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Abstract

In this article, the existence of a unique solution in the variational approach of
the stochastic evolution equation

dX(t) = F (X(t)) dt+G(X(t)) dL(t)

driven by a cylindrical Lévy process L is established. The coefficients F and G are
assumed to satisfy the usual monotonicity and coercivity conditions. The noise is
modelled by a cylindrical Lévy processes which is assumed to belong to a certain
subclass of cylindrical Lévy processes and may not have finite moments.
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1 Introduction

Cylindrical Brownian motion, or equivalently Gaussian space-time noise, has been
the standard model for the driving noise for stochastic partial differential equations
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(SPDEs) for the last 50 years. Cylindrical Brownian motions are naturally extended
to the class of cylindrical Lévy processes in order to capture non-Gaussian and discon-
tinuous random perturbations; see Applebaum and Riedle [2]. However, in contrast
to genuine Lévy processes, cylindrical Lévy processes do not enjoy a semimartingale
decomposition and do not attain values in the underlying space. Consequently, con-
ventional methods, such as martingale arguments or stopping time techniques, are no
longer applicable in the general case.

If the driving noise is only additive, various specific examples of cylindrical Lévy
processes as driving noise of (linear) SPDEs are considered; see e.g. Brzeźniak and
Zabczyk [6], Peszat and Zabczyk [22] and Priola and Zabczyk [25]. A general framework
of linear equations with additive noise modelled by arbitrary cylindrical Lévy processes
is developed in Riedle [28] and Kumar and Riedle [16] and [17]. The case of an SPDE
with a multiplicative perturbation is only considered in Riedle [27], however under
the restrictive assumption of weak square-integrability of the driving cylindrical Lévy
process. In this case, similar methods as for cylindrical Brownian motions can be
exploited.

It is the first time in this work, that an SPDE with multiplicative noise is investi-
gated, where the random perturbation is modelled by a cylindrical Lévy process without
assuming any conditions on the moments. The existence of a solution in this situation
cannot be necessarily anticipated from the square-integrable case or other results: it is
known that the irregular jumps of a cylindrical Lévy process, in particular in the case
without moments, can cause completely novel phenomena; see e.g. Brzeźniak et al [4]
and Priola and Zabczyk [25]. We focus on a subclass of cylindrical Lévy processes which
are extensively investigated in the literature as driving noise of additive equations; see
e.g. [4, 19, 22, 24, 25].

More specifically, in this paper we consider an evolution equation of the form

dX(t) = F (X(t)) dt+G(X(t)) dL(t), (1.1)

in the variational approach where L is a cylindrical Lévy process. The coefficients F
and G are given operators and are assumed to satisfy standard assumptions such as
monotonicity and coercivity. The variational approach, first in a deterministic and then
in a stochastic setting, goes back to the works by Bensoussan, Lions and Pardoux; a
brief history of the approach can be found in [15]. Existence results for equations of
the form (1.1) but driven by a Brownian motion were derived in Krylov and Rozovskii
[15]. In a series of publications [9, 10, 11], Gyöngy and Krylov generalised these results
to semimartingales as driving noises. The variational approach has been extended in
many directions. It is especially worth to mention the works of Liu and Röckner [18]
and Prévôt and Röckner [23], where the assumptions on the coefficients were relaxed,
such that classical models for example from fluid dynamics are captured by the frame-
work. Recently, Brzeźniak, Liu and Zhu [5] have considered equations of the form (1.1)
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with locally monotone coefficients and driven by a Lévy-type noise, i.e. a noise which
originates from a generalisation of the Gaussian space-time white noise.

The driving noise L in (1.1) is assumed to be a member of a certain subclass of
cylindrical Lévy processes. Elements of this subclass may not have finite moments
but they enjoy a certain kind of semimartingale decomposition. Nevertheless, classical
stopping time arguments or other standard techniques cannot be exploited since the
unbounded potential of the cylindrical Lévy process causes divergence of the Galerkin
approximation. We circumvent this problem by introducing weights in each dimension
accordingly. We present several examples of cylindrical Lévy processes of the subclass
under consideration, and relate those to models considered in the literature.

The organisation of the paper is as follows. In Section 2, we collect some prelimi-
naries and give the definition of cylindrical Lévy processes. In Section 3, we establish
the existence of a solution of equation (1.1) in the case of a cylindrical Lévy process
with weak second moments. Since the arguments are similar to the classical case, inves-
tigated in Brzeźniak, Liu and Zhu [5], we omit details, which can be found in Kosmala
[14]. In Section 4, we introduce the subclass of cylindrical Lévy processes under con-
sideration, and define their stochastic integrals. Section 5 is devoted to establishing the
existence of a unique solution of (1.1) driven by a cylindrical Lévy process from this
subclass.

2 Preliminaries

Let U and H be separable Hilbert spaces with norm ‖·‖U and inner product 〈·, ·〉U
and analogously for H. We fix an orthonormal basis (ej) of U and (fj) of H. The
Borel σ-algebra is denoted by B(U). We use L(U,H) to denote the space of bounded
operators from U to H equipped with the operator norm. The subspace of Hilbert-
Schmidt operators from U to H is denoted by LHS(U,H) and it is equipped with the
norm

‖ϕ‖2LHS(U,H) :=

∞∑
j=1

‖ϕej‖2H .

Let (S,S, µ) be a σ-finite measure space. We denote by Lp(S;U) the Bochner space
of all equivalence classes of measurable functions f : S → U which are p-th integrable
with respect to µ equipped with the usual norm. We use L0(S;U) to denote the space
of all equivalence classes of measurable functions f : S → U with the topology induced
by convergence in measure. The underlying measure µ and the σ-algebra S are always
obvious from the context, e.g. if S = [0, T ]×Ω then µ = dt⊗P and S = B([0, T ])⊗F ,
where dt is the Lebesgue measure on [0, T ] and (Ω,F , P ) is a probability space.

For a subset Γ of U , sets of the form

C(u1, ..., un;B) := {u ∈ U : (〈u, u1〉, ..., 〈u, un〉) ∈ B},
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for u1, ..., un ∈ Γ and B ∈ B(Rn) are called cylindrical sets with respect to Γ; the set
of all these cylindrical sets is denoted by Z(U,Γ) and it is an algebra. If Γ is finite
then it is a σ-algebra. A function λ : Z(U,U)→ [0,∞] is called a cylindrical measure,
if for each finite subset Γ ⊆ U the restriction of λ on the σ-algebra Z(U,Γ) is a
measure. A cylindrical measure is called a cylindrical probability measure if λ(U) = 1.
A cylindrical random variable Z in U is a linear and continuous map Z : U → L0(Ω;R).
Each cylindrical random variable Z defines a cylindrical probability measure λ by

λ : Z(U,U)→ [0, 1], λ(C) = P
(
(Zu1, . . . , Zun) ∈ B

)
,

for cylindrical sets C = C(u1, ..., un;B). The cylindrical probability measure λ is called
the cylindrical distribution of Z. The characteristic function of a cylindrical random
variable Z is defined by

ϕZ : U → C, ϕZ(u) = E[exp(iZu)],

and it uniquely determines the cylindrical distribution of Z.
Let (Ft : t > 0) be a filtration satisfying the usual conditions. A family of cylindrical

random variables L(t) : U → L0(Ω;R), t > 0, is called a cylindrical Lévy process if for
any n ∈ N and u1, . . . , un ∈ U we have that

