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Abstract—Objective: Parkinson’s disease (PD) is a neurode-
generative disorder that affects multiple neurological systems.
Traditional PD assessment is conducted by a physician during
infrequent clinic visits. Using smartphones, remote patient moni-
toring has the potential to obtain objective behavioral data semi-
continuously, track disease fluctuations, and avoid rater depen-
dency. Methods: Smartphones collect sensor data during various
active tests and passive monitoring, including balance (postural
instability), dexterity (skill in performing tasks using hands), gait
(the pattern of walking), tremor (involuntary muscle contraction
and relaxation), and voice. Some of the features extracted from
smartphone data are potentially associated with specific PD
symptoms identified by physicians. To leverage large-scale cross-
modality smartphone features, we propose a machine-learning
framework for performing automated disease assessment. The
framework consists of a two-step feature selection procedure and
a generic model based on the elastic-net regularization. Results:
Using this framework, we map the PD-specific architecture of
behaviors using data obtained from both PD participants and
healthy controls (HCs). Utilizing these atlases of features, the
framework shows promises to (a) discriminate PD participants
from HCs, and (b) estimate the disease severity of individuals
with PD. Significance: Data analysis results from 437 behavioral
features obtained from 72 subjects (37 PD and 35 HC) sampled
from 17 separate days during a period of up to six months
suggest that this framework is potentially useful for the analysis
of remotely collected smartphone sensor data in individuals with
PD.

Index Terms—Parkinson’s disease, remote disease assessment,
feature-selection, machine-learning, predictive modeling, P � N
problem
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I. INTRODUCTION

Parkinson’s disease (PD) affects seven million people world-
wide; the prevalence increases from 1% of the population for
those over 60 years of age to 4% over 80 [1]. A reliable,
objective, fast, and remote method to quantify the presence
and severity of PD symptoms would benefit a large number
of people who are affected by, or are at risk to develop, PD.

Previous studies have measured common PD symptoms
with object- and technology-based tests, such as sustained
phonation (i.e. voice) [13], [14], rest tremor [15]–[17], postural
tremor [18], [19], dexterity [11], [20], balance [21]–[23], and
gait [22], [24]. Advancement in digital technologies makes
data collection using smartphones increasingly convenient
and accurate. Smartphones are small, portable, and widely-
used. The data captured from various smartphone sensors
can be remotely transferred via wireless networks, facilitating
out-clinic data collection and assessment. Because of these
attractive properties, researchers have begun to explore the
possibilities of studying PD using smartphone data, and have
brought in new avenues to remote PD assessment [2]–[12].

In spite of these promises, remote PD assessment using
smartphones is still in its infancy. Table 1 gives an overview
of recent PD studies using machine-learning approaches on
smartphone features. Although existing methods and analyses
have used different datasets with various sample sizes, the
overview shows that, in general, studies have considered few
and inconsistent feature modalities, and reported performance
accuracy via varying statistical approaches. Additionally, most
models were developed with a relatively limited scope that was
either restricted to disease classification or disease severity es-
timation. Moreover, some studies only considered PD samples.
Here, in light of existing efforts, we propose a unified machine-
learning framework that (1) extracts disease- or symptom-
specific features from a rich variety of sensor data, (2) takes
into account the differences between PD participants and HCs,
(3) builds the selected features into a relevant feature map, (4)
differentiates PD cases from HCs, and (5) estimates disease
severity.

The framework first employs a two-step feature selection
procedure and identifies features that are potentially associated
with the disease (in terms of diagnostic group or severity). The
selected features then enter the elastic-net regularized regres-
sion model to construct a feature map consisting of parameter
estimates. Subsequently, the model links the feature map with
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Modalities consideredRecent
studies

Sample size
(PD/HC)

Number of
repetitions

Out
clinic Voice Gait Balance Dexterity Rest

tremor
Postural
tremor Others Accuracy Ensemble†

improvement

Current
study 37/35 4, 883∗ Yes Yes Yes Yes Yes Yes Yes No

0.973/0.971
(Sens/Spec)

0.987
(Accuracy)

0.993
(AUC)

