilst others were associated largely with
mitochondrial synthesis and other mitochondrial functions. Another very recent CLN1
interactome study on mouse brain lysate [14] corroborates some of the interacting proteins
found in the previous studies, in particular, the protein - Transitional endoplasmic reticulum
ATPase (VCP) is consistently detected in the CLN1 interactome. VCP is associated with or
causative for forms of other neurodegenerative disorders such as amyotrophic lateral sclerosis
types 8 or 14, with or without frontotemporal dementia [15]. VCP has also been implicated as
a regulator of Wallerian degeneration [16]. Other PPT1 interactors ATP synthase subunit
beta, mitochondrial (ATP5B), dihydropyrimidinase-related protein 1 (CRMP1), microtubule-
associated protein 1B (MAP1B) and pyruvate dehydrogenase E1 component subunit alpha
(PDHA1), were confirmed to be differentially regulated in previous work by the same group
[17]. The nature of PPT1, its role as a protein modifying enzyme means that many potential
biological pathways are affected giving rise to the complex metabolic phenotype observed in
CLN1. The amoeboid organism Dictyostelium has been shown to act as a useful model to
study CLN5. Using this model Huber et al have determined CLN5 to be a glycoside
hydrolase and used immunoprecipitation coupled with mass spectrometry to identify
interacting proteins that were also associated and implicated in the pathogenesis of other of
CLN diseases such as Tpp1 (Cln2), cathepsin D (Cln10) and cathepsin F (Cln13) [18].

Omics to identify the molecular consequences of NCL causing mutations
CLN1: Tikka et al [17] have performed proteome analysis of laser-captured thalamus regions
of CLN1 knockout mice models. Looking at pre-symptomatic and symptomatic stages of
disease they were able to identify 36 proteins altered pre-symptomatically of which 5 were
previously identified in the CLN1 interactome study. These included CMRP1/MAP1B and
PDHA1. The key downregulated pathways identified in pre-symptomatic CLN1 brain tissues
were biological processes important for the proper function of neurons, including
neuritogenesis, branching, and microtubule dynamics. Pathways identified at early affected
stages (3-month old thalamus) ranged from those associated with nervous system
development, cellular signalling, assembly and organisation. Common molecular features (as
determined by gene ontology analysis) that spanned the pre and symptomatic stages included
metabolic pathways involving the 2-ketoglutarate dehydrogenase complex TCA cycle and
mitochondrial dysfunction [17].
Similar findings from the same group were made using transcriptomic profiling of transfected
SH-SY5Y with CLN1 from overexpressing WT CLN1 and 5 selected patient mutations [19].
At the RNA level, they confirmed changes in gene expression of genes associated with
neurite formation and neuronal transmission. Specifically, neuritogenesis and proliferation of
neuronal processes which ties in convincingly with the proteomic data reported for CLN1
murine thalamic samples (as described above) [17].
Segal-Salto et al [20] used a targeted approach to functionally characterise CLN1 affected
pathways. Their approach was to specifically target the membrane proteins of neuronal-like
SH-SY5Y cells and enrich the acylated membrane proteins. Their study showed 88 proteins
were altered in CLN1 membranes. Of these were ciliogenesis regulating proteins Rab3IP,
Rab8 and Rab11. This led to the authors to look more closely at cilia in CLN1 tissues where
they found reduced palmitoylation of Rab3IP. This effectively results in incorrect
intracellular localisation of Rab3IP and ultimately results in defective cilia. The authors,
therefore, propose that CLN1 should also be considered as a ciliopathy.
CLN3: Llavero Hurtado et al [21] used proteomics on isolated pre-synaptic populations from
Cln3 −/− mouse brains to identify molecular modulators of synaptic stability and
degeneration. Key pathways identified as correlating with regional synaptic vulnerability and
validated using human post-mortem brain samples included valine catabolism and Rho
signalling pathways. These pathways when assessed for potential to modulate disease
processes in vivo using a Drosophila CLN3 model were indeed capable of altering phenotypic
presentation following genetic and/or pharmacological targeting.
CLN4: Using proteomics on human adult CLN4 brain tissue and DNAJC5/CLN4 knock out



