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Abstract

Monte Carlo Tree Search (MCTS) is an effective decision
making algorithm that often works well without domain
knowledge, finding an increasing application in commercial
mobile and video games. A promising application of MCTS
is creating AI opponents for board and card games, where
Information Set MCTS (ISMCTS) can provide a challeng-
ing opponent and reduces the cost of creating game-specific
AI opponents. Most research to date has aimed at improving
the quality of decision making by (IS)MCTS, with respect
to time usage. Memory usage is also an important constraint
in commercial applications, particularly on mobile platforms
or when there are many AI agents. This paper presents the
first systematic study of memory bounding techniques for
(IS)MCTS. (IS)MCTS is well known to be an anytime algo-
rithm. We also introduce an anyspace version of (IS)MCTS
which can make effective use of any pre-specified amount of
memory. This algorithm has been implemented in a commer-
cial version of the card game Spades downloaded more than
6 million times. We find that for games of imperfect infor-
mation high quality decisions can be made with rather small
memory footprints, making (IS)MCTS an even more attrac-
tive algorithm for commercial game implementations.

Introduction

Monte Carlo Tree Search (MCTS) is a family of decision
tree search algorithms that have produced breakthroughs in
AI for several domains (Browne et al. 2012), notably Com-
puter Go (Lee, Müller, and Teytaud 2010; Silver et al. 2016)
and General Game Playing (Björnsson and Finnsson 2009;
Perez et al. 2015). MCTS was discovered in 2006 (Coulom
2007), building on previous work on Monte Carlo tech-
niques for Go (Chaslot et al. 2006). Most current implemen-
tations of MCTS are based on the UCT algorithm (Kocsis
and Szepesvári 2006). MCTS algorithms build an asymmet-
ric partial search tree, evaluating nonterminal nodes by ran-
dom playouts and preferring to expand regions of the tree
that are either promising or unexplored. By treating the tree
as a hierarchy of multi-armed bandits, MCTS strikes a bal-
ance between exploiting known good regions of the tree and
exploring untried regions. MCTS often works well without
heuristic evaluation functions or any other domain-specific
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expert knowledge, but can be enhanced if such knowledge is
available. MCTS is an anytime algorithm: it can make effec-
tive use of any number of iterations, and running for longer
generally yields better decisions.

MCTS is used in commercial games such as the mobile
card game Spades by AI Factory (Whitehouse et al. 2013),
the Total War series of strategy games by Creative Assem-
bly (Champandard 2014), and the role-playing game Fable
Legends by Lionhead (Mountain 2015). MCTS can make
developing AI easier than more traditional knowledge-based
methods such as heuristically-guided search, and the gen-
erality of MCTS allows for the development of reusable
AI modules. MCTS shows particular promise in situations
where authoring of heuristics or rules for techniques such as
A∗ search and behaviour trees is time-intensive, error-prone
and gives unsatisfactory results.

In commercial games, particularly those developed for
mobile devices, the AI must adhere to a limited mem-
ory budget. Even on a modern games console with giga-
bytes of memory, the memory budget for the AI code may
be relatively small compared to other game subsystems
such as graphics, audio and physics simulation. There are
also significant performance benefits to fitting the AI’s data
structures within the cache memory of a single processing
unit (Fauerby 2012). On mobile devices, conserving mem-
ory helps to maintain battery life and multitasking perfor-
mance, and ensures the game works well across a broad
spectrum of devices. Avoiding dynamic memory allocation
also allows programs to be written in such a way that mem-
ory leaks are impossible, and the memory usage of the pro-
gram is static and thus known in advance.

The anytime property of MCTS allows the decision time
of the algorithm to be constrained whilst ensuring all avail-
able time for decision making is fully utilised. However, per-
forming more MCTS iterations causes more memory to be
used by the algorithm, since a new node is usually added
on each iteration. As the number of MCTS iterations in-
creases, the memory usage of the algorithm is bounded only
by the (combinatorially large) size of the game tree. Sev-
eral methods have been proposed to limit the memory used
by MCTS, however most works treat this as an implemen-
tation detail, e.g. (Coulom 2007; Enzenberger et al. 2010).
This paper is the first systematic study of memory bounding
techniques for MCTS, and introduces a new method which
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significantly outperforms existing methods in terms of play-
ing strength, making MCTS an anyspace algorithm. In ad-
dition we outline a practical implementation with very little
computational overhead compared to the standard (memory
unbounded) MCTS algorithm.