(
(L(t)u1, . . . , L(t)un) : t > 0

)
is a Lévy

process in Rn with respect to the filtration (Ft). A version of this definition appeared
for the first time in Applebaum and Riedle [2] with further modifications in [27]. Here,
we include a filtration in the definition. The characteristic function of L(t) can be
written in the form

ϕL(1)(u) = exp

(
ip(u)− 1

2q(u) +

∫
U

(
ei〈u,x〉 − 1− i〈u, x〉1BR(〈u, x〉)

)
ν(dx)

)
; (2.1)

see [2, Th. 2.7] or [26, Th. 3.4]. In the above formula, BR is the closed unit ball in R,
p : U → R is a continuous function with p(0) = 0, q : U → R is a quadratic form, and
ν is a cylindrical measure on Z(U,U) satisfying∫

U

(
〈u, v〉2 ∧ 1

)
ν(dv) <∞ for all u ∈ U. (2.2)

A cylindrical measure satisfying (2.2) is called a cylindrical Lévy measure.
We say that L is weakly square-integrable or that it has weak second moments if

E
[
|L(t)u|2

]
<∞ for all t > 0 and u ∈ U . In this case, it follows from the closed graph

theorem that L(t) : U → L2(Ω;R) is continuous for each t > 0. Similarly L is said to
be weakly mean-zero if E [L(t)u] = 0 for t > 0 and u ∈ U . For a weakly mean-zero
cylindrical Lévy process L, the covariance operator Q : U → U is a non-negative and
symmetric linear operator defined by 〈Qu, v〉 = E

[
L(1)uL(1)v

]
for each u, v ∈ U .
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3 Case of finite second moments

In this section L is assumed to have weak second moments. Let Q : U → U be its
covariance operator. We improve the theory of stochastic integration with respect to
a weakly square-integrable cylindrical Lévy processes introduced in [27] by extendind
the space of integrands so that it depends on the characteristics of the integrator. Let
H = Q1/2U be equipped with the scalar product 〈u, v〉H = 〈Q−1/2u,Q−1/2v〉U for
u, v ∈ H. Then (Q1/2en) is an orthonormal basis of H and ψ ∈ LHS(H, H)) if and only
if ψQ1/2 in LHS(U,H) and their norms coincide; see [23, Sec. 2.3.2].

The approach is based on the observation that the cylindrical increments of a cylin-
drical Lévy process can be Radonified by a random Hilbert-Schmidt mapping. More
specifically, for 0 6 s 6 t let Φ: Ω → LHS(H, H) be a simple, Fs-measurable random
variable of the form

Φ(ω) =

m∑
j=1

1Aj (ω)ϕj

for deterministic operators ϕj ∈ LHS(H, H) and sets Aj ∈ Fs for j = 1, . . . ,m. The
Hilbert-Schmidt property implies that for each j ∈ {1, . . . ,m} there exists a genuine
random variable Js,tϕj : Ω→ H such that

(
L(t)−L(s)

)
(ϕ∗jh) = 〈Js,tϕj , h〉 for all h ∈ H.

By linearity one can define a random variable Js,tΦ: Ω→ H satisfying

〈Js,tΦ, h〉 =
m∑
j=1

1Aj

(
L(t)− L(s)

)
(ϕ∗jh) for all h ∈ H. (3.1)

By beginning with simple stochastic processes (Ψ(t) : t ∈ [0, T ]) of the form

Ψ(t) = Φ01{0}(t) +
N−1∑
k=1

Φk1(tk,tk+1](t) for t ∈ [0, T ],

where 0 = t1 < t2 < · · · < tN = T and each Φk is a simple Ftk -measurable LHS(U,H)-
valued random variable, one can define the stochastic integral as∫ T

0
Ψ(s) dL(s) =

N−1∑
k=1

Jtk,tk+1
Φk.

Using the Itô isometry (see [27])

E

[∥∥∥∥∫ T

0
Ψ(s) dL(s)

∥∥∥∥2

H

]
=

∫ T

0
E
[∥∥Ψ(s)Q1/2

∥∥2

LHS(U,H)

]
ds

one can extend the definition to all stochastic processes in the space
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Λ :=

{
Ψ: [0, T ]× Ω→ LHS(H, H) : predictable and

E
[∫ T

0

∥∥Ψ(t)Q1/2
∥∥2

LHS(U,H)
dt

]
<∞

}
.

The space Λ becomes a Banach space with the norm defined by

‖Ψ‖Λ =

(
E
[∫ T

0

∥∥Ψ(t)Q1/2
∥∥2

LHS(U,H)
dt

])1/2

, Ψ ∈ Λ.

In the following theorem we summarise the properties of this integral. If L is a
genuine Lévy process, formulas for the angle bracket processes are well known; see
[21, Cor. 8.17]. Recall that for a square-integrable, H-valued martingale M , the angle
bracket process 〈M,M〉 is defined as the unique increasing, predictable process such
that

(
‖M(t)‖2 − 〈M,M〉(t) : t > 0

)
is a martingale.

Theorem 3.1. Suppose that L is weakly square-integrable cylindrical Lévy process and
Ψ ∈ Λ.

(i) The process (
I(t) =

∫ t

0
Ψ(s) dL(s) : t ∈ [0, T ]

)
is a square integrable martingale and has a modification with càdlàg trajectories.

(ii)
〈
I(Ψ), I(Ψ)

〉
(t) =

∫ t

0

∥∥Ψ(s)Q1/2
∥∥2

LHS(U,H)
ds for all t ∈ [0, T ] P -a.s.

(iii) For any stopping time τ with P (τ 6 T ) = 1 we have∫ t∧τ

0
Ψ(s) dL(s) =

∫ t

0
Ψ(s)1{s6τ} dL(s) for all t ∈ [0, T ] P -a.s.

Proof. Similar results are discussed for integrals with respect to classical Lévy processes,
for (i) see [21, Th. 8.7], for (ii) see [21, Cor. 8.17] and for (iii) see [23, Lem. 2.3.9]. The
derivations for the cylindrical case using the properties of the Radonified increments
such as (3.1) are straightforward and can be found in [14].

We now discuss the existence and uniqueness of solution in the square-integrable
case. Let (V, ‖·‖V ) be a separable reflexive Banach space and let (H, 〈·, ·〉H) and
(U, 〈·, ·〉U ) be separable Hilbert spaces. Let V ∗ and H∗ denote their duals. Assume
that V is densely and continuously embedded into H. That is we have a Gelfand triple

V ⊆ H = H∗ ⊆ V ∗.
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Further, denote with V ∗〈·, ·〉V the duality pairing of V ∗ and V . For all h ∈ H and
v ∈ V we have V ∗〈h, v〉V = 〈h, v〉H and without loss of generality we may assume that
‖v‖H 6 ‖v‖V for v ∈ V and ‖h‖V ∗ 6 ‖h‖H for h ∈ H.

