
Symbolic Execution Game Semantics

Yu-Yang Lin
Queen Mary University of London, UK

Nikos Tzevelekos
Queen Mary University of London, UK

Abstract

We present a framework for symbolically executing and model checking higher-order programs with

external (open) methods. We focus on the client-library paradigm and in particular we aim to check

libraries with respect to any definable client. We combine traditional symbolic execution techniques

with operational game semantics to build a symbolic execution semantics that captures arbitrary

external behaviour. We prove the symbolic semantics to be sound and complete. This yields a

bounded technique by imposing bounds on the depth of recursion and callbacks. We provide an

implementation of our technique in the K framework and showcase its performance on a custom

benchmark based on higher-order coding errors such as reentrancy bugs.

2012 ACM Subject Classification Theory of computation → Semantics and reasoning

Keywords and phrases game semantics, symbolic execution, higher-order open programs

Digital Object Identifier 10.4230/LIPIcs.CVIT.2016.23

1 Introduction

Two important challenges in program verification are state-space explosion and the environ-

ment problem. The former refers to the need to investigate infeasibly many states, while the

latter concerns cases where the code depends on an environment that is not available for

analysis. State-space explosion has been approached with a range of techniques, which have

led to verification tools being nowadays routinely used on industrial-scale code (e.g. [10, 5, 7]).

The environment problem, however, remains largely unanswered: verification techniques

often require the whole code to be present for the analysis and, in particular, cannot analyse

components like libraries where parts of the code are missing (e.g. the client using the library).

This problem is particularly acute in higher-order programs, where the interaction between a

program and its environment can be intricate and e.g. involve callbacks or reentrant calls. In

this paper we address this latter problem by combining game semantics, a semantics theory

for higher-order programs, with symbolic execution, a technique that uses symbolic values to

explore multiple execution paths of a program.

To showcase the importance and challenges of the environment problem, following is a

simple example of a library written in a sugared version of HOLi, the vehicle language of this

paper. The example is a simplified implementation of “The DAO” smart contract, a failed

decentralised autonomous organisation on the Ethereum blockchain platform [12]. As with

1 import send:(int → unit)

2 int balance := 100;

3

4 public withdraw (m:int) :(unit) =

5 if (not (! balance < m)) then

6 send(m);

7 balance := !balance - m;

8 assert(not(! balance < 0))

9 else ();

libraries, the challenge in analysing smart

contracts is that the client code is not

available. We must thus generate all

possible contexts in which the contract

can be called. In this case, the error is

caused by a reentrant call from the send()

method, which is provided by the envir-

onment. When this method is called, the

environment takes control and is allowed to

call any method in the library. If a client were to call withdraw() within its send() method,

© Yu-Yang Lin, Nikos Tzevelekos;
licensed under Creative Commons License CC-BY

42nd Conference on Very Important Topics (CVIT 2016).
Editors: John Q. Open and Joan R. Access; Article No. 23; pp. 23:1–23:41

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

ar
X

iv
:2

00
2.

09
11

5v
1

 [
cs

.P
L

]
 2

1
Fe

b
20

20
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Queen Mary Research Online

https://core.ac.uk/display/326030165?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.4230/LIPIcs.CVIT.2016.23
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

23:2 Symbolic Execution Game Semantics

the recursive call would drain all the funds available, which is simulated in this example by a

negative balance. This happens because the method is manipulating a global state, and is

updating it after the external call. We can see that an analysis capturing this error would

need to be able to predict an intricate environment behaviour. Moreover, such an analysis

should ideally only predict realisable environment behaviours.

Symbolic execution [34, 13, 19] explores all paths of a program using symbolic values

instead of concrete input values. Each symbolic path holds a path condition (a SAT formula)

that is satisfiable if and only if the path can be concretely executed. While the resulting

analysis is unbounded in general, by restricting our focus to bounded paths we can soundly

catch errors, or affirm the absence thereof up to the used bound. Game semantics [2, 14],

on the other hand, models higher-order program phrases in isolation as 2-player games:

sequences of computational moves (method calls and returns) between the program and

its hypothetical environment. The power of the technique lies in its use of combinatorial

conditions to precisely allow those game plays that can be realised by including the program

in an actual environment. Moreover, the theory can be formulated operationally in terms

of a trace semantics for open terms [18, 21, 16] which, in turn, lends itself to a symbolic

representation. The latter yields a symbolic execution technique that is sound and complete

in the following sense: given an open program, its symbolic traces match its concrete traces,

which match its realisable traces in some environment.

Returning to the DAO example, we can model the ensuing interaction as a sequence of

moves, alternating between the environment and the library. Any finite sequence of moves

(that leads to an assertion violation) is a trace defining a counterexample. Running the

example in HOLiK, our implementation of the symbolic semantics in the K Framework [33],

the following minimal symbolic trace is automatically found:

call〈withdraw, x1〉 · call〈send, x1〉 · call〈withdraw, x2〉
· call〈send, x2〉 · ret〈send, ()〉 · ret〈withdraw, ()〉 · ret〈send, ()〉

where x1 is the original call parameter, and x2 is the parameter for the reentrant call,

satisfiable with values x1 = 100 and x2 = 1. A fix would be to swap line 6 and 7, to update

internal state before passing control.

In Appendix A we look at a few more examples of libraries that exhibit errors due to

high-order behaviours. We provide three examples: a file lock example, a double deallocation

example, and an unsafe implementation of flat-combining.

Overall, this paper contributes a novel symbolic execution technique based on game

semantics to precisely model the behaviour of higher-order stateful programs. Specifically:

We present a symbolic trace semantics for higher-order libraries that captures the behaviour

of an unknown environment, and prove it sound and complete: i.e. it produces no spurious

error traces, and is able to produce the complete execution tree of any library. By

bounding the depth of nested calls and the insistence of the environment in calling library

methods, we derive a sound and bounded-complete technique to check higher-order libraries

for errors. We implement the latter in the K semantical framework [33] to produce a

sound and bounded-complete tool for higher-order libraries as a proof of concept. We test

our implementation with benchmarks adapted from the literature. Some material has been

delegated to an Appendix.

2 A Language for Higher-Order Libraries: HOLi

We introduce HOLi, a language for higher-order libraries which define methods to be used

by an external client, and in turn require external methods (provided by the client). We

Lin et al. 23:3

Libraries L ::= B | abstract m;L
Blocks B ::= ε | public m = λx.M ;B

| m = λx.M ;B | global r := i;B
| global r := λx.M ;B

Clients C ::= L; main = M

Terms M ::= m | i | () | x | λx.M | r := M | !r
|M ⊕M | 〈M,M〉 | π1M | π2M

|MM | if M then M else M
| letrec x = λx.M in M
| let x = M in M | assert(M)

() : unit i : int
x ∈ Varsθ
x : θ

m ∈ Methsθ,θ′

m : θ → θ′
M,M ′ : int
M ⊕M ′ : int

M : int M1,M0 : θ
if M then M1 else M0 : θ

M : θ1 M ′ : θ2

〈M,M ′〉 : θ1 × θ2

〈M,M ′〉 : θ1 × θ2

πi〈M,M ′〉 : θi
r ∈ Refsθ

!r : θ
r ∈ Refsθ M : θ
r := M : unit

M ′ : θ → θ′ M : θ
M ′ M : θ′

M : θ′ x : θ
λx.M : θ → θ′

x,M : θ M ′ : θ′

let x = M in M ′ : θ′
x, λy.M : θ → θ′′ M ′ : θ′

letrec x = λy.M in M ′ : θ′
M : int

assert(M) : unit

Figure 1 Syntax and typing rules of HOLi.

give in HOLi an operational semantics for terms that integrates a counter for the depth of

nested calls that a program phrase can make. We then extend this counting semantics to

open terms by means of a trace semantics. We show that the trace semantics of libraries is

sound and complete for reachability of errors under any external client.

2.1 Syntax and operational semantics

A library in HOLi is a collection of typed higher-order methods. A client is simply a library

with a main body. Types are given by the grammar:

θ ::= unit | int | θ × θ | θ → θ

We use countably infinite sets Meths, Refs and Vars for method, global reference and

variable names, ranged over by m, r and x respectively, and variants thereof; while i is for

ranging over the integers. We use ⊕ to range over a set of binary integer operations, which

we leave unspecified. Each set of names is typed, that is, it can be expressed as a disjoint

union as follows: Meths =
⊎
θ,θ′ Methsθ,θ′ , Refs =

⊎
θ 6=θ1×θ2

Refsθ, Vars =
⊎
θ Varsθ.

The full syntax and typing rules are given in Figure 1. Thus, a library consists of

abstract method declarations, followed by blocks of public and private method and reference

definitions. A method is considered private unless it is declared public. Each public/private

method and reference is defined once. Abstract methods are not given definitions: these

methods are external to the library. Public, private and abstract methods are all disjoint.

Libraries are well typed if all their method and reference definitions are well typed (e.g.

public m = λx.M is well typed if m : θ and λx.M : θ are both valid for the same type θ)

and only mention methods and references that are defined or abstract. A client L; main = M

is well typed if M : unit is valid and L; m = λx.M is well typed for some fresh x,m. A

library/client is open if it contains abstract methods. This is different to open/closed terms:

we call a term open if it contains free variables.

I Remark 1. By typing variable, reference and method names, we do not need to provide

a context in typing judgements. Note that the references we use are of non-product type

and, more importantly, global to the library: a term can use references but not create them

locally or pass them as arguments (we discuss how to include such references in Appendix C).

C V I T 2 0 1 6

23:4 Symbolic Execution Game Semantics

(E[let x = v in M], R, S, k)→ (E[M{v/x}], R, S, k) (E[πj〈v1, v2〉], R, S, k)→ (E[vj], R, S, k)
(E[r := v], R, S, k)→ (E[()], R, S[r 7→ v], k) (E[!r], R, S, k)→ (E[S(r)], R, S, k)
(E[if i then M1 else M0], R, S, k)→ (E[Mj], R, S, k) (1) (E[i1 ⊕ i2], R, S, k)→ (E[i], R, S, k) (2)
(E[λx.M], R, S, k)→ (E[m], R] {m 7→ λx.M}, S, k) (E[assert(i)], R, S, k)→ (E[()], R, S, k) (3)
(E[mv], R, S, k)→ (E[LM{v/x}M], R, S, k + 1) (4) (E[LvM], R, S, k + 1)→ (E[v], R, S, k)
(E[letrec f = λx.M in M ′], R, S, k)→ (E[M ′{m/f}], R] {m 7→ λx.M{m/f}}, S, k)
Conditions: (1) : j = 1 iff i 6= 0, (2) : i = i1 ⊕ i2, (3) : i 6= 0, (4) : R(m) = λx.M.

Values v ::= m | i | () | 〈v, v〉 Terms (extended) M ::= · · · | LMM

Eval.Contexts E ::= • | assert(E) | r := E | E ⊕M | v ⊕ E | 〈E,M〉 | 〈v,E〉 | πjE
| mE | let x = E in M | if E then M else M | LEM

(abstract m;L,R, S,P,A) bld−−→ (L,R, S,P,A] {m})
(public m = λx.M ;B,R, S,P,A) bld−−→ (B,R] {m 7→ λx.M}, S,P] {m},A)

(m = λx.M ;B,R, S,P,A) bld−−→ (B,R] {m 7→ λx.M}, S,P,A)
(global r := i;B,R, S,P,A) bld−−→ (B,R, S] {r 7→ i},P,A)

(global r := λx.M ;B,R, S,P,A) bld−−→ (B,R] {m 7→ λx.M}, S] {r 7→ m},P,A)

Figure 2 Operational semantics (top); values and evaluation contexts (mid); library build (bottom).

I Example 2. The DAO-attack example from the Introduction can be written in HOLi as:

abstract send; global bal := 100;
public wdraw =

λx. if !bal ≥ x then (send(x); bal := !bal − x; assert(!bal ≥ 0)) else ()

where send,wdraw ∈ Methsint,unit, bal ∈ Refsint, and M ;M ′ stands for let = M in M ′.

A library contains public methods that can be called by a client. On the other hand,

a client contains a main body that can be executed. These two scenarios constitute the

operational semantics of HOLi. Both are based on evaluating (closed) terms, which we

define next. Term evaluation requires: the closed term being evaluated; method definitions,

provided by a method repository; reference values, provided by a store; and a call-depth

counter (a natural number). Since method application is the only source of infinite behaviour

in HOLi, bounding the depth of nested calls is enough to guarantee termination in program

analysis. Hence we provide a mechanism to keep track of call depth.

The operational semantics is given in Figure 2. The evaluation of terms (top part) involves

configurations of the form (M,R, S, k), where:

M is a closed term which may contain evaluation boxes, i.e. points inside a term where

a method call has been made and has not yet returned, and is taken from the syntax

extending the one of Figure 1 with the rule: M ::= · · · | LMM
R is a method repository, i.e. a partial map from method names to their bodies

S is a store, i.e. a partial map from reference names to their stored values

k is a counter, i.e. a natural number.

Most of the rules are standard, but it is worth noting that lambdas are not values themselves

but, rather, evaluate to method names that are freshly stored in the repository. Moreover,

Lin et al. 23:5

evaluation boxes interplay with the counter k in the semantics: they mark places where the

depth has increased because of a nested call. The penultimate line of rules in the operational

semantics keeps track of call depth, and illustrates the utility of evaluation boxes: making

a call increases the counter and leaves behind an evaluation box; returning form the call

removes the box and decreases the counter again.

A library L builds into a configuration of the form (ε,R, S,P,A), which includes its

public methods according to the rules in Figure 2 (bottom). More precisely, R and S are as

above, while P,A ⊆ Meths are (disjoint) sets of public and abstract method names. We say

that (a well typed) L builds to (ε,R, S,P,A) if (L, ∅, ∅, ∅, ∅) bld−−→
∗

(ε,R, S,P,A). If L builds

to (ε,R, S,P,A) then the client L; main = M builds to (M,R, S,P,A). Moreover, we can

link libraries to clients and evaluate them, as in the following definition.

I Definition 3. 1. Library L and client C are compatible if L builds to some (ε,R, S,P,A)
and C builds to some (M,R′, S′,P ′,A′) such that: P = A′ and A = P ′ (complementation);

dom(S)∩dom(S′) = ∅ (disjoint state); and dom(R)∩dom(R′) = ∅ (method ownership).

2. For a library L, we let L̂ be L with all its abstract method declarations and public
keywords removed; and similarly for Ĉ. Given compatible library L and client C, we let

their composition be the client: L;C = L̂; Ĉ.

3. Given compatible L,C, the semantics of L;C is:

JL;CK = {ρ | L;C builds to (M,R, S, ∅, ∅) ∧ (M,R, S, 0)→∗ ρ}

We say that JL;CK fails if it contains some (E[assert(0)], · · ·).

I Example 4. To illustrate how libraries and clients are used, consider the DAO example

again as a library LDAO. We can define a client Catk:

abstract wdraw; global wlet := 0;
public send = λx.wlet := !wlet+ x; if !wlet < 100 then wdraw(x) else ();
main = wdraw(1)

to produce the following linked client LDAO;Catk (modulo re-ordering):

global bal := 100; global wlet := 0;
wdraw = λx. if !bal ≥ x then (send(x); bal := !bal − x; assert(!bal > 0)) else ();
public send = λx.wlet := !wlet+ x; if !wlet < 100 then wdraw(x) else ();
main = wdraw(1)

We can see how LDAO is vulnerable to an attacker such as Catk after linking them. The aim is

thus to use bounded analysis to find counterexamples that define clients such as this one.

2.2 Trace Semantics

The semantics we defined only allows us to evaluate terms, and only so long as their method

applications only involve methods that can be found in the repository R. We next extend

this semantics to encompass libraries and terms that can also call abstract methods. The

approach we follow is based on operational game semantics [18, 21, 16] and in particular the

semantics is given by means of traces of method calls and returns (called moves in game

semantics jargon), between the library and its client. In between such moves, the semantics

evolves as the operational semantics we already saw.