CLN4: Using proteomics on human adult CLN4 brain tissue and DNAJC5/CLN4 knock out
mice Henderson et al [22] identified mislocalisation and upregulation of PPT1. Further
analysis revealed that presynaptic co-chaperone CSP (encoded by DNAJC5/CLN4) is a
substrate of PPT1 and appears to have a functional effect on PPT1 as its absence affects the
palmitoylation of other PPT1 substrates, particularly lysosomal and synaptic proteins. This
study indicates a direct cross-talk between these two CLN disease proteins implicating a
shared pathological mechanism between these two forms of NCL.
CLN10: Mutations in the Cathepsin D gene are known to cause the severe NCL CLN10.
Koch et al [23] also from the Helsinki University research group proteomically profiled
isolated synapses from a mouse knock out model of Cathepsin D and found 453 significantly
altered proteins. Subsequent bioinformatics analyses indicated key affected pathways were
cytoskeletal disruption and cell spreading. Wound healing assays in cathepsin D deficient
cells confirmed strongly compromised spatial orientation, associated with changes in the
distribution of focal adhesions and integrin assembly. It has been proposed that such changes
may contribute to the early synaptic alterations and subsequent neuronal loss observed in
CLN10.
CLN11: The NCLs, in particular CLN11, have attracted attention from the adult
neurodegenerative field due to the shared pathology with adult frontal temporal dementia
(FTD) [24]. Individuals heterozygous for the progranulin gene GRN also display similar
findings such as skin biopsies showing enlarged lysosomes containing lamellar,
pseudomembranous “fingerprint”-like inclusions of the type seen in NCL. However, the
neurodegeneration in these patients is adult onset and thus occurs much later. Therefore, the
pathogenesis of FTD and NCL caused by GRN deficiency may share gene-dosage-dependent
mechanisms involving lysosomal dysfunction [25]. Evers et al [26] performed lipidomic and
transcriptomic analysis of heterozygote (GRN+/-) and homozygote (GRN-/-) mice tissues as
well as GRN FTD patient samples to identify the key pathways affected by GRN deficiency.
The unbiased lipidomic analysis highlighted an increase of triacylglycerol’s (TAGS) and a
reduction of phosphatidylserines (PS) and phosphatidylethanolamines (PE) in the mice.
Complementary transcriptomic analysis performed alongside with the lipidomic analysis
included another neurodegenerative lysosomal storage disorder, Niemann pick C (NPC)
disease as a disease control. This analysis revealed a subset of altered lysosomal genes in the
GRN mutant mice. Only a small proportion of the differently expressed genes overlapped
with NPC. Those that didn’t overlap included immune and lipid metabolic related genes
specific to GRN NCL molecular pathology.  

Omics for NCL Biomarkers
In recent years there has been increasing focus on using Omics technologies directly on
patient material, for biomarker studies. Biomarkers are needed for the monitoring of new
treatments such as the recently FDA and EMA approved enzyme replacement therapy for
CLN2 [27] and for other emerging novel therapies [28]. Whist the mutation and defective
protein and presence of lipofuscin deposits are the gold standard way to diagnose an NCL
patient, they are not suitable for monitoring treatment or predicting disease severity. Other
inborn errors of metabolism often result in an accumulated or reduced substrate due to a
block in a pathway such as accumulation of glycosaminoglycans in the
mucopolysaccharidoses disorders, or glycosphingolipids in the glycosphingolipidoses
disorders. For the NCLs, this is comparably more difficult due to both their complex genetic
aetiologies as well as major gaps in the understanding of the molecular pathogenesis of the
disease. Applying Omics technologies to the NCLs may reveal downstream affected
molecules that could serve as biomarkers if they were to both correlate appropriately with
disease progression and respond to treatment. Functional studies using Omics technologies
may provide potential pathways to probe for candidate biomarkers. However, an ideal
biomarker must be both accessible and ideally non-invasive (ie. from urine, plasma or
bloodspots) as well as easily detectable by immune-based or mass spectrometry methods for
clinical laboratory analysis. Additionally, it must be robust (ie. not easily affected by
environmental conditions) and reproducible. Many candidate biomarkers eventually fail due
to not meeting these criteria. The ideal approach to biomarker discovery using Omics
technologies is analysing an appropriate cohort of samples. This can often address the
efficacy issues. With NCL being a rare disease acquiring the appropriate cohort of patient
samples are very challenging. Animal models can help address this issue but even if
candidate biomarkers are found from animal studies these biomarkers still need to be
validated in humans if they are to eventually be of clinical use.
Recent attempts at biomarker discovery using Omics approaches include work by Hersrud et



