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Abstract

A sector condition for two connected deadzone nonlinearities is provided.By introducing an additional non-square operator which exploits
their connectivity, a more general set of sector-like matrix inequalities is obtained. This “non-square” matrix inequality condition is applied
to an anti-windup (AW) problem in which the AW compensator is not activateduntil the unconstrained control signal reaches a well-
defined level beyond that of the physical actuator limits. The non-square sector condition allows such “deferred-action” AW synthesis
to be performed in a manner much closer to traditional (“immediate”) sector-based AW with either lowered conservatism or decreased
computational effort in contrast to recent work. The non-square condition is applicable to other AW problems.
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1 Introduction

Anti-windup (AW) compensation is a well-established
method for enhancing a controller’s performance in the
presence of control signal saturation. In this approach, a
linear controller is designed, possibly in ignorance of the
constraints, and then a so-called AW compensator is added
to assist the linear controller during, and following, periods
of control signal saturation; the goal being to ensure the
saturated system maintains stability and that performance
degradation is minimal. Normally, the AW compensator is
activated upon the occurrence of saturation. The subject of
AW is now fairly mature and the reader is referred to the
surveys [29,6], the edited volume [28] and the monographs
[7,11,36]. In addition, two earlier papers [16,3] describe
and connect some of the early work on AW.

Many modern approaches to AW design are based on tools
from convex optimisation ([18,13,9,31,8,21,19,21,5,1,17])
and although these provide an attractive framework for AW
synthesis, the compensators produced can beconservative:
while stability is guaranteed, observed time-domain perfor-
mance may be disappointing. This has two main sources: (i)
the quadratic Lyapunov functions and sector bounds used
in the synthesis algorithms; and (ii) the linearity of the AW
compensator, which means its behaviour is identical for both
small and large excursions beyond the control limits. Thus,
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“modern” AW schemes may provide mediocre performance
over part of their operating range. While it is possible to ad-
dress AW problems with non-quadratic Lyapunov functions
and, more generally with IQCs ([14]), these approaches are
normally accompanied by non-convex synthesis conditions.

To overcome the above shortcomings, [35] proposed a non-
linear AW scheme in which several AW gains were sched-
uled as a function of the saturation level: for small saturation
levels, aggressive AW gains were used for improved per-
formance, while for large saturation levels, less aggressive
gains were used in order to preserve stability. Similarly, [30]
proposed preliminary results on a “two-stage” AW proce-
dure where, mild saturation was handled by an aggressive
AW compensator, and more severe saturation by a less ag-
gressive AW compensator for global stability preservation.

Recently, two other nonlinear AW techniques aimed at en-
hancing saturated performance have emerged: the so-called
deferred-action(or delayed) AW approach, in which the AW
compensator is not activated until the demanded, i.e. uncon-
strained, control signals reach values beyond the physical
actuator limits [22,23]; and theanticipatoryAW approach
[32,34] in which the AW compensator is activatedbefore
the control signal reaches saturation. Both approaches rely
on activating the AW compensator with a saturation func-
tion (equivalently a deadzone function) with different lim-
its to those of the physical actuators. The originaldeferred-
action scheme of [22] involved writing the system equa-
tions in pseudo-LPV form and then using a scaled small
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gain approach to guarantee stability. Although examples un-
doubtedly demonstrated the appeal of the “delayed” AW ap-
proach, there are a number of issues with the scheme: the
pseudo-LPV modelling of the system meant that2m sets of
LMI’s needed to be solved, obviously making the approach
unattractive when the number of control inputs,m, is large;
and the order of compensator produced is of the combined
order of the plant (np) and controller (nc), whereas stan-
dard full-order approaches ([9]), only requirenp states for
optimal performance. In later work [24–26], some of these
problems were addressed by using a sector-approach. How-
ever, it will be shown that this sector approach [25] is con-
servative and is implied by the results proposed here.

This paper considers at first two deadzone functions related
through their deadzone limits. Exploiting this relationship,
an extra difference operator between the deadzones provides
a non-square, nonlinear operator together with four (ma-
trix) inequalities. This non-square sector condition is ap-
plied with theS-procedure [2] to the deferred-action AW
problem proposed by [22]. The arising deferred-action AW
synthesis conditions are much closer to those found in the
standard (“immediate”) case of [9]: the LMI’s are of simi-
lar complexity, and contain the inequalities of [9] as special
cases, unlike the LPV-based results in [22,26]; the increase
in complexity as the number of control inputs increased is
linear rather than polynomial (as for [22]). It will also be
shown that the results derived here are less conservative than
the sector-based results found in [26]. The non-square sec-
tor results are generic and can be applied to other similar
AW problems [32,34,33,30,25].