Yes

Prince et al.
(2018) [2] 949/866 NA Yes No No No Yes No No No 0.65

(Accuracy) No

Zhan et al.
(2018) [3] 129/0 6,148 Yes Yes Yes Yes Yes No No Reaction

Time

0.81
(Pearson

correlation)
Yes

Prince et al.
(2018) [4] 312/236 48,892 Yes No No No Yes No No Memory NA No

Bot et al
(2016). [5] 1087/5581 78,887 Yes Yes Yes No Yes No No Memory NA No

Zhan et al.
(2016) [6] 121/105 1,600 Yes Yes Yes Yes Yes No No Reaction

Time
0.693/0.727
(Sens/Spec) Yes

Neto et al.
(2017) [7] 23/23 NA Yes Yes Yes No Yes No No No 0.5-0.6

(AUC) No

Arora et al.
(2015) [8] 10/10 18 Yes Yes Yes Yes Yes No No Reaction

Time
0.962/0.969
(Sens/Spec) No

Lee et al.
(2016) [9] 57/87 432 No No No No Yes No No No 0.92

(AUC) No

Arroyo-Gallego et al.
(2017) [10] 21/23 51 No No No No Yes No No No 0.810/0.810

(Sens/Spec) No

Kassavetis et al.
(2016) [11] 14/0 14 No No No No Yes No No No NA No

Printy et al.
(2014) [12] 18/0 54 No No No No Yes No No No NA No

Table 1: An overview of PD studies using smartphone features. We selected twelve recent and representative studies that used smartphone
data to study PD. We listed key characteristics, including the sample size, the total number of repetitions, whether the study was conducted
outside of clinics, the type of tests used, the estimation accuracy (if any), and ensemble improvement. Whether the study was conducted
outside of clinics is important because collecting measurements frequently in clinics is inconvenient for large-scale examination in practice.
∗The repetition means the total number of data points across all features and subjects. In other words, if the jth (1 ≤ j ≤ P ) feature of
subject i (1 ≤ i ≤ N ) was measured over Tij days, the repetition is

∑N
i=1

∑P
j=1 Tij . †If ensemble improvement equals to yes, it means

that using cross-modality features (i.e. features obtained from different behaviors) improves the estimation accuracy. Shaded orange vs. grey
color indicates if a study covers a specific component.

features from the training subjects to estimate their diagnostic
group status and severity. To evaluate the reproducibility of
the framework, the model tests the feature map on features
from novel (testing) subjects to perform out-of-sample PD
assessment. The proposed framework is illustrated in Figure
1.

We arrange the rest of the article as follows. In Section
II, we introduce the smartphone data used in this study. In
Section III-A, we define notations and describe data organi-
zation. In Section III-B, we provide the main methodological
framework and its building blocks. Section III-C highlights
the framework’s applications in PD/HC classification and PD
severity estimation. In Section IV, we present experimental
and data analysis results. We discuss future work in Section
V and conclude the article in Section VI.

II. THE HOME-BASED PD DATA COLLECTED BY
SMARTPHONES

We use data collected from two independent smartphone-
based remote monitoring studies [25]. The first study
was a six-month-long phase 1b clinical drug trial of
PRX002/RG7935 (now known as prasinezumab) conducted
by Prothena and Roche, which consisted of 44 PD partic-
ipants (NCT02157714). The second study was a six-week-
long observational study of 35 age- and sex-matched healthy

controls (HCs). The respective local ethics committees ap-
proved both studies. Written informed consent was obtained
from all participants (patient study: IRB00010809, H-35018,
WOR1-14-143; control study: EKNZ-BASEC-2016-00596).
All controls scored ≥ 26 points on the Montreal Cognitive
Assessment (MoCA) [26] and were free of cardiovascular,
neurological or psychiatric condition, and had no first-degree
relative with PD. The study also included the Movement Disor-
der Society-Unified Parkinson’s Disease Rating Scale (MDS-
UPDRS). MDS-UPDRS scores measure the progression of an
individual’s Parkinson’s disease, and serve as the gold standard
for validation [27]. Throughout, we used the MDS-UPDRS
total scores. The total score equals to the summation of sub-
scores obtained from 42 items covering four subscales: Part
I: mentation, behavior, and mood; Part II: activities of daily
living; Part III: motor examination; Part IV: complications of
therapy. The total score ranges from 0 to 199 points, where a
patient with a higher score would be considered to have more
severe PD [28]. In this study, the scores were administered
by trained raters (Parts I and II) and physicians (Part III) to
subjects during screening (study days -42 to -1) and days 8
and 64. Trained raters tested controls at baseline and day 42.

Both the PD and HC studies followed identical proce-
dures. During the initial in-clinic visit, all subjects received a
smartphone (Galaxy S3 mini; Samsung, Seoul, South Korea)
with the Roche PD Mobile Application v1 (Roche, Basel,

Authorized licensed use limited to: University of Oxford Libraries. Downloaded on April 22,2020 at 12:23:35 UTC from IEEE Xplore.  Restrictions apply. 



IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. XX, NO. X, APRIL 2020 3

Categorical classification
Feature
selection

Pattern 
recognition

Group-level
feature map

�
�
�

Pattern 
extrapolation

Out-sample
assessment

�
�
�

Categorical outcome

Continuous outcome

R
es

po
ns

e
R

es
po

ns
e

a. Extracting a group-level feature map                                  b. Automated disease status and severity assessment

Continuous estimation

�
�
�

𝑤! 𝑤"⋯𝑤#!

𝑤! 𝑤"⋯𝑤#"

𝑤! 𝑤"⋯𝑤##

𝑤! 𝑤"⋯𝑤#$

𝑤! 𝑤"⋯𝑤#%

𝑤! 𝑤"⋯𝑤#&

Subject 1

Subject m

Subject (m+1)

Subject N

Independent testing sampleTraining sampleGroup-level
feature map

𝜔! 𝜔"⋯𝜔#!

