

THE UNIVERSITY of EDINBURGH

Edinburgh Research Explorer

Assessment of left atrial volume in dogs

Citation for published version:

Bouvard, J, Thierry, F, Culshaw, G, Schwarz, T, Handel, I & Martinez-Pereira, Y 2019, 'Assessment of left atrial volume in dogs: comparisons of two-dimensional and real-time three-dimensional echocardiography with ECG-gated multidetector computed tomography angiography', Journal of Veterinary Cardiology. https://doi.org/10.1016/j.jvc.2019.06.004

Digital Object Identifier (DOI):

10.1016/j.jvc.2019.06.004

Link:

Link to publication record in Edinburgh Research Explorer

Document Version: Peer reviewed version

Published In: Journal of Veterinary Cardiology

General rights

Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.

Manuscript Details

Manuscript number	JVC_2018_115_R4
Title	Assessment of left atrial volume in dogs: comparisons of two-dimensional and real-time three-dimensional echocardiography with ECG-gated multidetector computed tomography angiography.
Article type	Clinical Studies

Abstract

Introduction: We hypothesised that real-time three-dimensional echocardiography (RT-3DE) was superior to bidimensional (2D) echocardiography for the estimation of left atrial volume (LAV), using electrocardiographic (ECG)gated multidetector computed tomography angiography (MDCTA) as a volumetric gold standard. The aim was to compare maximum LAV (LAVmax) and minimum LAV (LAVmin) measured by biplane area-length method (ALM), biplane method of disk (MOD) and RT-3DE with 64-slice ECG-gated MDCTA in dogs. Animals: Twenty dogs, anaesthetised for various diagnostic purposes and without evidence of cardiovascular disease. Methods: Left atrial volume was estimated by ALM, MOD and RT-3DE following ECG-gated MDCTA. The results were compared with LAV from MDCTA and correlations were performed. The limits of agreement (LoA) between methods were evaluated using Bland-Altman analysis and intra class correlations. Coefficients of variation were calculated. Results: Area-length method (r = 0.79 and 0.72), MOD (r = 0.81 and 0.70) and RT-3DE (r = 0.94 and 0.82) correlated with MDCTA for LAVmax and LAVmin respectively (all p<0.05). Biases for LAVmax (-0.96 mL, 95% LoA: -5.6 - 3.7) and LAVmin (-0.67 mL, 95% LoA: -5.4 - 4.1) were minimal with RT-3DE, reflecting a slight underestimation. Conversely, MOD (LAVmaxbias = 3.19 mL, 95% LoA: -5.7 - 12.1; LAVminbias = 1.96 mL, 95% LoA: -4.6 - 8.5) and ALM (LAVmaxbias = 4.05, 95% LoA: -5.7 - 13.8; LAVminbias = 2.80 mL, 95% LoA: -3.9 - 9.5) suggested LAV overestimation. Intra- and inter-observer variability were adequate. Conclusions: Real-time three-dimensional echocardiography is a noninvasive, accurate and feasible method with superior accuracy to 2D methods.

Keywords	canine; cardiac volumes; biplane modified Simpson method; biplane area-length method; advanced cardiac imaging
Corresponding Author	Jonathan Bouvard
Corresponding Author's Institution	University of Edinburgh
Order of Authors	Jonathan Bouvard, Florence Thierry, Geoff Culshaw, Tobias Schwarz, Ian Handel, Yolanda Martinez Pereira

Submission Files Included in this PDF

File Name [File Type]

Letter to editor reply 4.docx [Response to Reviewers] Abstract and keywords-review2Cor.docx [Abstract] Title page-review2.docx [Title Page (with Author Details)] Manuscript-reviewEditors-Cor Biblio.docx [Manuscript File] Figure 1.tiff [Figure] Figure 2.tiff [Figure] Figure 3.tiff [Figure] Figure 4review2.tiff [Figure] Figure 5.tiff [Figure] References supplementary table-review2Cor.docx [Table] Supplementary table-review2Cor.docx [Table] Table 1-review2Cor.docx [Table] Table 2-review2Cor.docx [Table] Table 3-review2Cor.docx [Table]

Submission Files Not Included in this PDF

File Name [File Type]

Video I Left atrial volume RT-3DE.avi [Video]

To view all the submission files, including those not included in the PDF, click on the manuscript title on your EVISE Homepage, then click 'Download zip file'.

Research Data Related to this Submission

There are no linked research data sets for this submission. The following reason is given: Data will be made available on request

The Hospital for Small Animals Royal (Dick) School of Veterinary Studies Easter Bush Campus Midlothian EH25 9RG

2nd June 2019

Dear Dr Fonfara, Editor-in-Chief Journal of Veterinary Cardiology

Re: Invitation to revise manuscript JVC_2018_115, Assessment of left atrial volume in dogs: comparisons of two-dimensional and real-time three-dimensional echocardiography with ECG-gated multidetector computed tomography angiography.

Thank you again for conditionally accepting our manuscript.

My apologies for the missed editorial changes. I reviewed the complete manuscript and have had it proof read by a colleague before resubmission. I hope that it will be satisfactory to process the manuscript further.

Thank you very much for your kind feedback and your consideration of this resubmitted manuscript.

Yours sincerely,

CO111 1105

Dr. Jonathan Bouvard

1 Abstract

Introduction: We hypothesised that real-time three-dimensional echocardiography (RT-3DE) was superior to bi-dimensional (2D) echocardiography for the estimation of left atrial volume (LAV), using electrocardiographic (ECG)-gated multidetector computed tomography angiography (MDCTA) as a volumetric gold standard. The aim was to compare maximum LAV (LAV_{max}) and minimum LAV (LAV_{min}) measured by biplane area-length method (ALM), biplane method of disk (MOD) and RT-3DE with 64-slice ECG-gated MDCTA in dogs.

9 Animals: Twenty dogs, anaesthetised for various diagnostic purposes and without
10 evidence of cardiovascular disease.

Methods: Left atrial volume was estimated by ALM, MOD and RT-3DE following ECGgated MDCTA. The results were compared with LAV from MDCTA and correlations were performed. The limits of agreement (LoA) between methods were evaluated using Bland-Altman analysis and intra class correlations. Coefficients of variation were calculated.

Results: Area-length method (r = 0.79 and 0.72), MOD (r = 0.81 and 0.70) and RT-3DE (r = 0.94 and 0.82) correlated with MDCTA for LAV_{max} and LAV_{min} respectively (all p<0.05). Biases for LAV_{max} (-0.96 mL, 95% LoA: -5.6 – 3.7) and LAV_{min} (-0.67 mL, 95% LoA: -5.4 - 4.1) were minimal with RT-3DE, reflecting a slight underestimation. Conversely, MOD (LAV_{max}bias = 3.19 mL, 95% LoA: -5.7 - 12.1; LAV_{min}bias = 1.96 mL, 95% LoA: -4.6 - 8.5) and ALM (LAV_{max}bias = 4.05, 95% LoA: -5.7 - 13.8; LAV_{min}bias = 2.80 mL, 95% LoA: -3.9 – 9.5) suggested LAV overestimation. Intra- and inter-observer variability were adequate.

Conclusions: Real-time three-dimensional echocardiography is a non-invasive,
 accurate and feasible method with superior accuracy to 2D methods.

60		
61		
62	26	
63 64		
65	27	Key words: canine; cardiac volumes; biplane modified Simpson method; biplane area-
66		
67	28	length method; advanced cardiac imaging
68		
69	29	
70		
/1 72		
72		
74		
75		
76		
77		
78		
79 80		
81		
82		
83		
84		
85		
80 87		
88		
89		
90		
91		
92		
93		
94 95		
96		
97		
98		
99		
100		
101		
102		
104		
105		
106		
107		
108		
109		
111		
112		
113		
114		
115		
116 117		2
118		2

2	real-time three-dimensional echocardiography with ECG-gated multidetector
3	computed tomography angiography
4	Short title: Two-dimensional and three-dimensional estimations of left atrial
5	volume in dogs
6	
7	Jonathan Bouvard (<u>https://orcid.org/0000-0002-1540-3860</u>), DVM, Florence Thierry
8	(https://orcid.org/0000-0003-4175-4397), DVM, Geoffrey J. Culshaw (https://orcid.org/0000-
9	0003-2400-6178), BVMS, PhD, Tobias Schwarz (<u>https://orcid.org/0000-0001-8412-573X</u>),
10	DVM, Ian Handel, BVSc, MSci, PhD, Yolanda Martinez-Pereira, Lda Vet.
11	
12	The Royal (Dick) School of Veterinary Studies, Division of Clinical Veterinary Sciences,
13	University of Edinburgh, Edinburgh, UK.
14	
15	Corresponding author: Jonathan Bouvard
16	ORCID number: https://orcid.org/0000-0002-1540-3860
17	E-mail address: j.bouvard@ed.ac.uk
18	
19	Results were presented at the 28 th congress of the European College of Veterinary
20	Internal Medicine Companion Animals, Rotterdam, Netherlands, 2018.
21	
	1