1.1 Notation

M ∈ R
n×n
+ means that the realn × n matrix M is posi-

tive definite;M ∈ D
n×n
+ means that it is diagonal andM ∈

R
n×n
+ . Following [32], I[1,m] denotes the set{1, . . . ,m}

for some integerm > 0. The L2 norm of a vector val-

ued functionx(t) is defined as‖x‖2 :=
(∫

∞

0
‖x(t)‖2dt

)1/2

where‖(.)‖ denotes the Euclidean norm; any signal whose
L2 norm is finite is denotedx(t) ∈ L2. The nonlinear op-
erator,T : w 7→ z is said to haveL2 gain less thanγ if
‖z‖2 < γ‖w‖2 + β for scalarsγ, β ≥ 0 andw ∈ L2. The
saturation and deadzone,Satū(.),Dzū(.) : Rm 7→ R

m are

defined viaū = [ ū1 . . . ūm ]′ andūi > 0, i ∈ I[1,m]:

Satū(u) = [ satū1
(u1) . . . satūm

(um) ]′

Dzū(u) = [ Dzū1
(u1) . . . Dzūm

(u2) ]
′

satūi
(ui) = sign(ui)min {|ui|, ūi} , Satū(u) = u−Dzū(u)

2 A non-square sector condition

The deadzone functionsDzū[1](.),Dzū[2](.) : Rm 7→ R
m:

q[1] = Dzū[1](u), q[2] = Dzū[2](u)

lead, assuminḡu[2]
i > ū

[1]
i , to the decentralised operator

Dū[1],ū[2](.) : Rm 7→ R
m defined below.

Dū[1],ū[2](u) := Dzū[1](u)−Dzū[2](u), ū
[2]
i > ū

[1]
i , (1)

Thei’the element of theDū[1],ū[2](u) is denotedDi(ui). The
non-square sector condition requires a preliminary result:

Lemma 1 GivenDū[1],ū[2](.) : Rm 7→ R
m in (1) andαi as

αi :=
ū
[2]
i − ū

[1]
i

ū
[2]
i

, ū
[2]
i > ū

[1]
i (2)

then the following properties hold for alli ∈ I[1,m]:

(a) sign {αiui −Di(ui)} =

{

sign(ui) for |ui| 6= ū
[2]
i

0 elsewhere

(b) sign {Di(ui)} =

{

sign(ui) for |ui| > ū
[1]
i

0 for |ui| ≤ ū
[1]
i

Proof. Item (a):From (2), the left of (a) is equivalent to

χi(ui) := sign
{

(ū
[2]
i − ū

[1]
i )ui − ū

[2]
i Di(ui)

}

(3)

Assume|ui| < ū
[1]
i . Equation (3) and̄u[2]

i > ū
[1]
i give:

χi(ui) = sign
{

(ū
[2]
i − ū

[1]
i )ui

}

= sign(ui). (4)

Assume|ui| ∈ [ū
[1]
i , ū

[2]
i ). In this case, equation (3) gives:

χi(ui) =sign
{

(ū
[2]
i − ū

[1]
i )ui − ū

[2]
i sign(ui)(|ui| − ū

[1]
i )

}

=sign
{

(ū
[2]
i − |ui|)ū

[1]
i sign(ui)

}

= sign(ui) (5)

Assume|ui| > ū
[2]
i . In this case,χi(ui) = sign(ui), as:

χi(ui) =sign
{

(ū
[2]
i − ū

[1]
i )ui − ū

[2]
i sign(ui)(−ū

[1]
i + ū

[2]
i )

}

=sign
{

(ū
[2]
i − ū

[1]
i )sign(ui)(|ui| − ū

[2]
i )

}

Assume|ui| = ū
[2]
i . In this case,χi(ui) = 0.

Item (b):This proceeds in three stages:

Assume|ui| < ū
[1]
i . By calculation,sign {Di(ui)} = 0.

Assume|ui| ∈ [ū
[1]
i , ū

[2]
i ). In this case

sign {Di(ui)} = sign
{

Dz
ū
[1]
i

(ui)
}

(6)
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Assume|ui| ≥ ū
[2]
i . In this case we have

sign {Di(ui)} = sign(ui)(ū
[2]
i − ū

[1]
i ) = sign(ui)

which ends the proof �

It is now possible to define a static nonlinear operator
Πū[1],ū[2](.) : Rm 7→ R

2m as

[

q[12]

q[2]

]

= Πū[1],ū[2](u) :=

[

Dū[1],ū[2](u)

Dzū[2](u)

]

(7)

Lemma 1 can be used to obtain the following result.