We consider the equation

dX(t) = F
(
X(t)

)
dt+G

(
X(t)

)
dL(t) for t ∈ [0, T ], (3.2)

with the initial condition X(0) = X0 for a square-integrable, F0-measurable random
variable X0. The driving noise is a cylindrical Lévy process on a separable Hilbert
space U . In this section we assume that L is a weakly mean-zero, weakly square-
integrable, cylindrical Lévy process, i.e. a cylindrical martingale with covariance op-
erator Q : U → U . In the remainder of the paper, we assume that there exists an or-
thonormal basis (en) of U consisting of eigenvectors of Q. Note that this does not follow
from the conditions on Q, since it needs not be compact. The coefficients in equation
(3.2) are given by functions F : V → V ∗ and G : V → LHS(H, H). More specifically, we
assume the following in this section: there are constants α, λ, β, c > 0 such that:

(A1) (Coercivity) for all v ∈ V we have

2V ∗〈F (v), v〉V +
∥∥G(v)Q1/2

∥∥2

LHS(U,H)
+ α‖v‖2V 6 λ‖v‖2H + β;

(A2) (Monotonicity) for all v1, v2 ∈ V, we have

2V ∗〈F (v1)− F (v2), v1 − v2〉V +
∥∥(G(v1)−G(v2))Q1/2

∥∥2

LHS(U,H)
6 λ‖v1 − v2‖H ;

(A3) (Linear growth) ‖F (v)‖V ∗ 6 c(1 + ‖v‖V ) for all v ∈ V ;

(A4) (Hemicontinuity) the mapping R 3 s 7→ V ∗〈F (v1 + sv2), v3〉V is continuous for all
v1, v2, v3 ∈ V .

(A5) The cylindrical Lévy process L is weakly mean-zero and is weakly square-integrable.
Its covariance operator Q has eigenvectors (ej), which form an orthonormal basis
of U .

Conditions of this form appear in most of the papers mentioned in the introduction.
For instance in [5] these conditions are formulated for a sum of cylindrical Brownian
motion with covariance equal to the identity (in particular, satisfying (A5)) and a
Poisson random measure. Later, we will consider the case of a non-integrable noise.
We will obtain the existence and uniqueness of solutions by truncating the jumps and
reducing the problem to the case of an equation driven by a process satisfying (A5).
We now give the definition of a solution to (3.2), similarly as in Prévôt and Röckner
[23, Def. 4.2.1] or Brzeźniak, Liu and Zhu [5, Def. 1.1]. Since we later consider the case
of a driving noise without finite moments and thus the solution cannot be expected to
have finite moments, we do not require finite expectation of the solution.
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Definition 3.2. A variational solution of (3.2) is a pair (X, X̄) of an H-valued, càdlàg
adapted process X and a V -valued, predicable process X̄ such that

(i) X equals X̄ dt⊗ P -almost everywhere;

(ii) P -a.s.

∫ T

0

∥∥X̄(t)
∥∥
V

dt <∞;

(iii) X(t) = X0 +

∫ t

0
F (X̄(s)) ds+

∫ t

0
G(X̄(s)) dL(s) for all t ∈ [0, T ] P -a.s. (3.3)

We say that the solution is pathwise unique if any two variational solutions (X, X̄) and
(Y, Ȳ ) satisfy

P
(
X(t) = Y (t) for all t ∈ [0, T ]

)
= 1.

Theorem 3.3. Under Assumptions (A1)–(A5), equation (3.2) has a unique variational
solution (X, X̄). Moreover, the solution satisfies∫ T

0
E
[∥∥X̄(s)

∥∥2

V

]
ds <∞.

The proof can be obtained by repeating the arguments from [23] and using the
properties of the integral outlined in Theorem 3.1. The details are presented in [14].

4 Orthogonal cylindrical Lévy processes

In this section we consider the case of a driving noise without finite moments. Contrary
to the classical case of a genuine Lévy process, one cannot directly apply stopping time
arguments such as in [21, Sec. 9.7] or interlacing techniques such as in [12, Th. IV.9.1],
since the cylindrical Lévy process does not attain values in the underlying space.

For a bounded sequence of positive real numbers c = (cj) ∈ `∞(R+) we define the
sequence of stopping times by

τ cn(k) := inf

{
t > 0 :

n∑
j=1

(∆L(t)ej)
2 c2

j > k2

}
for each k > 0, n ∈ N.

The stopping time τ cn(k) can be seen as the first time, the n-dimensional Lévy process(
(L(t)(c1e1), . . . , L(t)(cnen)) : t > 0

)
has a jump of size larger than k. Since τ cn(k) is

non-increasing in n, we can define another sequence of stopping times by

τ c(k) := lim
n→∞

τ cn(k) for k > 0. (4.1)

Contrary to the the case of a genuine Hilbert space-valued Lévy process, if the noise is
cylindrical the stopping times τ cn(k) may accumulate at zero, i.e. τ c(k) = 0 P -almost
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surely, see Remark 4.6 below. It will turn out that the distribution of the stopping time
τ c(k) depends on the parameter

mc(k) := sup
n∈N

ν

({
u ∈ U :

n∑
j=1

〈u, ej〉2c2
j > k2

})
for k > 0, (4.2)

where ν is the cylindrical Lévy measure of L. If L is a genuine Lévy process in U then
its Lévy measure ν is finite outside each ball around 0 and mc(k) → 0 as k → ∞. In
the cylindrical case, the situation turns out to be rather different as Proposition 4.1
shows:

Proposition 4.1. Let L be a cylindrical Lévy process with τ c(k) defined in (4.1) and
mc defined in (4.2) for a fixed c ∈ `∞(R+).

(1) We have the following dichotomy for each k > 0:

(i) mc(k) = 0 ⇔ τ c(k) =∞ P -a.s;

(ii) mc(k) ∈(0,∞)⇔ τ c(k) is exponentially distributed with parameter mc(k);

(iii) mc(k) =∞ ⇔ τ c(k) = 0 P -a.s.

(2) We have: lim
k→∞

mc(k) = 0 ⇔ lim
k→∞

τ c(k) =∞ P -a.s.

Proof. (1) Define the mapping

πcn : U → U, πcn(u) =
n∑
j=1

cj〈u, ej〉ej .

Note that τ cn(k) is the time of the first jump of size larger than k of the finite dimensional
Lévy process Lcn defined by

Lcn(t) =
n∑
j=1

cjL(t)(ej)ej , t > 0.

As the Lévy measure νcn of Lcn is given by νcn := ν ◦ (πcn)−1, the stopping time τ cn(k) is
exponentially distributed with parameter

λkn := νcn
(
{u ∈ U : ‖u‖U > k}

)
= ν

({
u ∈ U :

n∑
j=1

c2
j 〈u, ej〉2 > k2

})
.

(i): the very definition implies that mc(k) = 0 if and only if λkn = 0 for all n ∈ N.
The latter is equivalent to τ cn(k) =∞ for all n ∈ N.
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(ii), (iii): the characteristic function ϕτcn(k) of τ cn(k) is given by

ϕτcn(k) : R→ C, ϕτcn(k)(x) =
λkn

λkn − ix
.

As λkn monotonically increases to mc(k) as n → ∞, the characteristic function ϕτkn
converges to the characteristic function either of the exponential distribution with pa-
rameter mc(k) or of the Dirac measure in 0.

For establishing (2), note that monotonicity of k 7→ τ c(k) yields

P

(
lim
k→∞

τ c(k) =∞
)

= P

(⋂
t∈N

⋃
n∈N

⋂
k>n

{τ c(k) > t}
)

= lim
t→∞

lim
n→∞

P
(
τ c(n) > t

)
.

