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Abstract

We consider the extent to which different deep neural network (DNN) configurations can learn
syntactic relations, by taking up Linzen et al.’s (2016) work on subject-verb agreement with
LSTM RNNs. We test their methods on a much larger corpus than they used (a ⇠24 million
example part of the WaCky corpus, instead of their ⇠1.35 million example corpus, both drawn
from Wikipedia). We experiment with several different DNN architectures (LSTM RNNs, GRUs,
and CNNs), and alternative parameter settings for these systems (vocabulary size, training to test
ratio, number of layers, memory size, drop out rate, and lexical embedding dimension size). We
also try out our own unsupervised DNN language model. Our results are broadly compatible
with those that Linzen et al. report. However, we discovered some interesting, and in some cases,
surprising features of DNNs and language models in their performance of the agreement learning
task. In particular, we found that DNNs require large vocabularies to form substantive lexical
embeddings in order to learn structural patterns. This finding has interesting consequences for
our understanding of the way in which DNNs represent syntactic information. It suggests that
DNNs learn syntactic patterns more efficiently through rich lexical embeddings, with semantic
as well as syntactic cues, than from training on lexically impoverished strings that highlight
structural patterns.
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1 Introduction

The extent to which machine learning systems in general, and neural networks
in particular, can learn regularities that depend on syntactic structure is a topic
of ongoing debate.1 Subject-verb number agreement is a paradigmatic case of
a syntactic feature that depends on structural properties of a sentence.

Linzen et al. (2016) train a Long Short Term Memory Recurrent Neural
Network (LSTM RNN) on a subset of a Wikipedia corpus to predict the num-
ber of a verb. As they observe, the task increases in difficulty in relation to
the length of the sequence of NPs with the wrong number feature that occur
between a subject and the verb that it controls. They refer to such intervening
NPs as attractors.2 In (1) the attractors for the The students-submit pair are
indicated in boldface.

(1a) The students submit a final project to complete the course.
(b) The students enrolled in the program submit a final project to complete

the course.
(c) The students enrolled in the program in the Department submit a

final project to complete the course.
(d) The students enrolled in the program in the Department where my

colleague teaches submit a final project to complete the course.

Linzen et. al use a dependency parser to identify the controlling subject
of each verb in their corpus of examples. This identification is necessary to
compute the number of attractors, but it is not used in the training for the
number prediction task, because the number of the verb is morphologically
manifest in the raw data.

They train their LSTM RNN on ⇠121,500 examples (9% of the total cor-
pus) by supervised learning, in which the system is shown the correct number
feature of the verb. They test the number predictions of their RNN on ⇠1.21
million examples (90% of their corpus). They encode the input words as vec-
tors in 50 dimensions, and their RNN has 50 hidden units. They report that
their system achieves 99% accuracy in the number prediction task for cases
with 0 attractors between the subject and its verb, and declines to 83% accu-
racy for examples with 4 attractors. They do not report scores for examples
with more than 4 attractors.

In addition to the supervised number prediction task, they train a genera-
tive language model (predicting the next word) and use it to predict the num-
ber of the verb in an unsupervised manner. By contrast to their supervised

1See Lau et al. (2016) for recent discussion and references.
2It would actually be more perspicuous to describe these NPs as distractors, given that they

are marked for the non-agreeing number. But to avoid confusion, we retain Linzen et al.’s original
term.
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LSTM RNN, Linzen et al.’s language model goes below chance in its pre-
dictions for 4 attractor cases. While the much larger Google LM (Józefowicz
et al., 2016) does better, at a ⇠45% error for 4 attractors, it also performs
well below their supervised RNN. They conclude that a considerable amount
of syntactic structure is accessible to DNN learning if training is properly
supervised.

Our main objective in the work that we report here is to explore the capa-
bilities, and the limitations of DNNs for learning complex syntactic relations
which depend on structural properties of sentences.

We used methods similar to Linzen et al.’s to test several DNN models on a
much larger corpus. We experimented with different DNN architectures, and
with alternative values for the following parameters:. Ratio of training to testing as a partition of the corpus. Number of hidden units (memory size). Vocabulary size. Number of layers. Dropout rate. Lexical embedding dimension size

In addition we applied our own language model to the number prediction
task, testing two distinct methods of predicting verb number from the model’s
probability distribution.

Our results are broadly compatible with those that Linzen et al. present.
However, some of the correlations that we observed between certain parame-
ter settings and levels of performance surprised us.