The most commonly used memory bounding technique
for search-based AI methods is depth limiting: cut off the
search tree at some constant depth, chosen to be shallow
enough that the entire game tree down to that depth will fit
into memory. Closely related is the idea of iterative deepen-
ing search (Korf 1985), which can be applied to depth-first,
minimax and A∗ search among others. However depth lim-
iting is a blunt instrument for bounding memory usage: the
difference in memory between depth d and depth d+1 may
be large, and grows exponentially larger as d increases. Also,
iterative deepening methods often do not make the most effi-
cient use of a given time or memory budget: if the algorithm
is halted when the budget is exhausted, and this happens
midway through the search at a particular depth, all effort
spent so far at that depth may be wasted. The new memory
bounding method presented in this paper limits the number
of nodes in the tree rather than the depth, allowing much
finer grained control over memory usage. Thus it has some
similarity to methods such as SMA∗ (Russell 1992) and re-
placement schemes for transposition tables (Breuker, Uiter-
wijk, and van den Herik 1994): the memory bound is ex-
pressed as a maximum number of objects that can be stored
at once, and this bound is enforced by removing “stale” ob-
jects to make way for “fresh” ones.

In this paper, we apply memory bounding to the ISMCTS
algorithm (Cowling, Powley, and Whitehouse 2012) for de-
cision making in games with hidden information and uncer-
tainty (commercially a much larger sector than perfect in-
formation games). For such games we observe that reduc-
ing the memory budget has comparatively little impact on
the playing strength of the algorithm. Reducing the mem-
ory budget causes MCTS to store statistics for fewer future
states. This suggests that when there is hidden information
and randomness, analysing decisions in the distant future is
less beneficial than for games with perfect information, so
long as we collect sufficient information about states higher
in the decision tree.

Background

Monte Carlo Tree Search (MCTS)

This section outlines the basic operation of MCTS, intro-
ducing the notation and terminology we use when discussing
modifications to the base algorithm. MCTS iteratively builds
a search tree, where one new node is added to the tree on
each iteration. In addition to its position within the tree, each
node v has four pieces of information associated with it:
s(v), the game state corresponding to the node; a(v), the ac-
tion that immediately preceded state s(v); Q(v), the total re-
ward for all playouts that have passed through v; and N(v),
the number of playouts that have passed through v. Each
MCTS iteration peforms a playout from the current position
to a terminal state, with each playout consisting of a selec-
tion phase and a simulation phase. The selection phase cor-

responds to positions visited which are in the MCTS search
tree and actions are selected according to the tree policy. The
tree policy used in the UCT algorithm is the UCB1 bandit al-
gorithm (Auer, Cesa-Bianchi, and Fischer 2002). If the cur-
rent node is v, then the tree policy selects a child v′ of v, and

corresponding action a(v′), maximizing Q(v′)
N(v′)+K

√
lnN(v)
N(v′)

where K is a constant tuned to balance exploration with ex-
ploitation. In this paper we use K = 0.7, since K ≈

√
2
2 is a

known good default setting when the terminal state rewards
are in the range [0, 1] (Kocsis and Szepesvári 2006). Ties in
the choice of v′ are resolved uniformly at random. When a
state reached by the tree policy does not have a correspond-
ing node in the MCTS tree, a new node is expanded (added
to the tree) and the rest of the game is played out according
to the default policy (called the simulation policy in some
literature). The default policy for the UCT algorithm is to
select actions uniformly at random. The final step is to back-
propagate the result through the tree, updating the Q and N
values of the newly expanded node and its ancestors up to
the root node.