𝜔! 𝜔"⋯𝜔#"

𝜔! 𝜔"⋯𝜔##

𝜔! 𝜔"⋯𝜔#$

𝜔! 𝜔"⋯𝜔#%

𝜔! 𝜔"⋯𝜔#&

Figure 1: (a) Extracting a group-level feature map. Each color specifies a feature modality. Boxes with the same color but with different
hues indicate multiple behavioral features from the same feature modality. The red, orange, yellow, chartreuse green, and blue boxes refer to
balance, dexterity, gait, rest tremor, postural tremor, and voice, respectively. The distinctive performance patterns on these tasks correspond
to the functioning of specific functional-neuroanatomic circuits, which cannot be directly assessed (indicated by a gray bracket). The model
couples behavioral features with a trained group-level feature map, yielding estimated outcomes. The colored Latin and Greek letters with
subscripts (e.g. w1 and ω1) represent feature weights across features. (b) Automated disease group and severity assessment. During the
model building step, features that are relevant to the targeted outcome are selected. Subsequently, a feature map consisting of weights across
selected features is developed using data from individuals in the training sample. The weights indicate how to integrate features to yield an
estimation for the targeted, discrete or continuous, outcome. During the prospective testing step, the efficacy of the feature map is verified
by applying the map to features from previously unseen individuals without further model fitting, which yields estimations for each subject.
The model produces one estimated outcome (binary disease group or continuous disease severity) per subject. The consistency of the features
and the reproducibility of the model can then be evaluated by comparing the observed and estimated outcomes in the testing sample. For
binary classification, we report statistics such as accuracy, kappa, sensitivity, and specificity. For continuous disease score estimation, we
report RMSE and correlation between estimated and observed disease scores as measured by the MDS-UPDRS.

Switzerland) preinstalled. They also received a belt containing
a pouch that carried the phone. Smartphones were “locked-
down” (i.e. configured so patients could only run the Roche
PD Mobile Application v1 and WiFi connection software).
Site staff provided the subjects training on the active tests.
Subsequently, subjects were instructed to complete the active
tests at home once daily (in the morning), to carry the phone
with them throughout the day, and to recharge the phone
overnight.

A full description of the study and data processing can be
found in [25].

III. METHODS

A. Notations and Data Organization

We begin by defining the notations used throughout this
article. To ensure that the estimation power is not influenced
by the amount of data that was available to each individual,
unless otherwise specified, we truncate the raw data such that
every subject has data from the same number of days (17
in our study). A thorough treatment of missing data, such as
imputation, is available elsewhere [29], [30].

Let N denote the number of subjects in the study, where
N = 72. The ith subject, for 1 ≤ i ≤ N , has T days, where
T = 17. During each day, features from K modalities are
measured, where K = 6 in the study. Each modality contains
further features. Specifically, the kth (1 ≤ k ≤ K) modality
contains Mk features, where Mk ranges from 37 to 178. The

mth feature of the kth modality, is measured at time points
1, 2, . . . , T , for the ith subject during the jth day. Thus, each
feature takes the form xikm(tj), for 1 ≤ i ≤ N , 1 ≤ k ≤ K,
1 ≤ m ≤ Mk, and 1 ≤ tj ≤ T . Let

∑K
k=1Mk = P , where

P = 437 in the study. That is, there are a total of P features.
Thus, the feature data X is a data cube of size N × P × T .

Similarly, we denote the outcome as y = (y1, y2, . . . , yN ),
where yi, for 1 ≤ i ≤ N , is a categorical label in case of binary
classification (i.e. PD vs. HC) and a continuous value in case
of PD severity estimation (i.e. MDS-UPDRS total score).

To discover features useful for estimating an outcome, we
first summarize each feature by their first moment (arithmetic
mean). Formally, the first moment of the mth feature from
the kth modality of the ith subject is defined as ξikm =∑T̃i

tj=1 xikm(tj)

T̃i
, where T̃i indicates the number of days

during which features are averaged for each individual.
Throughout the article, we use the first moment approach

to summarize features for model building, because the mean
conveniently provides the fundamental information of the fea-
tures. In Section V, we will discuss advantages and limitations
of using the mean to summarize the features.

B. Machine-learning Framework

Our framework consists of two parts: (1) feature selection;
(2) model building and automated disease assessment.
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Figure 2: An example of a two-step feature selection procedure.
(a) A 437 × 437 matrix consisting of pair-wise Pearson correlations
between 437 features obtained from six behavior modalities. The
features are more correlated within their respective modality than
they are with features out of that modality. (b) A 41 × 41 matrix
consisting of pair-wise Pearson correlations between 41 features,
selected from step-one feature selection. (c) A 12 × 12 matrix
consisting of pair-wise Pearson correlations between 12 features,
selected from step-two feature selection. The height of each colored
circle above the heatmap indicates the weighted contribution (in the
sense the higher the more important in terms of disease assessment)
of each corresponding feature. Here, weighted means the features are
scaled (mean 0, standard deviation 1) so that the magnitude of the
weights is not biased by features with large means or variances.