Specifically, by working with different vocabulary sizes, lexical encod-
ings, and embedding sizes we discovered that our supervised DNN mod-
els learn agreement patterns more effectively from rich word embeddings
than from abstract syntactically annotated input. We also found that, in gen-
eral, our models required larger amounts of training relative to testing than
Linzen et al. describe for their system, in order to reach the performance that
they report.3 We have observed that increasing the values of hyperparameters
(and thereby the number of degrees of freedom in the network itself) gener-
ally improves accuracy, even if after a certain point, overfitting is observed.
But changes to any individual hyperparameter do not create dramatic effects.
However, the total effect of hypeparameter optimisation is quite significant.

Finally, we were able to construct a language model with significantly
better (unsupervised) prediction. Yet, our model is much smaller than the

3We could not replicate their near perfect accuracy for zero attractors. This could be because
we trained and tested our DNNs on much larger corpora with less filtered dependency sequences.
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Google LM. All of our supervised DNNs outperformed our language model
on the number prediction task.4

1 Experimental Design

1.1 Corpus

For our experiments, we used the WaCkypedia English corpus (Baroni et al.,
2009), which contains ⇠24 million example cases of present tense subject-
verb agreement.5 The corpus is annotated for POS by TreeTagger (Schmid,
1995), and for dependency relations by the MaltParser (Nivre et al., 2007).

Linzen et al. restricted training and testing to one agreement case per sen-
tence in their corpus. We used the full set of number agreement relations in
the sentences of our corpus for our experimental work.

They also limit their test, but not their training examples to cases in which
all NPs intervening between the subject and the verb that it controls are at-
tractors. We did not adopt this constraint on our test sets of examples. We
included the cases in which agreeing, as well as non-agreeing NPs intervened
between the subject and its verb. We are interested in measuring the accuracy
with which a DNN predicts verb number in complex and possibly confusing
syntactic sequences. Training and testing less filtered data of the kind that
involves discarding the non-agreement constraint that Linzen et al. apply to
their test set provides a realistic indication of the success with which different
types of DNN learn number agreement patterns.

Therefore, our test procedures depart slightly from those of Linzen et al. in
relaxing both the single agreement case and the (non-) agreement conditions
on the test set.

1.2 Models

Models Trained on the Inflection Task

We experiment with three types of DNN. We use a version of Linzen et al.’s
LSTM RNN, a Convolutionnal Neural Network (CNN) similar to that pre-
sented in Kalchbrenner et al. (2016), and a Gated Recurrent Unit (GRU) net-
work of the kind described in Cho et al. (2014).6

4However, by limiting the vocabulary of our LM to the 100 most frequent words we have,
in effect, introduced an element of supervision in learning. This feature of the model forces it
to attend to POS sequences and abstract away from lexical semantic properties (as well as real
world knowledge) that would be introduced with a larger vocabulary.

5We are grateful to the administrators of the WaCKy corpora (http://wacky.sslmit.
unibo.it) for giving us access to to this corpus .

6We are grateful to Tal Linzen for sharing the code that Linzen et al. used in their work. We
note that our experiments were performed from scratch: both the data and our code are new. The
code for our models and our data sets are available at https://github.com/GU-CLASP/
DNNSyntax.

http://wacky.sslmit.unibo.it
http://wacky.sslmit.unibo.it
https://github.com/GU-CLASP/DNNSyntax
https://github.com/GU-CLASP/DNNSyntax
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FIGURE 1: Our CNN Architecture

We implemented our own versions of an LSTM RNN, GRU RNN, and
CNN, using the Keras library (Chollet, 2015) with a TensorFlow backend.
Our LSTM RNN and GRU RNN have standard architectures. We apply a
dense layer with sigmoid activation to the output of the latest RNN cell to
obtain the verb-number classifier.

Our CNN has 6 levels with filtering successively compressing vector di-
mensions from 15 through 20, 15, 10 to 5. Convolution at these levels yields
7, 5, 5, and 3 features, respectively. Every convolution layer uses a ReLU ac-
tivation function. The last layer is a dense layer with sigmoid activation. We
represent this CNN graphically in fig.1.