Information Set MCTS

Information Set MCTS (ISMCTS) is a modification of
MCTS which enables MCTS to be applied to games of im-
perfect information, specifically games with hidden infor-
mation or partially observable moves (Cowling, Powley, and
Whitehouse 2012; Whitehouse, Powley, and Cowling 2011).
In such a game, the current state is generally not known. On
each iteration, ISMCTS samples a determinization: a state
which could possibly be the current state, given the infor-
mation available to the player. This is analogous to “guess-
ing” information. For example a determinization in a card
game is obtained by guessing the hidden cards in the hands
of other players. The determinization is then used in place of
the current game state for the current MCTS iteration. Sub-
sequent iterations sample different determinizations but still
operate on the same tree, thus the tree collects statistics rel-
evant to all sampled determinizations. The above algorithm
is referred to as Single-Observer ISMCTS (SO-ISMCTS).

In some games, moves are partially observable. For ex-
ample an opponent might choose a card and play it face
down; the player can observe that a card was played, but not
which card it is. ISMCTS can be extended to deal with such
situations. Multi-Observer ISMCTS (MO-ISMCTS) works
similarly to ISMCTS, but constructs a separate tree for
each player. Each iteration descends all trees in parallel. To
choose a move for player i, the tree policy uses player i’s
tree. Player i’s tree has a branch for each available action,
whereas player j �= i’s tree merges the branches for moves
which are indistinguishable. The extra trees mean that MO-
ISMCTS uses more memory than SO-ISMCTS, but this is
necessary to correctly model the situation in some games.

In the remainder of this paper, we write (IS)MCTS in sit-
uations where the discussion holds true both for standard
MCTS and for ISMCTS.
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(IS)MCTS with memory bounds

Since the MCTS and SO-ISMCTS algorithms create a new
node on each iteration, the memory usage increases linearly
as more iterations are executed. MO-ISMCTS creates a new
node for each player at each iteration, still giving a linear
increase of memory use with iteration count. In this section
we describe several ways of modifying MCTS and ISMCTS
to work within a fixed memory bound: some simple, some
from the literature, and a new method. Throughout this sec-
tion when we refer to MCTS we mean all of MCTS, SO-
ISMCTS and MO-ISMCTS (with suitable minor modifica-
tions for the multiple trees of MO-ISCTS).

Stopping. The simplest way to limit the memory used by
MCTS is simply to halt the algorithm once the memory limit
is reached, even if time budget remains. If each iteration
adds one node to the tree, then a memory budget of n nodes
means that at most n MCTS iterations will be executed. If
the time budget allows for many more than n iterations then
this is wasteful, but we include it as a baseline.

Stunting. A slightly more advanced strategy than stopping
is to continue searching once the memory limit is reached,
but halt the growth of the tree at this point. Once memory
is full, the selection, simulation and backpropagation steps
continue to be executed, but the expansion step is skipped.
Thus extra iterations are performed, but serve only to refine
the bandit statistics in the tree that has already been built.

Ensemble MCTS (Fern and Lewis 2011) works by ex-
ecuting several independent instances of MCTS from the
same root state, and combining the statistics on moves from
the root in order to make the final decision. In implementa-
tions where the independent searches execute concurrently,
this is known as root parallelisation (Cazenave and Jouan-
deau 2007; Chaslot, Winands, and van den Herik 2008),
which has also been applied to ISMCTS (Sephton et al.
2014). The idea is similar to determinized MCTS for games
of imperfect information, where states are sampled from the
current information set and searched independently (Bjar-
nason, Fern, and Tadepalli 2009; Powley, Whitehouse, and
Cowling 2011; Cowling, Ward, and Powley 2012)

Ensemble MCTS can also be seen as a memory bound-
ing method if the MCTS instances are executed sequen-
tially rather than concurrently. As with stopping, we execute
MCTS until it exhausts the memory budget. At this point
we discard the MCTS tree and commence an entirely new
MCTS search from scratch, but first store the visit counts of
all moves from the root in a separate data structure. Repeat
this process until the time budget is reached, accumulating
the visit counts for root actions. Finally choose a move from
the root state to maximise the sum of recorded visit counts.
This is algorithmically equivalent to the ensemble MCTS
of Fern and Lewis (Fern and Lewis 2011) when the node
budget divides exactly the number of iterations. However
unlike the concurrent implementations of root parallelisa-
tion, in our implementation only one MCTS tree is stored in
memory at once so as not to exceed the memory bound.