Assessment of left atrial volume in dogs: comparisons of two-dimensional and

2	real-time three-dimensional echocardiography with ECG-gated multidetector
3	computed tomography angiography
4	Short title: Two-dimensional and three-dimensional estimations of left atrial
5	volume in dogs
6	
7	Jonathan Bouvard (<u>https://orcid.org/0000-0002-1540-3860</u>), DVM, Florence Thierry
8	(https://orcid.org/0000-0003-4175-4397), DVM, Geoffrey J. Culshaw (https://orcid.org/0000-
9	0003-2400-6178), BVMS, PhD, Tobias Schwarz (<u>https://orcid.org/0000-0001-8412-573X</u>),
10	DVM, Ian Handel, BVSc, MSci, PhD, Yolanda Martinez-Pereira, Lda Vet.
11	
12	The Royal (Dick) School of Veterinary Studies, Division of Clinical Veterinary Sciences,
13	University of Edinburgh, Edinburgh, UK.
14	
15	Corresponding author: Jonathan Bouvard
16	ORCID number: https://orcid.org/0000-0002-1540-3860
17	E-mail address: j.bouvard@ed.ac.uk
18	
19	Results were presented at the 28 th congress of the European College of Veterinary
20	Internal Medicine Companion Animals, Rotterdam, Netherlands, 2018.
21	
	1

Assessment of left atrial volume in dogs: comparisons of two-dimensional and

22 Abstract

Introduction: We hypothesised that real-time three-dimensional echocardiography
(RT-3DE) was superior to bi-dimensional (2D) echocardiography for the estimation of
left atrial volume (LAV), using electrocardiographic (ECG)-gated multidetector
computed tomography angiography (MDCTA) as a volumetric gold standard. The aim
was to compare maximum LAV (LAV_{max}) and minimum LAV (LAV_{min}) measured by
biplane area-length method (ALM), biplane method of disk (MOD) and RT-3DE with
64-slice ECG-gated MDCTA in dogs.

Animals: Twenty dogs, anaesthetised for various diagnostic purposes and without
 evidence of cardiovascular disease.

Methods: Left atrial volume was estimated by ALM, MOD and RT-3DE following ECG-gated MDCTA. The results were compared with LAV from MDCTA and correlations were performed. The limits of agreement (LoA) between methods were evaluated using Bland-Altman analysis and intra class correlations. Coefficients of variation were calculated.

Results: Area-length method (r = 0.79 and 0.72), MOD (r = 0.81 and 0.70) and RT-3DE (r = 0.94 and 0.82) correlated with MDCTA for LAV_{max} and LAV_{min} respectively (all p<0.05). Biases for LAV_{max} (-0.96 mL, 95% LoA: -5.6 – 3.7) and LAV_{min} (-0.67 mL, 95% LoA: -5.4 - 4.1) were minimal with RT-3DE, reflecting a slight underestimation. Conversely, MOD (LAV_{max}bias = 3.19 mL, 95% LoA: -5.7 - 12.1; LAV_{min}bias = 1.96 mL, 95% LoA: -4.6 - 8.5) and ALM (LAV_{max}bias = 4.05, 95% LoA: -5.7 - 13.8; LAV_{min}bias = 2.80 mL, 95% LoA: -3.9 – 9.5) suggested LAV overestimation. Intra- and inter-observer variability were adequate.

45 Conclusions: Real-time three-dimensional echocardiography is a non-invasive,
46 accurate and feasible method with superior accuracy to 2D methods.

119 120						
120	47					
122 123 124	48	Key words: canine; cardiac volumes; biplane modified Simpson method; biplane area-				
125 126	49	length method	; advanced cardiac imaging			
127 128	50					
129 130	51	Abbreviations				
131 132 133		2D	two-dimensional			
133 134 135		3D	three-dimensional			
136 137		ALM	area-length method			
138 139		CI	confidence intervals			
140 141		ECG	electrocardiographic			
142 143		ICC	intraclass correlation coefficient			
144 145		LA	left atrium			
140 147 148		LAV	left atrial volume			
149 150		LAV _{max}	maximum left atrial volume			
151 152		LAV_{min}	minimum left atrial volume			
153 154		LoA	limits of agreement			
155 156		MDCTA	multi-detector computed tomography angiography			
157 158		MOD	method of disk			
159 160		RT-3DE	real-time three-dimensional echocardiography			
161 162 162	52					
163 164 165	53					
166 167						
167 168 169						
170 171						
172 173						
174 175						
176 177			3			

54 Introduction

Left atrial size is a clinically useful measurement in left-sided cardiac disease, and is acknowledged as a predictor of morbidity and mortality in human and veterinary medicine [1–5]. Left atrial size is routinely measured clinically with two-dimensional (2D) transthoracic echocardiography at ventricular end-systole or early diastole, and indexed to aortic root (short axis) [6-8]. However, the left atrium (LA) is a three-dimensional (3D) structure with complex geometry, and because LA enlargement may occur non-uniformly in a number of directions (cranio-caudal, medio-lateral, and ventro-dorsal) [9,10], uniplanar assessment of its size may be unreliable. It has been suggested that measurement of left atrial volume (LAV) on 2D echocardiography reduces these errors [11]. The American Society of Echocardiography recommends calculating LAV either by the disc summation algorithm (method of disk {MOD}), which is similar to the method for measuring left ventricular volume, or by an ellipsoid geometric model using the LA areas and lengths (area-length method {ALM}). Both techniques require two non-foreshortened left apical orthogonal views (two-chamber and four-chamber views) and are dependent on mathematical assumptions based on the LA having a fixed shaped. Consequently, they systematically underestimate LAV in people [12-15]. This has been overcome by the advent of new 3D imaging modalities real-time 3D echocardiography (RT-3DE) such as [16-20]. electrocardiographic (ECG)-gated multi-detector computed tomography angiography (MDCTA) [13,21–25] and cardiac magnetic resonance imaging [12,25–27]. Left atrial volume obtained by 2D echocardiography offers limited accuracy. This is due to its reliance on geometric assumptions and the dependency on the view. To avoid LA foreshortening, two-chamber and four-chamber views should be truly orthogonal and optimised to maximise LA length and base in each view. Unlike 2D echocardiography,

RT-3DE includes the entire LA within the 3D volume dataset and therefore is not
 subject to foreshortening, eliminates the limitations of geometric assumptions and thus
 reduces errors in volumetric measurement [10].

Furthermore, RT-3DE has good spatial and temporal resolution and, in people, has a greater correlation than its 2D counterpart with both ECG-gated cardiac magnetic resonance imaging and MDCTA, the current gold standards in volumetric measurement [12,24,25,27]. The introduction of new RT-3D transducers has resulted in sufficiently high frame rate image acquisition for veterinary clinical applications. Equally, post-processing analysis software using semi-automated border detection algorithms minimizes the initial learning curve and facilitates analysis [28,29]. However, to date, RT-3DE assessment of LAV has only been validated in veterinary cardiology in one study including six healthy dogs [30].

We hypothesised that RT-3DE is more accurate than 2D echocardiography at calculating canine LAV. To investigate this hypothesis, we compared maximum LAV (LAV_{max}) and minimum LAV (LAV_{min}), measured by biplane ALM, biplane MOD and RT-3DE, with 64-slice ECG-gated MDCTA in dogs. Correlations between data sets were calculated and intra- and inter-observer variability in these methods were also determined.

Animals, materials and methods

Enrolment

This was a prospective study approved by our local ethics committee (Approval 45.17) and conducted at the Royal (Dick) School of Veterinary Studies between June 2017 -December 2017. Client-owned dogs were considered for enrolment if they had no history of cardiovascular disease and had been referred and scheduled for thoracic MDCTA under general anaesthesia. Informed client consent was obtained for every dog. Dogs were excluded if a murmur, arrhythmia or gallop rhythm was auscultated on physical examination. Dogs underwent oscillometric systolic blood pressure measurement^a, blood sampling for routine haematology and serum biochemistry, and were anaesthetised using a standard protocol determined by a board-certified anaesthetist based on individual patient requirements. Premedicants included acepromazine^b, partial^c or full^d opioid agonists and dexmedetomidine^e. Anaesthesia was induced by intravenous propofol^f, and maintained following endotracheal intubation by isoflurane^g in oxygen. Electrocardiographic-gated MDCTA was performed, followed immediately by transthoracic echocardiography. Dogs were further excluded if a thoracic mass was seen to compress or displace the heart on ECG-gated MDCTA, or if congenital or acquired cardiac disease was detected on echocardiography. Mild valvular insufficiencies, in the absence of chamber enlargement, were permitted.

117 Echocardiography

Echocardiography^h was performed under general anaesthesia by a single resident in cardiopulmonary medicine (JB), under the supervision of a board-certified cardiologist. Images were obtained with 4V-D (1.5 – 4.0 MHz)ⁱ and M5S-D (1.5 – 4.6 MHz)^j matrix phased-array transducers during continuous ECG recording. Dogs were positioned alternatively in right and left lateral recumbency for transthoracic 2D, M-mode, pulsed-wave and continuous wave Doppler studies, and RT-3DE in accordance with the recommendations of the Echocardiography Committee of the Specialty of Cardiology of the American College of Veterinary Internal Medicine [31] and the American Society of Echocardiography [10,32]. Images were digitally stored and analysed offline with a commercially available software^k.