1) Feature Selection: For a P � N problem (also known
as the “short, fat data problem”, where the number of features
P is much larger than the number of samples N ), there are
commonly two difficulties. First, it suffers from the “curse of
dimensionality”, where the curse is twofold: (i) the number
of samples (N) needed to yield a reliable statistical result
grows exponentially as P grows, but a large number of
sample is usually difficult to obtain; (ii) when P is large,
all subjects appear to be dissimilar. This makes extracting
common features (e.g. features shared by PD participants
or HCs) difficult. Second, there is an insufficient number of
degrees of freedom to estimate the full model. To alleviate
these challenges, we demonstrate that only a small number
of the P features are needed to build the model (see Section
IV-D for details). This assumption is supported, in part, by the
strong correlation observed in the PD feature data, which we
illustrate below in detail.

Some of the PD sensor feature data are strongly corre-
lated; the intra-modality features are more correlated than
inter-modality features (see Figure 2). When several highly
correlated features are associated with an outcome, choosing
one of them is analytically sufficient, and will give the most
parsimonious model. The discarded (relevant) features, how-
ever, may uncover an underlying property that is meaningful
for interpreting the biological system. For example, consider

two modalities, say voice and tremor, each with 100 features.
Suppose there are 10 highly correlated voice features and 50
highly correlated tremor features that are associated with the
disease outcome, and, for simplicity, suppose voice features
are not highly correlated with tremor features. A model built
on 1 (out of the 10 selected) voice feature and 1 (out of the
50 selected) tremor feature, therefore, is as sufficient as a
model built using all selected features. The discarded features,
however, may offer a better (and easier) biological explanation
for the outcome. In this regard, it is important to consider
a model that can account for both parsimony (i.e. removing
redundant features) and biological interpretation (i.e. allowing
a few correlated features).

To that end, we introduce a two-step feature selection
procedure tailored for large-scale data. During the first step,
we eliminate features that are not significantly related to
the outcome (in the training data) using a mass-univariate
approach.

For a continuous outcome (in our study the MDS-UPDRS
total score), the first step involves a feature-wise correlation
test to examine whether or not each feature is significantly
correlated with the MDS-UPDRS total score, using a correla-
tion test. Since the overall model incorporated an identity link
function for continuous outcome assessment (coupled with the
elastic-net, a regularized linear model), we used Pearson corre-
lation test to identify features that were linearly associated with
the continuous outcome. Although the selected features are
significantly correlated with the outcome to various degrees,
they are not necessarily significantly correlated with each
other (see Figure 2). The heterogeneous groups of features,
therefore, may each address a proportion of variability of the
outcome.

For a binary, or categorical, outcome (in our study the binary
disease status), since a correlation test is inappropriate, the first
step involves a feature-wise t-test to examine whether or not
each feature varies significantly across groups.

During the second step, the selected features are further
pruned via regularization. Common regularization approaches
include the Lasso (least absolute shrinkage and selection
operator) regularization [31] and the Ridge regularization
(or the Tikhonov regularization) [32]. The Lasso picks one
feature among all correlated ones, on which a single non-zero
weight is imposed, whereas the Ridge imposes weights on
all correlated features and, then, averages their coefficients in
order to reduce the effect of multiple correlated features to the
full model.

2) Model Building and Automated Disease Assessment:
Chief to automated disease assessment when the number of
features (denoted as P ) is much larger than the number of
samples (denoted as N ) is a modeling technique called regular-
ization. A regularized model, such as Lasso and Ridge, shrinks
the estimated parameters of irrelevant features (and therefore
suggests either removing, or punishing the weights of, these
features in the model output). The elastic-net regularization
combines the Lasso and the Ridge regularizations, and offers
a compromise between them [33]. It chooses a small number
of features (like the Lasso), some of which are correlated (like
the Ridge), which may provide useful biological interpretation
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of PD data. Because of its balance between interpretability
and parsimony, we use the elastic-net during the second-step
feature selection.

Consider a feature ξ. Denote ρ(ξ,y,N−2) as the result from
a statistical test during the step-one feature selection between
the feature ξ and the outcome y. The value of ρ can be a
t-statistic from a t-test for a binary outcome or a correlation
for a continuous outcome; equivalently, it could be the cor-
responding p-values. Let ε be a pre-specified threshold for ρ.
Although there is a one-to-one mapping between a statistic and
its p-value, sometimes it may be convenient to evaluate the p-
value, whereas other times it may be convenient to evaluate
the t-statistic or the correlation. For example, in this study we
threshold the t-statistic of binary t-tests at 5 during disease
classification, and threshold the p-value of correlation tests at
0.01 during disease severity estimation.

Formally, we define our model as

E
(
yi | ξi, δi

)
= g−1

(
µ+ fᵀi Sβ + δᵀi γ

)
+λ2|P|22 + λ1|P|1

(1)

where g(·) is a link function, µ is the intercept,
fᵀi =

[
fᵀi1 , fᵀi2 , . . . , fᵀiK

]
, fᵀik =

(ξik1, ξik2, . . . , ξikMk
). Recall that there are K total

modalities, with the kth modality containing Mk

features. Here, S = blockdiag
{
I1, I2, . . . , IK

}
, and

Ik = diag{ik1, ik2, . . . , ikMk
}, wherein ikm = 1

if ρ(ξkm,y,N−2) < ε, and 0 otherwise, where
ξkm = (ξ1km, ξ2km, . . . , ξNkm) (a particular feature
across all subjects); δi is a vector containing all covariates
for the ith subject (in this study the covariates are age and
gender), and γ is its coefficient; P = [β1,β2, . . . ,βK ,γ]

ᵀ,
where βk = (βk1, βk2, . . . , βkMk

), for k = 1, 2, . . . ,K.
Finally, λ1 and λ2 are penalty parameters.