Lemma 2 (Non-square sector condition) The operator
Πū[1],ū[2](.) : R

m 7→ R
2m from (7) satisfies, for all

W11, W12, W21, W22 ∈ D
m×m
+ andu ∈ R

m:

S1 := Dū[1],ū[2](u)′W11(Au−Dū[1],ū[2](u)) ≥ 0 (8)

S2 := Dzū[2](u)′W12(Au−Dū[1],ū[2](u)) ≥ 0 (9)

S3 := Dū[1],ū[2](u)′W21(u−Dzū[2](u)) ≥ 0 (10)

S4 := Dzū[2](u)′W22(u−Dzū[2](u)) ≥ 0 (11)

whereA = diag(α1, . . . , αm) andαi is defined in (2).

Proof: First consider the inequalityS1. As Dū[1],ū[2](.) is
decentralised andW11 ∈ D

m×m
+ we have

S1 =

m∑

i=1

Di(ui)W11,i(αiui −Di(ui)) (12)

whereW11,i denotes thei’th diagonal element ofW11 > 0.
Application of Lemma 1, then implies thatS1 ≥ 0. Inequal-
itiesS2 andS3 follow similarly and inequalityS4 is simply
the standard sector inequality ([15]) for the deadzone.�

Remark 1: The non-square vernacular arises because
Lemma 2 provides “sector-like” inequalities for thenon-
squarenonlinear operatorΠū[1],ū[2](.) : Rm 7→ R

2m defined
above. InequalityS4 is a standard sector inequality ([15])
and inequalityS1 was introduced in [30], but inequalities
S2 andS3, relatingq[12] andq[2] are new to this paper.��

Direct calculation verifies the following fact.

Fact 1 Assume that̄u[2]
i > ū

[1]
i for all i ∈ I[1,m], then

Dzū[1](Satū[2](u)) = Dū[1],ū[2](u) (13)

3 A two-stage anti-windup architecture

The non-square sector condition finds natural application
in several nonlinear AW problems. Figure 1 depicts the
general configuration whereP represents the linear plant,
K the nominal linear controller,w(t) ∈ R

nw is the ex-
ogenous input (references and disturbances),y(t) ∈ R

ny

the measured output,z(t) ∈ R
nz the performance output,

Two−stage

u

y

w

zû
PK

Λ
[1]

Λ
[2]

v[1]

v[2]

q[1]

q[2]

Fig. 1. Two-stage anti-windup architecture

u(t) ∈ R
m the demanded (unconstrained) control signal,

û(t) = Satū(u) the input to the plant. Two AW compen-
sators appear in the loop: the first,Λ

[1] is the compensator
driven byq[1] = Dzū[1](u); the second,Λ[2] is the compen-
sator driven byq[2] = Dzū[2](u). These compensators inject
corrective signalsv[1] andv[2] into the controller.

In Figure 1, typically one compensator would be activated
to assist the linear controller when saturation was mild, and
the second would be activated upon more severe saturation.
This two stage framework was first introduced in [30] and
considered, using an equivalent architecture, more recently
in [24,25]. There are several special cases of interest:-

(1) Immediate AW, Assume that̄u = ū[1] and either̄u[2]
i =

∞ ∀i ∈ I[1,m] or Λ[2] ≡ 0. Then onlyΛ[1] is ever
active and activation occurs when “physical” saturation
occurs i.e. we have the standard (“immediate” [32])
AW case [9,29,6] considered in most of the literature.

(2) Deferred action/Delayed AW. Assume that̄u = ū[1]

and ū[1]
i < ū

[2]
i ∀i ∈ I[1,m]. Then if Λ[1] ≡ 0 (i.e.

not present), we have the delayed AW case of [22].
Here, the AW compensator,Λ[2], is not activated unless
the control signal exceeds some levelū

[2]
i , which is

itself larger than the physical actuator limits,ū
[1]
i = ūi.

(3) Anticipatory AW. Assume that̄u = ū[2] and again that
ū
[1]
i < ū

[2]
i ∀i ∈ I[1,m]. Then if Λ[2] ≡ 0 (i.e. not

present), we have the anticipatory AW case of [32].
In this case,Λ[1] is activated before the control signal
exceeds physical constraintsū[2]

i = ūi.

u

[

q[12]

q[2]

]

w z

Σ(Λ[1],Λ[2])

Π(.)ū[1],ū[2]

Fig. 2. Two-stage AW problem with operatorΠ(.)ū[1],ū[2]

Assuming that̄u = ū[1], and using the identitieŝu = u−q[1]

andq[1] = q[12] + q[2], Figure 1 can be re-drawn as Figure
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ApR11 +R11A
′

p + 2AB2AV21B
′

2 B2(AV21 +V22 − Ũ1) B1 R11C
′

1 + 2B2AV21D
′

12

⋆ −2V11 + 2V22 0 (AV21 +V22 − Ũ1)D
′

12

⋆ ⋆ −γI D′

11

⋆ ⋆ ⋆ −γI +D12V21D
′

12










< 0 (14)