Since P (τ c(k) > t) = exp(−tmc(k)), this completes the proof of (2).

We now focus on a special class of cylindrical Lévy processes, which, similarly as
in the case of a cylindrical Brownian motion, can be represented by a sum. That is
we assume a form of the noise as in the Karhunen-Loève theorem with independent
components but without requiring finite second moments. Let L be a cylindrical Lévy
process with cylindrical Lévy measure ν and let (ej) be an orthonormal basis of U . L
is called orthogonal cylindrical Lévy processes if it is of the form

L(t)u =

∞∑
j=1

`j(t)〈u, ej〉 P -a.s. for all u ∈ U, t > 0, (4.3)

where (`j) is a sequence of independent, not necessarily identically distributed, one-
dimensional Lévy processes. Denote the characteristics (with respect to the standard
truncation function 1BR) of `j by (bj , sj , ρj) for each j ∈ N. Lemma 4.2 in [28] guar-
antees that the sum in (4.3) converges and defines a cylindrical Lévy process if and
only if the characteristic functions of `j are equicontinuous at 0 and the following three
conditions are satisfied for every (αj) ∈ `2(R):

(i)

∞∑
j=1

1BR(αj)|αj |

∣∣∣∣∣bj +

∫
1<|x|6|αj |−1

x ρj(dx)

∣∣∣∣∣ <∞, (4.4)

(ii) (sj) ∈ `∞(R), (4.5)

(iii)

∞∑
j=1

∫
R

(
|αjx|2 ∧ 1

)
ρj(dx) <∞. (4.6)
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Independence of the Lévy processes (`j) implies that the cylindrical Lévy measure of
L has only support in ∪ Span{ej}. Consequently, the function mc, defined in (4.2),
reduces to

mc(k) =
∞∑
j=1

ρj

({
x ∈ R : |x| > k

cj

})
for all k > 0. (4.7)

In general, due to the non-linearity of the truncation function, cylindrical Lévy
processes do not enjoy a type of Lévy-Itô decomposition. However, the specific con-
struction of cylindrical Lévy processes of the form (4.3) suggests to derive a Lévy-
Itô decomposition from an appropriate decomposition of the real-valued processes
`j . More precisely, for a given sequence c = (cj) ∈ `∞(R+) and k > 0 we obtain

`j(t) = pc,kj (t) +mc,k
j (t) + rc,kj (t) for all t > 0 where

pc,kj (t) :=

(
bj +

∫
1<|x|6k/cj

x ρj(dx)

)
t, (4.8)

mc,k
j (t) :=

√
sjWj(t) +

∫
|x|6k/cj

x Ñj(t,dx), (4.9)

rc,kj (t) :=

∫
|x|>k/cj

xNj(t,dx). (4.10)

Here, the process Wj is a real-valued standard Brownian motion and Nj is a Poisson
random measure on [0,∞)× R with intensity measure dt⊗ ρj .

In the following lemma, we summarise the conditions on the cylindrical Lévy process
such that the stopping times τ c(k), defined in (4.1), do not accumulate at zero and such
that the decomposition of `j leads to a decomposition of the cylindrical Lévy process:

(A6) there exists a sequence c = (cj) ∈ `∞(R+) such that

(i)
(
pc,kj (1)

)
j∈N
∈ `2(R) for each k > 0; (4.11)

(ii) sup
j∈N

∫
|x|6k/cj

x2 ρj(dx) <∞ for each k > 0; (4.12)

(iii) lim
k→∞

mc(k) = 0. (4.13)

Remark 4.2. Assume that L is of the form (4.3), i.e. Conditions (4.4)–(4.6) are sat-
isfied. For a square summable sequence (cj), condition (4.6) implies (4.13) by (4.7)
and Lebesgue’s theorem. On the other hand, if cj is constantly equal to 1, then
Condition (4.6) implies (4.12). Indeed, suppose for contradiction that the sequence

11



( ∫
|x|6k x

2 ρj(dx) : j ∈ N
)

is unbounded. Then there exists a sequence (αj) ∈ `2(R)
such that

∞∑
j=1

α2
j

∫
|x|6k

x2 ρj(dx) =∞,

which contradicts (4.6).
In summary, for the assumption (A6) to hold there must be some balance between

the rate of decay of the Lévy measures (ρj) and the rate of convergence of the sequence
c.

Lemma 4.3. Assume that L is a cylindrical Lévy process of the form (4.3) satisfying
(A6) for a sequence c ∈ `∞(R+). Then L can be decomposed into L(t) = P ck(t) +
M c
k(t) + Rck(t) for each t > 0 and k > 0, where P ck , M c

k and Rck are cylindrical Lévy
processes defined by

P ck(t)u :=

∞∑
j=1

pc,kj (t)〈u, ej〉,

M c
k(t)u :=

∞∑
j=1

mc,k
j (t)〈u, ej〉,

Rck(t)u :=
∞∑
j=1

rc,kj (t)〈u, ej〉.

The process M c
k is a weakly square-integrable cylindrical Lévy martingale with a di-

agonal covariance operator Qk and the stopping times τ c, defined in (4.1), satisfy
τ c(k)→∞ P -a.s. as k →∞.

Proof. We write M c
k(t) = X(t) + Y c

k (t) for each k > 0 with

X(t)u :=
∞∑
j=1

√
sjWj(t)〈u, ej〉, Y c

k (t)u :=
∞∑
j=1

∫
|x|6k/cj

x Ñj(t,dx)〈u, ej〉,

for all u ∈ U . Since condition (4.5) implies

E
[
|X(t)u|2

]
=
∞∑
j=1

|sj |〈u, ej〉2 6 ‖s‖∞‖u‖
2,

we obtain that X(t) : U → L0(Ω;R) is well defined, continuous and weakly square-
integrable. We have

E
[
|Y c
k (t)u|2

]
= t

∞∑
j=1

〈u, ej〉2
∫
|x|6k/cj

x2 ρj(dx) <∞

12



by (4.12). Consequently, Y c
k (t) and thus M c

k(t) are well defined, continuous and weakly
square-integrable. By (4.11), the (deterministic) process P ck is well defined. Since
Rck = L−M c

k − P ck it follows that the series in the definition of Rck converges and that
Rck(t) : U → L0(Ω;R) is continuous for all t > 0.

Example 4.4. [Two-sided stable process] An often considered example of a process
given in (4.3) is for `j = σjhj , where hj are identically distributed, symmetric α-stable
Lévy processes and σj ∈ R; see [24, 25]. In this case, `j has Lévy measure ρj = ρ◦m−1

σj ,

where mσj : R → R is given by mσj (x) = σjx and ρ(dx) = 1
2 |x|

−1−α dx. By [28, Ex.

4.5], formula (4.3) defines a cylindrical Lévy process if and only if σ = (σj) ∈ `
2α
2−α (R).