Recent attempts at biomarker discovery using Omics approaches include work by Hersrud et
al [29]. The authors used a multiple proteomic approach to screen plasma for biomarker
discovery in juvenile NCL. They began by using a global unbiased 2D Difference Gel
electrophoresis method combined with 2 multiplex immunoassay panels MILLIPLEX® MAP
magnetic immunoassay panel (26 serum protein panel) and the DiscoveryMAP ® 1.0
immunoassay from Myriad-RBM (MR) (190 protein panel) before attempting validation of
differently expressed proteins by western blot. Ultimately, the immunoassay panels proved
the most effective and identified candidates already associated with neurodegeneration Brain-
derived neurotrophic factor, Neuronal cell adhesion molecule, Clusterin, Adiponectin,
Apolipoprotein E, Vascular cell adhesion protein 1, and Myoglobin were significantly
elevated in JNCL.  
CSF-based biomarker discovery in NCLs has been explored by Sleat et al [30] by proteomic
profiling of post-mortem brain and CSF from patients with CLN1, CLN2, and CLN3 disease.
Their findings reported profound changes in the proteomes of all NCL patients compared to
non-NCL controls. Interestingly, they observed that CLN2 and CLN3 exhibited a greater
similarity in changes than with CLN1 which corresponds to the relationship between the
respective observed clinical phenotypes. Importantly, the CSF profiles of all diseases showed
18 proteins commonly altered in all 3 diseases as well as some altered in specific NCLs.
Promising candidates include vimentin which is a cellular cytoskeletal protein and also
cellular retinoic acid-binding protein 1. The candidates presented in the Sleat study serve as
potential disease biomarker candidates; however, until their efficacy can be demonstrated
alongside an appropriately altered treatment response profile, their utility remains
undetermined.
Sindelar et al [31] used untargeted metabolomic profiling on CSF from CLN2 patients and
identified disease severity metabolite markers by correlating with clinical disease severity
scores, identifying 29 metabolites that reflected disease severity. Using tandem mass
spectrometry and target fragmentation they were able to confidently identify 8 of these
compounds as being down-regulated in CLN2 CSF. Seven of these identified metabolites
were acetylated amino acids which led the authors to speculate that the reduction of these
modified amino acids could be a result of the lack of tripeptide cleavage by the CLN2
defective TPP1 enzyme leaving less n-terminal peptides available for acetylation.  Two of the
key metabolites affected in this study were N-acetylaspartyglutamic acid a common
neurotransmitter and Glycero-3-phosphoinositol. Glycero-3-phosphoinositol is converted to
myo-inositol and glycerol 3-phosphate by glycerophosphodiester phosphodiesterase an
enzyme implicated in neurite formation which is a pathway previously mentioned in CLN1
proteomics studies [17, 19]. Interestingly, some of these CLN2 identified brain metabolites
such as myo-inositol have been described altered in another neurodegenerative IEM,
mucopolysaccharidoses II by quantitative in vivo brain magnetic resonance spectroscopic
monitoring [32]. These findings therefore may additionally serve as general markers of early
onset neurodegeneration.
 

Common features of NCLs – A comparison of existing NCL Omics studies
The capacity for a systems biology-based approach is not only advantageous in
contextualising –omics results into mechanisms driving a specific disease, but also invites the
possibility to identify molecular overlaps uniting the NCLs. Similar approaches have
previously highlighted conserved molecular profiles uniting members of the motor neuron
disease family [33-35] and the muscular dystrophies [36]. Although many –omics
experiments generate large and often seemingly impenetrable datasets, the application of
stringent filtering approaches and an unbiased analysis methodology to a diverse set of
independent NCL studies suggests several conserved key features.
Here we will highlight shared molecular features uniting the NCLs, derived from our analysis
linking independent proteomic studies of CLN1, CLN2, CLN3 and CLN4 post-mortem
tissue, and disease models. Detailed methods used for this comparative analysis are given in
supplementary information.
 