Algorithm 1: A generalized two-step feature selection
and predictive framework for automated disease assess-
ment

Step 0: Reshape X to be of size N × P × T , where
P =

∑K
k=1Mk.

Step 1: For every feature m of modality k of subject i,
compute the temporal mean ξikm. We stack all subject’s
mean feature as an N × P matrix Fᵀ.
Step 2: Conduct the step-one feature selection to obtain
estimate Ŝ of S in Eq. (1). The selected features are
then FᵀŜ.
Step 3: Conduct the step-two feature selection via (the
elastic-net) regularization. The remaining features are
those whose estimated parameters in Eq. (2) are
non-zero.
Step 4: Run out-of-sample disease assessment using
estimates from Eq. (1).

Through standard linear algebraic manipulation [33], the
solution for Eq. (1) is

β̂ =
√

1 + λ2

{
argmin

β∗
|y∗−Z∗β∗|22+

λ1√
1 + λ2|β∗|1

}
(2)

where y∗n+p = {g (E(y1 | ξ1, δ1)) , g (E(y2 | ξ2, δ2)) , . . . ,

g (E(yp | ξp, δp)) ,0p}ᵀ and Z∗(n+p)×p = 1√
1+λ2

(
FᵀS√
λ2I

)
.

The choice of λ1 and λ2 are determined in two steps: for
each fixed λ2, we find the optimal λ1; subsequently we find
the optimal λ2 along the selected λ1 [33]. When λ1 = 0,
Eq. (2) reduces to the Lasso solution; when λ2 = 0, Eq. (2)
reduces to the Ridge (or the Tikhonov) solution. Any other
(elastic) choices of λ1 and λ2 form a compromise between
the Ridge and the Lasso regularization. The compromise can
be illustrated by rewriting the penalty terms in Eq. (1) as

(1− α)|P|22 + α|P|1 (3)

where α is called a mixing parameter [33], which controls
how much “Lasso-ness” and “Ridge-ness” the regularization
chooses. Specifically, when α = 0, the regularization is strictly
Ridge, and when α = 1, the regularization is strictly Lasso.

C. PD Assessment

In the following, we apply the framework outlined in Eq.
(1) in two specific scenarios: (i) PD/HC classification, and (ii)
PD severity estimation.

(i) PD/HC Classification. When the outcomes are binary
(e.g. diseased vs. healthy), the link function in Eq. (1) is
g(x) = ln(

x

1− x
) (i.e. the inverse of logistic function).

Formally,

P (yi = 1 | ξi, δi) =
exp(µ+ fᵀi Sβ + δᵀi γ)

1 + exp(µ+ fᵀi Sβ + δᵀi γ)

+λ2|P|22 + λ1|P|1
(4)

where i refers to the ith subject. The estimated conditional
disease propensity, or P (yi = 1 | ξi, δi), is further thresholded
to be 1 if it is greater than 0.5, or 0 otherwise. The results are
shown in Section IV-B

(ii) Estimation of PD severity. When the outcomes are
continuous (e.g. the MDS-UPDRS total scores), the link
function in Eq. (1) is g(x) = x (i.e. an identity mapping).

Formally,

E(yi | ξi, δi) = µ+ fᵀi Sβ + δᵀi γ + λ2|P|22 + λ1|P|1 (5)

where i refers to the ith subject.
The results are shown in Section IV-C.

IV. EXPERIMENTS AND RESULTS

A. Cross-Validation Setup and Model’s Parameters

To evaluate the performance of the framework, we split the
data from N subjects described in Section II into four folds
and conducted four-fold cross-validation. We used four statis-
tics (accuracy, kappa, specificity, and sensitivity) to evaluate
binary disease classification performance (i.e. PD vs. HC); we
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(a) Results of PD/HC classification

Elastic-netMultivariate Logistic Regression Raw biomarkers Mean biomarkers
One-step Two-step

XGBoost
One-step Two-step One-step Two-step

Accuracy 0.493 0.813 0.944 0.947 0.947 0.960 0.973
Kappa 0.0035 0.625 0.889 0.894 0.894 0.920 0.947

Specificity 0.629 0.800 0.943 1.000 1.000 1.000 1.000
Sensitivity 0.375 0.825 0.946 0.900 0.900 0.925 0.950

Misclassified Subjects 38 14 4 4 4 3 2
Computing Time 2.46 mins 2.76 mins <1min 40.26 mins 42.23 mins 3.09 mins 3.31 mins

(b) Results of PD severity assessment

Elastic-netMultivariate Logistic Regression Raw biomarkers Mean biomarkers
One-step Two-step

XGBoost
One-step Two-step One-step Two-step

RMSE 503.21 553.53 23.21 602.31 48.59 23.88 16.58
Pearson correlation 0.12 0.28 0.67??? -0.08 0.41??? 0.57??? 0.72???Both PD and HC data