A Generative Language Model

In addition to models which predict verb numbers, we have trained a genera-
tive language model. For this purpose we use an LSTM RNN with two layers,
1200 units per layer, and a dropout rate of 0.5 to generate a language model
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from the WaCky corpus of sentences.7 We did this by employing the 100 most
common words and substituting corresponding POS tags for the others in the
sentences. This design is intended both to improve the performance of the
language model by restricting the number of possible outputs. It is targetted
to focus on syntactic patterns that we seek to recognise by removing most of
the semantic (lexical) features in the corpus. We have performed experiments
with 100, 10k and 100k common words on the supervised number prediction
task, to control for the role of the lexicon in supervised learning.

1.3 Methods

For our supervised learning experiments we followed Linzen et al. in training
and testing procedures. We trained each DNN on a portion of our agreement
example corpus using customary back propagation and gradient descent, with
the Adam (Kingma and Ba, 2014) optimizer. The training set was subdivided
into a proper training and validation set. After each run through the proper
training set, the average loss was computed for the validation set. We ended
training when the validation loss function reached a local minimum value.

Contrary to Linzen et al. we applied a relatively large batch size (1024
instead of 16). We tested the resulting model on the remainder of the corpus
by having it predict the number feature of the verb in each example of the
test set. As stated above, the dependency parse structures were not used in
the training. They were applied only to determine the number of attractors
between the subject and the verb that it controls, as well as all other interven-
ing nouns in this sequence. The part-of-speech tagging was employed both
to determine the correct number of the verb and to limit the vocabulary in a
syntactically meaningful way, as explained below.

We first identified a benchmark of reasonable performance for our DNN
configuration and training. We settled on an LSTM with one layer of 150 units
and no dropout, a data-set constructed with 10000 words, lexical embeddings
of dimension 50, and a training regimen of 90% of the corpus. We then con-
ducted experiments varying each of these parameters independently, holding
the others constant. We ran each DNN with training on 10%, 50%, and 90%
of the corpus, testing on the remainder for each split. We tested 50, 150, 450
and 1350 units for the LSTM layers. We experimented with embedding vo-
cabulary sizes of 100, 10k and 100k words, substituting corresponding POS
tags for the rest. We used 1, 2 and 4 layers for our LSTM RNN. We tested
dropout rates of 0, 0.1, 0.2 and 0.5. These dropouts applied to the weights
within the LSTM layers, but not at the final dense layer. Finally we tested
lexical embedding dimension sizes of 17, 50, 150, and 450.

Our working hypothesis for the reduced vocabulary experiment was that a
7We also experimented with a dropout rate of 0.1 with our LM, but the results were signifi-

cantly worse than those that we achieved with 0.5.
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DNN would learn the target syntactic dependency pattern more efficiently if
it was exposed to input consisting largely of POS sequences in which num-
ber features are marked on noun and verb tags. We thought that such input
would highlight the dependency relations more clearly by abstracting away
from possibly confounding distributional lexical information contained in
richer embeddings. Specifically, we conjectured that if impoverished lexical
sequences are used to exhibit a structural relation, with the relevant number
feature spotlighted, it would be easier for a DNN to discern the relevant agree-
ment pattern. Adding rich lexical content that includes semantic cues might
conceal this pattern by adding irrelevant distributional information.

Predictions Using a Generative Language Model

Our language model provides us with an unsupervised system for predict-
ing agreement. We tested two ways for doing this. Let p(wi|wi�1, ..., wi�k)
be the predicted probability of a word w in a string, given the prefix of
wi�1, ..., wi�k of preceding words in that string.

For the first way of predicting verb agreement we determine for each ex-
ample in our test set if (1.1) holds, when V

n ranges over verbs with the correct
number feature (n) in a particular string (i.e. the number agreeing with that
of the verb’s controlling subject), and V

¬n ranges over verbs with the wrong
number feature in that string.

X

V n

p(V n
i |wi�1, ..., wi�k) >

X

V ¬n

p(V ¬n
i |wi�1, ..., wi�k) (1.1)

The second way of predicting verb agreement is to test if (1.2) applies. In
this case we check wether the model gives a higher probability for occurrence
of the inflected V erbi which is found in the test set versus the same verb with
the opposite inflection.

p(V erb

n
i |wi�1, ..., wi�k) > p(V erb

¬n
i |wi�1, ..., wi�k) (1.2)

The prefix wi�1, ..., wi�k is identical on both sides of the inequality in each
case.

The first method measures the summed conditional probabilities of all cor-
rectly number inflected verbs occurring after the prefix in a string against
the summed predicted probabilities of all incorrectly number inflected verbs
appearing in this position. We will refer to this as the summing method of
predicting verb number from a LM.