C V I T 2 0 1 6

23:6 Symbolic Execution Game Semantics

(INT)
(M,R, S, k)→ (M ′, R′, S′, k′)

(E ,M,R, S,P,A, k)p → (E ,M ′, R′, S′,P,A, k′)p

(PQ) (E , E[mv], R, S,P,A, k)p
call(m,v)−−−−−−→ ((m,E) :: E , 0, R, S,P ′,A, k)o

(OQ) (E , l, R, S,P,A, k)o
call(m,v)−−−−−−→ ((m, l + 1) :: E ,mv,R, S,P,A′, k)p if R(m) = λx.M

(PA) ((m, l) :: E , v, R, S,P,A, k)p
ret(m,v)−−−−−→ (E , l, R, S,P ′,A, k)o

(OA) ((m,E) :: E , l, R, S,P,A, k)o
ret(m,v)−−−−−→ (E , E[v], R,P,A′, k)p

(PC) : m ∈ A∧P ′ = P ∪ (Meths(v)∩ dom(R)), (OC) : m ∈ P ∧A′ = A∪ (Meths(v) \ dom(R)).

Figure 3 Trace semantics rules. Rules (PQ), (PA) assume the condition (PC), and similarly for

(OQ),(OA) and (OC). Meths(v) contains all method names appearing in v. INT stands for internal

transition; PQ for P -question (i.e. call); PA for P -answer (i.e. return). Similarly for OQ and OA.

To maintain a terminating analysis, we need to keep track of an added source of infinite

execution, namely endless consecutive calls from an external component: a library will never

terminate if its client keeps calling its methods. This leads us to a semantics with two

counters, k and l, where k keeps track of internal nested method calls and l records the

number of consecutive calls made from the external component. This counter l is orthogonal

to k and is refreshed at every call to the external context.

When computing the semantics of a library, the library and its methods are the Player (P)

of the computation game, while the (intended) client is the Opponent (O). As the semantics

is given in absence of an actual client, O actually represents every possible client. When

computing the semantics of a client, the roles are reversed. In both cases, though, the same

sets of rules is used and there is no need to specify who is P and O in the semantics.

The trace semantics uses game configurations, which are divided into P -configurations

and O-configurations given respectively as:

(E ,M,R, S,P,A, k)p and (E , l, R, S,P,A, k)o .

In a P -configuration, a term M is being evaluated – this is P ’s role. In an O-configuration,

an external call has been made and the semantics waits for O to either return that call, or

reply itself with another call. The components M,R, S,P,A, k, l are as above, while E is an

evaluation stack :

E ::= ε | (m,E) :: E | (m, l) :: E

which keeps track of the computations that are on hold due to external calls. The trace

semantics is generated by the rules given in Figure 3.

The formulation follows closely the operational game semantics technique. For example,

from a P -configuration (E ,M,R, S,P,A, k)p, there are 3 options:

1. If M can make an internal reduction, i.e. in the operational semantics in context (R,S, k),
then (E ,M,R, S,P,A, k)p performs this reduction (via (INT)).

2. If M is stuck at a method application for a method that is not in the repository R, then

that method must be abstract (i.e. external) and needs to be called externally. This is

achieved be issuing a call move and moving to an O-configuration (via (PQ)). The current

evaluation context and the called method name are stored, in order to resume once the

call is returned (via (OA)).

3. If M is a value and the evaluation stack is non-empty, then P has completed a method

call that was issued by O (via (OQ)) and can now return (via (PA)).

Lin et al. 23:7

On the other hand, from an O-configuration (E , l, R, S,P,A, k)o, there are 2 options:

1. either return the last open method call (made by P) via (OA), or

2. call one of the public methods (from P) using (OQ).

The role of conditions (PC) and (OC) is to ensure that each player calls the methods

owned by the other, or returns their own, and update the sets of public and abstract names

according to the method names passed inside v.

I Remark 5. The novelty of Figure 3 with respect to previous work on trace semantics for

open libraries (e.g. [26]) lies in the use of l in order to bound the ability of O to ask repeated

questions for finite analysis. The way rules (OQ) and (PA) are designed is such that any

sequence of consecutive O-calls and P -returns has maximum length 2n if we bound l to n

(i.e. l ≤ n), as each such pair of moves increases l by 1. On the other hand, each P -call

supplies to O a fresh counter (l = 0) to be used in contiguous (OQ)-(PA)’s. Thus, l can be

seen as keeping track of the insistence of O in calling.

Finally, we can define the trace semantics of libraries.

I Definition 6. Let L be a library. The semantics of L is :

JLK = {(τ, ρ) | (L, ∅, ∅, ∅, ∅) bld−−→∗ (ε,R, S,P,A) ∧ (ε, 0, R, S,P,A, 0)o
τ−→ ρ}

We say that JLK fails if it contains some (τ, (E , E[assert(0)], · · ·)).

I Example 7. Consider the DAO example as library LDAO once again. Evaluating the game

semantics we know the following sequence is in JLDAOK. For economy, we hide R,P,A and

show only the top of the stack in the configurations. We also use m(v)? and m(v)! for calls

and returns. We write Si for the store [bal 7→ i].

(ε, 2, S100, 0)o
wdraw(42)?−−−−−−−→ ((wdraw, 1), wdraw(42), S100, 0)p

−→∗ ((wdraw, 1), E[send(42)], S100, 1)p
send(42)?−−−−−−→ ((send,E), 2, S100, 1)o

wdraw(100)?−−−−−−−−→ ((wdraw, 1), wdraw(100), S100, 1)p

−→∗ ((wdraw, 1), E′[send(100)], S100, 2)p
send(100)?−−−−−−−→ ((send,E), 2, S100, 2)o

send(())!−−−−−−→ ((wdraw, 1), E′[()], S100, 2)p −→∗ ((wdraw, 1), (), S0, 2)p
wdraw(())!−−−−−−−→ ((send,E), 1, S0, 2)o

send(())!−−−−−−→ ((wdraw, 1), E[()], S0, 1)p
−→∗ ((wdraw, 1), E[assert(−42 ≥ 0)], S−42, 1)p

This transition sequence is an instance of the symbolic trace provided in the Introduction.

Here, a call is made with parameter 42, and a reentrant call with 100, which leads to the

assertion violation assert(−42 ≥ 0). Note that a bound of k ≤ 2 is sufficient to find this

assertion violation.

We next establish two focal properties of the trace semantics: bounding k and l ensures

termination (Theorem 8, see Appendix F), and that it is sound and complete with respect to

library errors (Theorem 9).

I Theorem 8 (Boundedness). For any game configuration ρ, provided an upper bound k0
and l0 for call counters k and l, the labelled transition system starting from ρ is strongly

normalising.

C V I T 2 0 1 6

23:8 Symbolic Execution Game Semantics

I Theorem 9 (S and C). We call a client good if it contains no assertions. For any library

L, the following are equivalent:

1. JLK fails (reaches an assertion violation)

2. there exists a good client C such that JL;CK fails

Proof. 1 to 2: Suppose now that (τ, ρ) ∈ JLK for some trace τ and failed ρ. By Theorem 11,

we have that there is a good client C realising the trace τ . So then, by Lemma 10, we have

that JL;CK fails.

2 to 1: Suppose JL;CK fails for some good client C. Then, by Lemma 10, there are τ, ρ, ρ′

such that (τ, ρ) ∈ JLK, (τ, ρ′) ∈ JCK, and ρ is failed (i.e. is of the shape (E , E[assert(0)], · · ·)).
J

The latter relies on an auxiliary lemma (well-composing of libraries and clients, see

Appendix D), and a definability result akin to game semantics definability arguments (see

Appendix D.5).

I Lemma 10 (L-C Compositionality). For any library L and compatible good client C, JL;CK
fails if and only if there exist (τ1, ρ1) ∈ JLK and (τ2, ρ2) ∈ JCK such that τ1 = τ2 and

ρ1 = (E , E[assert(0)], · · ·).

I Theorem 11 (Definability). Let L be a library and (τ, ρ) ∈ JLK. There is a good client C

compatible with L such that (τ, ρ′) ∈ JCK for some ρ′.

3 Symbolic Semantics

Checking libraries for errors using the semantics of the previous section is infeasible, even when

the traces are bounded in length, as ground values are concretely represented. In particular,

integer values provided by O as arguments to calls or return values range over all integers.

The typical way to mitigate this limitation is to execute the semantics symbolically, using

symbolic variables for integers and path conditions to bind these variables to plausible values.

We use this technique to devise a symbolic version of the trace semantics, corresponding to a

symbolic execution which will enable us in the next sections to introduce a practical method

and implementation for checking libraries for errors. The symbolic semantics is fully formal,

closely following the developments of the previous section, and allows us to prove a strong

form of correspondence between concrete and symbolic semantics (a bisimulation).

Apart from integers, another class of concrete values provided by O are method names.

For them, the semantics we defined is symbolic by design: all method names played by O are

going to be fresh and therefore picking just one of those fresh choices is sufficient (formally

speaking, the semantics lives in nominal sets [32]). The reason why using fresh names for

methods played by O is sound is that the effect of O calling a higher-order public method

with an argument m (where m is another public method), and calling λx.mx, is equivalent

as far as reachability of an error is concerned. In the latter case, the client semantics would

create a fresh name m′, bind it to λx.mx, and pass m′ as an argument. We therefore just

focus on this latter case.

The symbolic semantics involves terms that may contain symbolic values for integers. We

therefore extend the syntax for values and terms to include such values, and abuse notation

by continuing to use M to range over them. We let SInts be a set of symbolic integers

ranged over by κ and variants, and define:

Sym.Values ṽ ::= m | i | () | κ | ṽ ⊕ ṽ | 〈ṽ, ṽ〉

Lin et al. 23:9

(ĨNT)
(M,R, σ, pc, k)→s (M ′, R′, σ, pc′, k′)

(E ,M,R,P,A, σ, pc, k)p →s (E ,M ′, R′,P,A, σ′, pc′, k′)p

(P̃Q) (E , E[mṽ], R,P,A, σ, pc, k)p
call(m,ṽ)−−−−−−→s ((m,E) :: E , 0, R,P ′,A, σ, k)o

(ÕQ) (E , l, R,P,A, σ, pc, k)o
call(m,ṽ)−−−−−−→s ((m, l + 1) :: E ,mṽ, R,P,A′, σ, pc, k)p

(P̃A) ((m, l) :: E , ṽ, R,P,A, σ, pc, k)p
ret(m,ṽ)−−−−−→s (E , l, R,P ′,A, σ, pc, k)o

(ÕA) ((m,E) :: E , l, R,P,A, σ, pc, k)o
ret(m,ṽ)−−−−−→s (E , E[ṽ], R,P,A′, σ, pc, k)p

(P̃C) m ∈ A and P ′ = P ∪ (Meths(ṽ) ∩ dom(R)).

(ÕC) m ∈ P and (ṽ′,A′) ∈ symval(θ,A) where θ is the expected type of ṽ. Moreover:

symval(θ,A) =

{((),A)} if θ = unit

{(κ,A] {κ}) | κ is fresh in dom(σ)] A} if θ = int

{(m,A] {m}) | m is fresh in dom(R)] A} if θ = θ1 → θ2

{(〈ṽ1, ṽ2〉,A2) | (ṽ1,A1) ∈ symval(θ1,A) if θ = θ1 × θ2

(ṽ2,A2) ∈ symval(θ2,A1)}
Figure 4 Symbolic trace semantics rules. Rules (P̃Q), (P̃A) assume the condition (P̃C), and

similarly for (ÕQ),(ÕA) and (ÕC).

Sym.Terms M ::= · · · | κ

where, in ṽ ⊕ ṽ, not both ṽ can be integers. We moreover use a symbolic environment to

store symbolic values for references, but also to keep track of arithmetic performed with

symbolic integers. More precisely, we let σ be a finite partial map from the set SInts ∪ Refs
to symbolic values. Finally, we use pc to range over program conditions, which will be

quantifier-free first-order formulas with variables taken from SInts, and with >,⊥ denoting

true and false respectively.

The semantics for closed symbolic terms involves configurations of the form (M,R, σ, pc, k).
Its rules include copies of those from Figure 1 (top) where the pc and σ are simply carried

over. For example:

(E[λx.M], R, σ, pc, k)→s (E[m], R] {m 7→ λx.M}, σ, pc, k)

where m is fresh. On the other hand, the following rules directly involve symbolic reasoning:

(E[assert(κ)], R, σ, pc, k)→s (E[assert(0)], σ, pc ∧ (κ = 0), k)
(E[assert(κ)], R, σ, pc, k)→s (E[()], R, σ, pc ∧ (κ 6= 0), k)
(E[!r], R, σ, pc, k)→s (E[σ(r)], R, σ, pc, k)
(E[r := ṽ], R, σ, pc, k)→s (E[()], R, σ[r 7→ ṽ], pc, k)
(E[ṽ1 ⊕ ṽ2], R, σ, pc, k)→s (E[κ], R, σ] {κ 7→ ṽ1 ⊕ ṽ2}, pc, k) where κ is fresh

(E[if κ then M1 else M0], R, σ, pc, k)→s (E[M0], R, σ, pc ∧ (κ = 0), k)
(E[if κ then M1 else M0], R, σ, pc, k)→s (E[M1], R, σ, pc ∧ (κ 6= 0), k)

and where ṽ1 ⊕ ṽ2 is a symbolic value (for ii ⊕ i2 the rule from Figure 1 applies).

We now extend the symbolic setting to the trace semantics. We define symbolic configur-

ations for P and O respectively as:

(E ,M,R,P,A, σ, pc, k)p (E , l, R,P,A, σ, pc, k)o

C V I T 2 0 1 6

23:10 Symbolic Execution Game Semantics

with evaluation stack E , proponent term M , counters k, l ∈ N, method repository R, public

method name set P, σ and pc as previously. The abstract name set A is now a finite subset

of Meths ∪ SInts, as we also need to keep track of the symbolic integers introduced by

O (in order to be able to introduce fresh such names). The rules for the symbolic trace

semantics are given in Figure 4. Note that O always refreshes names it passes. This is a

sound overapproximation of all names passed for the sake of analysis.

Similarly to Definition 6, we can define the symbolic semantics of libraries.

I Definition 12. Given library L, the symbolic semantics of L is:

JLKs = {(τ, ρ) |(L, ∅, ∅, ∅, ∅) bld−−→∗ (ε,R, S,P,A)

∧ (ε, 0, R,P,A, S,>, 0)o
τ−→s ρ ∧ ∃M.M � ρ(σ)◦ ∧ ρ(pc)}

where ρ(χ) is component χ in configuration ρ. We say that JLKs fails if it contains some

(τ, (E , E[assert(0)], · · ·)).

The symbolic rules follow those of the concrete semantics, the biggest change being the

treatment of symbolic values played by O. Condition (ÕC) stipulates that O plays distinct

fresh symbolic integers as well as fresh method names, in each appropriate position in ṽ, and

all these names are included in the set A.

I Example 13. As with Example 7, we consider the DAO attack. Running the symbolic

semantics, we find the following minimal class of errors. We write σṽ for a symbolic

environment [bal 7→ ṽ].

(ε, 2, σ100, k0)o
wdraw(κ1)?−−−−−−−−→ ((wdraw, 1), wdraw(κ1), σ100, 2)p

−→∗ ((wdraw, 1), E[send(κ1)], σ100, 1)p
send(κ1)?−−−−−−→ ((send,E), 2, σ100, 1)o

wdraw(κ2)?−−−−−−−−→ ((wdraw, 1), wdraw(κ2), σ100, 1)p

−→∗ ((wdraw, 1), E′[send(κ2)], σ100, 0)p
send(κ2)?−−−−−−→ ((send,E), 2, σ100, 0)o

send(())!−−−−−−→ ((wdraw, 1), E′[()], σ100, 0)p

−→∗ ((wdraw, 1), (), σ100−κ2 , 0)p
wdraw(())!−−−−−−−→ ((send,E), 1, σ100−κ2 , 0)o

send(())!−−−−−−→ ((wdraw, 1), E[()], σ100−κ2 , 1)p
−→∗ ((wdraw, 1), E[assert(!bal ≥ 0)], σ100−κ2−κ1 , 1)p

For this to be a valid error, we require (κ1, κ2 ≤ 100) ∧ (100− κ2 − κ1 < 0) to be satisfiable.