Electrocardiographic-gated multidetector computed tomography angiography image acquisition

All MDCTA examinations were performed using a helical acquisition on a 64-slice MDCTA scanner^I. A transverse plane examination of the thorax was performed using 2 mm slice thickness and 1mm reconstruction interval, medium frequency reconstruction kernel, 80 kVp, 200 mA, 0.35 seconds tube rotation time and a collimator pitch of 0.51. Scan tube current was modulated by an automatic exposure control system^m. A pre-monitoring transverse scan was set at the level of the aortic arch, and the automated bolus-tracking was set at 100 Hounsfield units with a cycle time of 3 seconds. A retrospectively ECG-gated cardiac MDCTA was performed using 700 mg l/kg of iodinated contrast mediumⁿ followed by saline flush administered from a dual barrel injector^o at 5 mL/s and 325 psi. Scan parameters used for the retrospectively gated scan were set to 1.25 mm slice thickness, 0.625 mm spacing

between slices, medium frequency reconstruction algorithm, field of view of 12 cm
centred over the heart, 80 kVp, 400 mA, 0.35 seconds tube rotation time and collimator
pitch of 0.24.

423
424144Measurement of left atrial size

427 145 **Bi-dimensional echocardiography**

Angles of simultaneous multiplane 2D were adjusted to obtain left apical four- and two-chamber views that maximised LA size to avoid foreshortening. Images were optimised for endocardial visualisation and temporal and spatial resolution using the focus, depth, sector size, frame rate, gain, compression, and time-gain compensation controls. All measurements were performed at end-diastole (the frame just after mitral valve closure) and end-systole (just before mitral valve opening) to obtain LAmin and LAmax respectively, according to American Society of Echocardiography guidelines [10]. Care was taken to encompass the entire LA cavity in the data sets. The endocardial borders were traced manually while excluding the left auricular appendage and the ostia of pulmonary veins, if visible (Fig. 1). The mitral annulus was considered as the left atrioventricular border. Three measurements were obtained and averaged for every dog.

⁴⁵⁵₄₅₆ 158 Left atrial volume was calculated with the following formulae:

458
459 **159 1)** Area-length method calculation:
$$LAV = \frac{8}{3}\pi \frac{(A4c \times A2c)}{Lmin}$$

460

 $\begin{array}{ccc} 461 \\ 462 \\ 462 \\ 463 \\ 464 \\ 464 \\ 465 \\ 466 \end{array}$ the area in the apical four-chamber view, A_{2c} is the area in the apical twotwo-chamber view, and L_{min} is the shorter length of the LA measured from the centre of the the mitral annular plane to the superior border of the chamber.

⁴⁶⁸₄₆₉ 163 **2**) Method of disk calculation: LAV = $\frac{\pi}{4} \sum_{i=1}^{n} (\text{Di}^{4\text{C}}) (\text{Di}^{2\text{c}})_{n}^{L} hi$

where h_i is the height of the stacked discs *I*, and D_{i4c} and D_{i2c} are two orthogonal minor and major axes derived from four-chamber and two-chamber views respectively.

Real-time three-dimensional echocardiography

Three-dimensional cine loops were acquired over eight consecutive cardiac cycles from the left parasternal view to obtain a single beat full-volume dataset with an average frame rate of 36.6 ± 10.3 frames per second (range 22.4 - 63 frames per second). Loops were digitally stored and analysed offline with commercially available software^{k,p}. An effort was made to optimise image guality, increasing the frame rate by narrowing the sector width and decreasing the depth. Maximum left atrial volume and LAV_{min} were derived from semi-automated tracing of the left atrial endocardium at end ventricular systole and diastole respectively. The software^{k,p} created an endocardial cast of the left atrium, according to reference points on the hinge-point of the septal leaflet, the hinge-points of the lateral leaflet, and the dorsal border of the left atrium (Fig. 2, Supplemental video I, video available in Supplemental Material online). In all cases, the cast was manually adjusted so that the plane of the mitral valve defined one border, and the visual defect at the entry of the pulmonary veins was bridged. Care was taken to approximate the entire LA endocardial border frame by frame through the cardiac cycle. The pulmonary veins and left auricular appendage were not included. Three measurements were obtained and averaged for each dog from three representative cardiac cycles.

Electrocardiographic-gated multidetector computed tomography angiography

All assessments and measurements were performed by a diagnostic imaging resident (FT) under board-certified veterinary radiologist (TS) supervision, using dedicated DICOM viewer software^q. A window width of 1700 Hounsfield units and a window level

of 200 Hounsfield units were used. The frames which depicted the LAV_{min} (just after mitral valve closure) and LAV_{max} (just before mitral valve opening) were subjectively determined on dynamic series using a 4D CINE mode review^q. This mode allows dynamic evaluation of a 3D image over time. Atrial volume analysis was performed by drawing regions of interest, delineating the LA border. Initially, two slices were drawn manually at each extremity of the LA, and the operator then drew slices between them at random locations. Subsequently, the software generated several interconnecting regions of interest (semi-automatic segmentation) that were adjusted manually to ensure accuracy. Finally, the software calculated LAV by summing the volumes of all the selected regions. The pulmonary veins and left auricular appendage were not included. The anatomical limits of these structures were subjectively chosen by the operator based on the contour of the LA as part of the semi-automatic segmentation method (Fig. 3).

563 201 Variability analysis

To calculate intra-observer within day and between day variabilities, six echocardiograms and six MDCTA studies were randomly selected. Maximum left atrial volume and LAV_{min} were measured by every method (ALM, MOD, 3D volume derived from RT-3DE and ECG-gated MDCTA). The same cardiac cycle from the same cine loops of every echocardiogram and every ECG-gated MDCTA were subjected to repeated analyses by the same investigator (JB and FT respectively) at two different time points on a given day (morning and afternoon) and on two different days.

The same images were used to evaluate inter-observer variability. Two independent
 observers (YMP for echocardiography and JB for MDCTA) performed independent,
 blinded and repeated analyses.

212 Statistical analysis

A sample size of 20 observations per group was estimated to give > 80% power to detect a correlation of at least 0.60 (with a critical p-value of 0.05) [33].

Statistical analyses were performed using commercially available software^{r,s,t}. Data were assessed for normality graphically and by use of the Shapiro-Wilk normality test. Continuous variables were reported as mean ± standard deviation. Correlations (r) between echocardiographic techniques and MDCTA were determined by Pearson's correlation test, and defined as excellent ($r \ge 0.90$), very good (0.90 > $r \ge 0.70$), good $(0.70 > r \ge 0.50)$ or poor (r < 0.50) [34]. For sets of pairs of values, limits of agreement (LoA) and bias were assessed by Bland-Altman plots^r, to visualise the comparisons graphically. Analysis of agreement was performed using intraclass correlation coefficient (ICC), assessing consistency of single measurement with a two-way model (as all methods were used on all cases) and corresponding 95% confidence intervals (CI), where 0 – 0.20 indicates poor agreement, 0.21 – 0.40 indicates fair agreement, 0.41 - 0.60 indicates moderate agreement, 0.61 - 0.80 indicates substantial agreement, and > 0.80 indicates almost perfect agreement. These arbitrary cut-offs were similar to those used by Landis and Koch [35]. A p-value of less than 0.05 was considered to be statistically significant. Coefficients of variation were defined as the standard deviation of the differences divided by the mean of the variable under consideration, and were expressed as a percentage. Values <15% were considered adequate for clinical use [36].

233 Results

The study population consisted of 20 dogs of various breeds including cross breed (n = 4), Labrador retriever (n = 3), golden retriever (n = 3), cocker spaniel (n = 2), and one of each of the following breeds: flat coat retriever, schnauzer, rough collie, samoved, northern inuit, English springer spaniel, boxer and a border collie. There were four intact females, six neutered females, six neutered males and four intact males. The average age was 7.45 ± 4.14 years (range 0.6 - 14.3 years). The average weight was 26.3 ± 9.3 kg (range 9.1 – 44.5 kg) (supplemental Table A, data available in Supplemental Material online). Table 1 displays selected descriptive statistics for LAV_{max} and LAV_{min} according to the method used to calculate LAV. Coefficients of variation for within day, between day and inter-observer variability of the four methods are listed in Table 2.

Real-time three-dimensional echocardiography and electrocardiographic-gated multidetector computed tomography angiography

Left atrial volume by RT-3DE was highly correlated with MDCTA for LAV_{max} (r = 0.94, p<0.0001) and LAV_{min} (r = 0.82, p<0.0001) (Fig. 4A and 4B respectively). However, on Bland-Altman analysis, RT-3DE slightly underestimated LAV_{max} by 6% compared to MDCTA (bias = -0.96 mL, 95% LoA: -5.6 - 3.7; Fig. 5A). Similarly, RT-3DE underestimated LAV_{min} by 6.7% (bias = -0.67 mL, 95% LoA: -5.40 - 4.06; Fig. 5B). Intraclass correlation (Table 3) confirmed these findings. There was almost perfect agreement between ECG-gated MDCTA and RT-3DE for LAV_{max} (ICC = 0.93, CI: 0.83 -0.97) and LAV_{min} (ICC = 0.82, CI: 0.60 - 0.93).