SA′

CL +ACLS B̄1Ũ1 + SC ′

CL B̄w SC ′

z,CL

⋆ −2V11 + Ũ1D̃
′

1 + D̃1Ũ1 D̄w Ũ1D̃
′

z1

⋆ ⋆ −γI D̄′

zw

⋆ ⋆ ⋆ −γI










< 0 (15)

2 whereTzw : w 7→ z has the state-space representation

Tzw ∼













ẋ

u

z







=







A Bw B̃1 B̃2

C Dw D̃1 D̃2

Cz Dzw D̃z1 D̃z2
















x

w

q[12]

q[2]










[

q[12]

q[2]

]

= Πū[1],ū[2](u)

(16)
wherex is the state ofTzw. Σ represents the interconnection
of all the linear elements of the system (i.e. that formed using
the realisations of plant, controller and AW compensators).

4 An application to deferred-action anti-windup

For reasons of brevity and for the purposes of comparison,
the remainder of the paper will concentrate ondeferred-
action AW[22,23,26]. The non-square sector condition will
be exploited to yield deferred-action AW synthesis condi-
tions, which are similar to those of the standard AW case
[9]. It will be shown, theoretically and numerically, that the
nonsquare sector condition provides improvements over the
results in [22,26].

In the deferred action AW case, it is assumed thatΛ
[1] ≡ 0

andΛ[2] = Λ has a state-space realisation

Λ ∼







ẋaw = Λ1xaw + Λ2q
[2]

v =

[

v1

v2

]

=

[

Λ31

Λ32

]

︸ ︷︷ ︸

Λ3

xaw +

[

Λ41

Λ42

]

︸ ︷︷ ︸

Λ4

q[2] xaw ∈ R
naw

(17)
whereq[2] = Dzū[2](u). Noting thatv[1] ≡ 0, it is assumed
that v[2] =: v. Following [23], the plant and controller are

assumed to have the following state-space realisations

K ∼

{

ẋc = Acxc +Bcww +Bcyy + v1

u = Ccxc +Dcww +Dcyy + v2
(18)

P ∼







ẋp = Apxp +B1w +B2û

z = C1xp +D11w +D12û

y = C2xp +D21w +D22û

(19)

The plant input is given bŷu = Satū(u), whereū = ū[1].

4.1 Existence Conditions

The main result provides existence conditions for a deferred-
action compensator of ordernaw for a givenA.

Proposition 1 Consider the interconnection (16) and as-
sume that the matrices∆ = (I − DcyD22)

−1 and ∆̃ =

(I −D22Dcy)
−1 exist and thatΛ[1] ≡ 0. Assume also that,

for a givenA, there exist positive definite matrices

R =

[

R11 R12

⋆ R22

]

, S ∈ R
(np+nc)×(np+nc)
+ , R11 ∈ R

np×np

+

(20)
positive definite diagonal matrices̃U1,V11,V21,V22 ∈
D

m×m
+ , and a scalarγ such that the matrix inequalities (14)

and (15) hold together with

R− S ≥ 0 (21)
rank(R− S) ≤ naw (22)

AV11 − Ũ1 < 0 (23)
AV21 −V22 < 0 (24)

where the constant matricesACL, B̄1, CCL, B̄w, Cz,CL, D̃1,
D̄w, D̃z1, D̄zw are given in the appendix. Then there exists
an AW compensatorΛ, (17), which guarantees that the in-
terconnection in equation (16) is globally internally stable
1 and that theL2 gain of the mapTzw is less thanγ.

1 For w(t) ≡ 0, limt→∞ x(t) = 0 for all x(0) ∈ R
np+nc+naw
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Remark 2: The above inequalities resemble those found in
standardlinear AW ([9]): inequality (14) involves open-loop
data; inequality (15) involves closed-loop data; and inequal-
ities (21) and (22) involve the inverse of the Lyapunov ma-
trices. Inequality (15) stipulates that, as global resultsare
sought, the un-saturated closed-loop system must be asymp-
totically stable; inequality (14) stipulates that the open-loop
plant must also be stable. The additional rows/columns in
inequalities (15) and (14) and the two additional LMI’s, (23)
and (24), arise because the controller is required to stabilise
the closed-loop alone during periods of mild saturation, be-
fore AW-compensator activation. ��

Proof. The proof parallels that of [9]2 but with amendments
due to Lemma 2. WhenΛ[1](s) ≡ 0, the state-space realisa-
tion of the linear portion ofTzw (Σ in Figure 2) is given by