Taking assignment {κ1 7→ 100, κ2 7→ 1}, we show the path is valid.

3.1 Soundness

The main result of this section is establishing the soundness of the symbolic semantics: a

trace and a specific configuration can be achieved symbolically iff they can be achieved

concretely as well. In fact, we will need to quantify this statement as, by construction, the

symbolic semantics requires O to always place fresh method names, whereas in the concrete

semantics O is given the freedom to play old names as well. What we show is that the

symbolic semantics corresponds (via bisimilarity) to a restriction of the concrete semantics

where O plays fresh names only. This restriction is sound, in the sense that it is sufficient for

identifying when a configuration can fail. We make this precise below.

Lin et al. 23:11

A model M is a finite partial map from symbolic integers to concrete integers. Given

such anM and a formula φ, we defineM |= φ using a standard first-order logic interpretation

with integers and arithmetic operators (in particular, we require that all symbolic integers in

φ are in the domain of M). Moreover, for any symbolic term M (or trace, move, etc.), we

denote by M{M} the concrete term we obtain by substituting any symbolic integer κ of M

with its corresponding concrete integer M(κ). Finally, given a symbolic environment σ, we

define its formula representation σ◦ recursively by:

∅◦ = >, (σ] {r 7→ v})◦ = σ◦, (σ] {κ 7→ v})◦ = σ◦ ∧ (κ = v).

We now define notions for equivalence between symbolic and concrete configurations.

Let M be a model. For any concrete configuration ρ = (E , χ,R, S,P,A, k) and symbolic

configuration ρs = (E ′, χ′, R′,P ′,A′, σ, pc, k′), we say they are equivalent in M, written

ρ =M ρs, if:

(E , χ,R) = (E ′, χ′, R′){M},P = P ′,A = A′ ∩ Meths and S = (σ � Refs){M};
dom(M) = (A′ ∪ dom(σ)) ∩ SInts and M � pc ∧ σ◦.

The notion of equivalence we require between concrete configurations and their symbolic

counterparts is behavioural equivalence, modulo O playing fresh names.

More precisely, a transition ρ
χ−→ ρ′ is called O-refreshing if, when ρ is an O-configuration

and χ = call/ret(m, v) then all names in v are fresh and distinct. A finite set R with

elements of the form (ρ,M, ρs) is a bisimulation if, whenever (ρ,M, ρs) ∈ R, written

ρRM ρs then ρ =M ρs and, using χ to range over moves and ε (i.e. no move):

if ρ
χ−→ ρ′ is O-refreshing then there exists M′ ⊇ M such that ρs

χs−→s ρ
′
s, with χ =

χs{M′}, and ρ′RM′ρ′s;
if ρs

χ−→s ρ
′
s then there exists M′ ⊇M such that ρ

χ{M′}−−−−→G ρ′ and ρ′RM′ρ′s.

We let ∼ be the largest bisimulation relation: ρ ∼M ρs iff there is bisimulation R such that

ρRMρs.
We can show that concrete and symbolic configurations are bisimilar.

I Lemma 14. Given ρ, ρs a concrete and symbolic configuration respectively, andM a model

such that ρ =M (ρ′), we have ρ ∼M ρs.

Proof (sketch). We show that {(ρ,M, ρ′) | ρ =M ρ′} is a bisimulation. J

Next, we argue that O-refreshing transitions suffice for examining failure of concrete

configurations. Indeed, suppose τ is a trace leading to fail, and where O plays an old name

m in argument position in a given move. Then, τ can be simulated by a trace τ ′ that uses

a fresh m′ in place of m. If m is an O-name, we obtain τ ′ from τ by following exactly the

same transitions, only that some P -calls to m are replaced by calls to m′ (and accordingly

for returns). If, on the other hand, m is a P -name, then the simulation performed by τ ′

is somewhat more elaborate: some internal calls to m will be replaced by P -calls to m′,

immediately followed by the required calls to m (and dually for returns).

I Lemma 15 (O-Refreshing). Let ρ be a concrete configuration. Then, ρ fails iff it fails using

only O-refreshing transitions.

With the above, we can prove soundness.

I Theorem 16 (Soundness). For any L, JLK fails iff JLKs fails.

Proof. Lemma 14 implies that JLKs fails iff JLK fails with O-refreshing transitions, which in

turns occurs iff JLK fails, by Lemma 15. J

C V I T 2 0 1 6

23:12 Symbolic Execution Game Semantics

3.2 Bounded Analysis for Libraries

Definition 12 states how the symbolic trace semantics can be used to independently check

libraries for errors. As with the trace semantics in Definition 6, this is strongly normalising

when given an upper limit to the call counters. As such, JLKs with counter bounds k0, l0 ∈ N,

for k, l respectively, defines a finite set (modulo selecting of fresh names) of reachable valid

configurations within k ≤ k0, l ≤ l0, where validity is defined by the satisfiability of the

symbolic environment σ and the path condition pc of the configuration reached. By virtue of

Theorems 14 and 9, every valid reachable configuration that is failed (evaluates an invalid

assertion) is realisable by some client. And viceversa.

Given a library L, taking FJLKs to be all reachable final configurations, we have the

exhaustive set of paths L can reach. In FJLKs, every failed configuration (τ, ρ), i.e. such

that ρ holds a term E[assert(0)], defines a reachable assertion violation, where τ is a true

counterexample. Hence, to check L for assertion violations it suffices to produce a finite

representation of the set FJLKs. One approach is to bound the depth of analysis by setting an

upper bound to the call counters, using a name generator to make deterministic the creation

of fresh names, and then exhaustively search all final configurations for failed elements. In

the following section we implement this routine and test it.

4 Implementation and Experiments

We implemented the syntax and symbolic trace semantics (symbolic games) for HOLi in

the K semantic framework [33] as a proof of concept, and tested it on 70 sample libraries.1

Using K’s option to exhaustively expand all transitions, K is able to build a closure of all

applicable rules. By providing a bound on the call counters, we produce a finite set of all

reachable valid symbolic configurations up to the given depth (equivalent to finding every

valid ρ ∈ FJLKs) which thus implements our bounded symbolic execution.

We wrote and adapted examples of coding errors into a set of 70 sample libraries written

in HOLi, totalling 6,510 lines of code (LoC). Examples adapted from literature include:

reentrancy bugs from smart contracts [3, 24]; variations of the “awkward example” [31];

various programs from the MoCHi benchmark [36]; and simple implementations related to

concurrent programming (e.g. flat combining and race conditions) where errors may occur

in a single thread due to higher-order behaviour. We also combined several libraries, by

concatenating refactored method and reference definitions, to generate larger libraries that

are harder to solve. Combined files range from 150 to 520 LoC.

We ran HOLiK on all sample libraries, lexicographically increasing the bounds from

k ≤ 2, l ≤ 1 to k ≤ 5, l ≤ 3 (totalling 78,120 LoC checked), with a timeout set to five minutes

per library. We start from k ≤ 2 because it provides the minimum nesting needed to observe

higher-order semantics. All experiments ran on an Ubuntu 19.04 machine with 16GB RAM,

Intel Core i7 3.40GHz CPU, with intermediate calls to Z3 to prune invalid configurations. Per

bound, the number of counterexamples found, the time taken in seconds, and the execution

status, i.e. whether it terminated or not, are recorded in Table 1.

We can observe that independently increasing the bounds for k and l causes exponential

growth in the total time taken, which is expected from symbolic execution. Note that the

time tends towards 21000 seconds because of the timeout set to 5 minutes for 70 programs.

The number of errors found also grows exponentially with respect to the increase in bounds,

1 The tool and its benchmarks can be found at: https://github.com/LaifsV1/HOLiK.

https://github.com/LaifsV1/HOLiK

Lin et al. 23:13

l ≤ 1 l ≤ 2 l ≤ 3

k ≤ 2 226/70/45 (555s) 5708/60/44 (4710s) 9656/3/23 (12471s)

k ≤ 3 1254/67/51 (1475s) 4092/27/18 (13482s) 4187/17/12 (16649s)

k ≤ 4 3392/63/48 (3180s) 3069/19/14 (15903s) 1335/12/10 (17765s)

k ≤ 5 3659/57/45 (4787s) 895/15/10 (16757s) 215/11/9 (17796s)

a/b/c (d) for a traces found in b successful runs taking d seconds in total

where c out of 59 unsafe files were found to have bugs, per bound.

59 of 59 unsafe files found to have bugs over the various bounds checked

Table 1 Table recording performance of HOLiK on our benchmarks

which can be explained by the exponential growth in paths. With bounds k ≤ 2 and l ≤ 1,

all 70 programs in our benchmark were successfully analysed, though not all minimal errors

were found until the bounds were increased further. Cumulatively, all unsafe programs in

our benchmark were correctly identified.

While the table may suggest that increasing bound for l is more beneficial than that

for k, the number of errors reported does not imply every trace is useful. For instance,

increasing the bound for l can lead to errors re-merging in a higher-order version, which

suggests potential gain from a partial order reduction. Overall, the k and l counters are

incomparable as they keep track of different behaviours. Finally, since HOLiK was able

to handle every file and correctly identified all unsafe files in the benchmark, we conclude

that HOLiK, as a proof of concept, captures the full range of behaviours in higher-order

libraries. Results suggest that the tool scales up to at least medium-sized programs (<1000

LoC), which is promising because real-world medium-size higher-order programs have been

proven infeasible to check with standard techniques (e.g. the DAO withdraw contract was

approximately 100 LoC).

5 Related Work

Game semantics techniques have been applied to program equivalence verification by reducing

program equivalence to language equivalence in a decidable automata class [15, 1]. Equivalence

tools can be used for reachability but, as they perform full verification, they can only cover

lower-order recursion-free language fragments. For example, the Coneqct [25] tool can verify

the simplified DAO attack, but cannot check higher-order or recursive functions (e.g. the

“file lock” and “flat combiner” examples), and operates on integers concretely. Close to our

approach is also Symbolic GameChecker [11], which performs symbolic model checking by

using a representation of games based on symbolic finite-state automata. The tool works

on recursion-free Idealized Algol with first-order functions, which supports only integer

references. On the other hand, it is complete (not bounded) on the fragment that it covers.

Besides games techniques, a recent line of work on verification of contracts in Racket

[28, 27] is the work closest to ours. Racket contracts exist in a higher-order setting similar to

ours, and generalise higher-order pre and post conditions, and thus specify safety. To verify

these, [28] defines a symbolic execution based on what they call “demonic context” in prior

work [39]. This either returns a symbolic value to a call, or performs a call to a known method

within some unknown context, thus approximating all the possible higher-order behaviours,

C V I T 2 0 1 6

23:14 Symbolic Execution Game Semantics

and is equivalent to the role the opponent plays in our games. In [27], the technique is

extended to handle state, and finitised for total verification. The approaches are notionally

similar to ours, since both amount to Symbolic Execution for an unknown environment. In

substance, the techniques are very different and in particular ours is based on a semantics

theory which allows us to obtain compositionality and definability results. On the other

hand, Racket contracts can be used for richer verification questions than assertion violations.

In terms of tool performance, we provide a comparison of the techniques in Appendix B.

Another relevant line of work is that of verifying programs in the Ethereum Platform.

Smart contracts call for techniques that handle the environment, with a focus on reentrancy.

Tools like Oyente [24] and Majan [29] use pre-defined patterns to find bugs in the transaction

order, but are not sound or complete. ReGuard [23] finds sound reentrancy bugs using a

fuzzing engine to generate random transactions to check with a reentrancy automaton. In

principle, it may detect reentrancy faster than symbolic execution (native execution is faster

[41]), but, is incomplete even in a bounded setting. More closely related to our approach,

[17] considers the possibility of an unknown contract c? calling a known contract c∗ at each

higher call level. This can be generalised in our game semantics as abstract and public names

calling each other, but their focus is on modelling reentrancy, while we handle the full range

of higher-order behaviours.

Like KLEE [4] and jCUTE [37], our implementation is a symbolic execution tool. These

are generally able to find first-order counterexamples, but are unable to produce higher-order

traces involving unknown code. Particularly, KLEE and jCUTE only handle symbolic calls

provided these can be concretised. This partially models the environment, but calls are often

impossible to concretise with libraries. The CBMC [6, 20] bounded model checking approach,

which also bounds function application to a fixed depth, partially handle calls to unknown

code by returning a non-deterministic value to such calls. This is equivalent to a game where

only move available to the opponent is to answer questions. This restriction allows CBMC

to find some bugs caused by interaction with the environment, but misses errors that arise

from transferring flow of control (e.g. reentrancy). The typical BMC approach also misses

bugs involving disclosure of names.

Higher-order model checking tools like MoCHi [36] are also related. MoCHi model checks

a pure subset of OCaml and is based on predicate abstraction and CEGAR and higher-order

recursion scheme model checkers. The modular approach [35] further extends this idea

with modular analysis that guesses refinement intersection types for each top-level function.

Although generally incomparable, HOLiK covers program features that MoCHi does not:

MoCHi does not handle references and support for open code is limited (from experiments,

and private communication with the authors).

6 Future Directions

Observing errors resurface deeper in the trace suggests the possibility of defining a partial

order for our semantics to obtain equivalence classes for configurations and thus eliminate

paths that involve known errors [30, 40]. Additionally, while k and l successfully bound

infinite behaviour, a notion of bounding can be arbitrarily chosen. In fact, while we chose to

directly bound the sources of infinite behaviour in method calls for simplicity of proofs and

implementation, the theory does not prevent the generalisation of k and l as a monotonic

cost function that bounds the semantics. It may also be worth considering the elimination of

bounds entirely for the sake of unbounded verification. For this, one direction is abstract

interpretation [9, 8], which amounts to defining overapproximations for values in our language

Lin et al. 23:15

to then attempt to compute a fixpoint for the range of values that assertions may take.

However, defining and using abstract domains that maintain enough precision to check higher-

order behaviours, such as reentrancy, is not a simple extension of the theory. Another direction,

similar to Coneqct [25], is to define a push-down system for our semantics. Particularly,

the approach in [25] is based on the decidability of reachability in fresh-register pushdown

automata, and would require overapproximations for methods and integers. As with abstract

interpretation, this would require defining abstract domains for methods and integers. While

methods could be approximated using a finite set of names, as with k-CFA [38], an extension

using integer abstract domains would need refinement to tackle reentrancy attacks. Finally,

MoCHi [36] shows that it is possible to use CEGAR and higher-order recursion schemes

for unbounded verification of higher-order programs. However, an extension of the MoCHi

approach to include references and open code is not obvious.

References

1 S. Abramsky, D. R. Ghica, L. Ong, and A. Murawski. Algorithmic game semantics and

component-based verification. In Proceedings of SAVBCS 2003: Specification and Verification

of Component-Based Systems, Workshop at ESEC/FASE 2003, pages 66–74, 2003. published

as Technical Report 03-11, Department of Computer Science, Iowa State University. URL:

http://www.cs.iastate.edu/~leavens/SAVBCS/2003/papers/SAVCBS03.pdf.

2 Samson Abramsky and Guy McCusker. Game semantics. In Ulrich Berger and Helmut

Schwichtenberg, editors, Computational Logic, pages 1–55, Berlin, Heidelberg, 1999. Springer

Berlin Heidelberg.

3 Nicola Atzei, Massimo Bartoletti, and Tiziana Cimoli. A survey of attacks on ethereum smart

contracts sok. In Proceedings of the 6th International Conference on Principles of Security

and Trust - Volume 10204, pages 164–186, New York, NY, USA, 2017. Springer-Verlag New

York, Inc. doi:10.1007/978-3-662-54455-6_8.

4 Cristian Cadar, Daniel Dunbar, and Dawson Engler. Klee: Unassisted and automatic generation

of high-coverage tests for complex systems programs. In Proceedings of the 8th USENIX

Conference on Operating Systems Design and Implementation, OSDI’08, pages 209–224,

Berkeley, CA, USA, 2008. USENIX Association. URL: http://dl.acm.org/citation.cfm?

id=1855741.1855756.

