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Abstract

A sector condition for two connected deadzone nonlinearities is proviglethtroducing an additional non-square operator which exploits
their connectivity, a more general set of sector-like matrix inequalitiebtaimed. This “non-square” matrix inequality condition is applied

to an anti-windup (AW) problem in which the AW compensator is not activaetil the unconstrained control signal reaches a well-

defined level beyond that of the physical actuator limits. The non-egsector condition allows such “deferred-action” AW synthesis
to be performed in a manner much closer to traditional (“immediate”) sbetwed AW with either lowered conservatism or decreased
computational effort in contrast to recent work. The non-squanglition is applicable to other AW problems.

Key words: anti-windup, saturation, constrained control

1 Introduction “modern” AW schemes may provide mediocre performance
L . . ) over part of their operating range. While it is possible to ad-

Anti-windup (AW) compensation is a well-established  ress AW problems with non-quadratic Lyapunov functions

method for enhancing a controller's performance in the and, more generally with 1QCs ([14]), these approaches are

presence of control signal saturation. In this approach, anormally accompanied by non-convex synthesis conditions.
linear controller is designed, possibly in ignorance of the

constraints, and then a so-called AW compensator is addedl0 overcome the above shortcomings, [35] proposed a non-
to assist the linear controller during, and following, pels ~ linear AW scheme in which several AW gains were sched-
of control signa| Saturation; the goa| being to ensure the uled as annCthn of the Sa_turatlon level: for Sma” satamt
saturated system maintains stability and that performancelevels, aggressive AW gains were used for improved per-
degradation is minimal. Normally, the AW compensator is formance, while for large saturation levels, less aggvessi
activated upon the occurrence of saturation. The subject ofgains were used in order to preserve stability. Simila8@]

AW is now fairly mature and the reader is referred to the Proposed preliminary results on a “two-stage” AW proce-
surveys [29,6], the edited volume [28] and the monographs dure where, mild saturation was handled b_y an aggressive
[7,11,36]. In addition, two earlier papers [16,3] describe AW compensator, and more severe saturation by a less ag-
and connect some of the early work on AW. gressive AW compensator for global stability preservation

Many modern approaches to AW design are based on toolsRecently, two other nonlinear AW techniques aimed at en-
from convex optimisation ([18,13,9,31,8,21,19,21,57))1  hancing satgrated performance have emergeq: the so-called
and although these provide an attractive framework for Aw deferred-actior{or delayed AW approach, in which the AW
synthesis, the compensators produced candmservative compensator is not activated until the demanded, i.e. uncon
while stability is guaranteed, observed time-domain perfo Strained, control signals reach values beyond the physical
mance may be disappointing. This has two main sources: (i) &ctuator limits [22,23]; and thanticipatory AW approach
the quadratic Lyapunov functions and sector bounds used[32,34] in which the AW compensator is activatbefore
in the synthesis algorithms; and (ii) the linearity of the Aw the control signal reaches saturation. Both approachgs rel
compensator, which means its behaviour is identical fanbot  On activating the AW compensator with a saturation func-
small and large excursions beyond the control limits. Thus, tion (equivalently a deadzone function) with different dim
its to those of the physical actuators. The origideferred-

Email addressesntt 6@ e. ac. uk (Matthew C. Turner), action scheme of [22] involved writing the system equa-
g. herrmann@r i stol . ac. uk (Guido Herrmann). tions in pseudo-LPV form and then using a scaled small
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gain approach to guarantee stability. Although examples un |ead, assumingiEQ] > aE”, to the decentralised operator
doubtedly demonstrated the appeal of the “delayed” AW ap- D) 42 (.) : R™ — R™ defined below.

proach, there are a number of issues with the scheme: the
pseudo-LPV modelling of the system meant t&tsets of
LMI's needed to be solved, obviously making the approach
unattractive when the number of control inputs, is large; ) ,
and the order of compensator produced is of the combined Thei'the element of the, ) 1= (u) is denotedD; (u;). The
order of the plants(,) and controller £.), whereas stan- ~non-square sector condition requires a preliminary result
dard full-order approaches ([9]), only requing states for Lemmal GivenD,uj 4 (.) : R™ — R™ in (1) ando; as
optimal performance. In later work [24—26], some of these ’

problems were addressed by using a sector-approach. How- 2 [

ever, it will be shown that this sector approach [25] is con- = it al? < gl )
servative and is implied by the results proposed here. i '