Two-dimensional echocardiography and electrocardiographic-gated Two-dimensional echocardiography and electrocardiographic-gated multidetector computed tomography angiography

Two-dimensional echocardiographic assessment of LAV also correlated well with MDCTA but not as highly as RT-3DE (LAV_{max} r = 0.81 {MOD} and 0.79 {ALM}, both p<0.0001, Fig. 4C and 4E; and LAV_{min} r = 0.70 {MOD} and 0.72 {ALM}, p<0.0006 and p<0.0004 respectively, Fig. 4D and 4F). However, Bland Altman analysis showed that MOD and ALM over-estimated LAV_{max} by 19.9% (bias = 3.18 mL, 95% LoA: -5.7 -12.1) and 25.3% (bias = 4.05 mL, 95% LoA: -5.6 – 13.7) respectively (Fig. 5C and 5E). Minimum left atrial volume, was also overestimated, by 19.4% for MOD (bias = 1.96 mL, 95% LoA: -4.6 – 8.5) and 27.7% for ALM (bias = 2.80 mL, 95% LoA: -3.9 – 9.5) compared with MDCTA (Fig. 5D and 5F). The levels of agreement were less than that obtained by 3D imaging. Values obtained by 2D echocardiography also demonstrated substantial agreement with ECG-gated MDCTA for both LAV_{max} (ALM; ICC = 0.78, CI: 0.52 – 0.91; MOD; ICC = 0.71, CI: 0.40 – 0.87) and LAV_{min} (ALM; ICC = 0.80, CI: 0.56 -0.92; MOD; ICC = 0.70, CI: 0.38 -0.87).

740 270 Discussion

Real-time three-dimensional echocardiography is a new technique whose innovative use in people to quantify LAV has greatly expanded over the last decade. Multiple human studies have consistently shown that RT-3DE is a useful diagnostic tool that tends to underestimate LAV to a lesser extent than biplane ALM or MOD [12,13,24,27]. This is the first veterinary study to measure the degrees of accuracy and bias of a commercially available 3D echocardiography system, using semi-automated border detection to measure LAV in a population of canine patients.

We have demonstrated that RT-3DE in dogs is more accurate at measuring LAV than 2D echocardiography when compared with the gold standard of 64-slice ECG-gated MDCTA. Real-time three-dimensional echocardiography-derived values were in almost perfect agreement with those obtained by MDCTA, whereas 2D methods

overestimated LAV with wider LoA. In agreement with the recent work of Tidholm et al. (2019), we conclude that 2D volume-based methods and RT-3DE cannot be used interchangeably to quantify LAV in dogs [37]. Although 2D measurements remain easier and guicker to perform, RT-3DE is feasible, more accurate, and highly reproducible, so that establishing canine reference ranges is a realistic goal.

We used an ECG-gated MDCTA volumetric gold standard because it is used to measure LAV in people with a high degree of accuracy, even when they have atrial fibrillation [24,25,38,39]. Furthermore, in dogs, ECG-gated MDCTA is already recognised as a volumetric gold standard for assessment of left and right ventricular volumes [40,41].

Accuracy of echocardiographic methods was determined in two stages. First, both RT-3DE and 2D echocardiography were shown to correlate highly with the volumetric gold standard. Second, Bland-Altman plots confirmed that RT-3DE outperformed 2DE with a minimal bias and the narrowest 95% LoA obtained for both LAV_{max} and LAV_{min} . The slight underestimation of RT-3DE that we recorded is consistent with reported biases in human medicine ranging from 0 to -2.5 mL [12,24].

Studies in people have consistently shown that 2D echocardiography, as well as RT-3DE, underestimates LAV compared to gold standard methods [12,13,15,20,24-27]. Surprisingly, in our study, we found that 2D planimetric methods overestimated LAV. The reason for this is unclear. It could be that differences in thoracic conformation and anatomical cardiac chamber anatomy mean that geometric assumptions that are valid in people do not apply to the canine LA [42]. Importantly, this discrepancy illustrates the pitfalls of extrapolating data across species when applying novel imaging modalities to veterinary medicine.

Two previous veterinary studies broadly agree with our data. They also demonstrated overestimation of LAV by both 2D planimetric methods, compared to RT-3DE [18] or cardiac magnetic resonance imaging [30], although cardiac magnetic resonance imaging does not appear to correlate with monoplane MOD, RT-3DE or even MDCTA. Furthermore, and similar to people [22,43,44], our MOD-derived values were closer to MDCTA values than ALM-derived ones, since biplane MOD makes fewer geometric assumptions than ALM [10]. This would suggest that in healthy dogs, although inferior to RT-3DE, biplane MOD remains the 2D planimetric method of choice for measuring LAV [10,37,43]. By contrast, in a recent Swedish study that included a large population of dogs with myxomatous mitral valve disease, biplane MOD underestimated LAV compared to RT-3DE [37]. Our data suggest that 2D geometric assumptions might be less accurate in dogs with bigger atria since there was a trend towards an increase in the scatter of the difference between MDCTA and planimetric measurements of LAV as atrial size increased.

Reduced accuracy at bigger LAV may relate to the views from which images were derived. Both RT-3DE and 2D images were obtained from left apical views. Apical imaging places LA in a far field of the ultrasound beam, leading to loss of lateral resolution, poor visualisation, and inaccurate tracing of the LA endocardial border [22,45]. Despite significant effort by the sonographer to obtain good guality non-foreshortened four- and two-chamber views by optimising the width and the depth, manual tracing errors may have contributed to LAV overestimation by including some of the LAA or pulmonary veins [46]. Indeed, unlike in people, canine pulmonary veins anastomose into a cone-shaped trunk prior to entering the LA. This leads to an imprecise delineation between left atrial tissue and the beginning of pulmonary veins [42]. By contrast, in RT-3DE, we used a semi-automated software package designed

to provide an ellipsoidal 3D cast of the left ventricle after placing three references points on the endocardial border. Although this required manual adjustment, the degree of manual involvement was significantly less than with 2D techniques. It is possible that the software package is superior to manual selection of border delineation, resulting in greater inaccuracy where there is greater manual input i.e. 2D methods. Indeed, manual tracing of the endocardium is operator-dependent and tends to be associated with higher interobserver variability than RT-3DE [20]. Despite the reproducibility among the echocardiographic methods in our study being <15%, and hence clinically acceptable compared to previously reported human [12,20,24] and veterinary [18,43,47] studies, the effect size would be greater with bigger left atria, which have longer perimeters. We conclude that despite the advantages of RT-3DE over 2D imaging, RT-3DE requires separate validation for measuring LAV in disease states, using a large population of dogs.

These findings are clinically significant, since thoracic conformation can vary greatly in dogs of different morphotypes potentially leading to anatomical variation, including LAV [48,49]. Indeed, Hollmer et al. (2013) have documented significant breed-related differences in LAV using the biplane ALM in dogs with normal cardiovascular status [47]. By contrast, we demonstrated that RT-3DE maintained its bias over a range of LAV within brachycephalic, dolicocephalic and mesaticephalic breeds with slight underestimation. We speculate that RT-3DE would also demonstrate the same bias and degree of accuracy within breeds over a range of pathological LA remodelling. Additional research validating the use of RT-3DE measurements in dogs with enlarged left atria is warranted to confirm this hypothesis.

- ⁹³⁷ 354

Our study has several noteworthy limitations that should be considered. It was not designed to correct for potential confounders such as heart rate, changes in LA loading conditions, sex, image quality and eventually variability throughout the breathing cycle, and no attempts were made to correlate these parameters with LAV. Sporadically, we found that sinus arrhythmia or heart rates greater than 80 beats per minute caused stair-step and motion artefacts on MDCTA. This was due to the limited temporal resolution of 64-slice ECG-gated MDCTA and the absence of breath holding during data acquisition. The consequence was poorer definition of the LA endocardial border, although we believe that this was not sufficient to lead to erroneous measurements because each patient served as his own control with short time-frame between modalities and therefore data acquisitions.

The confounding effects on respirophasic changes are likely to have been similar between the different methods used to measure LAV [50]. Lung expansion during end-inspiration decreases LAV, and conversely, LAV increases during end-expiration [50,51]. In our study, anaesthetised dogs were assisted by mechanical ventilation during both MDCTA and echocardiography. Images acquisition were not synchronised with the breathing cycle, which could theoretically influenced the loading condition of the LA. Synchronisation with the breathing cycle would have imply using breath-holding which was not undertaken not only for ethical reasons but also to mirror clinical situations. Besides, breath-holding could have influenced the loading of the LA by up to 20% compared to normal breathing [52].

Real-time three-dimensional echocardiography is also subject to limited temporal and spatial resolution during real-time acquisition. In previous veterinary studies, the optimal balance between spatial and temporal resolution was obtained by acquiring volume datasets with multi-beat modalities involving acquisition of four to seven

cardiac cycles [16–18,53]. However, to avoid stitching artefact, this mode requires a regular heart rate (ideally between 60 and 90 beats per minute based on the author experience), breath-holding and stable probe handling from the operator. This is not easily achieved in a clinical veterinary setting. Our aim was to demonstrate the clinical feasibility of RT-3DE, and because inhalation anaesthetics can increase heart rate by decreasing cardiac vagal activity [54], single-beat acquisition was preferred at the expense of image quality. Overall image quality was deemed adequate for LAV estimation and our conclusions should be equally applicable to emerging 3D technologies with improved image quality.

It is also worth emphasising that frame selection varied due to image guality and frame rate. Consequently, measurements were not performed at exactly the same time point, potentially leading to underestimation of LA. However, we attempted to overcome this limitation by relying on the average of three different measurements for each variable for both MDCTA and RT-3DE.

The aim of this study was not to generate allometric relationships in order to establish reference values for RT-3DE and planimetric methods. Additional studies involving the use of RT-3DE in a larger population of dogs are required to establish reference values in healthy and conscious patients, and to optimise the clinical utility of RT-3DE to estimate LAV.