5 Cristiano Calcagno, Dino Distefano, Jérémy Dubreil, Dominik Gabi, Pieter Hooimeijer, Martino

Luca, Peter W. O’Hearn, Irene Papakonstantinou, Jim Purbrick, and Dulma Rodriguez. Moving

fast with software verification. In Klaus Havelund, Gerard J. Holzmann, and Rajeev Joshi,

editors, NASA Formal Methods - 7th International Symposium, NFM 2015, Pasadena, CA,

USA, April 27-29, 2015, Proceedings, volume 9058 of Lecture Notes in Computer Science,

pages 3–11. Springer, 2015.

6 Edmund M. Clarke, Daniel Kroening, and Flavio Lerda. A tool for checking ANSI-C programs.

In Kurt Jensen and Andreas Podelski, editors, Tools and Algorithms for the Construction

and Analysis of Systems, 10th International Conference, TACAS 2004, Proceedings, volume

2988 of Lecture Notes in Computer Science, pages 168–176. Springer, 2004. doi:10.1007/

978-3-540-24730-2_15.

7 Byron Cook, Kareem Khazem, Daniel Kroening, Serdar Tasiran, Michael Tautschnig, and

Mark R. Tuttle. Model checking boot code from AWS data centers. In Hana Chockler and

Georg Weissenbacher, editors, Computer Aided Verification - 30th International Conference,

CAV 2018, Held as Part of the Federated Logic Conference, FloC 2018, Oxford, UK, July

14-17, 2018, Proceedings, Part II, volume 10982 of Lecture Notes in Computer Science, pages

467–486. Springer, 2018.

8 Agostino Cortesi and Matteo Zanioli. Widening and narrowing operators for abstract

interpretation. Computer Languages, Systems & Structures, 37(1):24–42, 2011. doi:

10.1016/j.cl.2010.09.001.

C V I T 2 0 1 6

http://www.cs.iastate.edu/~leavens/SAVBCS/2003/papers/SAVCBS03.pdf
https://doi.org/10.1007/978-3-662-54455-6_8
http://dl.acm.org/citation.cfm?id=1855741.1855756
http://dl.acm.org/citation.cfm?id=1855741.1855756
https://doi.org/10.1007/978-3-540-24730-2_15
https://doi.org/10.1007/978-3-540-24730-2_15
https://doi.org/10.1016/j.cl.2010.09.001
https://doi.org/10.1016/j.cl.2010.09.001

23:16 Symbolic Execution Game Semantics

9 Patrick Cousot and Radhia Cousot. Abstract interpretation: A unified lattice model for

static analysis of programs by construction or approximation of fixpoints. In Robert M.

Graham, Michael A. Harrison, and Ravi Sethi, editors, Conference Record of the Fourth ACM

Symposium on Principles of Programming Languages, Los Angeles, California, USA, January

1977, pages 238–252. ACM, 1977. doi:10.1145/512950.512973.

10 Patrick Cousot, Radhia Cousot, Jérôme Feret, Laurent Mauborgne, Antoine Miné, and Xavier

Rival. Why does astrée scale up? Formal Methods in System Design, 35(3):229–264, 2009.

11 Aleksandar S. Dimovski. Program verification using symbolic game semantics. Theor. Comput.

Sci., 560:364–379, 2014. doi:10.1016/j.tcs.2014.01.016.

12 Quinn Dupont. Experiments in Algorithmic Governance: A history and ethnography of ” The

DAO, ” a failed Decentralized Autonomous Organization, chapter 8. Routledge, 01 2017.

13 William E. Howden. Symbolic testing and the dissect symbolic evaluation system. Software

Engineering, IEEE Transactions on, SE-3:266– 278, 08 1977. doi:10.1109/TSE.1977.231144.

14 Dan R. Ghica. Applications of game semantics: From program analysis to hardware synthesis.

In Proceedings of the 24th Annual IEEE Symposium on Logic in Computer Science, LICS

2009, 11-14 August 2009, Los Angeles, CA, USA, pages 17–26. IEEE Computer Society, 2009.

doi:10.1109/LICS.2009.26.

15 Dan R. Ghica and Guy McCusker. Reasoning about idealized ALGOL using regular languages.

In Ugo Montanari, José D. P. Rolim, and Emo Welzl, editors, Automata, Languages and

Programming, 27th International Colloquium, ICALP 2000, Geneva, Switzerland, July 9-15,

2000, Proceedings, volume 1853 of Lecture Notes in Computer Science, pages 103–115. Springer,

2000. doi:10.1007/3-540-45022-X_10.

16 Dan R. Ghica and Nikos Tzevelekos. A system-level game semantics. Electr. Notes Theor.

Comput. Sci., 286:191–211, 2012. doi:10.1016/j.entcs.2012.08.013.

17 Ilya Grishchenko, Matteo Maffei, and Clara Schneidewind. Foundations and tools for the

static analysis of ethereum smart contracts. In Hana Chockler and Georg Weissenbacher,

editors, Computer Aided Verification - 30th International Conference, CAV 2018, Held as Part

of the Federated Logic Conference, FloC 2018, Oxford, UK, July 14-17, 2018, Proceedings,

Part I, volume 10981 of Lecture Notes in Computer Science, pages 51–78. Springer, 2018.

doi:10.1007/978-3-319-96145-3_4.

18 A. Jeffrey and J. Rathke. A fully abstract may testing semantics for concurrent objects. In

Proceedings 17th Annual IEEE Symposium on Logic in Computer Science, pages 101–112, July

2002. doi:10.1109/LICS.2002.1029820.

19 James C. King. A new approach to program testing. SIGPLAN Not., 10(6):228–233, April

1975. URL: http://doi.acm.org/10.1145/390016.808444, doi:10.1145/390016.808444.

20 Daniel Kroening. The CBMC homepage. http://www.cprover.org/cbmc/, 2017. [Online;

accessed 13-Jun-2017].

21 James Laird. A fully abstract trace semantics for general references. In Lars Arge, Christian

Cachin, Tomasz Jurdzinski, and Andrzej Tarlecki, editors, Automata, Languages and Pro-

gramming, 34th International Colloquium, ICALP 2007, Wroclaw, Poland, July 9-13, 2007,

Proceedings, volume 4596 of Lecture Notes in Computer Science, pages 667–679. Springer, 2007.

doi:10.1007/978-3-540-73420-8_58.

22 Yu-Yang Lin and Nikos Tzevelekos. Symbolic execution game semantics. Extended version

with full proofs, Feb 2020. URL: https://github.com/LaifsV1/HOLiK/raw/master/paper/

full-paper.pdf.

23 C. Liu, H. Liu, Z. Cao, Z. Chen, B. Chen, and B. Roscoe. Reguard: Finding reentrancy bugs in

smart contracts. In 2018 IEEE/ACM 40th International Conference on Software Engineering:

Companion (ICSE-Companion), pages 65–68, May 2018.

24 Loi Luu, Duc-Hiep Chu, Hrishi Olickel, Prateek Saxena, and Aquinas Hobor. Making smart

contracts smarter. In Proceedings of the 2016 ACM SIGSAC Conference on Computer

and Communications Security, CCS ’16, pages 254–269, New York, NY, USA, 2016. ACM.

doi:10.1145/2976749.2978309.

https://doi.org/10.1145/512950.512973
https://doi.org/10.1016/j.tcs.2014.01.016
https://doi.org/10.1109/TSE.1977.231144
https://doi.org/10.1109/LICS.2009.26
https://doi.org/10.1007/3-540-45022-X_10
https://doi.org/10.1016/j.entcs.2012.08.013
https://doi.org/10.1007/978-3-319-96145-3_4
https://doi.org/10.1109/LICS.2002.1029820
http://doi.acm.org/10.1145/390016.808444
https://doi.org/10.1145/390016.808444
http://www.cprover.org/cbmc/
https://doi.org/10.1007/978-3-540-73420-8_58
https://github.com/LaifsV1/HOLiK/raw/master/paper/full-paper.pdf
https://github.com/LaifsV1/HOLiK/raw/master/paper/full-paper.pdf
https://doi.org/10.1145/2976749.2978309

Lin et al. 23:17

25 Andrzej S. Murawski, Steven J. Ramsay, and Nikos Tzevelekos. A contextual equivalence

checker for IMJ*. In Bernd Finkbeiner, Geguang Pu, and Lijun Zhang, editors, Automated

Technology for Verification and Analysis, pages 234–240, Cham, 2015. Springer International

Publishing.

26 Andrzej S. Murawski and Nikos Tzevelekos. Higher-order linearisability. In 28th International

Conference on Concurrency Theory, CONCUR 2017, September 5-8, 2017, Berlin, Germany,

pages 34:1–34:18, 2017. doi:10.4230/LIPIcs.CONCUR.2017.34.

27 Phuc C. Nguyen, Thomas Gilray, Sam Tobin-Hochstadt, and David Van Horn. Soft contract

verification for higher-order stateful programs. PACMPL, 2(POPL):51:1–51:30, 2018. doi:

10.1145/3158139.

28 Phuc C. Nguyen and David Van Horn. Relatively complete counterexamples for higher-order

programs. In David Grove and Steve Blackburn, editors, Proceedings of the 36th ACM

SIGPLAN Conference on Programming Language Design and Implementation, Portland, OR,

USA, June 15-17, 2015, pages 446–456. ACM, 2015. doi:10.1145/2737924.2737971.

29 Ivica Nikolić, Aashish Kolluri, Ilya Sergey, Prateek Saxena, and Aquinas Hobor. Finding the

greedy, prodigal, and suicidal contracts at scale. In Proceedings of the 34th Annual Computer

Security Applications Conference, ACSAC ’18, pages 653–663, New York, NY, USA, 2018.

ACM. doi:10.1145/3274694.3274743.

30 Doron A. Peled. All from one, one for all: on model checking using representatives. In Costas

Courcoubetis, editor, Computer Aided Verification, 5th International Conference, CAV ’93,

Elounda, Greece, June 28 - July 1, 1993, Proceedings, volume 697 of Lecture Notes in Computer

Science, pages 409–423. Springer, 1993. doi:10.1007/3-540-56922-7_34.

31 Andrew Pitts and Ian Stark. Operational reasoning for functions with local state. In Higher

Order Operational Techniques in Semantics, pages 227–273. Cambridge University Press, 1998.

32 Andrew M. Pitts. Nominal Sets: Names and Symmetry in Computer Science. Cambridge

University Press, New York, NY, USA, 2013.

33 Grigore Roşu and Traian Şerbănuţă. An overview of the k semantic framework. The Journal of

Logic and Algebraic Programming, 79:397–434, 08 2010. doi:10.1016/j.jlap.2010.03.012.

34 Robert S. Boyer, Bernard Elspas, and Karl Levitt. Select—a formal system for testing and

debugging programs by symbolic execution. ACM SIGPLAN Notices, 10:234–245, 06 1975.

doi:10.1145/390016.808445.

35 Ryosuke Sato and Naoki Kobayashi. Modular verification of higher-order functional programs.

In Hongseok Yang, editor, Programming Languages and Systems - 26th European Symposium

on Programming, ESOP 2017, volume 10201 of Lecture Notes in Computer Science, pages

831–854. Springer, 2017. doi:10.1007/978-3-662-54434-1_31.

36 Ryosuke Sato, Hiroshi Unno, and Naoki Kobayashi. Towards a scalable software model checker

for higher-order programs. In Elvira Albert and Shin-Cheng Mu, editors, Proceedings of the

ACM SIGPLAN 2013 Workshop on Partial Evaluation and Program Manipulation, PEPM 2013,

Rome, Italy, January 21-22, 2013, pages 53–62. ACM, 2013. doi:10.1145/2426890.2426900.

37 Koushik Sen and Gul Agha. Cute and jcute: Concolic unit testing and explicit path model-

checking tools. In Thomas Ball and Robert B. Jones, editors, Computer Aided Verification,

pages 419–423, Berlin, Heidelberg, 2006. Springer Berlin Heidelberg.

38 Olin Shivers. Control-Flow Analysis of Higher-Order Languages. PhD thesis, Carnegie-Mellon

University, 1991.

39 Sam Tobin-Hochstadt and David Van Horn. Higher-order symbolic execution via contracts.

In Gary T. Leavens and Matthew B. Dwyer, editors, Proceedings of the 27th Annual ACM

SIGPLAN Conference on Object-Oriented Programming, Systems, Languages, and Applications,

OOPSLA 2012, part of SPLASH 2012, Tucson, AZ, USA, October 21-25, 2012, pages 537–554.

ACM, 2012. doi:10.1145/2384616.2384655.

40 Antti Valmari. Stubborn sets for reduced state space generation. In Grzegorz Rozenberg,

editor, Advances in Petri Nets 1990 [10th International Conference on Applications and

C V I T 2 0 1 6

https://doi.org/10.4230/LIPIcs.CONCUR.2017.34
https://doi.org/10.1145/3158139
https://doi.org/10.1145/3158139
https://doi.org/10.1145/2737924.2737971
https://doi.org/10.1145/3274694.3274743
https://doi.org/10.1007/3-540-56922-7_34
https://doi.org/10.1016/j.jlap.2010.03.012
https://doi.org/10.1145/390016.808445
https://doi.org/10.1007/978-3-662-54434-1_31
https://doi.org/10.1145/2426890.2426900
https://doi.org/10.1145/2384616.2384655

23:18 Symbolic Execution Game Semantics

Theory of Petri Nets, Bonn, Germany, June 1989, Proceedings], volume 483 of Lecture Notes

in Computer Science, pages 491–515. Springer, 1989. doi:10.1007/3-540-53863-1_36.

41 Insu Yun, Sangho Lee, Meng Xu, Yeongjin Jang, and Taesoo Kim. Qsym: A practical concolic

execution engine tailored for hybrid fuzzing. In Proceedings of the 27th USENIX Conference on

Security Symposium, SEC’18, pages 745–761, Berkeley, CA, USA, 2018. USENIX Association.

URL: http://dl.acm.org/citation.cfm?id=3277203.3277260.

https://doi.org/10.1007/3-540-53863-1_36
http://dl.acm.org/citation.cfm?id=3277203.3277260

Lin et al. 23:19

A Motivating examples

Our file lock example provides a scenario where the library makes it possible for the client to

update a file without first reacquiring the lock for it. The library contains an empty private

method updateFile that simulates file access. The library also provides a public method

openFile, which locks the file, allows the user to update the file indirectly, and then releases

the lock.

1 import userExec :((unit → unit) → unit)

2 int lock := 0;

3 private updateFile(x:unit) :(unit) = { () };

4 public openFile (u:unit) :(unit) = {

5 if (!lock) then ()

6 else (lock := 1;

7 let write = fun(x:unit):(unit) → (assert (!lock); updateFile ())

8 in userExec(write); lock := 0) };

The bug here is that openFile creates a write method, which it then passes to the client,

via userExec(write), to use whenever they want. This provides the client indirect access to

the private method updateFile, which it can call without first acquiring the lock. Running

this example in HOLiK we obtain the following minimal trace:

call〈openFile, ()〉 · call〈userExec,m2〉 · ret〈userExec, ()〉
· ret〈openFile, ()〉 · call〈m2, ()〉

where m2 is the method name generated by the library and bound to the variable write.

This example serves as a representative of a class of bugs caused by revealing methods to

the environment, a higher-order problem, in this case involving the second-order method

userExec revealing m2.

Next, we simulate double deallocation using a global reference addr as the memory

address. The library defines private methods alloc and free to simulate allocation and

freeing. The empty private method doSthing serves as a placeholder for internal computation

that does not free memory.

1 import getInput :(unit → int)

2 int addr := 0; // 0 means address is free

3 private alloc (u:unit) :(unit) = {

4 if not(!addr) then addr := 1 else () };

5 private free (u:unit) :(unit) = {

6 assert (!addr); addr := 0 };

7 private doSthing (i:int) :(unit) = { () };

8 public run (u:unit) :(unit) = {

9 alloc (); doSthing(getInput ()); free() };

The error occurs in line 9, which calls the client method getInput. This passes control to

the client, who can now call run again, thus causing free to be called twice. Executing the

example on HOLiK, we obtain the following trace:

call〈run, ()〉 · call〈getInput, ()〉 · call〈run, ()〉 · call〈getInput, ()〉
· ret〈getInput, x1〉 · ret〈run, ()〉 · ret〈getInput, x2〉

As with the DAO attack, this is a reentrancy bug.