Moreover, L is induced by a classical process if and only if σ ∈ `α(R).
We show that Assumption (A6) is satisfied for the sequence (cj) ∈ `2(R+) defined

by cj = |σj |
α

2−α . Condition (4.11) is trivially satisfied because each hj has no drift and
the Lévy measure is symmetric. Since∫

|x|6 k
cj

x2 ρj(dx) = σ2
j

∫
|x|6 k

|cjσj|
x2 ρ(dx) = σ2

j

k2−α

2− α
|cjσj |α−2 =

k2−α

2− α
,

Condition (4.12) is satisfied. Since (cj) ∈ `2(R+) by its very definition, Remark 4.2
establishes Condition (4.13).

Example 4.5. [One-sided stable process] We choose `j = σjhj in (4.3) with σj ∈ R
and hj arbitrary, strictly α-stable Lévy process with α ∈ (0, 2) and with no negative
jumps. Note, that α 6= 1, since a 1-stable Lévy process is strictly stable if and only if
its Lévy measure is symmetric. The characteristic function of hj(1) is given by

ϕhj(1)(x) = exp
(
−|x|α

(
1− i tan πα

2 sgnx
))
,

see [30, Th. 14.15, Def. 14.16]. It follows that the Lévy process σjhj has characteristics
(bj , 0, ρj) given by

bj = σj
1

cα(1− α)
σj |σj |α−1, ρj(dx) =

(
ρ ◦m−1

σj

)
(dx),

where cα = − cos
(
απ
2

)
Γ(α), the function mσj : R→ R is defined by mσj (x) = σjx and

ρ(dx) = 1(0,∞)(x) 1
cα
x−1−α dx.

We claim that L is a cylindrical Lévy process if and only if σ ∈ `
2α
2−α (R). Indeed,

Condition (4.4) reduces to

∞∑
j=1

|αj |

∣∣∣∣∣bj +

∫
1<|x|61/|αj |

x
(
ρ ◦m−1

σj

)
(dx)

∣∣∣∣∣ =
c

cα|1− α|

∞∑
j=1

|αjσj |α,

13



whereas Condition (4.6) reads as

∞∑
j=1

∫
R

(
|αjx|2 ∧ 1

)
ρj(dx) =

2c

cα(2− α)α

∞∑
j=1

|αjσj |α.

Assumption (A6) is satisfied with cj = |σj |
α

2−α , since Condition (4.11) can be cal-
culated as

∞∑
j=1

(
bj +

∫
1<|x|6 k

cj

x ρj(dx)

)2

=

(
ck1−α

cα(1− α)

)2 ∞∑
j=1

|σj |
2α
2−α .

Conditions (4.12) and (4.13) follow by the same arguments as in Example 4.4.

Remark 4.6. In both Examples 4.4 and 4.5, Condition (4.13) would not be satisfied
for a constant level of truncation of jumps i.e. with cj = 1 for all j ∈ N. By introducing
the weights (cj) we compensate the fact that the cylindrical distribution of L is not
tight, i.e. its mass of the span of the higher nodes decays too slowly.

Example 4.7. [One-sided regularly varying tails] Recall that a measure µ concentrated
on (0,∞) is said to have regularly varying tails with index α if

lim
x→∞

µ(λx,∞)

µ(x,∞)
= λ−α for all λ > 0;

see [3, 8]. We choose `j = σjhj in (4.3) with a sequence of independent and identically
distributed Lévy processes hj of regularly varying tails of index α ∈ (0, 1) ∪ (1, 2). For
simplifying the calculations, we assume that the characteristic function of hj(1) is given
by

ϕhj(1)(x) =

{
exp

(∫∞
0

(
eixy − 1− ixy1BR(y)

)
ρ(dy) + ixb

)
, if α ∈ (0, 1),

exp
(∫∞

0

(
eixy − 1− ixy

)
ρ(dy)

)
, if α ∈ (1, 2),

for a constant b ∈ R. The Lévy measure ρ of hj has regularly varying tails according
to [7].

We show that if (σj) ∈ `
2δ
2−δ (R) for some δ < α, then (4.3) defines a cylindrical Lévy

process. For this purpose, we define

Vδ(x) :=

∫ ∞
x

yδ1(1,∞)(y) ρ(dy), U2(x) :=

∫ x

1
y2 ρ(dy), for x > 0.

It follows from [29, Prop. 4.2.1] that Vδ(0) <∞ and U2(∞) =∞. Theorem VII.9.2 in
[8] implies

lim
x→∞

x2−δVδ(x)

U2(x)
=

2− α
α− δ

=: c,
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and therefore there exists M > 0 such that

U2(x) 6
2x2−δVδ(x)

c
for all x >M.

Since both (αj) and (σj) tend to 0 we can assume without loss of generality that
1

|αjσj | > M for all j ∈ N. For verifying Condition (4.6) we obtain

∞∑
j=1

α2
jσ

2
j

∫
06x61

x2 ρ(dx) + α2
jσ

2
j

∫
1<x6 1

|αjσj|
x2 ρ(dx)


=

∞∑
j=1

α2
jσ

2
j

∫
06x61

x2 ρ(dx) +

∞∑
j=1

α2
jσ

2
jU2

(
1

|αjσj |

)

6
∞∑
j=1

α2
jσ

2
j

∫
06x61

x2 ρ(dx) +
2

c

∞∑
j=1

|αjσj |δVδ
(

1

|αjσj |

)
.

Both sums are finite because of the summability assumptions on α and σ. Similarly,
we derive that

∞∑
j=1

ρ
([

1
|αjσj | ,∞

))
<∞,

which shows Condition (4.6).
Similarly to the stable case in Example 4.5, the sequence (cj) satisfying (A6) can

be defined by cj = |σj |
α

2−α .
Note that the conclusion in this example is not optimal in the case of α-stable

noise. For, in Example 4.5 we can choose σ ∈ `
2α
2−α (R) whereas here we have to choose

σ ∈ `
2δ
2−δ (R) for δ < α.

The integration theory developed in [27] and improved in Section 3 relies on fi-
nite weak moments of the cylindrical Lévy process. In the following, we extend this
stochastic integral to the class of cylindrical Lévy processes of the form (4.3) under
Assumption (A6) without requiring finite weak moments. For this purpose, by fixing a
sequence c ∈ `∞(R+) such that Assumption (A6) is satisfied and by using the notation
(4.8)–(4.10) we define for each k > 0:

Lck(t)u :=

∞∑
j=1

(
pc,kj (t) +mc,k

j (t)
)
〈u, ej〉, t > 0, u ∈ U.

Lemma 4.3 yields that Lck = P ck + M c
k is a square-integrable cylindrical Lévy process.

Let Qk denote the covariance operator of M c
k and Hk be the corresponding reproduc-

ing kernel Hilbert space, where we suppress the dependence on the sequence c in the
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notation for Qk and Hk. At the same time, we extend the class of integrands by the
usual localisation arguments. For this purpose, we define the class Λloc as

Λloc :=

{
Ψ : [0, T ]× Ω→ LHS(Hk, H) : Ψ is predictable and∫ T

0

∥∥∥Ψ(t)Q
1/2
k

∥∥∥2

LHS(U,H)
dt <∞ P -a.s. for all k ∈ N

}
.

Theorem 4.8. Assume that L is a cylindrical Lévy process of the form (4.3) satis-
fying (A6) for a sequence c ∈ `∞(R+) and let Ψ be in Λloc. Then there exists an
increasing sequence of stopping times (%(k)) with %(k)→∞ P -a.s. as k →∞ such that
Ψ(·)1[0,%(k)](·) ∈ Λ for each k ∈ N and(∫ t

0
Ψ(s)1{s6%(k)} dLck(s) : t ∈ [0, T ]

)
k∈N

is a Cauchy sequence in the topology of uniform convergence in probability and its limit
is independent of the sequence c satisfying Assumption (A6).