The second procedure compares only the predicted probability of the cor-
rectly number-marked form of the actual verb in this position with that of its
incorrectly marked form. We will describe it as the verb targeted method of
predicting verb number from a LM.

In the summing method the LM is not given any semantic cue, whereas in
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the verb targeted method method it is given the cue of which verb is expected.
Yet in our 100-word vocabulary there are only 4 inflectible verb forms: “to
be”, “to have”, “to state”, and other verbs lumped together in the “VV” part
of speech code, so this semantic information is relatively limited.

1 Results

We present our results in figures 2 to 6. In all the figures, except for fig. 6,
the y-axis gives the accuracy rate, and the x-axis the number of NP attractors.
We found that 73% of the verbs in our test sets are singular. This provides a
majority choice baseline, which is indicated by a straight horizontal line in
these figures.

Figures 2a and 2b shows that using a reduced vocabulary of 100 most com-
mon words, substituting POS tags for the remainder, consistently reduces ac-
curacy across DNN architectures, for the supervised learning task. Increasing
the vocabulary to 100k words generally yields a significant improvement in
performance for the LSTM RNN, but gives mixed results for our CNN.

Fig. 3a indicates that increasing the ratio of training to testing examples
from 10% to 50% significantly improves the performance of the LSTM RNN
(with 150 units and a vocabulary of 10,000 word embeddings). Further in-
creasing it to 90% does not make much of a difference, even degrading accu-
racy slightly at 6 attractors.

Fig. 3b reveals that the LSTM and GRU RNNs perform at a comparable
level, and both achieve significantly better accuracy than our CNN.

Fig. 3c suggests that increasing the number of units in an LSTM RNN
from 50 to 150 improves its performance on the task, while further expand-
ing this number to 450 yields greater accuracy in relation to the number to
attractors. Each three-fold increase in the number of units achieves a similar
improvement in percentage points for a higher number of attractors. A further
increase to 1350 provides only a small overall improvement.

Fig. 3d indicates that increasing the number of layers for an LSTM RNN
from 1 150-unit layer to 2 such layers marginally improves its performance.
A further increase to 4 150-unit layers makes no clear difference.

Fig. 3e shows that by introducing a dropout rate of 0.1 for the LSTM RNN
(1 layer with 150 units) we improve its performance slightly. An increase
to 0.2 provides no clear benefit. Furthuer increasing the dropout rate to 0.5
degrades performance.

Fig. 3f indicates that decreasing lexical embedding dimensions from our
benchmark 50 to 17 decreases the performance of our LSTM RNN. Increas-
ing dimension size to 150 improves performance, while further expanding it
to 450 contributes no benefit, and, for some cases, reduces accuracy.

Fig. 5 shows that while predicting verb number with our language model



USING DEEP NEURAL NETWORKS TO LEARN SYNTACTIC AGREEMENT / 9

0 1 2 3 4 5 6 7
0.6

0.7

0.8

0.9

1

100 100k
10k

(a) For LSTM

0 1 2 3 4 5 6 7
0.6

0.7

0.8

0.9

1

100 100k
10k

(b) For CNN architecture

FIGURE 2: Comparing effect of vocabulary size across architectures.

using the summing method (inequality (1.1)) yields results comparable to
Linzen et al.’s LM, the verb targeted method (inequality (1.2)) achieves a
far higher level of accuracy than their model, and than the results that they
give for the much larger Google LM (Józefowicz et al., 2016). We note that
Linzen et al. report using the verb targeted method for their results. However
the accuracy of our LM with the verb targeted method is still below our best
supervised results for the LSTM RNN. Its performance with the verb targeted
method is roughly comparable to that of our CNN.

Fig. 4 shows the performance of a DNN configured with the best observed
parameter values, which are model = LSTM RNN, layers = 2, number of
units = 1350, dropout rate = 0.1, vocabulary size = 100k, training = 90%, of
the corpus, and lexical embedding size = 150 dimensions. This DNN provides
the highest level of accuracy of all the systems that we tested.

Finally fig. 6 displays the inverse relation between the number of examples
and the number of attractor NPs.