¹⁰⁴⁷ 399 **Conclusions**

This is the first prospective study in veterinary medicine to study the accuracy and the bias of RT-3DE with a volumetric gold standard to estimate LAV. Three-dimensional-derived LAV measurements were found to be feasible, reproducible and more accurate than 2D echocardiography-based volumetric methods. Our results might facilitate future clinical research in order to determine a general consensus for the best method

1063		
1064		
1065 1066	405	to assess LAV. Although RT-3DE is not currently widely available in veterinary
1067	406	medicine, this modality remains appealing and holds promise for LAV assessment. It
1009 1070	407	is anticipated that this imaging modality will emerge as a powerful diagnostic tool and
1071 1072 1073	408	will be integrated into clinical guidelines and routine practice as the imaging modality
1076 1074 1075	409	of choice for LA assessment with dedicated software and adapted algorithms
1076 1077	410	alongside the improvement of spatial and temporal resolution in the next generation of
1078 1079 1080	411	3D probes.
1080 1081 1082	412	Conflicts of Interest Statement
1083 1084 1085	413	The authors do not have any conflicts of interest to disclose
1086		
1088		
1089		
1090		
1091		
1093		
1094		
1095		
1096		
1097		
1099		
1100		
1101		
1102		
1104		
1105		
1106		
1107		
1108		
1110		
1111		
1112		
1113		
1114		
1116		
1117		
1118		
1119 1120		19
1121		1/

414	Footn	otes
415	a.	Cardell Model 9402, CAS Medical Systems, Brandford, Connecticut.
416	b.	Acecare, Animalcare limited, United Kingdom
417	C.	Alvegesic, Dechra Veterinary products, United Kingdom
418	d.	Comfortan, Dechra Veterinary products, United Kingdom
419	e.	Dexmedetomidine, Orion Pharma, Turku, Finland
420	f.	Propoflo plus, Zoetis UK Ltd, United Kingdom
421	g.	Isocare, Animalcare Ltd, United Kingdom
422	h.	Vivid E9, General Electric Medical Systems, Waukesha, Wisconsin.
423	i.	4V-D Active Matrix 4D Volume Phased Array Transducer 1.5 – 4.0MHz
424	j.	M5S-D Active Matrix single-crystal Phased Array Transducer 1.5 – 4.6MHz
425	k.	EchoPAC PC versions 113, GE Healthcare, Horten, Norway
426	Ι.	Somatom Sensation 64, Siemens Medical Solutions, Erlangen, Germany.
427	m.	Care Dose 4D [®] , Siemens Healthcare, Forchheim, Germany
428	n.	Niopam 350 [®] , Bracco UK Ltd, United Kingdom
429	0.	Empower CTA®+, Bracco [®] injeneering S.A., Milan, Italy
430	p.	4D-AutoLVQ, GE Healthcare, Horten, Norway
431	q.	OsiriX v5.8.5 64-bit, Geneva, Switzerland
432	r.	GraphPad Prism version 7.00 for Windows, GraphPad Software, La Jolla,
433		California, USA.
434	S.	Minitab 17, Pennsylvania, USA
435	t.	MedClac Stasticial Software, version 18.5, MedCalc Software bvba, Ostend,
436		Belgium
437		
		20
		20
	 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 	414Footner415a.416b.417C.418d.419e.420f.421g.422h.423i.424j.425k.426l.427m.428n.430p.431q.433t.434s.435t.436y.

REFERENCES Borgarelli M, Santilli RA, Chiavegato D, D'Agnolo G, Zanatta R, Mannelli A, [1] Tarducci A. Prognostic Indicators for Dogs with Dilated Cardiomyopathy. J Vet Intern Med 2006;20:104–10. Borgarelli M, Savarino P, Crosara S, Santilli RA, Chiavegato D, Poggi M, [2] Bellino C, La Rosa G, Zanatta R, Haggstrom J, Tarducci A. Survival Characteristics and Prognostic Variables of Dogs with Mitral Regurgitation Attributable to Myxomatous Valve Disease. J Vet Intern Med 2008;22:120-8. Rossi A, Cicoira M, Zanolla L, Sandrini R, Golia G, Zardini P, Enriquez-Sarano [3] M. Determinants and prognostic value of left atrial volume in patients with dilated cardiomyopathy. J Am Coll Cardiol 2002;40:1425-30. Sargent J, Muzzi R, Mukherjee R, Somarathne S, Schranz K, Stephenson H, [4] Connoly D, Brodbelt D, Luis Fuentes V. Echocardiographic predictors of survival in dogs with myxomatous mitral valve disease. J Vet Cardiol 2015;17:1-12. Wu VC-C, Takeuchi M, Kuwaki H, Iwataki M, Nagata Y, Otani K, Haruki N, [5] Yoshitani H, Tamura N, Abe H, Negishi K, Lin FC, Otsuji Y. Prognostic value of LA volumes assessed by transthoracic 3D echocardiography. J Am Coll Cardiol Img 2013;6:1025-35. Rishniw M, Erb HN. Evaluation of four 2-dimensional echocardiographic [6] methods of assessing left atrial size in dogs. J Vet Intern Med 2000;14:429-35. Hansson K, Haggstrom J, Kvart C, Lord P. Left atrial to aortic root indices using [7] two-dimensional and M-mode echocardiography in cavalier King Charles spaniels with and without left atrial enlargement. Vet Radiol Ultrasound 2002;43:568-75.

1240			
1241 1242	463	[8]	De Madron É. Normal Echocardiographic Values. In: De Madron É, Chetboul
1243 1244 1245	464		V, Bussadori C, editors. Clinical echocardiography of the dog and cat. St.
1246 1247	465		Louis: Elsevier; 2015, p. 21–37.
1248 1249	466	[9]	Wesselowski S, Borgarelli M, Bello NM, Abbott J. Discrepancies in
1250 1251	467		identification of left atrial enlargement using left atrial volume versus left atrial-
1252 1253	468		to-aortic root ratio in dogs. J Vet Intern Med 2014;28:1527–33.
1254 1255	469	[10]	Lang RM, Badano LP, Mor-Avi V, Afilalo J, Armstrong A, Ernande L,
1250 1257 1258	470		Flachskampf FA, Foster E, Goldstein SA, Kuznetsova T, Lancelloti P, Muraru
1259 1260	471		D, Picard MH, Rietzschel ER, Rudski L, Spencer KT, Tsang W, Voigt J-U.
1261 1262	472		Recommendations for cardiac chamber quantification by echocardiography in
1263 1264	473		adults: an update from the American Society of Echocardiography and the
1265 1266	474		European Association of Cardiovascular Imaging. Eur Hear J Cardiovasc
1267 1268	475		Imaging 2015;16:233–71.
1269 1270 1271	476	[11]	Vizzardi E, D'Aloia A, Rocco E, Lupi L, Rovetta R, Quinzani F, Bontempi L,
1271 1272 1273	477		Curnis A, Dei Cas L. How should we measure left atrium size and function? J
1274 1275	478		Clin Ultrasound 2012;40:155–66.
1276 1277	479	[12]	Mor-Avi V, Yodwut C, Jenkins C, Kühl H, Nesser H-J, Marwick TH, Franke A,
1278 1279	480		Weinert L, Niel J, Steringer-Mascherbauer R, Free BH, Sugeng L, Lang R.
1280 1281	481		Real-time 3D echocardiographic quantification of left atrial volume. J Am Coll
1282 1283	482		Cardiol Img 2012;5:769–77.
1285 1286	483	[13]	Koka AR, Gould SD, Owen AN, Halpern EJ. Left atrial volume: comparison of
1287 1288	484		2D and 3D transthoracic echocardiography with ECG-gated CT angiography.
1289 1290	485		Acad Radiol 2012;19:62–8.
1291 1292	486	[14]	Maddukuri P V, Vieira MLC, DeCastro S, Maron MS, Kuvin JT, Patel AR, Patel
1293 1294	487		AR, Pandian NG. What is the best approach for the assessment of left atrial
1295 1296 1297 1298			22

1299			
1300 1301 1302	488		size? Comparison of various unidimensional and two-dimensional parameters
1303 1304	489		with three-dimensional echocardiographically determined left atrial volume. J
1305 1306	490		Am Soc Echocardiogr 2006;19:1026–32.
1307 1308	491	[15]	Al-Mohaissen MA, Kazmi MH, Chan KL, Chow BJW. Validation of two-
1309 1310	492		dimensional methods for left atrial volume measurement: A comparison of
1311 1312 1312	493		echocardiography with cardiac computed tomography. Echocardiography
1313 1314 1315	494		2013;30:1135–42.
1316 1317	495	[16]	Tidholm A, Bodegård-Westling A, Höglund K, Ljungvall I, Häggström J.
1318 1319	496		Comparisons of 2- and 3-dimensional echocardiographic methods for
1320 1321	497		estimation of left atrial size in dogs with and without myxomatous mitral valve
1322 1323	498		disease. J Vet Intern Med 2011;25:1320–7.
1324 1325	499	[17]	Tidholm A, Höglund K, Häggström J, Bodegård-Westling A, Ljungvall I. Left
1326 1327	500		atrial ejection fraction assessed by real-time 3-dimensional echocardiography
1320 1329 1330	501		in normal dogs and dogs with myxomatous mitral valve disease. J Vet Intern
1331 1332	502		Med 2013;27:884–9.
1333 1334	503	[18]	LeBlanc N, Scollan K, Sisson D. Quantitative evaluation of left atrial volume
1335 1336	504		and function by one-dimensional, two-dimensional, and three-dimensional
1337 1338	505		echocardiography in a population of normal dogs. J Vet Cardiol 2016;18:336-
1339 1340	506		49.
1341 1342	507	[19]	Jenkins C, Bricknell K, Marwick TH. Use of Real-time Three-dimensional
1343 1344	508		echocardiography to measure left atrial volume: Comparison with other
1345 1346 1347	509		echocardiographic techniques. J Am Soc Echocardiogr 2005;18:991–7.
1348 1349	510	[20]	Badano LP, Miglioranza MH, Mihăilă S, Peluso D, Xhaxho J, Marra MP,
1350 1351	511		Cucchini U, Soriani N, Iliceto S, Muraru D. Left atrial volumes and function by
1352 1353	512		three-dimensional echocardiography. Circ Cardiovasc Imaging
1354 1355 1356 1357			23

1361

1368

1360 513

2016;9:e004229.