Finally, we have an unsafe implementation of a flat combiner. The library defines two

public methods: enlist, which allows the client to add procedures to be executed by the

C V I T 2 0 1 6

23:20 Symbolic Execution Game Semantics

library, and run, which lets the client run all procedures added so far. The higher-order

global reference list implements a list of methods.

1 private empty(x:int) : (unit) = { () };

2 fun list := empty;

3 int cnt := 0; int running := 0;

4 public enlist(f:(unit → unit)) :(unit) = {

5 if (! running) then ()

6 else

7 cnt := !cnt + 1;

8 (let c = !cnt in let l = !list in

9 list := (fun(z:int):(unit) → if (z == c) then f() else l(z)))};

10 public run(x:unit) :(unit) = {

11 running := 1;

12 if (0 < !cnt) then

13 (!list)(!cnt);

14 cnt := !cnt - 1; assert(not (!cnt < 0)); run()

15 else (list := empty; running := 0) };

The bug here is also due to a reentrant call in line 13. However, this is a much tougher

example as it involves a higher-order reference list, a recursive method run, and a second-

order method enlist that reveals client names to the library. With HOLiK, we obtain the

following minimal counterexample:

call〈enlist,m1〉 · ret〈enlist, ()〉 · call〈run, ()〉 · call〈m1, ()〉
· call〈run, ()〉 · call〈m1, ()〉 · ret〈m1, ()〉 · ret〈run, ()〉 · ret〈m1, ()〉

where m1 is a client name revealed to the library. In the trace above, enlist reveals the

method m1 to the library. This name is then added to the list of procedures to execute. In

run, the library passes control to the client by calling m1. At this point, the client is allowed

to call run again before the list is updated.

B Comparison with Racket Contract Verification

We shall consider the latest version of the tool [27] since it handles state, which we refer to as

SCV (Software Contract Verifier). A small benchmark (19 programs) based on HOLiK and

SCV benchmarks was used for testing. Programs were manually translated between HOLi and

Racket. Care was taken to translate programs whilst maintaining their semantics: contracts

enforcing an input-output relation were translated into HOLi using wrapper functions that

define the relation through an if statement. In the other direction, since contracts do not

directly access references inside a term, stateful functions were translated from HOLi to

return any references we wish to reason about.

Table 2 records the comparison. On one hand, HOLiK only found real errors, whereas

SCV reported several spurious errors–a third of all errors were spurious. On the other

hand, SCV was able to prove total correctness of 3 of the 7 safe files present. SCV also

scales much better than HOLiK with respect to program size, which is in exchange of

precision. The difference in time for small programs is mainly due to initialisation time.

Subtle differences in the nature of each tool can also be observed. e.g., HOLiK reports 1 real

error for ack-simple-e, whereas SCV reports 2 errors. The difference is because SCV takes

into account constraints for integers (e.g. > 0 and = 0). More interestingly, for various,

HOLiK reports 19 ways to reach assertion violations, whereas SCV reports only 6 real ways

to violate contracts. The difference is because HOLiK reports paths through the execution

Lin et al. 23:21

Program LoC Traces Time (s) LoC Errors Time (s) False Errors

ack 17 0 6.0 9 N/A 2.4 N/A

ack-simple 13 0 6.5 9 0 2.4 0

ack-simple-e 13 1 6.5 9 2 2.5 0

dao 10 0 5.0 15 1 2.6 1

dao-e 16 1 5.5 15 1 2.7 0

dao-various 85 5 22.5 122 10 3.0 5

dao2-e 85 10 23.5 122 10 2.9 0

escape 9 0 5.0 9 0 2.6 0

escape-e 9 2 5.0 10 1 2.7 0

escape2-e 10 14 6.0 10 1 2.7 0

factorial 10 0 5.0 9 0 2.2 0

mc91 12 0 5.0 9 1 2.2 1

mc91-e 12 1 5.0 8 1 2.4 0

mult 14 0 5.0 11 2 2.7 2

mult-e 14 1 5.0 11 2 2.4 0

succ 7 0 5.0 7 1 2.5 1

succ-e 7 1 5.0 7 1 2.8 0

various 116 19 14.0 108 11 6.2 5

total 459 55 140.5 500 45 49.8 15

Table 2 Comparison of HOLiK (left) and SCV (right). N/A is recorded for ack as in our attempts

SCV crashed due to unknown reasons.

tree that reach errors, whereas SCV reports a set of terms that may violate the contracts. For

instance, independently safe methods A and B that may call an unsafe method C would be,

from testing, reported as three valid traces (call〈A〉 · call〈C〉, call〈B〉 · call〈C〉 and call〈C〉)
by HOLiK. In contrast, SCV reports a single contract violation blaming C. Finally, ack

failed to run on SCV due to unknown errors; Racket reported an error internal to the tool.

Further testing proved the file is a valid Racket program that can be executed manually.

C ML-like References

HOLi has global higher-order references. These are enough for coding all of our examples

and, moreover, allow us to prove completeness (every error has a realising client). We here

present a sketch of how games can be extended with (locally created, scope extruding)

ML-like references, following e.g. [21, 16]. First, the following extension to types and terms

are required.

θ ::= · · · | ref θ M ::= · · · | !M | ref M |M = M v ::= · · · | r

The term !M allows dereferencing terms M which evaluate to references, while ref v creates

dynamically a fresh name r ∈ Refsθ (if v : θ), and the semantic purpose is to update the

store S] {r 7→ v} when evaluating ref v. Note that this allows us to store references to

references, etc. Finally, the construct M = M is for comparing references for name equality.

With terms handling general references concretely and symbolically, we extend game

configurations with sets Lp,Lo ⊆ Refs that keep track of reference names disclosed by the

proponent and opponent respectively. References being passed as values means that the

client can update the references belonging to the client, and viceversa. When making a move,

for each reference r they own that is passed, the proponent adds r to Lp. Passing of names in

a move can be done either by method argument and return value, but also via the common

C V I T 2 0 1 6

23:22 Symbolic Execution Game Semantics

part of the store (i.e. via the references known to both players). Similarly, opponent passes

names in their moves, which are added to Lo. Concretely, when the opponent passes control,

all references in Lp are updated with opponent values. Symbolically, the references r are

updated with distinct fresh symbolic integers κ if r ∈ RefsInt, distinct fresh method names

if r ∈ Refsθ1→θ2 , or to arbitrary reference names if r ∈ RefsRefsθ .

D Soundness and Completeness

We prove here that the trace semantics for libraries is sound and complete: for any error

that can be reached in the trace semantics there is a client such that linking the library with

the client reaches the same value/error. And viceversa. In the following sections, we prove

compositionality of our modified trace semantics. We use a bisimulation argument similar

to [26].

D.1 Semantic Composition

We start by defining a notion of composition that combines the traces produced by two

configurations. These are supposed to correspond to a library and a client, but for now we

will only require that the configurations satisfy a set of compatibility conditions.

We say configurations ρ and ρ′ of opposite polarity (one is p if the other is o) are compatible

(ρ � ρ′) if:

their stores are disjoint: Refs(ρ) ∩ Refs(ρ′) = ∅
ρ closes and is closed by ρ′: P = A′ and P ′ = A
undisclosed names of ρ do not occur in ρ′ and vice versa: (Meths(ρ)\(A∪P))∩Meths(ρ′) =
∅
their evaluation stacks are compatible, written E � E ′, which means:

E = E ′ = ε; or

E = (m, l) :: E1 and E ′ = (m,E) :: E ′1, and E1 � E ′1; or

E = (m,E) :: E1 and E ′ = (m, l) :: E ′1, and E1 � E ′1.

Note that compatibility of evaluation stacks expects that compatible configurations are

always of opposite polarity. This reflects the fact that we compose libraries with closing

clients.

With these definitions, we follow by defining different notions of composition.

Let ρ1, ρ2, ρ
′
1, ρ
′
2 be game configurations. The following rules define the semantic compos-

ition of two configurations.

ρ1 →′ ρ′1 ρ′2 = ρ2
IntL

ρ1 � ρ2 →′ ρ′1 � ρ′2

ρ2 →′ ρ′2 ρ′1 = ρ1
IntC

ρ1 � ρ2 →′ ρ′1 � ρ′2

ρ1
call(m,v)−−−−−−→′ρ′1 ρ2

call(m,v)−−−−−−→′ρ′2
Call

ρ1 � ρ2 →′ ρ′1 � ρ′2

ρ1
ret(m,v)−−−−−→′ρ′1 ρ2

ret(m,v)−−−−−→′ρ′2
Ret

ρ1 � ρ2 →′ ρ′1 � ρ′2

Lin et al. 23:23

D.2 Composite Semantics and Internal Composition

We now introduce the notion of composing game configurations internally , which occurs

when merging two compatible game configurations into a single composite semantics con-

figuration. We first refine the operational semantics and produce a composite semantics.

This is necessary for our compositionality argument since there is an asymmetry between the

call counters of the opponent and proponent configurations. Proponent configurations count

calls internally while opponent configurations have no internal counters, and thus only count

calls when playing moves. This requires that we keep track of two pairs of counters, one for

each component, which may change at different rates.

With this in mind, to define the composite semantics, we extend the term configurations

to obtain tuples of the following form:

(M,R1, R2, S, k1, k2, l1, l2) for which we shall write (M, ~R, S,~k,~l)

where R1 and R2 are the library and client methods respectively, such that dom(R1) ∩
dom(R2) = ∅, S is the combined store, and k1, l1 and k2, l2 are counters managed by the

library and client. All operators tagged with i will be operating on the ith component; e.g.
~R[m 7→M]i states that Ri[m 7→M] in ~R. We also extend M by tagging all method names

(written mi) as well as all lambda-abstractions (written λi) with i ∈ {1, 2} to show whether

they are being called from the library (1) or the client (2). We write M i to be the term M

with all its methods and lambdas tagged with i. Evaluation contexts are also extended to

mark methods which are being called from the opposite polarity:

E ::= · · · | LEMi | LEM〈i,l〉

Intuitively, i is the component that is currently at a proponent configuration in the equivalent

game semantics, while l in LEM〈i,l〉 is the opponent counter for component 3− i. This will be

used particularly when evaluating a method call miv when m 6∈ dom(Ri). Applying these

changes, we define the semantics for composite terms (→1,2).

(E[assert(i)], ~R, S,~k,~l)→1,2 (E[()], ~R, S,~k,~l) (i 6= 0)

(E[!r], ~R, S,~k,~l)→1,2 (E[S(r)], ~R, S,~k,~l)

(E[r := v], ~R, S,~k,~l)→1,2 (E[()], ~R, S[r 7→ v],~k,~l)

(E[πj〈v1, v2〉], ~R, S,~k,~l)→1,2 (E[vj], ~R, S,~k,~l)

(E[i1 ⊕ i2], ~R, S,~k,~l)→1,2 (E[i], ~R, S,~k,~l) (i = i1 ⊕ i2)

(E[λix.M], ~R, S,~k,~l)→1,2 (E[m], ~R[m 7→ λx.M]i, S,~k,~l) (m 6∈ dom(~R))

(E[if i then M1 else M0], ~R, S,~k,~l)→1,2 (E[Mj], ~R, S,~k,~l) (j = 1 iff i 6= 0)

(E[let x = v in M], ~R, S,~k,~l)→1,2 (E[M{v/x}], ~R, S,~k,~l)

(E[letrec f = λix.M in M ′], ~R, S,~k,~l)→1,2 (E[M ′{m/f}], ~R[m 7→ λx.M{m/f}]i, S,~k,~l)

(E[miv], ~R, S,~k,~l)→1,2 (E[LM{v/y}iMi], ~R, S,~k +i 1,~l) (Ri(m) = λy.M)

(E[miv], ~R, S,~k,~l)→1,2 (E[Lm3−ivM〈i,l+3−i1〉], ~R, S,~k,~l[li 7→ 0]) (R3−i(m) = λy.M)

(E[LvMi], ~R, S,~k +i 1,~l)→1,2 (E[vi], ~R, S,~k,~l)

(E[LvM〈i,l〉], ~R, S,~k,~l)→1,2 (E[vi], ~R, S,~k,~l[l3−i 7→ l, li 7→ last(E)])
if last(E) is defined,

and last(E) = l̂ if E = E1[LE2M〈j,l̂〉] provided E2 has no tags L•M〈j
′,l̂′〉

C V I T 2 0 1 6

23:24 Symbolic Execution Game Semantics

We continue by defining the internal composition of compatible configurations ρ1 � ρ2.

We define the internal composition ρ1fρ2 to be a configuration in our new composite semantics

by pattern matching on the configuration polarity and evaluation stacks according to the

following rules. For clarity, we annotate opponent and proponent configurations with o and

p respectively.

Initial Configuration:

ρ1 = ([],−, R1, S1,P1,A1, 0, 0)o
ρ2 = ([],M0, R2, S2,P2,A2, 0,−)p

ρ1 f ρ2 = (L•M〈1,0〉[M2
0], R1, R2, S1] S2, 0, 0, 0, 0)

Interim Configuration (case OP):

ρ1 = (E1,−, R1, S1,P1,A1, k1, l1)o
ρ2 = (E2,M,R2, S2,P2,A2, k2,−)p
E1 = (m,E) :: E ′1 E2 = (m, l2) :: E ′2

ρ1 f ρ2 = ((E ′1 f E ′2)[E1[LM2M〈1,l2〉]], R1, R2, S1] S2, k1, k2, l1, l2)

Interim Configuration (case PO):

ρ1 = (E1,M,R1, S1,P1,A1, k1,−)p
ρ2 = (E2,−, R2, S2,P2,A2, k2, l2)o
E1 = (m, l1) :: E ′1 E2 = (m,E) :: E ′2

ρ1 f ρ2 = ((E ′1 f E ′2)[E2[LM1M〈2,l1〉]], R1, R2, S1] S2, k1, k2, l1, l2)

where E ′1 f E ′2 is a single evaluation context resulting from the composition of compatible

stacks E ′1 and E ′2, which we define as follows:

εf ε = •

((m′, E) :: E ′′1)f ((m′, l) :: E ′′2) = (E ′′1 f E ′′2)[E1[L•M〈1,l〉]]

((m′, l) :: E ′′1)f ((m′, E) :: E ′′2) = (E ′′1 f E ′′2)[E2[L•M〈2,l〉]]

Notice that there is only one case for initial configurations, and that is because the game

must start from an opponent-proponent configuration where stacks are empty.

D.3 Bisimilarity of Semantic and Internal Composition

We begin by defining bisimilarity for the semantic and internal composition. A set R with

elements of the form (ρ1, ρ2), where ρ1 is a configuration of the form ρ′1 � ρ′′1 and ρ2 is from

the composite semantics, is a bisimulation if for all (ρ1, ρ2) ∈ R:

if ρ1 →′ ρ′1 then ρ2 →∗1,2 ρ′2 and (ρ′1, ρ′2) ∈ R;

if ρ2 →1,2 ρ
′
2 then ρ1 →′∗ ρ′1 and (ρ′1, ρ′2) ∈ R.

Lin et al. 23:25

We say that two game configurations ρ, ρ′ are bisimilar, and write ρ ∼ ρ′, if there is a

bisimulation R such that ρRρ′.
Lemma 17 states that, given game configurations, it is possible to obtain the composite se-

mantics (→1,2) from the semantic composition of the corresponding compatible configurations,

and vice versa.

I Lemma 17. Given game configurations ρ � ρ′, it is the case that (ρ� ρ′) ∼ (ρf ρ′).

Proof. We want to show that R = {(ρ1 � ρ2, ρ1 f ρ2) | ρ1 � ρ2} is a bisimulation. Suppose

(ρ1 � ρ2, ρ1 f ρ2) ∈ R. We begin with case analysis on the transitions available to the

semantic composite. If (ρ1� ρ2)→′ (ρ′1� ρ′2), then ρ′1 � ρ′2. Now, by cases of the transitions,

we prove that composite semantics can be obtained from the semantic composition.