Theorem 4.8 enables us to define for each Ψ ∈ Λloc the stochastic integrals∫ ·
0

Ψ(s) dL(s) := lim
k→∞

∫ ·
0

Ψ(s)1[0,%(k)](s) dLck(s),

where the limit is taken in the topology of uniform convergence in probability. Note,
that although in [13] a stochastic integration theory is developed for a large class of
integrands with respect to arbitrary cylindrical Lévy processes, it does not cover the
case of only predictable integrands.

Proof. Define the stopping times

τ̃(k, n) := inf

{
t ∈ [0, T ] :

∫ t

0

∥∥Ψ(s)Q
1/2
k

∥∥2

LHS(U,H)
ds > n

}
,

where we take the convention that inf ∅ = +∞. Since Ψ ∈ Λloc, for P -almost every

ω ∈ Ω there exists n(ω) ∈ N such that
∫ t

0

∥∥Ψ(s)(ω)Q
1/2
k

∥∥2

LHS(U,H)
ds 6 n(ω) for all

t ∈ [0, T ], and thus for each k ∈ N we have τ̃(k, n)(ω) = ∞ for every n > n(ω).
Therefore, we conclude P (∪∞n=1{τ̃(k, n) =∞}) = 1 for each k ∈ N. This guarantees
that for every k ∈ N there exists nk ∈ N such that P (τ̃(k, nk) < ∞) 6 1

2k
. Since 1

2k
is

summable, it follows by the Borel–Cantelli Lemma that

P

(
lim sup
k→∞

{τ̃(k, nk) <∞}
)

= 0.
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Consequently, the stopping times %c(k) := τ c(k)∧ τ̃(k, nk) also converge to +∞ a.s. by
Lemma 4.3. Note that if T < %c(k), then Lck = Lcn on [0, T ] and∫ t

0
Ψ(s)1{s6%c(k)} dLck(s) =

∫ t

0
Ψ(s)1{s6%c(n)} dLcn(s)

for all t ∈ [0, T ]. Consequently, we obtain for each k 6 n and ε > 0 that

P

(
sup
t∈[0,T ]

∥∥∥∥∫ t

0
Ψ(s)1{s6%c(k)} dLck(s)−

∫ t

0
Ψ(s)1{s6%c(n)} dLcn(s)

∥∥∥∥
H

> ε

)

6 P

(∫ t

0
Ψ(s)1{s6%c(k)} dLck(s) 6=

∫ t

0
Ψ(s)1{s6%c(n)} dLcn(s) for some t ∈ [0, T ]

)
6 P

(
T > %c(k)

)
→ 0 as n, k →∞,

which establishes the claimed convergence.
The limit of the Cauchy sequence does not depend on the choice of the sequence c

satisfying (A6) because if d is another sequence satisfying (A6), then Lck = Ldn for all
t ∈ [0, T ] on {T < τ c(k) ∧ τd(n)} and∫ t

0
Ψ(s)1{s6τc(k)} dLck(s) =

∫ t

0
Ψ(s)1{s6τd(n)} dLdn(s),

which completes the proof.

5 Existence of a solution for the orthogonal noise

Existence of a cylindrical Lévy process of the form (4.3) strongly depends on the in-
terplay between the drift part bj and the Lévy measure ρj of the real valued Lévy
process with characteristics (bj , sj , ρj), see condition (4.4). For this reason, we con-
sider the general case of a cylindrical Lévy process with a possible non-zero drift part.
Naturally, we will tackle this part by moving it to the drift part of the equation under
consideration. For this purpose, recall the decomposition L(t) = P ck (t) +M c

k(t) +Rck(t)
of the cylindrical Lévy process L for each k > 0 derived in Lemma 4.3 under assump-
tion (A6) satisfied for a sequence c ∈ `∞(R+). Let Qk denote the covariance operator
of M c

k where we suppress the dependency on the sequence c. Furthermore, instead of
the standard coercivity and monotonicity requirements, we introduce assumptions for
each truncation level k ∈ N. Assumptions of this form were introduced in Peszat and
Zabczyk [21, Sec. 9.7] in the semigroup approach. Assume that there are constants
αk, λk, βk > 0 such that

(A1′) (coercivity) For every k ∈ N and v ∈ V we have

2V ∗〈F (v) + P ck(1)G∗(v), v〉V +
∥∥G(v)Q

1/2
k

∥∥2

LHS(U,H)
+ αk‖v‖2V 6 λk‖v‖2H + βk;
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(A2′) (monotonicity) For every k ∈ N and v1, v2 ∈ V we have

2V ∗〈F (v1)− F (v2) + P ck(1)
(
G∗(v1)−G∗(v2)

)
, v1 − v2〉V

+
∥∥(G(v1)−G(v2))Q

1/2
k

∥∥2

LHS(U,H)
6 λk‖v1 − v2‖H .

(A3′) (linear growth) ‖F (v) + P ck(1)G∗(v)‖V ∗ 6 ck(1 + ‖v‖V ) for all v ∈ V ;

(A4′) (hemicontinuity) the mapping

R 3 s 7→ V ∗〈F (v1 + sv2) + P ck(1)G∗(v1 + sv2), v3〉V

is continuous for all v1, v2, v3 ∈ V .

Note, the term P ck(1) is due to the fact that we allow general cylindrical Lévy
processes with a possible non-zero drift part. Naturally, such a non-zero drift part of
the noise contributes to the dynamic of the equation (3.2) together with the diffusion
coefficient G as an addition to the drift coefficient F . For example, for a cylindrical
Lévy process with symmetric cylindrical Lévy measure and drift p = 0 in (2.1), the
term P ck(1) disappears and these assumptions simplify to the more familiar conditions
(A1)–(A4) but with Qk instead of Q.

Theorem 5.1. Assume that L is a cylindrical Lévy process of the form (4.3) satisfying
(A6) on page 11 for a sequence c ∈ `∞(R+). If the coefficients F and G satisfy (A1′)–
(A4′), then equation (3.2) with an F0-measurable initial condition X(0) = X0 has a
pathwise unique variational solution (X, X̄).

Proof. We reduce the case of the general initial condition to the square integrable one
as in [1, Th. 6.2.3]. For k ∈ N let Ωk = {‖X0‖ 6 k} and Xk

0 = X01Ωk . Using
the decomposition L(t) = P ck(t) + M c

k(t) + Rck(t), Lemma 4.3 guarantees that M c
k is

a weakly square-integrable cylindrical Lévy martingale with diagonal covariance, and
thus according to Theorem 3.3 there exists a unique variational solution (Xc

k, X̄
c
k) of

dX(t) =
(
F (X(t)) + P ck(1)G∗(X(t))) dt+G(X(t)

)
dM c

k(t),

with the initial condition X(0) = Xk
0 .

Step 1. We first show that for each k 6 n we have Xc
k(t) = Xc

n(t) P -a.s. on
{t < τ c(k)} ∩ Ωk.