- 1362
1363514[21]Gweon HM, Kim SJ, Kim TH, Lee SM, Hong YJ, Rim S-J. Evaluation of left1364
1365atrial volumes using multidetector computed tomography: Comparison with1366
1367echocardiography. Korean J Radiol 2010;11:286.
- [22] Takagi Y, Ehara S, Okuyama T, Shirai N, Yamashita H, Sugioka K, Kitamura 1369 517 1370 H. Ujino K. Hozumi T. Yoshiyama M. Comparison of determinations of left atrial 1371 518 1372 1373 volume by the biplane area-length and Simpson's methods using 64-slice 519 1374 1375 computed tomography. J Cardiol 2009;53:257-64. 520 1376
- ¹³⁷⁷₁₃₇₈ 521 [23] Mahabadi AA, Samy B, Seneviratne SK, Toepker MH, Bamberg F, Hoffmann
- ¹³⁷⁹₁₃₈₀ 522 U, Truong QA. Quantitative assessment of left atrial volume by
- 1381
1382523electrocardiographic-gated contrast-enhanced multidetector computed
- tomography. J Cardiovasc Comput Tomogr 2009;3:80–7.
- 1385
1386525[24]Miyasaka Y, Tsujimoto S, Maeba H, Yuasa F, Takehana K, Dote K, Iwasaka T.1387
1388526Left atrial volume by real-time three-dimensional echocardiography: Validation1389
1390527by 64-slice multidetector computed tomography. J Am Soc Echocardiogr
- ¹³⁹² ₅₂₈ 2011;24:680–6.

71.

- 1394 Kühl JT, Lønborg J, Fuchs A, Andersen MJ, Vejlstrup N, Kelbæk H, Engstrøm 529 [25] 1395 1396 T. Møller JE. Kofoed K. Assessment of left atrial volume and function: A 530 1397 1398 comparative study between echocardiography, magnetic resonance imaging 531 1399 1400 and multi slice computed tomography. Int J Cardiovasc Imaging 2012;28:1061-532 1401 1402
- 1403 533
- 1405534[26]Rodevand O, Bjornerheim R, Ljosland M, Maehle J, Smith HJ, Ihlen H. Left14061407535atrial volumes assessed by three- and two-dimensional echocardiography14081409536compared to MRI estimates. Int J Cardiovasc Imaging 1999;15:397–410.
- ¹⁴¹⁰ ¹⁴¹¹ 537 [27] Artang R, Migrino RQ, Harmann L, Bowers M, Woods TD. Left atrial volume

24

1412 1413

- 1414
- 1415 1416

1417			
1418			
1419 1420 1421	538		measurement with automated border detection by 3-dimensional
1421	539		echocardiography: Comparison with magnetic resonance imaging. Cardiovasc
1423	540		Ultrasound 2009;7:16.
1425	541	[28]	Chin RB, Tighe C, Beaver T, Welch T, Costa S. Advances in 3D
1427	542		echocardiography: Automated software improves the learning curve and
1429 1430 1431	543		clinical implementation in a real world setting for quantitative assessment of left
1432 1433	544		ventricular ejection. J Am Coll Cardiol 2017;69:1642.
1434 1435	545	[29]	Tsang W, Salgo IS, Medvedofsky D, Takeuchi M, Prater D, Weinert L, Yamat
1436 1437	546		M, Mor-Avi V, Patel A, Lang R. Transthoracic 3D echocardiographic left heart
1438 1439	547		chamber quantification using an automated adaptive analytics algorithm. J Am
1440 1441	548		Coll Cardiol Img 2016;9:769–82.
1442 1443	549	[30]	Fries RC, Gordon SG, Saunders AB, Miller MW, Hariu CD, Schaeffer DJ.
1444 1445	550		Quantitative assessment of two- and three-dimensional transthoracic and two-
1440 1447 1448	551		dimensional transesophageal echocardiography , computed tomography , and
1449 1450	552		magnetic resonance imaging in normal canine hearts. J Vet Cardiol
1451 1452	553		2019;21:79–92.
1453 1454	554	[31]	Thomas WP, Gaber CE, Jacobs GJ, Kaplan PM, Lombard CW, Moise NS,
1455 1456	555		Moses BL. Recommendations for standards in transthoracic two-dimensional
1457 1458	556		echocardiography in the dog and cat. Echocardiography Committee of the
1459 1460	557		Specialty of Cardiology, American College of Veterinary Internal Medicine. J
1401 1462 1463	558		Vet Intern Med 1993;7:247–52.
1464 1465	559	[32]	Quiñones MA, Otto CM, Stoddard M, Waggoner A, Zoghbi WA.
1466 1467	560		Recommendations for quantification of Doppler echocardiography: A report
1468 1469	561		from the Doppler quantification task force of the nomenclature and standards
1470 1471	562		committee of the American Society of Echocardiography. J Am Soc
1472 1473 1474 1475			25

Echocardiogr 2002;15:167–84.

[33] Browner WS, Newman TB, Hulley SB. Estimating sample size and power: applications and examples. In: Hulley SB, Cummings SR, Browner WS, Grady D, Newman TB, editors. Designing clinical research : an epidemiologic approach. 4th ed, Philadelphia: Lippincott Williams & Wilkins; 2013, p. 79 appendix 6C.

1491
1492569
1492[34]Hinkle DE, Wiersma W, Jurs SG. Rule of thumb for interpreting the size of a
correlation coefficient. In: Hinkle DE, Wiersma W, Jurs SG , editors. Applied1493
1494570correlation coefficient. In: Hinkle DE, Wiersma W, Jurs SG , editors. Applied1495
1496571statistics for the behavioral sciences. 5th ed. Boston: Houghton Mifflin; 2003.

1497
1498572[35]Landis JR, Koch GG. The measurement of observer agreement for categorical1499
1500573data. Biometrics 1977;33:159–74.

1501
1502 574 [36] Chetboul V. Intra- and Interoperator Variability. In: De Madron É, Chetboul V,
1503
1504 575 Bussadori C, editors. Clinical echocardiography of the dog and cat. St. Louis:
1505
1506 576 Elsevier; 2015, p. 39–43.

1508 577 [37] Tidholm A, Bodegård-Westling A, Höglund K, Häggström J, Ljungvall I.
 1509
 1510 578 Comparison between real-time 3-dimensional and 2-dimensional biplane
 1511

1512
1513579echocardiographic assessment of left atrial volumes in dogs with myxomatous15131514
1515580mitral valve disease. J Vet Intern Med 2019;33(2):455–61.

1516
1517581 [38] Agner BFR, Kühl JT, Linde JJ, Kofoed KF, Akeson P, Rasmussen BV, Jensen1518
15195821520
1521583152158315225831522

- imaging, 320-slice multi-detector computed tomography, and transthoracic
- 1525 585 echocardiography. Eur Heart J Cardiovasc Imaging 2014;15:532–40.
 1526
- ¹⁵²⁷ 586 [39] Rohner A, Brinkert M, Kawel N, Buechel RR, Leibundgut G, Grize L, Kühne M,

- ¹⁵²⁹ 587 Bremerich J, Kaufmann BA, Zellweger MJ, Buser P, Osswald S, Handke M.

1535			
1536 1537 1538	588		Functional assessment of the left atrium by real-time three-dimensional
1539 1540	589		echocardiography using a novel dedicated analysis tool: initial validation
1541 1542	590		studies in comparison with computed tomography. Eur Heart J Cardiovasc
1543 1544	591		Imaging 2011;12:497–505.
1545 1546	592	[40]	Scollan KF, Stieger-Vanegas SM, Sisson DD. Assessment of left ventricular
1547 1548 1549	593		volume and function in healthy dogs by use of one-, two-, and three-
1550 1551	594		dimensional echocardiography versus multidetector computed tomography. Am
1552 1553	595		J Vet Res 2016;77:1211–9.
1554 1555	596	[41]	Sieslack AK, Dziallas P, Nolte I, Wefstaedt P, Hungerbühler SO. Quantification
1556 1557	597		of right ventricular volume in dogs: a comparative study between three-
1558 1559	598		dimensional echocardiography and computed tomography with the reference
1560 1561	599		method magnetic resonance imaging. BMC Vet Res 2014;10:242.
1562 1563 1564	600	[42]	Brewer FC, Moïse NS, Kornreich BG, Bezuidenhout AJ. Use of computed
1565 1566	601		tomography and silicon endocasts to identify pulmonary veins with
1567 1568	602		echocardiography. J Vet Cardiol 2012;14:293–300.
1569 1570	603	[43]	Höllmer M, Willesen JL, Tolver A, Koch J. Comparison of four
1571 1572	604		echocardiographic methods to determine left atrial size in dogs. J Vet Cardiol
1573 1574	605		2016;18:137–45.
1575 1576	606	[44]	Jiamsripong P, Honda T, Reuss C, Hurst R, Chaliki H, Grill D, Schnek SL, Tyler
1577 1578 1570	607		R, Khandheria BK, Lester SJ. Three methods for evaluation of left atrial
1579 1580 1581	608		volume. Eur J Echocardiogr 2007;9:351–5.
1582 1583	609	[45]	Lester SJ, Ryan EW, Schiller NB, Foster E. Best method in clinical practice and
1584 1585	610		in research studies to determine left atrial size. Am J Cardiol 1999;84:829–32.
1586 1587	611	[46]	Russo C, Hahn RT, Jin Z, Homma S, Sacco RL, Di Tullio MR. Comparison of
1588 1589 1590	612		echocardiographic single-plane versus biplane method in the assessment of
1591 1592 1593			27