Σ ∼













ẋ

u

z






=







A Bw B̃1 B̃2

C Dw D̃1 D̃2

Cz Dzw D̃z1 D̃z2
















x

w

q[12]

q[2]










(25)

wherex ∈ R
np+nc+naw and expressions for the state-space

matrices are given in the appendix. This state-space realisa-
tion can be alternatively written ([4])

Σ ∼







A0 +H ′

1ΛG1 Bw B̃1 B̃1 +H ′

1ΛG2

C0 +H ′

2ΛG1 Dw D̃1 D̃1 +H ′

2ΛG2

Cz0 +H ′

3ΛG1 Dzw D̃z1 D̃z1 +H ′

3ΛG2







(26)

where the matrix of the AW compensator matrices is:

Λ :=

[

Λ1 Λ2

Λ3 Λ4

]

.

A matrix inequality problem:For Tzw (interconnection of
Σ andΠū[1],ū[2](.)) to be internally stable withL2 gain of
γ > 0, it is sufficient for a matrixP > 0 ([9,2]) to satisfy

d

dt
(x′Px) + γ−1‖z‖2 − γ‖w‖2 < 0 ∀x,w 6= 0 (27)

Using Lemma 2, inequality (27) holds forx,w 6= 0 if

d

dt
(x′Px) + γ−1‖z‖2 − γ‖w‖2 +

4∑

i=1

Si < 0 (28)

2 Well-posedness of the control loop can be easily argued via [9].

Using (25), inequality (28) is equivalent to the inequality:












A′P+PA M12 PB̃2+C
′W̃2 PBw C ′

z

⋆ M22 M23 W̃1Dw D̃′

z1

⋆ ⋆ M33 W̃2Dw D̃′

z2

⋆ ⋆ ⋆ −γI D̃′

zw

⋆ ⋆ ⋆ ⋆ −γI












< 0 (29)

where

M12 := PB̃1 + C ′W̃1 (30)

M22 := −2W11 + W̃1D̃1 + D̃′

1W̃1 (31)

M23 := W̃1D̃2 + D̃′

1W̃2 − (W12 +W21) (32)

M33 := −2W22 + W̃2D̃2 + D̃′

2W̃2 (33)

and the nonsingular matrices̃W1, W̃2 ∈ D
m×m
+ are given by

W̃1 : =AW11 +W12 =: Ũ−1
1 (34)

W̃2 : =AW21 +W22 =: Ũ−1
2 (35)

and, according to Lemma 2,W11,W12,W21,W22 ∈ D
m×m
+ .

Projection Lemma.Inequality (29) is equivalent to

Ψ0 +H ′ΛG+G′ΛH < 0 (36)

where

Ψ0=












A′

0P+PA0 Ψ0,12 PB̃1+C
′

0W̃2 PBw C ′

z0

⋆ M22 Ψ0,23 W̃1Dw D̃′

z1

⋆ ⋆ Ψ0,33 W̃2Dw D̃′

z1

⋆ ⋆ ⋆ −γI D̃′

zw

⋆ ⋆ ⋆ ⋆ −γI












(37)

H=
[

H1P H2W̃1 H2W̃2 0 H3

]

(38)

G=
[

G1 0 G2 0 0
]

(39)

andΨ0,12 = PB̃1 + C ′

0W̃1, Ψ0,23 = W̃1D̃1 + D̃′

1W̃2 −

(W12+W21) andΨ0,33 = −2W22+W̃2D̃1+D̃′

1W̃2. From
the Projection Lemma [4], (36) holds if and only if

W ′

GΨ0WG < 0 and W ′

HΨ0WH < 0 (40)

whereWG andWH are, respectively, full column rank ma-
trices whose columns span the null spaces ofG andH. It
is now shown that (14), (15) and (21)-(24) imply (40) and
Proposition 1.
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Inequality (15).Partitioning the matrixP as ([9])

P =







P11 P12 P13

⋆ P22 P23

⋆ ⋆ P33






=




S
−1 P⋆

⋆ P33



 (41)

whereS ∈ P
(np+nc)×(np+nc)
+ andP33 ∈ P

naw×naw

+ , allows
the left-hand inequality in (40) to be reduced to inequality
(15) in the proposition.