Computing time <1 min <1 min <1 min 71 min 14 min <1 min <1 min
RMSE 1927.66 2827.81 30.81 567.55 71.16 27.66 17.19

Pearson correlation -0.14 0.30 0.11 -0.26 0.42?? 0.16 0.54 ???Only PD data
Computing time <1 min <1 min <1 min 37 min 4 min <1 min <1 min

Table 2: Results of PD/HC classification and disease severity assessment. We compared the performance of our framework with it using the
baseline approaches. All results were cross-validated; RMSE refers to the root mean square error and ?? and ??? indicate that the Pearson
correlations were significant at p < 0.01 and p < 0.001, respectively. The computing time was calculated using a Macintosh computer with
2.4 GHz Intel Core i5 processor.

used RMSE and correlation between observed and estimated
outcomes to evaluate continuous PD severity assessment per-
formance. The observed outcomes are individual mean (over
time) MDS-UPDRS total scores and estimated outcomes are
estimated mean MDS-UPDRS total scores.

We summarize the experimental set-up in Algorithm 1. The
analyses were performed using the R software via customized
codes. The second step feature selection was conducted using
the elastic-net regularization provided by R package glmnet
[34]. Two parameters were tuned for the two-step feature

selection and predictive framework: ε, a threshold used during
the first step of feature selection, and α (0 ≤ α ≤ 1), a mixing
parameter controlling how much Ridge-ness or Lasso-ness
the elastic-net was. For disease classification, ε was used to
threshold t-statistics and was set at 5; namely, a feature would
be selected if its t-statistic was above 5. For disease severity
estimation, ε was used to threshold p-values and was set at
0.01; namely, a feature would be selected if its p-value was
below 0.01. We also provided the computing time needed to
evaluate the model efficient on the same computer (a standard
Macintosh computer with 2.4 GHz Intel Core i5 processor).

To demonstrate the efficacy of the proposed framework,
we compared it to multivariate logistic regression (MLR) and
XGBoost models in the same cross-validation strategy. To
show the advantage of using mean features, we applied the
proposed framework to the raw features (where repeated mea-
surements of one feature are considered as multiple samples).
We recorded the accuracy statistics from each of the alternative
approaches in the following section, with a discussion.

B. Binary PD/HC Classification Results

In Table 2, as an initial step to understand the machine-
learning framework we introduced in this article, we presented
the model’s performance on binary PD/HC classification using

Eq. (4). There are three points to note. First, across multiple
models, the two-step feature selection procedure yielded a
higher estimation accuracy than a one-step feature selection
procedure. Even with regularization, the two-step feature
selection procedure still marginally improved accuracy and
sensitivity. Second, using mean features significantly reduced
computing time from 40 minutes (using raw features) to 3
minutes (using mean features), meanwhile improving esti-
mation accuracy mildly. Third, our framework outperformed
the baseline MLR and XGBoost models in identifying PD
participants and HCs (see Table 2 (a)).

The disease assessment accuracy and the number of se-
lected features depend on the mixing parameter α in Eq. (3).
Nevertheless, across α values, a majority of selected features
belong to dexterity and rest tremor modalities. Specifically,
when setting α = 0 (i.e. the Ridge), 38 out of the 53 final
features are from dexterity and rest tremor modalities; when
setting α = 1 (i.e. the Lasso), 18 out of the 25 final features
are from them (see Figure 3). The contribution each feature
modality makes to the disease assessment is highlighted in
Figure 2 (c), where dexterity shows the highest importance
followed by rest tremor. Taken together, our results suggest
the importance of dexterity and rest tremor features in PD
assessment.

Although we showed that it is possible to identify PD
participants from HCs using 17 non-contiguous days’ of data
with high accuracy, it remained unclear how many days of data
are required to yield a stable estimate of the disease status. To
check for minimal data requirement, we applied Eq. (4) to data
obtained from an increasing number of days, and demonstrated
that PD can be reliably identified using 10 non-contiguous
days’ behavioral data (see Figure 4).

In summary, our results suggest that (i) the two-step feature
selection procedure generally outperforms more traditional
approaches in classification accuracy; (ii) the mean approach
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is computationally more efficient than using raw features;
(iii) behavioral data obtained in 10 non-contiguous days can
reliably distinguish PD participants from HCs.
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Figure 3: Estimation accuracy and number of features selected when
the elastic-net mixing parameter α takes values from 0 to 1. (a) We
examine four statistics (accuracy, kappa, sensitivity, and specificity)
for evaluating model estimation accuracy. (b) When α increases, the
number of selected features reduces. We use color code to uncover the
distribution of features across each modality. Of note, when α = 0,
the elastic-net regularization reduces to the Ridge regularization;
when α = 1, the elastic-net regularization reduces to the Lasso
regularization.
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Figure 4: Determining the minimal amount of data needed to build
a stable model. Each colored curve represents a function of how
many days’ of data are averaged. The results suggest that accuracy
improves and stabilizes once more than 10 non-contiguous days’ of
data are used.