1594 1595			
1596 1597	613		left atrial volume and validation by real time three-dimensional
1598 1599	614		echocardiography. J Am Soc Echocardiogr 2010;23:954–60.
1600 1601	615	[47]	Höllmer M, Willesen JL, Tolver A, Koch J. Left atrial volume and phasic
1602 1603	616		function in clinically healthy dogs of 12 different breeds. Vet J 2013;197:639–
1604 1605	617		45.
1606 1607 1608	618	[48]	Evans E. H, De Lahunta A. The Skeleton. In: Evans E. H, De Lahunta A,
1609 1610	619		editors. Miller's Anatomy of the Dog. 4th ed. St. Louis, MO: Saunders; 2013, p.
1611 1612	620		86–7.
1613 1614	621	[49]	Schwarz T, Sullivan M, Hartung K. Radiographic anatomy of the cribiform plate
1615 1616	622		(lamina cribrosa). Vet Radiol Ultrasound 2000;41:220–5.
1617 1618	623	[50]	Sørgaard M, Linde JJ, Ismail H, Risum N, Kofoed KF, Kühl JT, Tittle B, Nielsen
1619 1620	624		WB, Hove JD. Respiratory influence on left atrial volume calculation with 3D-
1621 1622	625		echocardiography. Cardiovasc Ultrasound 2016;14:11.
1623 1624 1625	626	[51]	Riddervold F, Smiseth OA, Risoe C. The effect of positive end-expiratory
1625 1626 1627	627		pressure ventilation on atrial filling. Acta Anaesthesiol Scand 1991;35:448–52.
1628 1629	628	[52]	Poutanen T. Left atrial volume assessed by transthoracic three dimensional
1630 1631	629		echocardiography and magnetic resonance imaging: dynamic changes during
1632 1633	630		the heart cycle in children. Heart 2000;83:537–42.
1634 1635	631	[53]	Tidholm A, Bodegård-Westling A, Höglund K, Häggström J, Ljungvall I. Real-
1636 1637	632		time 3-dimensional echocardiographic assessment of effective regurgitant
1638 1639	633		orifice area in dogs with myxomatous mitral valve disease. J Vet Intern Med
1640 1641 1642	634		2017;31(2):303–10.
1643 1644	635	[54]	Picker O, Scheeren TWL, Arndt JO. Inhalation anaesthetics increase heart rate
1645 1646	636		by decreasing cardiac vagal activity in dogs. Br J Anaesth 2001;87:748–54.
1647 1648	637		
1649 1650			20
1651 1652			20

638 Fig. 1

Representative real-time biplane echocardiography images of the left atrium just before mitral valve opening corresponding to maximum left atrial volume (A and B) and left atrium just after mitral valve closure corresponding to minimum left atrial volume (C and D) were obtained. The endocardial borders were traced manually while excluding the left auricular appendage (*) and the ostia of pulmonary veins, if visible. The mitral annulus was considered as the left atrioventricular border. The cut plane was adjusted from the left parasternal four-chamber view (A and C) in order to obtain a non-foreshortened two-chamber view (B and D).

A: Left parasternal four-chamber view (0°) when left atrium is maximum. B: Left parasternal two-chamber view (90°) when left atrium is maximum. C: Left parasternal four-chamber view (0°) when left atrium is minimum. D: Left parasternal two-chamber view (90°) when left atrium is minimum.

1683 651 LA: left atrium; LV: left ventricle; RA: right atrium.

¹⁶⁸⁵ 652 **Fig. 2**

Representative real-time three-dimensional echocardiography images of the left atrium in a dog. After automatic slicing of real-time three-dimensional echocardiography data set and manual alignment, manual input for placing reference points was carried out (one point at the dorsal border of the left atrium, one point at the hinge-point of the septal leaflet and one point at the hinge-point of the lateral leaflet). Following this step, automatic detection of endocardial surface in three dimensions was generated. In this example, manual adjustment by adding a total of 3 points in left apical four-chamber view (A), 3 points in left apical two-chamber view (B) and 5 points in left apical five-chamber view (C) was performed. These manual adjustments permitted accurate delineation of the left atrium cavity prior volume measurement by the software. Left

atrial cast associated to the time-volume curve (E) were obtained. Notice the electrocardiographic tracing at the lower edge of the image correspond to the image just before mitral valve opening corresponding therefore to maximum left atrial volume. A: left apical four-chamber view. B: left apical two-chamber view. C: left apical five-chamber view. D: short axis view of the left atrium. Note that the plane can be adjusted through a perpendicular axis from the roof of left atrium to the mitral valve annulus. E: automatically reconstructed three-dimensional left atrial cavity cast and its corresponding typical time-volume curve (y axis indicates left atrial volume {mL}; x-axis indicates time {s}). ED: end atrial diastole corresponding to maximum left atrial volume; ES: end atrial systole corresponding to minimum left atrial volume Fig. 3 Cardiac electrocardiographic-gated multi-detector computed tomography angiography in sagittal (A) and axial (E) planes. Regions of interest delineate the left atrium and extend from the dorsal border of the left atrium to the mitral valve annulus (B, C, D, F, G, H, J, K, L). Image I represents the computed three-dimensional volume.

¹⁷⁴⁶ 678 Ao: aorta; LA: left atrium; *: left auricle; LV: left ventricle; RV: right ventricle.

¹⁷⁴⁸ 679 **Fig. 4**

Correlations between real-time three-dimensional echocardiography (RT-3DE). biplane method of disk (MOD) and biplane area-length method (ALM) with the reference method multi-detector computed tomography angiography (MDCTA) for maximum left atrial volume (top) and minimum left atrial volume (bottom) of 20 anesthetised dogs.

When left atrial volume is maximal, there were a positive correlations between MDCTA and RT-3DE (r = 0.93; p<0.0001) (A), MDCTA and biplane MOD (r = 0.81; p<0.0001) (C), and MDCTA and biplane ALM (r = 0.79; p<0.0001) (E).

1771		
1772 1773 1774	688	Similarly, when left atrial volume is minimal, there were a positive correlations was
1775 1776	689	detected when comparing MDCTA and RT-3DE (r = 0.82; p<0.0001) (B), MDCTA and
1777 1778	690	biplane MOD (r = 0.7; p = 0.0006) (D), and MDCTA and biplane ALM (r = 0.72; p =
1779	691	0.0004) (F).
1782	692	Solid lines represent the coefficient of correlation; dashed lines represent the 95%
1784 1785	693	confidence intervals.
1786 1787	694	Note that all methods correlate better for maximum left atrial volume.
1788 1789	695	ALM: area-length method; LAV _{max} : maximal left atrial volume; LAV _{min} : minimal left atrial
1790 1791	696	volume; MDCTA: multi-detector computed tomography angiography; MOD: method of
1792 1793	697	disk; RT-3DE: real-time three-dimensional echocardiography.
1794 1795	698	Fig. 5
1796 1797	699	Bland-Altman analysis showing the agreement between maximal (top) and minimal
1798 1799	700	(bottom) left atrial volumes measured by the reference method, multi-detector
1800 1801	701	computed tomography angiography, and those measured by real-time three-
1803 1804	702	dimensional echocardiography (RT-3DE) (A and B), biplane method of disk (MOD) (C
1805 1806	703	and D) or biplane area-length method (ALM) (E and F). Solid lines represent the mean
1807 1808	704	difference (bias) and dashed lines represent the 95% limits of agreement (\pm 2 SD from
1809 1810	705	the mean between the two techniques used).
1811 1812	706	Note that MOD and ALM consistently overestimated left atrial volume, particularly at
1813 1814	707	larger volume. By contrast, RT-3DE underestimated slightly left atrial volumes.
1815 1816	708	ALM: area-length method; MDCTA: multi-detector computed tomography
1818 1819	709	angiography; MOD: method of disk; RT-3DE: real-time three-dimensional
1820 1821	710	echocardiography; SD: standard deviation.
1822 1823	711	
1824 1825		
1826		
1828		31
1829		