Inequality (14). DefiningQ := P−1 and partitioningQ as

Q =







Q11 Q12 Q13

⋆ Q22 Q23

⋆ ⋆ Q33






=




R Q⋆

⋆ Q33





then enables the right-hand inequality in (40) to be written
as inequality (14) where

V11 = Ũ1W11Ũ1 (42)
V21 = Ũ2W21Ũ2 (43)

V22 =−Ũ2W22Ũ2 + Ũ2(W12 +W21)Ũ1 (44)

Inequalities (21) and (22).As inequality (15) is expressed in
terms ofS and inequality (14) in terms ofR11, it is necessary
to find conditions which ensure thatP = Q−1, viz

[

S
−1 P⋆

⋆ P33

]−1

=

[

R Q⋆

⋆ Q33

]

> 0 (45)

According to [20], necessary and sufficient conditions for
there to exist matricesP⋆, P33, Q⋆ andQ33 satisfying equa-
tion (45), is that inequalities (21) and (22) both hold.

Inequalities (23) and (24).Lemma 2 requires the matrices
W11,W12,W21,W22 to all be diagonal and positive definite.
However, the inequalities (14) and (15) have been stated
in new variables̃U1,V11,V21 andV22. While diagonality
follows trivially, to see thatW11,W12,W21,W22 are indeed
positive definite, note that

• V11 > 0 directly impliesW11 > 0 from equation (42)
• Inequality (23) yields

AV11 − Ũ1 = AŨ1W11Ũ1 − Ũ1 < 0 (46)

⇔ AŨ1W11Ũ1 − Ũ1(AW11 +W12)Ũ1 < 0 (47)

⇔ −Ũ1W12Ũ1 < 0 ⇒ W12 > 0 (48)

• Equation (44) can be re-written as

V22 = AV21 + Ũ2(−AW11 +W12)Ũ1 (49)

= AV21 −AŨ2W11Ũ1 + Ũ1V21Ũ
−1
2 (50)

(V22 −AV21)Ũ2 = −AŨ1W11Ũ
2
2 + Ũ1V21 (51)

Note thatA,W11, Ũ1,V21 are all positive definite and
diagonal. Also, by inequality (24),V22 − AV21 is also
positive definite, and diagonal by construction. Therefore,
the diagonal elements of̃U2 can be obtained as the positive
roots of them quadratic equations defined by (51):

Ũ2,i =
−(V22,i−αiV21,i)+

√

(V22,i−αiV21,i)2+4αiV21,iŨ1,iW11,iŨ1,i

2αiW11,iŨ1,i
(52)

Thus,Ũ2 can be chosen positive definite. Hence,V21 > 0
impliesW21 > 0 from equation (43). Next from (35),

W22 = Ũ−1
2 −AW21 (53)

Therefore as̃U2 is now known to be positive definite (and
thus full rank).W22 > 0 is equivalent to

Ũ2 −AV21 > 0 (54)

Returning to equation (52),̃U2,i is

−(V22,i−αiV21,i)+
√

(V22,i−αiV21,i)2+4αiV21,iV11,i

2αiW11,iŨ1,i

>
−(V22,i−αiV21,i)+

√

(V22,i−αiV21,i)2+4αiV21,iV22,i

2αiW11,iŨ1,i

=
αiV21,i

αiW11,iŨ1,i

> αiV21,i (55)

This therefore implies inequality (54). In the above deriva-
tion the first inequality is due toV11 > V22 implied by
inequality (14) and the second inequality is because

Ũ−1
1,i =αiW11,i+W12,i>αiW11,i ⇒ αiW11,iŨ1,i < 1(56)

�

As with [9], Proposition 1 states non-convex conditions
for an AW compensator of arbitrary order (naw) to exist.
Similarly to [9], convex conditions can be obtained when
naw = 0 (static AW) andnaw ≥ np. A useful corollary of
Proposition 1 is the full-order case given below.

Corollary 1 For a givenA, there exists annp’th order AW
compensator of the form (17) satisfying the properties of
Proposition 1 if inequalities (15), (14), (23) and (24) of
Proposition 1 are satisfied and, in additionR11 − S11 > 0.

4.2 Anti-windup compensator construction

The construction of the deferred-action AW compensator,Λ

is performed in a similar manner to [9]. In order to obtain
Λ, and henceΛ, from the data returned by Proposition 1,
the following procedure should be followed.

(1) ObtainingP > 0: Similar to [9,4], P can be con-
structed according to standard re-construction algo-
rithms. FirstlyP⋆ ∈ R

(np+nc)×naw is determined from

S−1RS−1 − S−1 = P⋆P
′

⋆ (57)
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ThenP33 ∈ R
naw×naw is constructed as

P33 = I + P ′

⋆SP⋆ (58)

Finally P is constructed according to equation (41).
(2) W11,W12,W21,W22 are obtained using equations

(34), (35), (42), (43) and (52).

These matrices are then used to constructΨ0, G andH and
inequality (36) solved for the AW compensator matricesΛ.