 
Figure 1. (A) Overlay of independent proteomic analyses of post-mortem brain in CLN1 [30]
[17] [20], CLN2 [30], CLN3 and CLN4 [22]patients and a CLN3 mouse model [21] [30] as
well as the neuronal PPT1 interactome [13] highlights conserved alterations in oxidative
phosphorylation and mitochondrial dysfunction as top altered canonical pathways occurring
across all studies. Chart was created in Ingenuity Pathway Analysis from an overlay of
datasets comprised of proteomic changes in respective CLN1-4 tissue compared to wildtype
control and the PPT1 interactome [13]. Canonical pathway scores and subsequent ranking for
all analyses including this comparison are derived from a Fisher’s Exact Test calculating
overlap between molecules in each respective input dataset and number of molecules
comprising canonical pathway defined by Ingenuity Systems Database. Changes in oxidative
phosphorylation comprised the top conserved canonical pathway according to Fisher’s exact
test calculated across all studies. Canonical pathway identification and ranking were initially
performed under omission of protein expression changes between studies to account for the
PPT1 interactome [13]. After top canonical pathways were determined by this method, data
derived from all CLN1-3 sources described previously was consolidated in a cross-study
comparative analysis inclusive of individual protein changes within and between studies as
represented by (B) Conserved alterations in electron transport chain components comprise the
top canonical pathway dysregulated across all studies.   Schematic is derived from Ingenuity
Pathway Analysis overlay of datasets following conversion into fold-change ratios
representing expression alteration in the respective disease model compared to wildtype
control. Subunits highlighted in purple are present across all input sources; green represents a
downregulation in gene expression, while red represents an upregulation in gene expression.
Highlighted white subunits indicate that no expression profile data is available for one
individual input source (eg. interactome study [13]).
(C) Overlay of independent proteomic analyses highlights Rapamycin-insensitive companion



(C) Overlay of independent proteomic analyses highlights Rapamycin-insensitive companion
of mTOR (RICTOR) as the top “master regulator” linking all proteomic changes occurring
across studies. Schematic depicts top causal network as defined by z-score weighing the
predicted expression change of molecules as defined by Ingenuity Knowledge Database
against actual expression change of molecules reported in input dataset(s). Activation status
of causal master regulator (RICTOR) in relationship to downstream protein changes is orange
to represent “activation.” Expression profile of target molecules or nodes within input
datasets are depicted in red (upregulation) or green (downregulation); expression profiles
were confirmed to exhibit the same directionality across all input sources. Relationships of
upstream regulator activation to molecular changes present across all aforementioned
proteomic datasets are conveyed by color of line: blue represents inhibition of expression of
target molecules, orange represents activation of expression of target molecules, and yellow
represents disagreement, e.g. target molecule is predicted to be inhibited by RICTOR but is
reported to be upregulated in expression within one or more input datasets.
 
Canonical pathway analysis shows a conserved dysregulation in oxidative phosphorylation
processes across independent studies of CLN1-4 disease models.
As a means of gaining initial insight into any commonly dysregulated processes attributed to
the individual protein alterations reported by independent proteomic studies of CLN1, CLN2,
CLN3 and CLN4 disease models and patient post-mortem tissue, we used the canonical
pathways function within Ingenuity Pathway Analysis (IPA) (see Methods supplementary
information and Figure 1). Interestingly we identified several canonical pathways which
appeared to be consistently perturbed between CLN1, CLN2, CLN3 and CLN4 post-mortem
tissue and disease models; top cascades are outlined below in Figure 1A and are strikingly
dominated by conserved disruptions to mitochondrial and oxidative phosphorylation
processes. An example cascade represented by Figure 1B highlights those select and specific
subunits of the electron transport chain appear differentially expressed across the CLN1,
CLN2, CLN3 and CLN4 studies comprising this analysis. It is of interest to note that, while it
is tempting to infer that this data represents a generalised mitochondrial deficit, specific
subunits of Complexes I, II and IV of the electron transport chain, highlighted in red
(indicating an increase in expression), are consistently changed in opposition to the remainder
of the pathway components between CLN1, CLN2 CLN3 and CLN4, suggesting that in the
context of the NCLs, it may be important to regard individual components of mitochondrial
biology rather than generalizing a global alteration. It is, however, difficult to ascertain
without in vivo validation across multiple disease models whether these subunit mis-
expression data confer a causal contribution rather than a downstream consequence of the
neurodegeneration unifying the NCLs. While an Omics approach provides a unique
advantage in pinpointing molecular overlaps between studies that may otherwise remain
unrecognised, these findings would best serve as a springboard for future studies, such as a
more thorough dissection of a pre-symptomatic proteomic signature within and between the
NCLs, in order to better understand how this reported molecular dysfunction promotes a
common NCL pathophysiology.
 