1830		
1831 1832		
1833	712	Table A (supplementary data): Epidemiological and clinical characteristics of the 20
1834 1835	713	dogs included in the study.
1836 1837	714	FE: female entire; FS: female spayed; MDCTA: multi-detector computed tomography
1838	715	angiography; ME: male entire; n.a: not available; NM: neutered male
1840 1841	716	Table 1: Descriptive statistics of left atrial volume during maximum and minimum left
1843	717	atrial size. ALM: area-length method; LAV_{max} : maximal left atrial volume; LAV_{min} :
1845 1846	718	minimal left atrial volume; MDCTA: multi-detector computed tomography
1847 1848	719	angiography; MOD: method of disk; RT-3DE: real-time three-dimensional
1849 1850	720	echocardiography.
1851 1852	721	Table 2: Coefficient of variation for measurement of minimum left atrial volume and
1853 1854	722	maximum left atrial volume according to different methods.
1855 1856	723	ALM: area-length method; CV: coefficient of variation; LAV _{max} : maximal left atrial
1857 1858	724	volume; LAV _{min} : minimal left atrial volume; MDCTA: multi-detector computed
1860 1861	725	tomography angiography; MOD: method of disk; RT-3DE: real-time three-
1862 1863	726	dimensional echocardiography.
1864 1865	727	Table 3: Intraclass correlation coefficients and 95% CI reported for each part of
1866 1867	728	measurements and for each parameter measured. Coefficient interpretation: $0 - 0.2$
1868 1869	729	indicates poor agreement; 0.3 - 0.4 indicates fair agreement; 0.5 - 0.7 indicates
1870 1871	730	moderate agreement; 0.7 – 0.8 indicates strong agreement; and > 0.8 indicates almost
1872 1873	731	perfect agreement.
1874 1875 1876	732	ALM: area-length method; CI: confidence interval; ICC: intraclass correlation; LAV_{max} :
1877 1877 1878	733	maximal left atrial volume; LAV _{min} : minimal left atrial volume; MDCTA: multi-detector
1879 1880	734	computed tomography angiography; MOD: method of disk; RT-3DE: real-time three-
1881 1882	735	dimensional echocardiography.
1883 1884		
1885		
1886 1887		32
1888		52

- 1 † Evans E. H, De Lahunta A. The Skeleton. In: Evans E. H, De Lahunta A,
- editors. Miller's Anatomy of the Dog. 4th ed. St. Louis, MO: Saunders; 2013, p.
 86–7.
- 4 ‡ Schwarz T, Sullivan M, Hartung K. Radiographic anatomy of the cribiform plate
- 5 (lamina cribrosa). Vet Radiol Ultrasound 2000;41:220–5.

- 1 **Table A** (supplementary data): Epidemiological and clinical characteristics of the 20
- 2 dogs included in the study.

3 FE: female entire; FS: female spayed; MDCTA: multi-detector computed tomography

4 angiography; ME: male entire; n.a: not available; NM: neutered male

Dog	Breed	Sex	Age (days)	Body weight (kg)	Reason for MDCTA	Final diagnosis	Morphotype ^{†,‡}
1	Cross breed	FS	1780	13	Cough	Chronic lower airway inflammation	mesaticephalic
2	Labrador Retriever	ME	268	28	Cough	Normal airway	mesaticephalic
3	Flat Coated Retriever	FE	2500	23.7	Nasal discharge	Aspergillosis	Mesati- Dolichocephalic
4	Cross breed	NM	1956	29.6	Nasal discharge	Aspergillosis	mesaticephalic
5	Golden Retriever	FS	3123	35.8	Cough	Bordetella Bronchiseptica	mesaticephalic
6	Schnauzer	ME	3617	14	Staging	Prostatic adenocarcinoma	n.a
7	Collie Rough	FS	4029	28.9	Staging	Mandible osteosarcoma	mesaticephalic
8	Golden Retriever	FE	4542	33.3	Exercise intolerance	Normal airway	n.a
9	Labrador Retriever	FS	3993	27.5	Staging	Oral malignant melanoma	Brachy- Mesaticephalic
10	Samoyed	FR	3493	27	Staging	Nasal transitional cell carcinoma	Brachy- Mesaticephalic
11	Cocker Spaniel	FS	747	10.7	Cervical mass	Neutrophilic pyogranulomatous inflammation	Mesati- Dolichocephalic

12	Golden Retriever	FR	222	18.85	exophthalmos	Retrobulbar abscess	mesaticephalic
13	Cross breed	ME	410	9.1	Cough	Tracheal collapse	mesaticephalic
14	Cross breed	NM	5218	25	Staging	Oral squamous cell carcinoma	mesaticephalic
15	Northern Inuit	NM	2324	44.5	Staging	Lymphoma	mesaticephalic
16	English Springer Spaniel	FS	3007	25.5	Sneezing	Nasal foreign body	mesaticephalic
17	Cocker Spaniel	NM	2502	14	Cough	Pulmonary foreign body	mesaticephalic
18	Border Collie	ME	2034	22.3	Nasal discharge	Rhinitis	mesaticephalic
19	Labrador Retriever	NM	4118	36	Cough	Bronchopneumonia	n.a
20	Boxer	NM	4542	30.3	Staging	Soft tissue sarcoma	brachycephalic

Table 1: Descriptive statistics of left atrial volume during maximum and minimum left
atrial size. ALM: area-length method; LAV_{max}: maximal left atrial volume; LAV_{min}:
minimal left atrial volume; MDCTA: multi-detector computed tomography
angiography; MOD: method of disk; RT-3DE: real-time three-dimensional

5 echocardiography.	
---------------------	--

Variable	Mean	Standard deviation	Minimum	Maximum
LAV _{max} (mL)				
Biplane ALM	20.1	8.19	8.8	38.8
Biplane MOD	19.2	7.6	8.2	37.1
RT-3DE	15.1	6.2	7.1	29.4
MDCTA	16.0	6.7	7.2	31.5
LAV _{min} (mL)				
Biplane ALM	12.9	4.8	5.0	22.1
Biplane MOD	12.0	4.4	4.5	21.0
RT-3DE	9.4	3.8	3.3	15.9
MDCTA	10.1	4.21	3.3	17.6
LAV _{max} (mL/kg)				
Biplane ALM	0.63	0.31	0.29	1.43
Biplane MOD	0.68	0.34	0.32	1.55
RT-3DE	0.63	0.17	0.38	0.89
MDCTA	0.39	0.20	0.18	0.90
LAV _{min} (mL/kg)				
Biplane ALM	0.35	0.18	0.17	0.81
Biplane MOD	0.40	0.20	0.19	0.91
RT-3DE	0.39	0.11	0.25	0.56
MDCTA	0.19	0.09	0.09	0.43

- 1 **Table 2:** Coefficient of variation for measurement of minimum left atrial volume and
- 2 maximum left atrial volume according to different methods.
- 3 ALM: area-length method; CV: coefficient of variation; LAV_{max}: maximal left atrial
- 4 volume; LAV_{min}: minimal left atrial volume; MDCTA: multi-detector computed
- 5 tomography angiography; MOD: method of disk; RT-3DE: real-time three-
- 6 dimensional echocardiography.

	LAV _{min} RT-3DE	LAV _{max} RT-3DE	LAV _{min} MOD	LAV _{max} MOD	LAV _{min} ALM	LAV _{max} ALM	LAV _{min} MDCTA	LAV _{max} MDCTA
CV interobserver (%)	6.45	4.82	14.8	5.73	13.87	7.67	4.86	7.27
CV within day (%)	1.48	1.67	3.41	3.99	3.59	4.43	2.97	3.51
CV between day (%)	2.31	1.69	4.10	3.85	3.99	4.19	5.70	2.74

Table 3: Intraclass correlation coefficients and 95% CI reported for each part of
measurements and for each parameter measured. Coefficient interpretation: 0 – 0.2
indicates poor agreement; 0.3 – 0.4 indicates fair agreement; 0.5 – 0.7 indicates
moderate agreement; 0.7 – 0.8 indicates strong agreement; and > 0.8 indicates almost
perfect agreement.

ALM: area-length method; CI: confidence interval; ICC: intraclass correlation; LAV_{max}:
maximal left atrial volume; LAV_{min}: minimal left atrial volume; MDCTA: multi-detector
computed tomography angiography; MOD: method of disk; RT-3DE: real-time threedimensional echocardiography.

10

	LAV _{ma}	ax MDCTA	LAV _{min} MDCTA				
	ICC	95% CI		ICC	95% CI		
LAV _{max} RT-3DE	0.9322	0.8371 to 0.9726	LAV _{min} RT-3DE	0.8215	0.6032 to 0.9253		
LAV _{max} ALM	0.7801	0.5244 to 0.9068	LAV _{min} ALM	0.7109	0.4017 to 0.8746		
LAV _{max} MOD	0.8010	0.5635 to 0.9162	LAV _{min} MOD	0.6989	0.3815 to 0.8689		

Journal of Veterinary Cardiology

The following information is required for submission:

Author contribution

The ICMJE recommends that authorship be based on the following 4 criteria:

- 1. Substantial contributions to the conception or design of the work; or the acquisition, analysis, or interpretation of data for the work; AND
- 2. Drafting the work or revising it critically for important intellectual content; AND
- 3. Final approval of the version to be published; AND
- 4. Agreement to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved.

Please specify the contribution of **each author** to the paper, e.g. study concept or design, data collection, data analysis or interpretation, writing the paper, others, who have contributed in other ways, should be listed as contributors.

Yolanda Martinez Pereira, Florence Thierry, Geoff Culshaw, Tobias Schwarz and Ian Handel

contributed substantially to the conception of the work and revising of the work and finally

approving of the work and agree to accountable for all aspects of the work

As **Corresponding Author** I hereby confirm that all listed authors in the submission meet these Criteria.

Corresponding author: Jonathan Bouvard

Please add signature here: 3 Cell VILT

Date: 09/11/2018