C. PD Severity Model Results

We carried out the assessment of continuous PD severity
(i.e. the MDS-UPDRS total scores) using Eq. (5) in two ex-
periments. During the first experiment, we conducted disease
assessment using data from both PD participants and HCs.
Note that (a) not all HCs’ MDS-UPDRS total scores are 0;

r = 0.54
p =  6 x 10�4
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Figure 5: Assessing subjects’ continuous MDS-UPDRS total score
using individual features. (a) Estimation result of MDS-UPDRS total
scores using data from both PD participants and HCs (N = 72). (b)
Estimation result of MDS-UPDRS total scores using data from PD
participants only (N = 37). Each dot represents one subject; gray
area represents 95% confidence interval for best-fit line.

and (b) all MDS-UPDRS total scores are non-negative, and a
large MDS-UPDRS total score indicates the disease is more
severe. Our analysis showed a Pearson correlation of 0.72
(p < 0.0001) and a RMSE of 16.58 between the estimated
and the observed MDS-UPDRS total scores (see Figure 5
(a) and Table 2). Although the estimated MDS-UPDRS total
scores in the novel samples are significantly correlated with
the observed scores with a small RMSE, it remained possible
that the high estimation accuracy was merely driven by ob-
vious differences in features between the PD participants and
HCs. To check for this possibility, we sought to perform an
additional experiment. During the second experiment, we only
used features from PD participants (N = 37). The analysis
yielded a significant (although smaller) Pearson correlation of
0.54 (p < 0.001) and a similar RMSE of 17.19 (see Figure
5 (b) and Table 2).

For PD severity assessment, a two-step feature selection
procedure (namely, a step-one feature selection via a pair-
wise Pearson correlation test, followed by a step-two feature
selection via the elastic-net regularization on selected fea-
tures) yielded a higher estimation accuracy than a one-step
feature selection procedure (namely, only using the elastic-
net regularization) across multiple models. Additionally, using
mean features significantly reduced computing time while
improving estimation accuracy mildly. Finally, our framework
outperformed the baseline MLR and XGBoost models in
assessing continuous MDS-UPDRS total scores (see Table 2
(b)).

Taken together, for disease classification, the proposed
framework selected features with heterogeneous profiles be-
tween PD participants and HCs. Further, for disease severity
estimation, the framework reliably discovered features related
strongly to continuous disease severity measures. Finally, the
significant correlation between the estimated and observed
MDS-UPDRS total scores shows that our framework is capa-
ble of identifying relevant features useful for disease severity
assessment.
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D. Selected Features for Diagnostic Categorization and Dis-
ease Severity Estimation

In the experiments, a small number of features were consis-
tently and reliably selected across subjects and cross-validation
iterations. For disease group classification, two dexterity fea-
tures (one measures the variation in the number of touch
events during a “right” tap, quantifying the variability of fine
finger movement, and the other measures the time spent on
screen during taps), two rest tremor features (one measures
tremor frequency and the other measures tremor power in 3-8
Hz band) were consistently selected across the four different
cross-validations, suggesting their reliability in distinguishing
PD participants from HCs.

For MDS-UPDRS estimation, a dexterity feature (which
indicates the variation in the number of touch events during a
“right” tap, quantifying the variability of fine finger move-
ment), a dexterity feature (which measures the distribution
of time spent on screen during a tap), a gait feature (which
quantifies the variability between the execution of different
step phases), and a rest tremor feature (which measures the
ratio of power in 5-6 Hz to total, quantifying acceleration
power) were consistently selected, suggesting their reliability
in evaluating PD severity.

Although selected features came from balance, dexterity,
postural tremor, and rest tremor modalities, our results sug-
gested that dexterity features made the most contribution to
disease estimation. In Figure 2 (c), 5 out of 12 selected
features were dexterity-related, and their weights (which de-
termines their contribution to outcome estimation) were higher
than those of others. Rest tremor, postural tremor, and balance
features had smaller, but significant, weights and accounted for
4, 2, and 1 of the 12 selected features, respectively.

In feature selection, there is a trade-off to be made between
accuracy, interpretability, and model parsimony. When α in-
creases, most of the accuracy statistics improve (see Figure
3 (a)). Meanwhile, as α increases, the number of selected
feature decreases (see Figure 3 (b)). A large α would yield a
parsimonious model consisting of a small number of features.
The elastic-net approach and the Lasso yield similar classifi-
cation and estimation results. Typically, the Lasso arbitrarily
picks a feature from a cluster of highly correlated features.
The elastic-net, on the other hand, retains feature clusters in
the model (where features within each cluster have similar
influence), thereby avoiding making random within-cluster
feature selection. This property is particularly attractive when
investigators are interested in extracting several clusters of
features across modalities, and in examining how consistent
they are across different models.