Converging analysis of independent CLN1-4 disease studies identifies Rapamycin-insensitive
companion of mTOR (RICTOR) as a top upstream regulator of proteomic dysregulation
present across the NCLs.
Our analyses thus far have identified conserved “pre-symptomatic” protein changes that we
have been able to track between studies of CLN1, CLN2, CLN3 and CLN4 post-mortem
tissue and mouse models, which putatively comprise a unified dysregulation in several key
cellular pathways across discreet NCLs. It was, therefore, next of interest to determine
whether these conserved protein changes were altered as the result of a common upstream
regulatory perturbation, which may provide further insight into disease pathogenesis as well
as offer the possibility for a therapeutically targetable molecular “signature” between
conditions. To do this, we performed an upstream regulatory analysis using IPA using the
same input data sources, with the addition of a “symptomatic” dataset by Tikka et al [17]. to
include the possibility of tracing downstream effector regulation over the disease time course.
Interestingly, RICTOR was reported to be the top upstream regulator of protein changes
reported in independent studies of CLN1-4 disease (Table 2). Through the causal network
function in IPA, it was possible to extract which specific molecular changes within each
CLN1-4 dataset have been previously reported in the literature to be downstream of RICTOR
activation (Table S3). By overlaying each target molecule of RICTOR altered within each



activation (Table S3). By overlaying each target molecule of RICTOR altered within each
individual proteomic study, it was possible to then generate a conserved “interactome”
comprising protein targets within our input datasets in relation to RICTOR, with graphical
representation of the predicted effect of RICTOR upon its targets compared to the actual
changes reported within the datasets (Figure 1C). Interestingly, separate targeting of the
TORC1 and TORC2 (including RICTOR) pathways have been strongly implicated in the
maintenance of neuronal stability and modification of phenotype in vivo from Drosophila to
mouse models of NCLs [37-39].
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Analysis Tissue Upstream

Regulator
Predicted
Activation
State

Activation
z-score

p-value
of
overlap

Target molecules in dataset

Sleat et al
[25]

CLN1
Brain

RICTOR Activated 6.582 3.75E-
38

ATP5F1A, ATP5F1B, ATP5F1C,
ATP5MG, ATP5PB, ATP5PD,
ATP5PO, ATP6AP1,
ATP6V0A1, ATP6V0D1,
ATP6V1A, ATP6V1B2,
ATP6V1C1, ATP6V1D,
ATP6V1E1, ATP6V1F,
ATP6V1G1, ATP6V1G2,
ATP6V1H, COX4I1, COX5A,
COX6B1, COX7A1, COX7A2,
COX7A2L, CYC1, FABP5,
LHPP, NCAM2, NDUFA10,
NDUFA11, NDUFA2, NDUFA3,
NDUFA4, NDUFA5, NDUFA8,
NDUFA9, NDUFB10, NDUFB3,
NDUFB4, NDUFB5, NDUFB8,
NDUFB9, NDUFC2, NDUFS1,
NDUFS2, NDUFS3, NDUFS4,
NDUFS7, NDUFS8, NDUFV1,
NDUFV2, NDUFV3, PRKCB,
PRKCE, PRKCG, PSMB2,
PSMC1, PSMC2, PSMC3,
PSMC4, PSMD13, PSMD3,
PSME2, PTEN, RPL18, RPL28,
RPL4, RPL7, RPL8, SDHA,
SDHB, UQCRB, UQCRC1,
UQCRC2, UQCRFS1, UQCRQ

Sleat et al
[25]