Fern and Lewis (Fern and Lewis 2011) study the “single-
core memory advantage” of ensemble MCTS: in the ter-

minology of this paper, this is the benefit of ensemble
MCTS versus stopping for a fixed memory budget. Ensem-
ble MCTS is found to significantly outperform stopping
across all tested domains.

Tree flattening. Every time it discards the tree, ensemble
MCTS must relearn the values of moves from the root in
order to determine which to exploit and which to ignore. In-
stead of discarding the entire tree, tree flattening keeps the
first ply of the tree and discards the rest. The reward and
visit information for moves from the root is retained, allow-
ing the next MCTS instance to continue exploiting and ex-
ploring according to statistics already gathered. Thus tree
flattening is to ensemble MCTS as HOP-UCT is to deter-
minized MCTS (Bjarnason, Fern, and Tadepalli 2009). Un-
like ensemble MCTS there is no need to record visit counts
outside the tree, as they are retained in the flattened tree.

Node recycling. Ensemble MCTS and tree flattening both
have the weakness that they repeatedly throw away most
or all of the policy information learned by MCTS before
the memory bound was reached. Here we introduce a new
method, node recycling, which aims to throw away only the
information that is least relevant to the search, retaining as
much useful information as possible in the remaining tree.
The idea of node recycling is to remove nodes from un-
promising areas of the tree and recycle the freed memory
to build more promising areas. The behaviour of MCTS is
to exploit, i.e. repeatedly visit, the most promising areas of
the search tree, whilst infrequently exploring less promising
areas. Thus it makes sense to recycle areas of the tree that
have not recently been accessed, as those areas have a low
priority for being exploited.

The overall idea of node recycling is as follows. Rather
than creating a new node upon each expansion, a fixed pool
Φ of nodes is allocated up front (the size of Φ is determined
by the memory budget). We use nodes from Φ until it is
exhausted, at which point we begin recycling nodes from the
tree. The node to be recycled is the leaf node whose statistics
have least recently been accessed, i.e. for which the UCB1
value has least recently been computed. We recycle based
on accesses rather than visits, as otherwise a rarely visited
child of a frequently visited node may be recycled and then
immediately re-expanded and re-explored. Even if a node is
rarely visited by playouts, it may frequently be accessed and
rejected by the selection policy.

Finding the least recently accessed leaf node by searching
over the entire tree would imply a time complexity O(|Φ|)
for the above algorithm. However, using appropriate data
structures and a small amount of bookkeeping during MCTS
iterations we achieve O(1) time complexity (i.e. the time re-
quired does not depend on |Φ|). Essentially the nodes are
managed using a least recently used (LRU) cache imple-
mented as a first-in first-out (FIFO) queue. Whenever a node
is accessed it is removed from its current position in the
queue and pushed to the back. When the memory bound is
reached, the front node in the queue (i.e. the least recently
accessed node) is recycled.

Our implementation introduces no measurable difference
in computation time per decision compared to MCTS with
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Figure 1: Illustration of node pointers for node recycling
MCTS, showing the left-child right-sibling tree representa-
tion and the queue Θ of visited nodes. Nodes are numbered
with their indices in the array Φ. The “previous node” point-
ers in the doubly linked list Θ are omitted for clarity.

unbounded memory. Indeed it is difficult to say whether the
bounded algorithm is slower or faster than the unbounded
algorithm, i.e. whether the bookkeeping overhead is less or
greater than the time saved by performing fewer memory
allocations and causing fewer cache misses when accessing
memory. In our implementation, the difference in decision
times for a fixed number of iterations is less than 1%, which
is within experimental error.

Our MCTS implementation uses a left-child right-sibling
representation (Cormen et al. 2001) for the search tree. In
this representation, each node stores pointers to three other
nodes: its parent, its leftmost child, and its sibling immedi-
ately to the right. This means that the children of a node are
stored as a singly linked list. Figure 1 illustrates this.