1. If (ρ1� ρ2)→′ (ρ′1� ρ′2) is an (IntL) move, then we have internal moves in the execution

of ρ1 up to ρ′1. Since the composite semantics is concrete and, by construction, equivalent

to operational semantics when no methods of opposite polarity are called, we can see that

(ρ1 f ρ2)→1,2 (ρ′1 f ρ2).
2. If (ρ1 � ρ2) →′ (ρ′1 � ρ′2) is a (Call) move, then we have that ρ1

call(m,v)−−−−−−→ ′ρ′1 and

ρ2
call(m,v)−−−−−−→′ρ′2. We thus have two cases: (1) m is defined in R1 and (2) it is in R2. In

case (1), we have the following semantics for ρ1 and ρ2 where the evaluation stacks are

not equal:

((m′, E′) :: E1,−, R1, S1,P1,A1, k1, l1)o
call(m,v)−−−−−−→′((m, l1 + 1) :: (m′, E′) :: E1,mv,R1, S1,P1,A′1, k1,−)p

((m′, l2) :: E2, E[mv], R2, S2,P2,A2, k2,−)p
call(m,v)−−−−−−→′((m,E) :: (m′, l2) :: E2,−, R2, S2,P ′2,A2, k2, l0)o

We thus have:

ρ1 f ρ2 = ((E1 f E2)[E′1[LE2[m2v]M〈1,l2〉]], ~R, S1 ∪ S2,~k,~l)

ρ′1 f ρ
′
2 = ((E1 f E2)[E′1[LE2[Lm1vM〈2,l1+1〉]M〈1,l2〉]],

~R, S1 ∪ S2,~k,~l[l2 7→ 0] +1 1)

From the composite semantics evaluating ρ1 f ρ2 we have:

((E1 f E2)[E′1[LE2[m2v]M〈1,l2〉]], ~R, S1 ∪ S2,~k,~l)

→1,2 ((E1 f E2)[E′1[LE2[Lm1v̂M〈2,l1+1〉]M〈1,l2〉]],
~R, S1 ∪ S2,~k,~l[l2 7→ 0] +1 1)

Since v = v̂ by determinism of the operational semantics, we have that (ρ1 f ρ2) →1,2
(ρ′1 f ρ′2). In addition, we can observe that the case for equal evaluation stacks is proven

by substituting the initial stacks with equal ones, which results in an empty evaluation

context. Similarly, the dual case (2), where m is defined in R1, is identical but with

polarities swapped–i.e. shown by the polar complement of (ρ1 f ρ2)→1,2 (ρ′1 f ρ′2).
3. If (ρ1 � ρ2) →′ (ρ′1 � ρ′2) is a (Ret) move, then we have that ρ1

ret(m,v)−−−−−→ ′ρ′1 and

ρ2
ret(m,v)−−−−−→′ρ′2. As with the Call case, if m ∈ dom(R2) and stacks are not equal, we

have:

((m,E) :: E1,−, R1, S1,P1,A1, k1, l1)o

C V I T 2 0 1 6

23:26 Symbolic Execution Game Semantics

ret(m,v)−−−−−→′(E1, E[v], R1, S1,P1,A′1, k1,−)p
((m, l2) :: E2, v, R2, S2,P2,A2, k2,−)p

ret(m,v)−−−−−→′(E2,−, R2, S2,P ′2,A2, k2, l2)o

Here, we have two cases: E1 = E2, and otherwise. We start with the case where E1 6= E2,

since the opposite case is a simpler version of it. Again, we have the following composite

configurations:

ρ1 f ρ2 = ((E1 f E2)[E1[Lv2M〈1,l2〉]], ~R, S1 ∪ S2,~k,~l)

ρ′1 f ρ
′
2 = ((E ′1 f E ′2)[E′2[LE1[v1]M〈2,l

′
1〉]],

~R, S1 ∪ S2,~k, l
′
1, l2)

where E1 = (m′, l′1) :: E ′1 and E2 = (m′, E′) :: E2.

Now, from the composite semantics, we have:

((E1 f E2)[E1[Lv2M〈1,l2〉]], ~R, S1 ∪ S2,~k,~l)

→1,2 ((E1 f E2)[E1[v̂1]], ~R, S1 ∪ S2,~k, last((E1 f E2)[E1[•]]), l2)

= ((E ′1 f E ′2)[E′2[LE1[v̂1]M〈2,l
′
1〉]], ~R, S1 ∪ S2,~k, l

′
1, l2)

We can observe that last(E) = l′1 since E comes directly from the evaluation stack and

is, thus, untagged, and the top-most counter is l′1 since

(E ′1 f E ′2)[E′2[LE1[•]M〈2,l
′
1〉]] = (E1 f E2)[E1[•]]

Finally, we have that k2 = k′2 when returning a value since, from Lemma 22, k must

always decrease back to its original value after evaluating a method call.

We thus have (ρ1fρ2)→1,2 (ρ′1fρ′2). As previously, the case for empty stacks is a simpler

version of this, while the dual case (2) is the polar complement of the configurations.

Having shown that external composition produces composite semantics transitions, we

continue with the other direction of the argument, which aims to show that the external

composition can be produced from composite semantics transitions. We now derive the

corresponding semantic compositions by case analysis on the composite semantics rules.

1. If we have an untagged transition, or one where the redex involves no names of opposite

polarity being called, then we have an exact correspondence with internal moves, since

the composite semantics are identical to the operational semantics on closed terms.

2. If the transition involves a method called from an opposite polarity, we have a transition

of the form

(E[miv], . . . ,~l)→1,2 (E[Lm3−ivM〈i,l3−i+1〉], . . . ,~l[li 7→ 0] +3−i 1)

which corresponds to evaluating the semantics on an initial configuration ρ1 f ρ2 with

the following cases:

a. for an OP configuration, we have the following:

ρ1 = (E1,−, R1, S1, k1, l1)o

ρ2 = (E2, E[mv], R2, S2, k2,−)p

Lin et al. 23:27

where E1 = (m′, E′) :: E ′1 and E2 = (m′, l2) :: E ′2. Let us set E[miv] = (E ′1 f
E ′2)[E′1[LM2M〈1,l2〉]] and M2 = E′′[miv], where m 6∈ R2, i = 2, and E′′ is untagged.

We therefore have:

((E ′1 f E ′2)[E′1[LM2M〈1,l2〉]], ~R, S1 ∪ S2,~k,~l)

→1,2 (E[Lm1vM〈2,l1+1〉], ~R, S1 ∪ S2,~k,~l[l2 7→ 0] +1 1)

We now want to show that semantically composing the configurations results in an

equivalent transition ρ1 � ρ2 →′ ρ′1 � ρ′2. Since this is a Call move, we know that

ρ1
call(m,v)−−−−−−→′ρ′1 and ρ2

call(m,v)−−−−−−→′ρ′2. Evaluating those transitions, we have that

ρ′1 = ((m, l1 + 1) :: E1,mv, . . . , k1,−)o

ρ′2 = ((m,E′′) :: E2,−, . . . , k2, 0)p
which, when syntactically composed, form the configuration

((E1 f E2)[E′′2[L(mv)1M〈2,l1+1〉]], ~R, S1 ∪ S2,~k,~l[l2 7→ 0] +1 1)

We can observe that the resulting configurations are equivalent since E′′ = E′′2, which

follows from E′′[miv] = M2. Additionally, since

(E ′1 f E ′2)[E′1[LE′′2[•]M〈1,l2〉]] = (E1 f E2)[E′′2[L•M〈2,l1+1〉]]

it suffices to show (mv)1 = m1v, particularly that v = v1. Now, since the composite

semantics ensures that v will be tagged with 1 when called from a method m1, as it

reduces to M{v/y}1, we have that v = v1, meaning that the transitions are equal.

b. for a PO configuration, the polar complement of case (a) suffices.

c. for an initial configuration OP, we have a simpler version of case (a) where the evaluation

stacks are equal, resulting in an empty evaluation context E ′1 f E ′2 = •.
3. If the transition involves a tagged value and is of the form

(E[LvM〈i,l〉], ~R, S1 ∪ S2,~k,~l)

→1,2 (E[vi], ~R, S1 ∪ S2,~k,~l[l3−i 7→ l, li 7→ last(E)])

then we want to show an equivalence to a Ret move in the semantic composite. As

with case (2), we start by defining this transition as the syntactic composite transition

(ρ1 f ρ2)→1,2 (ρ′1 f ρ′2). Then, by case analysis on ρ1 f ρ2:

a. for an OP configuration, we have the following:

ρ1 = (E1,−, R1, S1, k1, l1)o

ρ2 = (E2, v, R2, S2, k2,−)p
where E1 = (m,E′) :: E ′1 and E2 = (m, l2) :: E ′2. Let E[v] = (E ′1 f E ′2)[E′1[Lv2M〈1,l2〉]].
We thus have:

(E[Lv2M〈1,l2〉], ~R, S1 ∪ S2,~k,~l)→1,2 (E[v1], ~R, S1 ∪ S2,~k, last(E), l2)

We then show that semantic composition produces an equivalent transition ρ1 � ρ2 →′

ρ′1 � ρ′2. Given we have a Ret move, we know that ρ1
ret(m,v)−−−−−→′ρ′1 and ρ2

ret(m,v)−−−−−→′ρ′2,

such that:

ρ′1 = (E ′1, E′[v], . . . , k1,−)p

C V I T 2 0 1 6

23:28 Symbolic Execution Game Semantics

ρ′2 = (E ′2,−, . . . , k2, l2)o

where E ′1 = (m′, l′1) :: E ′′1 and E ′2 = (m′, E′) :: E ′′2 . Internally composing these resulting

configurations, we have:

((E ′′1 f E ′′2)[E′′[LE′1[v1]M〈2,l
′
1〉]], ~R′, S1 ∪ S2,~k, l

′
1, l2)

Since (E ′′1 f E ′′2)[E′′[L•M〈2,l′1〉]] = (E ′1 f E ′2)[•], we have that (E ′1 f E ′2)[E′1[v1]], from

which we have (E ′′1 f E ′′2)[E′′[LE′1[v1]M〈2,l′1〉]] = E[v1], and that last(E) = l′1 since E′1
is untagged. Thus, the transition produces the composition.

b. for a PO configuration, we have the polar complement of (a) as previously.

c. for an initial OP configuration, we again have a simplification of (a), where the

evaluation stacks are equal and the resulting evaluation context is empty.

With this, we are done showing the equivalence of transitions. Lastly, we can observe

that ρ is final iff ρ′ is final since they are both leaf nodes generated by equivalent terminal

rules. We therefore have (ρ� ρ′) ∼ (ρf ρ′). J

D.4 Syntactic Composition and Compositionality

To prove compositionality of the modified trace semantics, we want to show that syntactic

composition can be obtained from semantic counterpart and vice versa. We have bisimilarity

between semantic and internal composition, we only need to show that internal composition

is related to syntactic composition under some notion of equivalence.

Lemma 10

For any library L and compatible good client C, JL;CK fails if and only if there exist

(τ1, ρ1) ∈ JLK and (τ2, ρ2) ∈ JCK such that τ1 = τ2 and ρ1 = (E , E[assert(0)], · · ·).

Proof. We have a case for each direction.

(1 =⇒ 2):

1. Consider L;C that reaches χ.

2. By inspection of the composite semantics, we have that JLKf JCK reaches χ.

3. By bisimilarity (Lemma 17) we have that JLK� JCK reaches χ.

4. By definition of semantic composition, we know there are traces τ ∈ JLK and τ⊥ ∈ JCK
such that JLK τ−→→′ χ.

(2 =⇒ 1):

1. Consider traces τ ∈ JLK and τ⊥ ∈ JCK such that JLK τ−→→′ χ.

2. By definition of semantic composition we have that JLK� JCK reaches χ.

3. By bisimilarity (Lemma 17) we have that JLKf JCK reaches χ.

4. By inspection of the composite semantics, we know Ľ;C reaches χ.

J

Lin et al. 23:29

1 global cnt := 0

2 global meth := 0

3 global r e f i := mi # for each mi ∈ P
4 global r e f i := defval # for each mi ∈ P ′

5 global va l θ := defval # for each θ ∈ Θv

6

7 public mi = λx . # for each mi ∈ A
8 cnt++; meth:= i ; va l θ1 :=x ; o r a c l e ()

9

10 mi = λx . # for each mi ∈ A′

11 cnt++; meth:= i ; va l θ1 :=x ; o r a c l e ()

12

13 o r a c l e = λ () .

14 match (! cnt) with # number of P-moves played so far (max |τ |/2)

15 | i →
16 # if i > 0 and i-th P-move of τ is crmj(v), with mj : θ1 → θ2, then

17 # - if cr = ret then d = 0 and θ = θ2

18 # - if cr = call then d = j and θ = θ1

19 # diverge if the last P-move played is different from crmj(v)
20 i f not (! meth = d and ! va l θ

∧=θ v) then diverge

21 else for mi in fresh (! va l θ) do r e f i := mi

22

23 # if (i+ 1)-th O-move of τ is cr′ mk(u), with mk : θ1 → θ2, then

24 # - if cr′ = ret then c = 0
25 # - if cr′ = call then c = k

26 i f c then let x = (! r e f k)u in # call mk(u)
27 cnt++; meth :=0; va l θ2 :=x ; o r a c l e () ; ! va l θ2

28 else va l θ2 :=u # return u

29

30 main = o r a c l e ()

Figure 5 The client Cτ,P,A.

D.5 Definability

In this section we show that every trace τ in the semantics of a library L has a corresponding

good client that realises the same trace in its semantics.

Let L be a library with public names P and abstract names A. Given a trace τ produced

by L, with P ′ and A′ respectively the public and abstract names introduced in τ , we set:

N = P ∪ P ′ ∪ A ∪A′

Θv = {θ | ∃m ∈ N . m : θ′ ∧ θ a syntactic subtype of θ′}
Θm = {θ ∈ Θ | θ a method type}

Note that the above sets are finite, since τ,P,A are finite. We assume a fixed enumeration of

N = {m1,m2, · · · ,mn}. Moreover, for each type θ, we let defvalθ be a default value, and

divergeθ a term that on evaluation diverges by infinite recursion. We then construct a client

Cτ,P,A as in Figure 5.

The code is structured as follows.

1. We start off by defining global references:

C V I T 2 0 1 6

23:30 Symbolic Execution Game Semantics

cnt counts the number of P (Library) moves played so far;

meth stores an index that records the move made by P: if the move was a return then

meth stores 0; if it was call to mi then meth stores i;

each refi will store the method mi ∈ P ∪ P ′, either since the beginning (if mi ∈ P),

or once P plays it (if mi ∈ P ′);
each valθ will be used for storing the value played by P in their last move.

In the latter case above, there is a light abuse of syntax as θ can be a product type, of

which HOLi does not have references. But we can in fact simulate references of arbitrary

type by several HOLi references.

2. For each mi : θ1 → θ2 ∈ A, we define a public method mi that simulates the behaviour

of O whenever mi is called in τ :

it starts by increasing cnt, as a call to mi corresponds to a P-move being played;

it continues by storing i and x in meth and valθ1 respectively;

it calls the private method oracle, which is tasked with simulating the rest of τ and

storing the value that mi will return in valθ2 ;

it returns the value in valθ2 .

3. For each mi : θ1 → θ2 ∈ A′ we produce a method just like above, but keep it private (for

the time being).

4. The method oracle performs the bulk of the computations, by checking that the last

move played by P was the expected one and selecting the next move to play (and playing

it if is a call).

The oracle is called after each P-move is played, so it starts with increasing cnt.

It then performs a case analysis on the value of cnt, which above we denote collectively

by assuming the value is i – this notation hides the fact that we have one case for each

of the finitely many values of i.

For each such i, the oracle first checks if the previous P-move (if there was one), was

the expected one. If the move was a call, it checks whether the called method was

the expected one (via an appropriate value of d), and also whether the value was the

expected one. Value comparisons (
∧=θ) only compare the integer components of θ, since

we cannot compare method names. If this check is successful, the oracle extracts from

u any method names played fresh by P and stores them in the corresponding refi.

Next, the oracle prepares the next move. If, for the given i, the next move is a call,

then the oracle issues the call, stores the return value of that call, increases cnt and

recurs to itself – when the issued call returns, it would be through a P-move. If, on the

other hand, the next move is a return, the oracle simply stores the value to be returned

in the respective val reference – this would allow to the respective mi to return that

value.