CLN2
Brain

RICTOR Activated 7.057 1.18E-
36

ATP5F1A, ATP5F1B, ATP5F1C,
ATP5F1D, ATP5MC1,
ATP5MG, ATP5PB, ATP5PD,
ATP5PO, ATP6AP1,
ATP6V0A1, ATP6V0D1,
ATP6V1A, ATP6V1B2,
ATP6V1C1, ATP6V1D,
ATP6V1E1, ATP6V1F,
ATP6V1G1, ATP6V1G2,
ATP6V1H, COX4I1, COX5A,
COX6B1, COX7A1, COX7A2,
COX7A2L, CYC1, FABP5,
NDUFA10, NDUFA11,
NDUFA3, NDUFA4, NDUFA8,
NDUFA9, NDUFB10, NDUFB3,
NDUFB4, NDUFB5, NDUFB8,
NDUFB9, NDUFC2, NDUFS1,
NDUFS2, NDUFS3, NDUFS4,
NDUFS7, NDUFS8, NDUFV1,
NDUFV2, PPA1, PRKCE,



NDUFV2, PPA1, PRKCE,
PSMA3, PSMA4, PSMA6,
PSMB1, PSMB5, PSMB6,
RPS18, SDHA, SDHB, UQCRB,
UQCRC1, UQCRC2,
UQCRFS1, UQCRQ

Sleat et al
[25]

CLN3
Brain

RICTOR Activated 6.505 1.16E-
31

ATP5F1A, ATP5F1B, ATP5F1C,
ATP5MC1, ATP5PB, ATP5PD,
ATP5PO, ATP6AP1,
ATP6V0A1, ATP6V0D1,
ATP6V1A, ATP6V1B2,
ATP6V1C1, ATP6V1D,
ATP6V1E1, ATP6V1F,
ATP6V1G1, ATP6V1G2,
COX4I1, COX5A, COX6B1,
COX7A2, COX7A2L,
NDUFA10, NDUFA11,
NDUFA3, NDUFA8, NDUFA9,
NDUFB10, NDUFB3, NDUFB4,
NDUFB5, NDUFB9, NDUFS1,
NDUFS2, NDUFS3, NDUFS4,
NDUFS7, NDUFS8, NDUFV1,
NDUFV2, PRKCE, PSMA3,
SDHA, SDHB, UQCRB,
UQCRC1, UQCRC2,
UQCRFS1, UQCRQ

Henderso
n et al
[26]

CLN4
Brain

RICTOR Inhibited -2 1.55E-
0.5

NDUFA8,  NDUFA9,  COX7A2,
 NDUFA5

Llavero
Hurtado
et al [27]

CLN3
Thalam
us

RICTOR Activated 4.259 5.63E-
43

ATP5F1A, ATP5F1B, ATP5F1C,
ATP5F1D, ATP5MF, ATP5MG,
ATP5PB, ATP5PD, ATP5PF,
ATP5PO, ATP6V0A1,
ATP6V0D1, ATP6V1A,
ATP6V1B2, ATP6V1C1,
ATP6V1E1, ATP6V1F,
ATP6V1G2, ATP6V1H,
COX5A, Cox5b, COX6B1,
Cox6c, CYC1, NCAM2,
NDUFA10, NDUFA2, NDUFA4,
NDUFA5, NDUFA7, NDUFA8,
NDUFA9, NDUFAB1,
NDUFB10, NDUFB4, NDUFB5,
NDUFB7, NDUFB8, NDUFB9,
NDUFC2, NDUFS1, NDUFS2,
NDUFS3, NDUFS4, NDUFS6,
NDUFS8, NDUFV1, NDUFV2,
PPA1, PPA2, PRKCA, PRKCG,
PSMA1, PSMD12, PSMD13,
PSME1, RPL10, RPL17, RPL6,
RPL7, RPS10, RPS15, RPS27A,
RPS8, SDHA, SDHB, UQCRB,
UQCRC1, UQCRC2,
UQCRFS1, UQCRHL, UQCRQ

Tikka et
al [19]

CLN1
Thalam
us

RICTOR Inhibited -2 2.24E-
05

NDUFA8, NDUFS3, RPL6,
RPS3

Scifo et
al[18]