4.3 Relation to existing delayed anti-windup results

This section compares Proposition 1 to two existing
deferred-action AW synthesis approaches: the pseudo LPV
approach introduced by [23] and used in [22,32]; and the
standardor square sectorapproach proposed in [25], but
also used in earliertwo-stageAW in work [30].

4.3.1 The pseudo LPV approach ([22])

This approach essentially involves one replacing the (artifi-
cial) saturation element by a time-varying gain which takes
values in a polytope, and then using this to obtain an LPV-
like representation of the system. By convexity, this leads
to a number of LMIs involving a common quadratic Lya-
punov function which have to be solved at the vertices of
the polytope. While we claim no improvement inperfor-
manceover this approach, its downsides are that, in the dy-
namic case ([22]), the order of the LPV-based compensator
is naw = np + nc (unlike the standard approach in [9] and
our results whennaw = np); also the computational com-
plexity increases rapidly as the number of control inputs in-
creases since the number of matrix inequalities scales as2m.

4.3.2 The standard “square” sector approach

This approach was used in [24,25] and is based on the fol-
lowing inequalities, adapted from equations (3) and (4) in
[25],

Dzū[1](Satū[2](u))W (ASatū2(u)−Dzū[1](Satū[2](u)))≥ 0 (59)

Dzū[2](u)W̃ (u−Dzū[2](u)) ≥ 0 (60)

whereW, W̃ ∈ D
m×m
+ . Note that: (i) there are only two

“sector” inequalities above, compared to the four in the non-
square sector condition of Lemma 2 (Clearly, it is acknowl-
edged in [26] that sector bounds can be conservative, noting
that also two sector inequalities are used in [26]); and (ii)
inequality (60) is exactly inequality (4) in Lemma 2, which
is a standard sector condition associated with the deadzone.
Also, using Fact 1, inequality (59) can be written as

Dū[1],ū[2](u)W (ASatū[2](u)−Dū[1],ū[2](u)) ≥ 0 (61)

Next, inequalityS1 in Lemma 2 implies, forW ∈ D
m×m
+ ,

Dū[1],ū[2](u)W (Au−Dū[1],ū[2](u))

=Dū[1],ū[2](u)W (A(Satū[2](u)+Dzū[2](u))−Dū[1],ū[2](u))

= Dū[1],ū[2](u)W (ASatū[2](u)−Dū[1],ū[2](u))

−Dū[1],ū[2](u)AWDzū[2](u) ≥ 0 (62)
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Fig. 3. Circuit example:y(t), large pulse. Nominal linear re-
sponse: solid blue. Saturated response: dotted black. Immediate
anti-windup: dashed red. Delayed anti-windup: solid black
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Fig. 4. Circuit example:y(t), small pulse. Nominal linear re-
sponse: solid blue. Saturated response: dotted black. Immediate
anti-windup: dashed red. Delayed anti-windup: solid black

Hence asDū[1],ū[2](u)AWDzū[2](u) ≥ 0 for all u ∈ R
m,

it follows that inequalityS1 in Lemma 2implies inequality
(59). Therefore, the two inequalities from [25] are implied
by two of the inequalities in Lemma 2, but Lemma 2 in-
cludestwo additional inequalities not presentin [25] i.e. the
standard sectorresults of [25] are conservative and, in fact,
are a special case of the non-square condition derived here.
Equally, the (standard) sector based deferred-action synthe-
sis conditions reported in [26, Theorem 2] implies greater
conservatism (see Sect. 5.3), although the design of an anti-
windup compensator of plant ordernp is possible as for [25].

5 Numerical examples

5.1 Circuit Example

Consider the circuit example used in [10,22,23]. The phys-
ical control bounds arēu = ū[1] = 1. A standard full-order
“immediate” AW compensator was designed ([9]) yielding
a performance bound ofγ = 58.46. A deferred actionAW
compensator was also designed, using Proposition 1 and
A = α = 0.9 (meaning that̄u[2] = (1 − α)−1ū[1] = 10)
and had an associated performance bound ofγ = 61.03.
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Fig. 5. Hippe’s example:y(t), small pulse. Nominal linear re-
sponse: solid blue. Saturated response: dotted black. Immediate
anti-windup: dashed red. Delayed anti-windup: solid black

Figure 3 shows the response (y(t)) of the system to a “large”
pulse reference signal. Both AW compensators lead to im-
proved closed-loop performance in the presence of satura-
tion, but performance is somewhat poorer than the linear
behaviour. Figure 4 shows the response (y(t)) of the system
to a “small” reference signal: the immediate AW compen-
sator leads to a sluggish response which is worse than that
with no AW, but the delayed AW compensator leads to a
response much closer to ideal linear behaviour.