5. The main method simply calls the oracle.

Let us begin with useful definitions. First, let us consider the game semantics for HOLi

with all call counters removed since they do not affect computation. Let L be a library with

public names P and abstract names A that produces a trace τ . Let Cτ,P,A be the client

constructed from τ , which we shall shorthand as Cτ assuming the correct name sets have

been provided. Finally, let us annotate every move in τ with subscripts O and P for its

polarity, starting from O since libraries are always called first.

Lin et al. 23:31

I Definition 18 (Client O-configurations). Let library trace τ be of the form τ1τ2, where τ1 is

the portion of τ that has been played so far. We define the set of opponent configurations

Confτ2 that play the remainder trace τ2 of trace τ to be

(Eτ1 , R, Sτ1 ,Pτ1 ,Aτ1) ∈ Confτ2

where

R is the initial repository obtained from client Cτ ;

Sτ1 has the same domain as the initial store S obtained from client Cτ and defines values

cnt 7→ len(τ1)/2 and refi 7→ mi for all mi revealed in τ1;

Pτ1 = A] {min ∈ A′ | mi ∈ τ1}, for A,A′ as defined initially in Cτ ;

Aτ1 = P] {min ∈ P ′ | mi ∈ τ1}, for P,P ′ as defined initially in Cτ ;

and Eτ1 = f(dτ1e) where dτe removes all closed calls in τ as defined in

dτe =
{
dτ ′τ ′′′e if τ is of the form τ ′call(m, v)τ ′′ret(m, v)τ ′′′

τ otherwise

and

f(τ ′call(m, v)o) =
(let x = • in cnt++; meth := 0; valθ2 := x; oracle(); !valθ2 ,m) :: f(τ ′)

f(call(m, v)o) =
(let x = • in cnt++; meth := 0; valθ2 := x; oracle(); !valθ2 ,m) :: []

f(τ ′call(m, v)p) = m :: f(τ ′)
f(call(m, v)p) = m :: []

I Lemma 19. Let library trace τL be of the form τ1τ2, such that τ1 is a prefix of τL. For all

configurations Cτ2 ∈ Confτ2 , Cτ2 produces τ2.

Proof. Let τL be a library trace of the form τpτ . We prove that Cτ produces τ for all

Cτ ∈ Confτ by induction on the length of τ .

Base Cases:

if τ = call(m, v), then we know Cτ → (m :: Eτp ,mv, . . .)p produces a valid OQ move

since m must have been revealed as an initial public name or in τp for it to appear as a

call at this point in the trace.

if τ = ret(m, v), then we know Cτ → (E ′, v, . . .)p, where Eτp = call(m, v′) :: E ′, produces

a valid OA move since m must appear at the top of the evaluation stack for a return to

appear at this point in the trace.

We thus have base cases for odd length suffixes.

Inductive Cases:

if τ = call(m, v)call(m′, v′)τ ′, then we have the OQ move

Cτ → (m :: Eτp ,mv, . . .)p � (m :: Eτp , oracle(); !valθ2 , . . .)p → (. . . , E[m′v′], . . .)p

C V I T 2 0 1 6

23:32 Symbolic Execution Game Semantics

where E is (E′); !valθ2 and E′ is defined from line 26 to line 28 in the client code, which

correctly updates the store. So far, Cτ produces the same trace up to the next move. We

then have the PQ move

(m :: Eτp , E[m′v′], . . .)p → ((E,m′) :: m :: Eτp , . . .)o

which produces the next valid move. At this point, we can observe that ((E,m′) :: m ::
Eτp , . . .)o ∈ Conf′τ , so we know τ ′ is produced by the inductive hypothesis. Thus, τ is

produced.

if τ = call(m, v)ret(m′, v′)τ ′, since we have a return move as the second move this time,

we have the OQ move

Cτ → (m :: Eτp ,mv, . . .)p � (m :: Eτp , valθ2 := v′; !valθ2 , . . .)p → (. . . , v′, . . .)p

which produces the first move. We then have the PA move

(Eτp , v′, . . .)p → (E ′, . . .)o

which produces the second move since Eτp must be of the form m′ :: E ′. As before, since

the store has been correctly updated by internal moves, (E ′, . . .)o ∈ Conf′τ , so we know

τ ′ is produced by the inductive hypothesis. Thus, τ is produced.

if τ = ret(m, v)call(m′, v′)τ ′, then it must be the case that Eτ = (let x = • in cnt+
+; meth := 0; valθ2 := x; oracle(),m) :: E ′. We have the OA move

Cτ → (E ′, let x = v in . . . , . . .)p � (E ′, oracle(); !valθ2 , . . .)p → (E ′, E[m′v′], . . .)p

where E is the context for oracle, which produces the first move. From here we have

OQ move

(E ′, E[m′v′], . . .)p → ((E,m′) :: E ′, . . .)o

which produces the second move. Since the store is correctly updated internally, we know

((E,m′) :: E ′, . . .)o ∈ Config′τ , so Cτ ′ produces τ ′ by the inductive hypothesis. Thus, τ

is produced.

if τ = ret(m, v)ret(m′, v′)τ ′, we have the OA move

Cτ → (E ′, let x = v in . . . , . . .)p � (E ′, !valθ2 , . . .)p → (E ′, v′, . . .)p

which produces the first move. From here, we have PA move

(E ′, v′, . . .)p → (E ′′, . . .)

since E ′ must have been of the form m′ :: E ′′ for a return to m′ to appear on the trace.

Since the internal moves correctly update the store, we know that (E ′′, . . .) ∈ Config′τ ,

so Cτ ′ produces τ ′ by the inductive hypothesis. Thus τ is produced.

If τ ′ is empty, these serve as base cases for even length suffixes. With all cases proven (odd

and even base cases, and the inductive cases), we have that τ is always possible to produce

with any Cτ ∈ Confτ . J

Lin et al. 23:33

Theorem 11 (Definability)

Let L be a library and (τ, ρ) ∈ JLK. There is a good client compatible with L such that

(τ, ρ′) ∈ JCK for some ρ′.

Proof. Given a library L and trace produced τ , we construct client Cτ . Since Cτ has a main

method, we begin from a proponent configuration (oracle(), [], R,A,P)p. Since the library

cannot return without being called first, we know the next move is a call, so τ is of the form

call(m, v)τ ′. Thus, we have the following transitions

([], oracle(), R,A,P)p � ([], E[mv], R,A,P)p → ((E,m) :: [], R,A′,P)o

From this point, if τ ′ is empty, we have shown that τ can be produced by Cτ . If τ ′ is not

empty, we have a trace τ with suffix τ ′ and prefix call(m, v). By Lemma 19, we know that τ ′

can be produced by any configuration in Configτ ′ . Since ((E,m) :: [], R,A′,P)o ∈ Configτ ′ ,
we know that ((E,m) :: [], R,A′,P)o is able to produce τ ′. We thus have that Cτ can produce

τ . J

D.6 Extensional Equivalence of O-Refreshing Moves

Lemma 15 (O-Refreshing)

Given a concrete configuration ρ, the following are equivalent:

1. ρ fails using any kinds of transitions

2. ρ fails using only O-refreshing transitions

Proof. Let us consider two games starting from ρ: (A) is allowed to play any kind of moves,

while (B) is only allowed to play O-refreshing moves. We thus want to show that (A) and

(B) are both allowed to reach an assertion violation.

(2) =⇒ (1):

We know that (A) is allowed to play all the moves that (B) can play since (A) can play any

moves, including O-refreshing moves. Thus, this direction holds.

(1) =⇒ (2):

Since we start from the same ρ in (A) and (B), by Lemma 20, we know ρ fails in (B) if it

fails in (A). Given we know (A) fails by assumption, this direction holds. J

The above result requires the following lemma, which in turn requires some definitions.

First, we call a name phantom if it is an opponent name created by refreshing a proponent

name through an O-refreshing transition that has some equivalent original name in the

non-refreshing semantics. We assume a method to identify phantom names by keeping track

of them with regard to the non-refreshing semantics as computation progresses. We thus say

that a configuration ρ that is reached through O-refreshing transitions has a corresponding

phantom names dictionary Φ that maps all phantom names m in ρ to their proponent-owned

original names m̂ in Φ(ρ). Let us also define a set AΦ ⊆ A for all the phantom names in A.

I Lemma 20. Given a configuration ρ with corresponding phantom names Φ, it is the case

that ρ fails through O-refreshing transitions if Φ(ρ) fails.

C V I T 2 0 1 6

23:34 Symbolic Execution Game Semantics

Proof. Let (A) be a standard semantics where any moves are allowed. Let (B) be a

semantics where only O-refreshing transitions are allowed. Suppose (B) starts from a

configuration ρ and has phantom names Φ. We show this by induction on the number of

steps to reach ρ. Let us consider proponent moves first, so ρ = (E ,M,R, S,P,A)p. Suppose

Φ(ρ)� τ(. . . , assert(0), . . .) in (A), by case analysis on M , we have the following.

1. M is not of the form E[mv] or is of the form E[mv] where m ∈ P:

Let Φ(ρ)→ ρ̂′ via (A) semantics. Since ρ is a proponent configuration, and the language

features no name comparison, we know that the semantics are not affected by opponent

names. Thus, we know ρ̂′ = Φ(ρ′), so ρ→ ρ′ via (B). By the inductive hypothesis on ρ̂′

and ρ′, we know (A) and (B) both fail.

2. M is of the form E[mv] and m ∈ (A \ AΦ) (m is not a phantom name):

Let Φ(ρ) call(m,v̂)−−−−−−→ ρ̂′ in (A). It must be the case ρ̂′
cr(m̂′,v̂′)−−−−−−→ ρ̂′′ for some call or return

cr, since ρ̂′ cannot fail without passing control to the proponent.

With (B), we know ρ
call(m,v)−−−−−−→ ρ′

cr(m′,v′)−−−−−−→ ρ′′. Extending Φ, we get Φ′ = Φ[m′i 7→ m̂′i]
for every m′i, m̂i ∈ v′, v̂′. Thus, we have Φ′(ρ′′) = ρ̂′′. By the inductive hypothesis on ρ′′,

ρ̂′′ and Φ′, we know (A) and (B) fail.

3. M is of the form E[mv] where m ∈ AΦ (m is a phantom name):

Let Φ(m) = m̂. We have two cases on m̂:

a. If m̂ ∈ A, then we have the same situation as before.

b. If m̂ ∈ P , then we know ρ̂→ (. . . , Ê[(R(m̂))v̂], . . .) in (A). In (B), we have ρ
call(m,v)−−−−−−→

ρ′. Since m̂ must have been revealed to the opponent at some point in order for it to

have been refreshed by (B), we have ρ′
call(m,v)−−−−−−→ (. . . , E[R(m̂)v′], . . .). Extending Φ

to account for the indirect call of m̂, we have Φ′ = Φ[mi 7→ m̂i] for every mi ∈ v′ and

m̂i ∈ Φ(v). Thus, we have Φ′(. . . , E[R(m̂)v′], . . .) = (. . . , Ê[(R(m̂))v̂], . . .), so by the

inductive hypothesis on them, we know (B) fails.

For the opponent moves, the cases are captured for every move ρ̂
cr(m,v̂)−−−−−→ ρ̂′ in (A) and

every move ρ
cr(m,v)−−−−−→ ρ′ in (B) by extending Φ to be Φ′ = Φ[mi 7→ m̂i] for every name

mi ∈ v and m̂i ∈ v̂ introduced in the move. With this, by the inductive hypothesis on ρ′, ρ̂′

and Φ′, we know (B) fails in all the opponent cases. With this, we know (B) fails if (A) fails

under Φ.

J

E Soundness of Symbolic Games

In this section we look into more detail into soundness of our symbolic semantics.

Lemma 14 Let ρ, ρ′ be a concrete and symbolic configuration respectively, and let M
be a model such that ρ =M ρ′. Then, ρ ∼M ρ′.

Proof. We want show that R = {(ρ,M, ρs) | ρ =M ρs} is a bisimulation. First, we show

that if ρ → ρ′, being O-refreshing, then ρs →s ρ
′
s such that (ρ′,M′, ρ′s) is in R for some

M′ ⊇M. By cases on the transition ρ→ ρ′:

1. If ρ→ ρ′ is one of the return moves, then we have the following possible transitions:

Lin et al. 23:35

a. If (E , E[assert(0)], R, S,P,A, k)p 6→, then we have the corresponding symbolic final

configuration:

(E , E′[assert(0)], R,P,A, σ, pc, k)p

From the assumptions, we know that M � pc ∧ σ◦. It is also the case that E′{M} is

equivalent to E, and ρ′ and ρ′s are equivalent terminal configurations.

b. If (∅, v, R, S,P,A, k)p 6→, the proof is similar to (a).

2. If ρ→ ρ′ is an (Int) move, we have that ρs →s ρ
′
s such that ρ′ ∼ ρ′s by soundness of the

symbolic execution (Lemma 21).

3. If ρ→ ρ′ is a (Pq) move, then we have the following transition

(E , E[mv], R, S,P,A, k)p
call(m,v)−−−−−−→ ((m,E) :: E , l0, R′, S,P ′,A, k)o

with its corresponding symbolic equivalent

(E ′, E′[mv′], . . . , σ, pc, k)p
call(m,v′)−−−−−−−→s ((m,E′) :: E ′, l0, . . . , σ, pc, k)o

From the assumptions, we know M(v′) = v. In addition, since E′[mv′] = E[mv] under

M, we have that (m,E′) :: E ′ = (m,E) :: E , and similarly for other components, so

ρ′ =M ρ′s, meaning (ρ′,M, ρ′s) ∈ R.

4. If ρ→ ρ′ is a (Pa) move, then we have the following transition

((m, l) :: E , v, R, S,P,A, k)p
ret(m,v)−−−−−→ (E , l, R′, S,P ′,A, k)o

with its corresponding symbolic equivalent

((m, l) :: E ′, v′, . . . , σ, pc, k)p
ret(m,v′)−−−−−−→s (E ′, l, . . . , σ, pc, k)o

From the assumptions, we knowM(v′) = v. Since the original stacks are equivalent under

M, we have that E =M E ′, and similarly for other components, so ρ′ =M ρ′s, meaning

(ρ′,M, ρ′s) ∈ R.

5. If ρ→ ρ′ is an (Oq) move, O-refreshing, then we have the following transition

(E , l, R, S,P,A, k)o
call(m,v)−−−−−−→ ((m, l + 1) :: E ,mv,R, S,P,A′, k)p

with its corresponding symbolic equivalent

(E ′, l, . . . , σ, pc, k)o
call(m,v′)−−−−−−−→s ((m, l + 1) :: E ′,mv′, . . . , σ, pc, k)p

Let us choose M′ =M[v′ 7→ v]. Since the original stacks are equivalent under M, we

have that ((m, l + 1) :: E) =M ((m, l + 1) :: E ′), and similarly for other components, so

ρ′ =M′ ρ′s, meaning (ρ′,M′, ρ′s) ∈ R.

6. If ρ→ ρ′ is an (Oa) move, O-refreshing, then we have the following transition

((m,E) :: E , l, R, S,P,A, k)o
ret(m,v)−−−−−→ (E , E[v], R, S,P,A′, k)p

with its corresponding symbolic equivalent

((m,E′) :: E ′, l, . . . , σ, pc, k)o
ret(m,v′)−−−−−−→s (E ′, E′[v′], . . . , σ, pc, k)p

Let us choose M′ =M[v′ 7→ v]. Since the original stacks are equivalent under M, we

have that E =M E . Additionally, sinceM′ extendsM, we know that E[v] = E′[v′] under

M′, and similarly for the remaining components, so ρ′ =M′ ρ′s, meaning (ρ′,M′, ρ′s) ∈ R.

C V I T 2 0 1 6

23:36 Symbolic Execution Game Semantics

The opposite direction is treated with similarly. J

I Lemma 21 (Soundness of symbolic execution). For any concrete configuration η =
(M,R, S, k) and symbolic configuration η′ = (M ′, R′, σ, pc, k), given an assignment M �
pc ∧ σ◦ such that M =M M ′, it is the case that η ∼ η′.