1 Discussion

Our results support Linzen et al.’s finding that RNNs, both of the LSTM and
GRU variety, are well suited to the task of identifying long distance syntactic
dependencies, even when an extended, complex sequence of expressions that
could cause confusion intervenes between a controller of a syntactic feature,
and the lexical item on which it is realised. However, their success in learning
subject-verb agreement scales with the size of the data set on which they train.

Given that RNNs rely on sequential composition of layers of neural units,
it is not clear how much hierarchical structure they can identify in their recog-
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FIGURE 3: Results of testing the effect of various hyper-parameters. The refer-
ence (solid blue line) is an LSTM architecture, vocabulary size 10000, train-
ing set 90%, single layer, 150 memory units, no drop out.
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nition of these dependencies. It is also worth noting that we used fairly simple
RNNs. It could be that an RNN with a more structured memory that incor-
porates the equivalent of a stack for encoding the beginning of a dependency
and a pop mechanism for releasing it later in a sequence (Grefenstette et al.,
2015) would yield even better results.

CNNs have been highly successful in image recognition, which involves
constructing levels of successfully more abstract visual feature patterns.
Therefore it is surprising that our CNN did not perform particularly well
on a task that would, at first glance, appear to require learning hierarchical
phrase structure.

It is important to recall that we employed a fairly simple, static CNN
model. One with a dynamic memory might yield better performance for this
task. In general, there is considerable room for exploring alternative architec-
tures before drawing strong conclusions on the capabilities of the entire class
of DNNs for learning syntactic relations.

One of the most striking results to emerge from our experiments is that
training DNNs on data that is lexically impoverished, but highlights the syn-
tactic elements between which a relation is to be acquired does not, at least
in the current case, facilitate learning. On the contrary, it degrades it. DNNs
learn better from data populated by richer lexical sequences. This suggests
that DNNs are not efficient at picking up abstract syntactic patterns when
they are explicitly marked in the data. Instead they extract them incremen-
tally from lexical embeddings through recognition of their distributional reg-
ularities. It is also possible that they use the lexical semantic cues that larger
vocabularies introduce to determine agreement preferences for a verb.

It is an open question as to how DNN modes of learning resemble and
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diverge from human learning. We are making no cognitive claims here. How-
ever, it is interesting to note that some recent work in neurolinguistics indi-
cates that syntactic knowledge is distributed through different language cen-
tres in the brain, and closely integrated with lexical-semantic representations
(Blank et al., 2016). This lexically encoded and distributed way of represent-
ing syntactic information is consistent with the role of rich lexical embed-
dings in DNN syntactic learning.

Finally our results show that a language model can achieve not entirely un-
reasonable results on the number agreement prediction task, if an appropriate
method is applied for comparing the conditional probabilities of alternative
number markings on verbs. Our LM is trained on only 100 words, with POS
tags substituted for the others in order to highlight the agreement dependency
relations that we are seeking to model. This strategy did not improve perfor-
mance for supervised learning, but it does appear to have been successful for
unsupervised learning with a language model.

1 Conclusions and Future Work

Our experimental results strengthen Linzen et al.’s conclusion that DNNs are
able to learn long distance syntactic relations to a fairly high degree of accu-
racy, across extended complex sequences of potentially distracting phrases.
We also found that accuracy in the supervised version of this task scales with
the amount of training data used, and with the size of the lexical embedding
vocabulary.

Performance improves with an increase in the number of hidden units. This
effect may be even more pronounced when tracking more complex syntactic
relations with multiple features. This is a question that we will explore in
future work.

We also found that it is possible to obtain reasonable results with unsu-
pervised learning through a comparatively small language model, when we
use a targeted procedure for predicting verb number. The performance of this
model, with this procedure, significantly exceeds that of the two models that
Linzen et al. present.

In furture work we will experiment with alternative DNN architectures. We
are particularly interested in incorporating a structured memory that simulates
a stack and pop mechanism for handling long distance dependencies.

We will also test larger language models trained on bigger vocabularies,
using our targeted prediction procedure, to see if our conjecture that a smaller
vocabulary produces better probabilistic predictions. This proposal did not
hold for the supervised learning case, but we do not know if it will be sus-
tained for unsupervised learning with a language model.

One of our main concerns will be to explore syntactic dependencies involv-
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ing several agreement features. In languages in which gender, and person, as
well as number are morphologically realised on verbs the agreement predic-
tion task is more difficult. It requires accuracy across three feature dimensions
rather than one. Testing DNNs on agreement in such languages will provide
a better sense of their capacity to learn and represent syntactic information.
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