In MCTS, backpropagation proceeds up the tree, from
leaf to root. This means that backpropagation updates each
node before its parent. Let v be the non-leaf node for which
the time since last update is maximal. We know that v has
only leaf nodes as children: if v had a non-leaf child v′ then
the last update at v′ would necessarily be before the last
update at v, violating the requirement on the choice of v.
Furthermore, the leaf node whose statistics were accessed
least recently must be a child of v: if it were not, then the
leaf’s parent would necessarily have been updated less re-
cently than v. Thus if we can find v, we can find the next
leaf node to recycle.

To rapidly determine the least recently updated node v,
we maintain a queue Θ of nodes. Non-leaf nodes are re-
moved from Θ when visited during playout, and pushed to
the back of Θ when they are updated. Leaf nodes are never
present in Θ. Thus the node at the front of Θ is the least re-
cently updated non-leaf node, i.e. the node v sought in the
previous paragraph. The queue is implemented as a doubly-
linked list implemented by storing pointers to the previous
and next queue elements in the node class itself. This guar-

antees that removing a node from its current queue posi-
tion, pushing a node to the back, and popping a node from
the front all execute in constant time (O(1) with respect to
the node pool size). Figure 1 illustrates the tree structure
used by node recycling MCTS, showing the pointers used
by each node to store both its position within the tree and
its position within Θ. From front to back, the nodes in Θ are
〈4, 7, 14, 9, 8, 1, 3〉, thus the child of node 4, i.e. node 5, is
the next node to be recycled.

Using a FIFO queue to keep track of the least recently vis-
ited node gives a good combination of sensible node choice
and low computational overhead, as there is no need to tra-
verse the tree to find a node to recycle. There is a memory
overhead associated with storing two extra pointers per node
(the previous and next nodes in Θ); in our C++ implemen-
tation this increases the memory usage from 48 to 56 bytes
per node, an increase of 16.7%.

Fuego-like garbage collection. The Go program
Fuego (Enzenberger et al. 2010) uses a “garbage collec-
tion” strategy when the search reaches its memory limit.
All nodes which have been visited less than some fixed
threshold are removed, and the search continues as normal.

The conceptual goal is similar to that of our node recy-
cling scheme: discard potentially unimportant areas of the
tree to make way for more promising ones. The key differ-
ence is in the assessment of “potentially unimportant”: for
node recycling this means areas of the tree which have not
been visited recently, whereas for Fuego-like garbage col-
lection it means areas which have only rarely been visited
over the entire course of the search. Notice that once a node
has received more than the threshold number of visits, it can
never be deleted. This contrasts to node recycling where a re-
gion of the tree visited intensively early in the search, which
turns out to be unpromising, will eventually be deleted.

In (Enzenberger et al. 2010) the node visit threshold is set
to 16. However the optimal setting is likely to depend on the
number of iterations, which is orders of magnitude larger for
Fuego than for the experiments in this paper. We found that
a threshold of 4 gave the best performance overall across the
domains and parameter settings studied in this paper.

Experiments

In this section we investigate the performance of the memory
bounding methods on three very different games of imper-
fect information: a partnership card game with fully observ-
able moves; a card game without partnerships, with both hid-
den and fully observable moves; and a 2-player board game
where both moves and position information are hidden.

Domains

Spades is a four-player trick taking card game (Pagat
2017b). The players are paired into two opposing partner-
ships: North and South versus East and West. A version
of our ISMCTS player enhanced with heuristic knowledge
and our new node recycling algorithm is currently deployed
in a popular implementation of Spades for Android mo-
bile phones (Whitehouse et al. 2013; Cowling et al. 2015).
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The heuristic knowledge is primarily used to alter the play-
ing style for a more enjoyable game; in terms of playing
strength, SO-ISMCTS is strong without knowledge. The
version of the ISMCTS player used in this paper does not
use heuristic knowledge, other than the end-of-round simu-
lation cutoff described in (Whitehouse et al. 2013).

Hearts is a four-player trick taking card game (Pagat
2017a). There are no partnerships: all four players are in
competition with each other. Each round begins with players
simultaneously passing cards to each other. These are par-
tially observable moves, so we use MO-ISMCTS. As with
Spades, the ISMCTS implementation for Hearts simulates
to the end of the current round rather than the end of the
entire game. A version of Hearts created by Microsoft is in-
cluded with some versions of Windows; we have performed
AI-versus-AI tests of our ISMCTS player against the AI op-
ponent provided with the Windows 7 version, and found it
to be on a par in terms of playing strength.