Proof. Let R = {(η,M, ηs) | η =M ηs} for any concrete configuration η and symbolic

configuration ηs. We want to show that R is a bisimulation. We now show that ηs → η′s if

η → η′. By cases on η → η′:

1. If we have a terminal rule, then we have the following cases.

a. for (E[assert(0)], R, S, k) 6→ we have the equivalent final configuration

(E′[assert(0)], R′, σ, pc, k)

Since η =M η′, and η′ =M η′s since they are equivalent terminal configurations, it is

the case that (η′,M, η′s) ∈ R.

b. for (v,R, S, k) 6→ we have a similar proof to (a).

2. If (E[assert(i)], R, S, k) → (E[()], R, S, k) where (i 6= 0), then we have the equivalent

symbolic transition

(E′[assert(i)], R′, σ, pc, k)→ (E′[()], R′, σ, pc, k)

By assumption, we know E =M E′ and R =M R′, and similarly for other components,

so η′ =M η′s. As such, we know (η′,M, η′s) ∈ R.

3. If (E[!r], R, S, k)→ (E[S(r)], R, S, k), then we have the equivalent symbolic transition

(E′[!r], R′, σ, pc, k)→ (E′[σ(r)], R′, σ, pc, k)

Since η =M ηs, we know that S =M σ, meaning that σ(r){M} = S(r). Thus,

(η′,M, η′s) ∈ R.

4. If (E[r := v], R, S, k) → (E[()], R, S[r 7→ v], k), then we have the equivalent symbolic

transition

(E′[r := v′], R′, σ, pc, k)→ (E′[()], R′, σ[r 7→ σ(v′)], pc, k)

Since η =M ηs, we know that S =M σ and v′ =M v, meaning that σ[r 7→ v′]{M} =
S[r 7→ v]. Thus, (η′,M, η′s) ∈ R.

5. If (E[πj〈v1, v2〉], R, S, k)→ (E[vj], R, S, k), then we have the equivalent symbolic trans-

ition

(E′[πj〈v′1, v′2〉], R′, σ, pc, k)→ (E′[v′j], R′, σ, pc, k)

Since η =M ηs, we know that 〈v1, v2〉 =M 〈v′1, v′2〉, so v′j{M} = vj . Thus, (η′,M, η′s) ∈ R.

6. If (E[i1 ⊕ i2], R, S, k)→ (E[i], R, S, k) where i = i1 ⊕ i2, prove as above.

7. If (E[λx.M], R, S, k)→ (E[m], R[m 7→ λx.M], S, k), then we have the equivalent symbolic

transition

(E′[λx.M ′], R′, σ, pc, k)→ (E′[m], R′[m 7→ λx.M ′], σ, pc, k)

Since η =M ηs, we know that E[m] =M E[m′], so v′j{M} = vj . Additionally, we know

M = M ′{M}, so R′[m 7→ λx.M ′] =M R[m 7→ λx.M]. Thus, (η′,M, η′s) ∈ R.

Lin et al. 23:37

8. If (E[if 0 then M1 else M0], R, S, k) → (E[M0], R, S, k), then we have the equivalent

symbolic transition

(E′[if 0 then M ′1 else M ′0], R′, σ, pc, k)→ (E′[M ′0], R′, σ, pc, k)

Since η =M ηs, we know that E[M0] =M E[M ′0]. Thus, (η′,M, η′s) ∈ R.

9. If (E[if i then M1 else M0], R, S, k)→ (E[M1], R, S, k) where i 6= 0, prove as above.

10. If (E[let x = v in M], R, S, k) → (E[M{v/x}], R, S, k), then we have the equivalent

symbolic transition

(E′[let x = v′ in M ′], R′, σ, pc, k)→ (E′[M ′{v′/x}], R′, σ, pc, k)

Since η =M ηs, we know that E[M] =M E[M ′] and v′{M} = v, so E[M{v/x}] =M
E[M ′{v′/x}]. Thus, (η′,M, η′s) ∈ R.

11. If (E[letrec f = λx.M ′ in M], R, S, k)
→ (E[M{m/f}], R[m 7→ λx.M ′{m/f}], S, k)

prove by combining cases (7) and (10).

12. If (E[mv], R, S, k)→ (E[LM{v/y}M], R, S, k + 1), prove like (10).

13. If (E[LvM], R, S, k)→ (E[v], R, S, k − 1), then we have the equivalent symbolic transition

(E′[Lv′M], R′, σ, pc, k)→ (E′[v′], R′, σ, pc, k − 1)

Since v =M v′, it is the case that (η′,M, η′s) ∈ R.

In the opposite direction, all cases are treated similarly to the ones above, but we now

additionally have symbolic branching cases not directly covered by the previous cases.

1. If (E[assert(κ)], R, σ, pc, k) → (E[assert(0)], σ, pc ∧ (σ(κ) = 0)), then there exists M
such that E[assert(κ)] evaluates to E[assert(0)], which requires it to satisfy (σ(κ) = 0).
As such, we know M � σ(κ) = 0, meaning that 0 =M κ. We thus have the following

equivalent concrete configuration

(E′[assert(0)], R′, S, k) 6→

which holds since η′ and η′s are equivalent terminal configurations.

2. If (E[assert(κ)], R, σ, pc, k)→ (E[()], σ, pc ∧ (σ(κ) 6= 0)), prove as above.

3. If (E[v1 ⊕ v2], R, σ, pc, k) → (E[κ], R, σ[κ 7→ σ(v1) ⊕ σ(v2)], pc, k), then we have the

following equivalent concrete transition

(E′[i1 ⊕ i2], R′, S, k)→ (E′[i], R′, S, k)

From the assumption, we know i1⊕ i2 =M σ(v1)⊕σ(v2), so by choosingM′ =M[κ 7→ i],
we have that η′ and η′s are equivalent under M. As such, this case holds.

4. If (E[if κ then M1 else M0], R, σ, pc, k)→ (E[M0], R, σ, pc ∧ (σ(κ) = 0), k), then there

must exist a modelM � κ = 0. We thus have the following equivalent concrete transition

(E′[if 0 then M ′1 else M ′0], R′, S, k)→ (E′[M ′0], R′, S, k)

From the assumption, we know M0 =M M ′0, so η′ and η′s are equivalent under M. As

such, this case holds.

5. If (E[if κ then M1 else M0], R, σ, pc, k) → (E[M1], R, σ, pc ∧ (σ(κ) 6= 0), k), prove as

above.

J

C V I T 2 0 1 6

23:38 Symbolic Execution Game Semantics

F Correctness of call counters

We prove our game semantics can be bounded, that is, games on independent components

will always terminate if we bound the call counters. More precisely, Lemma 8 states that our

game semantics is strongly normalising when call counters are bounded, meaning that every

transition sequence produced from a given configuration is finite. To do this, we will first

define classes for ordering of moves.

For any transition sequence ρ0 → · · · → ρi → . . . and each i > 0, we have the following

two classes of configurations:

(A) either |ρi| < |ρi−1|, or

(B) there exists j < i− 1 such that |ρi| < |ρj |

where |ρ| = (k0 − k, |M |, l0 − l) is the size of ρ, and |ρ| < |ρ′| is defined by the lexicographic

ordering of the triple (k0 − k, |M |, l0 − l), with bounds k0 and l0 such that k ≤ k0 and l ≤ l0
for semantic transitions to be applicable. If not present in the configuration, we look at

the evaluation stack E to find the top-most missing component. In other words, opponent

configurations will have size (k0 − k, |M |, l0 − l) where E is the top-most one in E , whereas

proponent configurations will have size (k0 − k, |M |, l0 − l) where l is the top-most one in E .

Theorem 8

For any concrete game configuration ρ with bounds k0 and l0 for their corresponding counters

k and l, the semantics of ρ is strongly normalising.

Proof. We approach the proof two steps: (1) classify all possible transitions ρ can make, thus

classifying all reachable configurations, and (2) prove that the classes form a terminating

sequence. For (1), considering all moves available to ρ, we have the following cases.

1. If ρ→ ρ′ is an (Int) move, we have two possibilities.

a. For a transition (E[LvM], R, S, k)→ (E[v], R, S, k+1), where k+1 ≤ k0, we have a class

(B) configuration since there must be a (E[mv], R, S, k) such that (E[mv], R, S, k)→∗
(E[v], R, S, k) which is lexicographically ordered since |v| < |mv|.

b. Every other transition sequence is class (A) since they reduce the size of the term.

2. If ρ→ ρ′ is a (Pq) move, we have that ρ′ is a class (A) configuration since (k, |E|, l0) <
(k, |E[mv]|, l0 − l) by lexicographic ordering.

3. If ρ→ ρ′ is an (Oa) move, we have a transition

((m,E) :: E , l, . . . , k)o
ret(m,v)−−−−−→ (E , E[v], . . . , k)p

which must be a result of the prior proponent question

(E , E[mv], . . . , k)p
call(m,v)−−−−−−→ ((m,E) :: E , l0, . . . , k)o

where E has an l′ on top. We thus have the following sequence

(E , E[mv], . . . , k)p →∗ (E , E[v], . . . , k)o

where (k, |E[v]|, l) < (k, |E[mv]|, l′), so ρ′ is a class (B) configuration.

Lin et al. 23:39

4. If ρ→ ρ′ is an (Oq) move, we have the transition

(E , l, . . . , k)o
call(m,v)−−−−−−→ ((m, l + 1) :: E ,mv, . . . , k)p
→ ((m, l + 1) :: E , LM{v/x}M, . . . , k + 1)

Ignoring the configuration in between, we take

(E , l, R, S,P,A, k)o
call(m,v)−−−−−−→ ((m, l + 1) :: E , LM{v/x}M, R, S,P,A, k + 1)p

to be our new transition. We thus have that ρ′ is a class (A) configuration since

(k0 − (k + 1), |LM{v/x}M|, l0 − (l + 1)) < (k0 − k, |E|, l0 − l) by lexicographic ordering.

5. If ρ→ ρ′ is a (Pa) move, we have the transition

((m, l) :: E , v, . . . , k)p
ret(m,v)−−−−−→ (E , l, . . . , k)o

which must be the result of a prior opponent question

(E , l + 1, . . . , k)o
call(m,v)−−−−−−→ ((m, l) :: E , LM{v/x}M, . . . , k + 1)p
→∗ ((m, l) :: E , LvM, . . . , k + 1)p
→ ((m, l) :: E , v, . . . , k)p
ret(m,v)−−−−−→ (E , l, . . . , k)o

where E′ is the topmost evaluation context in E . We thus have that (k0 − k,E′, l0 − l) <
(k0 − k,E′, l0 − (l + 1)), so ρ′ is a class (B) configuration.

Now, for part (2), let us assume there is an infinite sequence

ρ0 → · · · → ρj → · · · → ρi → . . .

Since all reachable configurations fall into either (A) or (B) class, we know that the sequence

must comprise only (A) and (B) configurations. In this infinite sequence, we know that all

sequences of (A) configurations are in descending size, so (A) sequences cannot be infinite.

We also observe that (B) configurations are padded with (A) sequences. For instance, if

ρi is a (B) configuration, and ρj is its matching configuration, there may have nested (B)

configurations between ρj and ρi, as well as (A) sequences padding these.

Additionally, these (B) configurations can only occur as a return to a call, so we know

they only occur together with the introduction of evaluation boxes L•M. Since these brackets

occur in pairs and are introduced in a nested fashion, we know E can only contain evaluation

contexts with well-bracketed evaluation boxes, meaning that there cannot be interleaved

sequences of (B) configurations where their target configurations intersect. More specifically,

the sequence

ρ0 → · · · → ρj → · · · → ρ′j → · · · → ρi → · · · → ρ′i → . . .

where ρ′i matches ρ′j and ρi matches ρj is not possible.

Now, ignoring all (A) and nested (B) sequences, we are left with an infinite stream of

top-level (B) sequences which are also in descending order. Since starting size is finite, we

cannot have an infinite stream of (B) sequences. Thus, the assumption does not hold, so our

semantics is strongly normalising. J

C V I T 2 0 1 6

23:40 Symbolic Execution Game Semantics

I Lemma 22 (Call counters preserved after application). Given the following sequences of

game moves:

(1) (E , E[M], R, S,P,A, k)p � (E , E[v], R′, S′,P ′,A′, k′)p
(2) ((m,E) :: E , l, R, S,P,A, k)o � (E , E[v], R′, S′,P ′,A′, k′)p

where in both (1) and (2) we apply � until we reach the first occurrence of E and E[L•M] in

the sequence of moves, and � is the reflexive transitive closure of game transitions (→), it

must be the case that k = k′ in both (1) and (2).

Proof. Suppose we have the following transition sequences

(1) (E , E[M], R, S,P,A, k)p � (E , E[v], R′, S′,P ′,A′, k′)p
(2) ((m,E) :: E , l, R, S,P,A, k)o � (E , E[v], R′, S′,P ′,A′, k′)p

By induction on the length of the transition sequence (1) and mutually on the length of (2),

we have the following cases, where we say IHp and IHo for the inductive hypotheses of (1)

and (2) respectively:

Base cases:

Case (1): If M = v, then (E , E[v], R, S,P,A, k)p is a zero-step transition. This case

holds since k = k.

Case (2): If the opponent returns, then we have a one-step transition

((m,E) :: E , l, R, S,P,A, k)o
ret(m,v)−−−−−→ (E , E[v], R′, S,P,A′, k)p

This case holds since k = k.

Inductive cases (1):

if the sequence contains only internal moves, i.e. no call to the opponent is made, then we

have the following transition sequence by the assumption in (1) that a value is reached.

(E , E[M], R, S,P,A, k)p � (E , E[v], R′, S′,P ′,A′, k′)p

By the inductive hypothesis IHp, we know that k = k′.

if the sequence of internal moves gets stuck, i.e. a call to the opponent is made, then we

have the following transition sequence where m /∈ dom(R′).

(E , E[M], R, S,P,A, k)p � (E , E[E′[mv]], R′, S′,P ′,A′, k′)p
call(m,v)−−−−−−→ ((m,E[E′[•]]) :: E , l, R′, S′,P ′′,A′, k′)o

where E is of the form (m, l) :: E ′. By our assumption in (1) and (2), we know that the

configuration must eventually lead to a value v. As such, the following transition must

eventually occur.

((m,E[E[•]]) :: E , l, R′, S′,P ′′,A′, k′)o
� (E , E[E[v]], R′, S′,P ′,A′, k′′)p

Lin et al. 23:41

By the inductive hypothesis IHo, we know that k′ = k′′. In addition, by our assumption

that a value must be reached, it is the case that the following transition occurs.

(E , E[E[v]], R′, S′,P ′,A′, k′′)p
� (E , E[v], R′′, S′′,P ′′,A′′, k′′′)p

By the inductive hypothesis IHp, we know that k = k′′′.

Inductive cases (2):

if a call to the proponent is made, then we have the following transition.

(E ′, l, R, S,P,A, k)o
call(m′,v)−−−−−−−→ ((m′, l + 1) :: E ′,m′v,R′, S,P,A′, k)p

from the assumption that a value must be reached, we know that the following transition

occurs.

((m′, l + 1) :: E ′,m′v,R′, S,P,A′, k)p
� ((m′, l + 1) :: E ′, v, R′′, S′,P ′,A′′, k′)p

From the inductive hypothesis IHp, we know that k = k′.

J

C V I T 2 0 1 6

	1 Introduction
	2 A Language for Higher-Order Libraries: HOLi
	2.1 Syntax and operational semantics
	2.2 Trace Semantics

	3 Symbolic Semantics
	3.1 Soundness
	3.2 Bounded Analysis for Libraries

	4 Implementation and Experiments
	5 Related Work
	6 Future Directions
	A Motivating examples
	B Comparison with Racket Contract Verification
	C ML-like References
	D Soundness and Completeness
	D.1 Semantic Composition
	D.2 Composite Semantics and Internal Composition
	D.3 Bisimilarity of Semantic and Internal Composition
	D.4 Syntactic Composition and Compositionality
	D.5 Definability
	D.6 Extensional Equivalence of O-Refreshing Moves

	E Soundness of Symbolic Games
	F Correctness of call counters