V. DISCUSSION

In this article, we introduced a machine-learning framework
for conducting automated analyses of PD symptoms using
smartphone data. Our proposed framework yielded accurate
and meaningful results. Under this framework, we identified
a reliable and PD-specific feature profile among individuals,
using a dataset consisting of 437 features across six modalities
measured on 17 unevenly sampled non-contiguous days during

a period of up to six months. For PD classification, we ob-
tained accuracy, specificity, and sensitivity statistics of 0.972,
0.971, and 0.973, respectively; for PD severity assessment,
our estimated MDS-UPDRS total scores were significantly
correlated with the observed scores (r = 0.72, p < 0.0001
using both PD and HC data and r = 0.54, p < 0.001 using
only PD data) and yielded small RMSEs (16.58 using both
PD and HC data and 17.19 using only PD data). The selected
features were consistent with previous reports, where several
distinct symptom domains, such as dexterity and rest tremor,
present different patterns between PD participants and controls
and are associated with disease outcomes [11], [13]–[24],
[35]. Caution is warranted given the limited sample size;
our analyses, however, suggest that the introduced model and
the identified features are promising to assess PD in out-of-
sample individuals. Future studies with even larger sample
sizes should independently verify the extent to which these
features are optimal to assess PD.

We have introduced and used a two-step feature selection
procedure in the proposed machine-learning framework. Com-
pared to a one-step feature procedure (i.e. using regularization
alone), a two-step feature selection not only improves, but also
balances, specificity and sensitivity (see Table 2).

For binary classification, we used a feature-wise t-test
(which required a Gaussian assumption) during the first step
feature selection (see Section III-B). Naturally, one would ask,
by doing so, was it likely to overlook biomarkers that were
not normally distributed but may be useful for identifying
patients? To evaluate this possibility, we performed an ad-
ditional analysis considering a U-test (or the Mann–Whitney
test, which did not require a Gaussian assumption) [36] during
the first step feature selection, while keeping everything else
the same. Our results showed that it yielded slightly worse
classification performance (Accuracy = 0.96 or 72/75 and
AUC=0.99) than it of the proposed method (Accuracy = 0.973
or 73/75 and AUC = 0.991). A possible explanation can be
made using a bias-variance trade-off argument. We achieved
better results using a t-test than using a U-test because (1)
when the (Gaussian) assumption held, the t-test may be more
powerful than (at least as powerful as) the U-test; (2) in the
case where the distributional assumption did not hold, we
were trading variance with bias by using the t-test instead
of the U-test. More precisely, by doing so we were more
likely to incur wrong hypothesis testing result during the first
step feature selection - although it was, in part, protected
by using regularization in the second step feature selection
- but the overall power was higher. To sum up, combining
a t-test and regularization achieved higher bias (regarding
training data, namely, it may not capture some regularity of the
training data) and lower variance (in out-of-sample testing),
and combining a U-test and regularization had lower bias
(regarding training data, namely, it may better capture the
regularities of the training data) and higher variance (in out-of-
sample testing). As prediction was the main goal of automated
disease assessment in mobile health, we chose to consider the
combination of a t-test and regularization during the two-step
feature selection procedure in disease classification.

We used the first moment to summarize features. The
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reasons for doing this were twofold. First, it is a simple, but
effective, de-noising approach, evidenced by the experimental
results in Section IV. The rational is that the mean can
capture intrinsic properties of features for disease assessment
problems, such as PD/HC classification, as some mean features
differ significantly between PD participants and HCs. Second,
it is computationally efficient. Compared to using the raw data
directly, the mean approach incurs far less computing time, and
yields improved estimation accuracy (see Table 2).

We would like to note several limitations of our framework.
First, it only captures linearly associated behavioral features.
Future work using non-linear parametric approaches may be
useful to uncover the non-linear feature architecture related
to PD. Second, it may overestimate disease severity when
responses are zero-inflated (i.e. outcomes contain many entries
equal or close to zero while other entries are very different
from zero). Future work using Zero-Inflated Poisson (ZIP)
model, and mixed-effect models may be useful to address this
issue. Finally, our framework does not capture the features’
temporal dynamics. Future work considering sliding-window
analysis, generalized estimation equation (GEE) and gener-
alized linear models (GLMs) with repeated measures [37],
[38], and functional principal component analysis (fPCA) [39],
[40], may be useful to unveil semi-continuous (windowed) and
continuous temporal dynamic of the disease profile.

VI. CONCLUSIONS

Throughout this article, we have introduced and demon-
strated an automated disease assessment framework that has
the potential for remote PD classification and PD severity
estimation at home using smartphones. Using this framework,
we showed the presence of a disease-specific feature profile
across multiple behavioral modalities.

Selected features reflected individually specific traits that
were unique and generally reliable within subjects across 17
unevenly sampled non-contiguous days during a period of up
to six months. Our results showed that the proposed framework
is possible, with relatively high accuracy, to identify PD
participants solely using sensor feature data from their remote,
smartphone-based behavioral measurements. In addition, data
analyses using this framework revealed that individual vari-
ability in extracted features (in particular, dexterity, rest tremor,
and gait) were informative for the continuous disease severity
estimation in an independent group of participants.

In conclusion, we proposed a machine-learning framework
for automated disease assessment and provided preliminary
evidence for a PD-specific behavioral architecture, in this case
the extracted features, that may be associated with PD. Exten-
sive data analyses suggest that this framework has the potential
for identifying behavioral signatures to advance automated and
remote assessment of PD.
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