Define a cylindrical Lévy process Y c
k,n by

Y c
k,n(t)u := Rck(t)u−Rcn(t)u =

∞∑
j=1

(∫
k/cj<|x|6n/cj

xNj(t,dx)

)
〈u, ej〉
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for all t > 0 and u ∈ U . The cylindrical martingale M c
n can be rewritten as

M c
n(t)u

=
∞∑
j=1

(
mc,k
j (t) +

∫
k/cj<|x|6n/cj

x Ñj(t,dx)

)
〈u, ej〉

=
∞∑
j=1

(
mc,k
j (t) +

∫
k/cj<|x|6n/cj

xNj(t,dx)−
∫
k/cj<|x|6n/cj

x ρj(t,dx)

)
〈u, ej〉

= M c
k(t)u+ Y c

k,n(t)u− (P cn(1)u− P ck(1)u)t.

Applying this we get

Xc
k(t)−Xc

n(t) = −X01Ωn\Ωk +

∫ t

0

(
F
(
X̄c
k(s)

)
− F

(
X̄c
n(s)

))
ds

+

∫ t

0
P ck(1)

(
G∗
(
X̄c
k(s)

)
−G∗

(
X̄c
n(s)

))
ds

+

∫ t

0

(
G
(
X̄c
k(s)

)
−G

(
X̄c
n(s)

))
dM c

k(s)

−
∫ t

0
G
(
X̄c
n(s)

)
dY c

k,n(s). (5.1)

By introducing the new notation

A(t) := Xc
k(t)−Xc

n(t) +

∫ t

0
G
(
X̄c
n(s)

)
dY c

k,n(s),

I(t) :=

∫ t

0

(
G
(
X̄c
k(s)

)
−G

(
X̄c
n(s)

))
dM c

k(s),

equation (5.1) can be rewritten as

A(t) = −X01Ωn\Ωk +

∫ t

0

(
F
(
X̄c
k(s)

)
− F

(
X̄c
n(s)

))
ds

+

∫ t

0
P ck(1)

(
G∗
(
X̄c
k(s)

)
−G∗

(
X̄c
n(s)

))
ds+ I(t). (5.2)

Note that on {t < τ c(k)} we have A(t) = Xc
k(t)−Xc

n(t). We apply Theorem 1 in [11]
with v(t) = X̄c

k(t)− X̄c
n(t) and h(t) = I(t) on the set {t < τ c(k)}. It follows that there

exists an H-valued, càdlàg process Z, which is equal to A = Xc
k −Xc

n Leb⊗P -almost
everywhere on Υ := {(t, ω) ∈ [0, T ] × Ω : t < τ c(k)(ω)} and such that the Itô formula
for the square of the norm holds:

‖Z(t)‖2H
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= ‖X0‖2H1Ωn\Ωk + 2

∫ t

0
V ∗〈F

(
X̄c
k(s)

)
− F

(
X̄c
n(s)

)
, X̄c

k(s)− X̄c
n(s)〉V ds

+ 2

∫ t

0
V ∗〈P ck(1)

(
G∗
(
X̄c
k(s)

)
−G∗

(
X̄c
n(s)

))
, X̄c

k(s)− X̄c
n(s)〉V ds

+

∫ t

0
(Xc

k(s−)−Xc
n(s−)) dI(s) + [I, I](t). (5.3)

We show that Xc
k −Xc

n and Z are indistinguishable on Υ. We have that

E

[∫ τc(k)

0
1{Z(t)6=(Xc

k−Xc
n)(t)} dt

]
= 0.

This implies that there exists Ω1 ⊂ Ω with P (Ω1) = 1 such that for all ω ∈ Ω1∫ τc(k)(ω)

0
1{Z(t,ω) 6=(Xc

k−Xc
n)(t,ω)} dt = 0.

We obtain that for every ω ∈ Ω1 there is a subset Aω ⊂ [0, τ c(k)(ω)) with Leb(Aω) =
τ c(k)(ω) and such that Z(t, ω) = (Xc

k −Xc
n)(t, ω) for all t ∈ Aω. Note that Xc

k −Xc
n

is a càdlàg process in V ∗. Fix ω ∈ Ω1 and t ∈ [0, τ c(k)(ω)). Let (tm) ⊂ Aω be a
sequence decreasing to t. Since Z(tm, ω) = (Xc

k −Xc
n)(tm, ω) for all m ∈ N we obtain

that Z(t, ω) = (Xc
k −Xc

n)(t, ω) for all ω ∈ Ω1 and t ∈ [0, τ c(ω)) i.e. Z and Xc
k −Xc

n are
indistinguishable on Υ.

Thus, in what follows, we can assume that for t < τ c(k) the process Xc
k − Xc

n is
H-valued and càdlàg. Let

J(t) :=

∫ t

0
(Xc

k(s−)−Xc
n(s−)) dI(s).

We show that

‖A(t ∧ τ c(k))‖2H

= ‖X0‖2H1Ωn\Ωk + 2

∫ t∧τc(k)

0
V ∗〈F

(
X̄c
k(s)

)
− F

(
X̄c
n(s)

)
, X̄c

k(s)− X̄c
n(s)〉V ds

+ 2

∫ t∧τc(k)

0
V ∗〈P ck(1)

(
G∗
(
X̄c
k(s)

)
−G∗

(
X̄c
n(s)

))
, X̄c

k(s)− X̄c
n(s)〉V ds

+ J(t ∧ τ c(k)) + [I, I](t ∧ τ c(k)). (5.4)

It follows from (5.3) by taking the left limit at t ∧ τ c(k) that

‖Xc
k((t ∧ τ c(k))−)−Xc

n((t ∧ τ c(k))−)‖2H
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= ‖X0‖2H1Ωn\Ωk + 2

∫ t∧τc(k)

0
V ∗〈F

(
X̄c
k(s)

)
− F

(
X̄c
n(s)

)
, X̄c

k(s)− X̄c
n(s)〉V ds

+ 2

∫ t∧τc(k)

0
V ∗〈P ck(1)

(
G∗
(
X̄c
k(s)

)
−G∗

(
X̄c
n(s)

))
, X̄c

k(s)− X̄c
n(s)〉V ds

+ J
(
(t ∧ τ c(k))−

)
+ [I, I]

(
(t ∧ τ c(k))−

)
. (5.5)

By definition ofA, A(s) = Xc
k(s)−Xc

n(s) for s < τ c(k). Taking the limits as s↗ t∧τ c(k)
we get that A

(
(t ∧ τ c(k)) −

)
= Xc

k

(
(t ∧ τ c(k)) −

)
− Xc

n

(
(t ∧ τ c(k)) −

)
. Since the

only discontinuous processes in (5.2) are A and I, it follows that ∆A(t ∧ τ c(k)) =
∆I(t ∧ τ c(k)). Thus

‖A(t ∧ τ c(k))‖2H = ‖A((t ∧ τ c(k))−) + ∆A(t ∧ τ c(k))‖2H
=
∥∥Xc

k

(
(t ∧ τ c(k))−

)
−Xc

n

(
(t ∧ τ c(k))−

)
+ ∆I(t ∧ τ c(k))

∥∥2

H

=
∥∥Xc

k

(
(t ∧ τ c(k))−

)
+Xc

n

(
(t ∧ τ c(k))−

)∥∥2

H
+ ‖∆I(t ∧ τ c(k)‖2H

+ 〈∆I(t ∧ τ c(k)), Xc
k

(
(t ∧ τ c(k))−

)
−Xc

n

(
(t ∧ τ c(k))−

)
〉H .