Lord of the Rings: The Confrontation (LOTR:C) is
a two-player strategic board game designed by Reiner
Knizia (BoardGameGeek 2017). The two players are des-
ignated the Good player and the Dark player. The game has
hidden information: the pieces have different strength val-
ues and special abilities, but these attributes are hidden from
the opponent. Our previous work on LOTR:C showed that
MO-ISMCTS achieves a level of play equal to that of strong
human players (Cowling, Powley, and Whitehouse 2012).

Comparison of memory bounding methods

We test the relative playing strength of the memory bounded
MCTS methods described in the previous section. For
Hearts and LOTR:C we play one instance of memory
bounded MCTS against κ − 1 instances of MCTS with un-
bounded memory, where κ is the number of players. For
Spades, we test a partnership of two memory bounded play-
ers against a partnership of two unbounded MCTS oppo-
nents. In LOTR:C, due to the highly asymmetric nature
of the game (i.e. different abilities and win conditions for
each player), we conduct separate experiments for Good and
Dark players. In Hearts and Spades the starting player is
determined randomly according to the game rules, and so
the player number assigned to the memory bounded MCTS
player has no bearing on the result averaged over many
games. We vary the size of the node pool for each variant
of memory bounded MCTS, playing 1 000 games for each
setting and using 5 000 iterations per decision. This exper-
iment represents around 4 CPU-months of computation in
total, and was performed on a cluster of 72 processor cores.
Results of this experiment are shown in Figure 2.

For large memory budgets, memory bounding has little or
no effect on the operation of MCTS, since the search does
not have chance to exhaust the available memory. The most
pertinent region of the graphs is thus at the low and middle
parts of the x-axis range (20–500).

The most effective methods overall (node recycling and
Fuego-like garbage collection) are the only methods which
keep frequently visited lines of play in the tree for the du-
ration of the search at the expense of less frequently vis-
ited lines, suggesting that retaining these nodes is important

to the strength of MCTS. Stunting, stopping and ensemble
MCTS do not have this property. Furthermore, stopping and
ensemble MCTS bound the number of UCB1 iterations at
the root whereas stunting does not. Comparing these algo-
rithms indicates that using more UCB1 iterations at the root
node of a simple tree gives better performance, even if the
tree structure below the root remains static.

For Spades and Hearts, the best algorithms perform well
with as few as 20 nodes. For these games, 20 nodes do not al-
low more than one or two plies in the tree to be built, which
suggests that exhaustive search of the game tree beyond a
few moves is not necessary for good playing strength. In
many cases 20 nodes are enough to cover or nearly cover
the current trick, so this suggests diminishing returns from
building the tree beyond the current trick. For LOTR:C,
there is a clearer (though still not catastrophic) disadvantage
to smaller node pool sizes. In all cases the slope of the other
lines is much shallower than for stopping, showing that, if
an appropriate memory bounding technique is used, reduc-
ing the memory budget has much less impact on the perfor-
mance of MCTS than reducing the time budget.

In Spades, stunting with a memory budget of 20 nodes
is significantly better than for 50 or 100 nodes. This result
is highly statistically significant (p < 10−89), so cannot be
dismissed as a statistical anomaly. In the stunted decision
tree for Spades, budgets of 50 or 100 may bias the search by
ending the tree part way through considering the moves of a
particular player, whereas 20 nodes allows for one complete
ply of the tree and little else.

A smaller memory budget restricts the search to consider
only a few long lines of play. This seems to work fine for
Hearts and Spades, where there is a good deal of uncertainty,
but not so well for LOTR:C which requires continuous com-
parison of deeper long-term strategies.