PPT1
Interact
ome

RICTOR   4.85E-
33

ATP5F1A, ATP5F1B, ATP5F1C,
ATP5MF, ATP5MG, ATP5PO,
ATP6AP1, ATP6V1A, FAU,



ome ATP6AP1, ATP6V1A, FAU,
NDUFA4, NDUFA5, NDUFA8,
NDUFAB1, NDUFS2, NDUFS3,
NDUFS8, PSMA1, PSMA3,
PSMA4, PSMA5, PSMA6,
PSMA7, PSMA8, PSMB2,
PSMB5, PSMB6, PSMC6,
PSMD1, PSMD11, PSMD12,
PSMD3, PSMD8, PSME1,
RPL10A, RPL12, RPL13A,
RPL18, RPL22, RPL23, RPL30,
RPL4, RPL6, RPL7, RPL7A,
RPL8, RPL9, RPLP0, RPLP2,
RPS10, RPS11, RPS13, RPS18,
RPS19, RPS2, RPS27A, RPS3,
RPS5, RPS6, RPS8, RPS9,
RPSA, UQCR10

Table 2. RICTOR is predicted to be the top upstream causal regulator resulting from an
alignment of independent proteomic analyses of brain in CLN1 [30] [17, 20], CLN2 [30],
CLN3 [21] [30] and CLN4 [22] in vivo models as well as the neuronal PPT1 interactome
[13]. Predicted activation z-score is calculated by weighing the predicted expression change
of target molecules as defined by Ingenuity Knowledge Database against the actual
expression change of target molecules reported in input dataset(s). An activation z-score >2
or <-2 is considered statistically significant. P-value of overlap is derived from a Fisher’s
exact test are derived from a Fisher’s Exact Test calculating overlap between molecules in
each respective input dataset and number of molecules comprising a canonical pathway
defined by Ingenuity Systems Database (in this case, known downstream interactors of
RICTOR). Target molecules present within each proteomic dataset predicted to be activated
or inhibited by RICTOR accompany their respective input source. As the Scifo et al [12]
study dataset was published as an interactome, no expression profile is available and
therefore no activation z-score calculation nor predicted activation state is possible
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Conclusions
Overall, relatively few studies have applied Omics technologies to the NCLs with the
majority being in the last few years. Yet, these studies have helped to expand our
understanding of the molecular cascades underpinning these disorders. Here, we have used
these existing data sets to identify pathways which are potentially conserved irrespective of
the initiating mutation, model system used or omic application used in the initial discovery
phase. Whilst this serves to further the proposal that there may be converging regulatory
mechanisms of vulnerability and or degeneration, in the future we can expect such techniques
(when used in conjunction with ever more sophisticated models and clearly defined patient
populations) to lead to the identification of new regulatory cascades and clinically relevant
biomarkers for disease diagnosis, progression tracking, and treatment response reporting.
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Table 1. Recent NCL Omics studies
NCL Disease

Model
Omics platform Profiled tissue Year Reference

NCL Human Reverse Phase
Protein Microarrays

Muscle biopsy 2015 [40]

jNCL Human
Plasma

Proteomics Multiplex
immunoassays, 2D

2016 [29]



Plasma immunoassays, 2D
DiGE

CLN1 Human
Cells

Proteomics Human ppt1 expressing
sh-sy5y

2015 [13]

CLN1 Mouse Proteomics Laser-captured thalamus 2016 [17]
CLN1 Mouse Proteomics Brain membrane protein

cilia
2017 [20]

CLN1 Mouse Proteomics Mouse brain 2019 [14]
CLN2 Human Metabolomics Csf 2018 [31]
CLN3 Human

Cells
Proteomics Human cln3 expressing

sh-sy5y
2013 [12]

CLN3 Mouse Proteomics Synapse 2017 [21]
CLN1/CLN2/CLN
3

Human Proteomics Csf and brain 2017 [30]

CLN4 Human/
Mouse

Proteomics Brain 2016 [22]

CLN1/ CLN5 Mouse Transcriptomics Brain cortex 2013 [41]
CLN5 Dictyoste

lium
Proteomics Amoeba cells 2018 [18]

CLN10 Mouse Proteomics Synapse 2013 [23]
CLN11 Human

And
Mouse

Multi-Omics
Lipidomics,
Transcriptomics

Lipidomics – mouse
embryonic fibroblast and
brain tissue and human
brain lysosome enriched
organelles,
transcriptomics on
mouse brain

2017 [26]
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