Applying (5.5) we obtain

‖A(t ∧ τ c(k))‖2H

= ‖X0‖2H1Ωn\Ωk +

∫ t∧τc(k)

0
V ∗〈F

(
X̄c
k(s)

)
− F

(
X̄c
n(s)

)
, X̄c

k(s)− X̄c
n(s)〉V ds

+

∫ t∧τc(k)

0
V ∗〈P ck(1)

(
G∗
(
X̄c
k(s)

)
−G∗

(
X̄c
n(s)

))
, X̄c

k(s)− X̄c
n(s)〉V ds

+ J
(
(t ∧ τ c(k))−

)
+ [I, I]

(
(t ∧ τ c(k))−

)
(5.6)

+ 〈∆I(t ∧ τ c(k)), Xc
k

(
(t ∧ τ c(k))−

)
−Xc

n

(
(t ∧ τ c(k))−

)
〉H + ‖∆I(t ∧ τ c(k))‖2H

The jump of the stochastic integral J at t ∧ τ c(k) equals to

〈Xc
k((t ∧ τ c(k))−)−Xc

n((t ∧ τ c(k))−),∆I(t ∧ τ c(k))〉H ,

see [20, Prop. 24.3 and Sec. 26.4]. Thus in (5.6) we can simplify

J
(
(t ∧ τ c(k))−

)
+ 〈∆I(t ∧ τ c(k)), Xc

k

(
(t ∧ τ c(k))−

)
−Xc

n

(
(t ∧ τ c(k))−

)
〉H

= J
(
(t ∧ τ c(k))−

)
+ ∆J(t ∧ τ c(k))

= J(t ∧ τ c(k)). (5.7)

Similarly, we obtain that the jump of the quadratic variation of I at t ∧ τ c(k) equals
‖∆I(t ∧ τ c(k))‖2H , see [20, Th. 20.5(4)], and we can simplify in (5.6):

[I, I]
(
(t ∧ τ c(k))−

)
+
∥∥∆I(t ∧ τ c(k

)
)
∥∥2

H
= [I, I]

(
(t ∧ τ c(k))−) + ∆[I, I](t ∧ τ c(k)

)
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= [I, I](t ∧ τ c(k)). (5.8)

Applying (5.7) and (5.8) in (5.6) finishes the proof of (5.4).
We multiply both sides of (5.4) by 1Ωk and take expectation. For the term involv-

ing the quadratic variation, we use E [[I, I](t ∧ τ c(k)] = E [〈I, I〉(t ∧ τ c(k)] and Theorem
3.1(ii). Recall for the following that the martingale property is invariant under multi-
plication by 1Ωk , since Ωk is F0-measurable. Thus E [J(t ∧ τ c(k))1Ωk ] = 0. We obtain

E
[
‖A(t ∧ τ c(k))‖2H1Ωk

]
= E

[
2

∫ t∧τc(k)

0
V ∗〈F

(
X̄c
k(s)

)
− F

(
X̄c
n(s)

)
, X̄c

k(s)− X̄c
n(s)〉V ds1Ωk

]

+ E

[
2

∫ t∧τc(k)

0
V ∗〈P ck(1)

(
G∗
(
X̄c
k(s)

)
−G∗

(
X̄c
n(s)

))
, X̄c

k(s)− X̄c
n(s)〉V ds1Ωk

]

+ E

[∫ t∧τc(k)

0

∥∥(G (X̄c
k(s)

)
−G

(
X̄c
n(s)

))
Q

1/2
k

∥∥2

LHS(U,H)
ds1Ωk

]
.

The monotonicity assumption (A2′) implies that

E
[
‖A(t ∧ τ c(k))‖2H1Ωk

]
6 λkE

[∫ t∧τc(k)

0
‖Xc

k(s)−Xc
n(s)‖2H ds1Ωk

]

6 λkE
[∫ t

0
‖A(s ∧ τ c(k))‖2H ds1Ωk

]
.

It follows by Gronwall’s inequality that

E

∥∥∥∥∥Xc
k(t ∧ τ c(k))−Xc

n(t ∧ τ c(k)) +

∫ t∧τc(k)

0
G
(
X̄c
n(s)

)
dY c

k,n(s)

∥∥∥∥∥
2

H

1Ωk

 = 0.

Thus(
Xc
k(t ∧ τ c(k))−Xc

n(t ∧ τ c(k)) +

∫ t∧τc(k)

0
G
(
X̄c
n(s)

)
dY c

k,n(s)

)
1Ωk = 0 a.s.

In particular we obtain that

Xc
k(t)−Xc

n(t) = 0 a.s. on {t < τ c(k)} ∩ Ωk.

Step 2. The first part enables us to define

X := Xc
k and X̄ := X̄c

k on {t < τ c(k)} ∩ Ωk. (5.9)
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This definition does not depend on the choice of the sequence c: for, if d is another
sequence in `∞(R) satisfying (A6), then one can show similarly as in Step 1, that
Xc
k = Xd

n on {t < τ c(k) ∧ τd(n)}. Moreover, since Xc
k and X̄c

k are equal almost
everywhere on {(ω, t) ∈ Ωk × [0, T ] : t < τ c(k)(ω)}, it follows by taking k →∞ that X
and X̄ are equal almost everywhere on Ω× [0, T ].

Step 3. We show that (X, X̄) defined in (5.9) satisfies (3.3). Note that

X(t)1{t<τc(k)}∩Ωk = Xc
k(t)1{t<τc(k)}∩Ωk

= X01Ωk + 1{t<τc(k)}∩Ωk

∫ t

0
F (X̄c

k(s)) ds+ 1{t<τc(k)}∩Ωk

∫ t

0
G(X̄c

k(s)) dLck(s). (5.10)

From the very definition (5.9) it follows

lim
k→∞

1{t<τc(k)}∩Ωk

∫ t

0
F (X̄c

k(s)) ds = lim
k→∞

1{t<τc(k)}∩Ωk

∫ t

0
F (X̄(s)) ds

=

∫ t

0
F (X̄(s)) ds. (5.11)

The last term in (5.10) can be rewritten as

1{t<τc(k)}∩Ωk

∫ t

0
G(X̄c

k(s)) dLck(s) = 1{t<τc(k)}∩Ωk

∫ t∧τc(k)

0
G(X̄c

k(s)) dLck(s).

From Theorem 3.1(iii) and the definition of the stochastic integral with respect to L
after Theorem 4.8, it follows that

lim
k→∞

∫ t∧τc(k)

0
G(X̄c

k(s)) dLck(s) = lim
k→∞

∫ t

0
G(X̄c

k(s))1{s6τc(k)} dLck(s)

= lim
k→∞

∫ t

0
G(X̄(s))1{s6τc(k)} dLck(s)

=

∫ t

0
G(X̄(s)) dL(s). (5.12)

By taking the limit k →∞ in (5.10), equalities (5.11) and (5.12) show

X(t) = X0 +

∫ t

0
F (X̄(s)) ds

∫ t

0
G(X̄(s)) dL(s),

which finishes the proof of the theorem.
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