Conclusion
MCTS and ISMCTS are powerful search algorithms with
many promising applications in commercial games, which
are only just being explored. Many of these applications re-
strict the memory available for search, for example on mo-
bile platforms or in a multi-agent setting. The memory usage
of (IS)MCTS grows linearly with respect to the number of
iterations used. This paper proposes a number of variants of
(IS)MCTS which allow a predetermined bound to be placed
upon the amount of memory used by the algorithm. We have
demonstrated that the playing strength of (IS)MCTS contin-
ues to increase with respect to the number of iterations used
when the memory is bounded. We have introduced a node
recycling algorithm which transforms (IS)MCTS into an
anyspace algorithm, well suited to applications where both
time and space are limited. Node recycling can be imple-
mented efficiently and achieved the best performance given
a memory bound in all our test domains.

Since (IS)MCTS explores a game tree asymmetrically,
when using node recycling the memory budget is used to
store nodes from the subtree currently being explored. If an-
other subtree is explored, information near the leaves of the
original subtree will be forgotten. We have shown that mem-
ory bounding in this way does degrade the performance of

98



(a) Spades (b) Hearts

20 50 100 200 500 1000 2000 5000

Node pool size

0%

10%

20%

30%

40%

50%

60%

W
in

 r
a
te Recycling

Fuego

Flattening

Ensemble

Stunting

Stopping

20 50 100 200 500 1000 2000 500010000

Node pool size

0%

10%

20%

30%

40%

50%

60%

W
in

 r
a
te

(c) LOTR:C (Good player) (d) LOTR:C (Dark player)

20 50 100 200 500 1000 2000 500010000

Node pool size

0%

10%

20%

30%

40%

50%

60%

W
in

 r
a
te

20 50 100 200 500 1000 2000 500010000

Node pool size

0%

10%

20%

30%

40%

50%

60%

W
in

 r
a
te

Figure 2: Effect of node pool size on playing strength for memory bounded MCTS. The x-axis (node pool size) is logarithmic.
In Hearts and LOTR:C one instance of memory bounded MCTS plays against MCTS opponents without memory bounds; in
Spades a partnership of two memory bounded MCTS agents play against two unbounded MCTS players. All players use 5000
iterations per decision. Each data point is based on 1000 games. The horizontal dotted lines indicate the 95% confidence interval
of the baseline win rate for a player identical to its opponents (i.e. without memory bounds). Confidence intervals are otherwise
omitted for clarity, but are of similar size to those for the baseline. For Hearts, finishing in second or third place counts as half
a win, hence the expected “win rate” amongst evenly matched players is 50%.

(IS)MCTS, but some games (particularly those with imper-
fect information) are not very sensitive to memory bound-
ing. It is notable in Figure 2 that a node pool size of 1000
is not significantly worse than unbounded MCTS in any of
the games tested here, with 5000 simulations. This player re-
quires only 1

5 of the memory used by unbounded MCTS in
the perfect information and SO-ISMCTS cases, and around
1
5κ of the memory for unbounded MO-ISMCTS in a game
with κ players. Crucially, the node recycling method is able
to make full use of any available time and memory budget
— an anytime, anyspace algorithm.

The node recycling scheme proposed here is inspired by
the exploitative behaviour of (IS)MCTS: if a region of the
tree was promising then it would have been visited recently,
therefore unvisited regions of the tree must be relatively un-
promising and can be pruned with minimal effect on the
performance of the algorithm. However there may be cases
where keeping an unpromising region of the tree is benefi-
cial. For example, consider a move which initially appears
good, but a line of play exists that shows it to be poor. The
region containing this line of play will be infrequently vis-
ited, but if it is deleted then the move will begin to appear
good again. The effect of this is that the tree below this move

is constantly deleted and rebuilt. A more informed recycling
scheme, that somehow detects and keeps such refutations of
initially promising moves, could avoid this problem. How-
ever, the node recycling scheme we have presented works
well in the test domains in this paper (and several others).

We have successfully demonstrated that (IS)MCTS can
be modified to work within a fixed memory budget, with
relatively little degradation in performance. In recent years
(IS)MCTS has comprehensively proved itself in empirical
work and competitions, where the primary constraint is de-
cision time. Memory bounding paves the way for practical
deployment of (IS)MCTS in domains where memory is con-
strained also, including video games as well as embedded
and mobile applications.
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