5.2 Hippe’s example

Consider the resonant plant from [12], where the con-
trol boundsū = ū[1] = 1. Instead of the state-feedback
controller suggested in [12], we have used the fol-
lowing H∞ loop-shaping controller (see [27])K ∼
(Ac, [Bcy Bcw], Cc, [Dcy Dcw]) and

K ∼





















0 −72.735 −46.978 2.104 −40.433 1.583

0 −21.741 −17.885 0.752 −12.356 0

0 13.316 2.469 0.082 5.941 0

0 −0.554 0.081 −1.019 −0.263 0

12.50 −909.19 −587.22 26.30 −505.41 19.79





















A full-order immediate AW compensator was designed
([9]), yielding a performance levelγ = 12.6919. A deferred-
action compensator withA = α = 0.45 (i.e. ū[2] = 1.8182)
with performance level,γ = 25.0223, was also designed.

When a “large” (magnitude 0.5) pulse demand is applied to
the system (not shown), the system without AW becomes
unstable. With both the immediate and delayed AW com-
pensator’s stability is maintained although performance is
sluggish. Figure 5 shows the responses (y(t)) of the system
to the same sequence of pulses but with the amplitude re-
duced to a a fifth of its former value: the system without AW
behaves well, and as before, better than the system with im-
mediate AW. However, the delayed AW compensator leads
to a response much closer to ideal linear behaviour.
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Fig. 6. Comparison ofL2 gains (γ) for different values ofα
for the circuit example: Proposition 1 (solid line); results using
sector-based results from [26](dotted line)
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Fig. 7. Comparison ofL2 gains (γ) for different values ofαfor
Hippe’s example : Proposition 1 (solid line); results using sec-
tor-based results from [26](dotted line)

5.3 Choice ofA

A key design parameter isA, which affects the performance
of the deferred-action AW compensator. A similar parame-
ter,Gd = 1−A needs to be chosen in the delayed and an-
ticipatory cases ([22,32]). The solid lines in Figures 6 and7
show how theL2 gain of the closed-loop system varies as a
function ofA = α when Proposition 1 is used for AW syn-
thesis for the circuit example and Hippe’s example. In both
cases, theL2 gain remains relatively small for smaller values
of α but then increases dramatically beyond a certain point.
It is therefore logical to chooseα close to where the sudden
increase occurs. The dotted line in Figures 6 and 7 shows the
L2 gain calculated using the “square” sector results of [26];
theL2 gains are somewhat higher with this approach. This
is not surprising considering the conservatism of the “stan-
dard” sector condition, compared to the non-square sector
condition proposed in this paper.

6 Conclusions

This paper has introduced a non-square sector condition as-
sociated with a static nonlinear operatorΠū[1],ū[2] which can
be exploited in several different nonlinear AW design prob-
lems. Convex synthesis conditions for the specific case of
deferred-action AW have been given. It has been shown how
these synthesis conditions parallel those in immediate AW
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case and how they improve upon existing results available
for deferred-action AW synthesis [23,22,25].

A State-space matrices for delayed AW

The state-space matrices ofΣ are defined as









A Bw B̃1 B̃2

C Dw D̃1 D̃2

Cz Dzw D̃z1 D̃z2









=















ACL BΛΛ3 B̄w B̄1 B̄1+BΛΛ4

0 Λ1 0 0 Λ2

CCL D∆Λ3 D̄w D̃1 D̃1+D∆Λ4

Cz,CL DΛΛ3 D̄zw D̃z1 D̃z1+DΛΛ4















(A.1)
where the linear closed-loop matrices are given by









ACL B̄w

CCL D̄w

Cz,CL D̄zw









=















Ap+B2∆DcyC2 B2∆Cc B1+B2∆(Dcw+DcyD21)

Bcy∆̃C2 Ac+Bcy∆̃D22Cc Bcw+Bcy∆̃(D21+D22Dcw)

∆DcyC2 ∆Cc ∆(Dcw+DcyD21)

C1+D12∆DcyC2 D12∆Cc D11+D12∆(Dcw+DcyDz1)















(A.2)

and the auxiliary matrices are









B̄1 BΛ

D̃1 D∆

D̃z1 DΛ









=















−B2∆ 0 B2∆

−Bcy∆̃D22 I Bcy∆̃D22

−∆DcyD22 0 ∆

−D12∆ 0 D12∆















(A.3)

where∆ and∆̃ are defined in Proposition 1. Also, we have

A0 =





ACL 0

0 0



 C
′

0 =





C′

CL

0



 C
′

z0 =





C′

z,CL

0



 G2 =





0

I





G1 =





0 I

0 0



 H1 =





0 I

B′

Λ 0



 H2 =





0

D′

∆



 H3 =





0

D′

Λ
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