Dﬁ[l],ﬁ["’] (’LL) = Dz (u) — Dz (U), @[2] > ﬂgl], (1)

(2

This paper considers at first two deadzone functions related i )

through their deadzone limits. Exploiting this relatiomsh  then the following properties hold for all€ I[1, m]:
an extra difference operator between the deadzones psovide

a non-square, nonlinear operator together with four (ma-

trix) inequalities. This non-square sector condition is ap (a) sign {a;u; — Di(u;)} = {
plied with theS-procedure [2] to the deferred-action AW

problem proposed by [22]. The arising deferred-action AW

synthesis conditions are much closer to those found in the (b) sign {D;(u;)} = {
standard (“immediate”) case of [9]: the LMI's are of simi-

lar complexity, and contain the inequalities of [9] as spkci

cases, unlike the LPV-based results in [22,26]; the in&reas . _
in complexity as the number of control inputs increased is Proof. Item (a):From (2), the left of (a) is equivalent to
linear rather than polynomial (as for [22]). It will also be

shown that the results derived here are less conservasive th Yi(u;) == sign {(ﬂ?] — M)y, — Q?]Di(ui)} ©)
the sector-based results found in [26]. The non-square sec-

tor results are generic and can be applied to other similar

AW problems [32,34,33,30,25]. Assumelu;| < a”. Equation (3) andil” > a!" give:

1.1 Notation

sign(u;) for |ui|7éﬂ£2]
0 elsewhere

(1]

%

sign(u;) for |u;| > @
0 for |u| <l

() — o =[2] _ -[1] ,}:' N 4

M € R}*™ means that the real x n matrix M is posi- Xi(us) §1gn{(ul w i g = sign(w). - (4)
tive definite;M € D" means that it is diagonal and € 0 2l _ _ _
R"*". Following [32], I[1,m] denotes the sefl,...,m} Assume|u;| € [a; ', 4@, ). In this case, equation (3) gives:
for some integern > 0. The £, norm of a vector val-
ued functionz(t) is defined agz||; := (J,~ H:c(t)||2dt)1/2
where||(.)|| denotes the Euclidean norm; any signal whose _ 2] 0]
L, norm is finite is denoted:(t) € £,. The nonlinear op- =sign {(ﬂi = |ui|)u;
erator,7 : w — z is said to havel, gain less thany if

z|l2 < v||w||2 + B for scalarsy, 5 > 0 andw € L5. The [2 . . )
ﬂaﬂjratior'\‘ a|r|1%I deadzon®aty(.), Dzg(.) : R™ R are  Assumelu| > a7 In this casey; (u;) = sign(u;), as:

defined viau = [, ... u,, ] andu; > 0, € I[1,m]:

xi(u;) =sign {(ﬂ?] — ﬂgl])ui - 12£2] sign(u;) (Ju;| — ﬂgl])}

sign(u;) | = sign(u;)  (5)

xi(u;) =sign {(12?] - ﬂgl])ui - ﬂ?] sign(ui)(—ﬂgll + 11?])}
Saty(u) = [satg, (u1) ... satq,, (um) ] =sign { (" — al")sign(u;) (jui] - al*)
Dzz(u) = [Dzg, (u1) ... Dzg,, (u2)]’

! — 3 I thi _
saty, (u;) = sign(u;) min {Ju;|, @; }, Satg(u) = u — Dzg(u) Assumelu;| = u,”. In this casey; (u;) = 0.

Item (b): This proceeds in three stages:
2 A non-square sector condition

The deadzone functioi8z;n; (.), Dzg (1) : R™ — R™:

Assumelu;| < ﬂE”. By calculationsign {D;(u;)} = 0.

Assumelu;| € [, a?). In this case

i 0

M =Dzgm(u), ¢ =Dzgp (u)
sign {Di (i)} = sign { Dz, (u:) | ()



2]

Assumelu;| > ag . In this case we have

=[2]

sign {D;(u;)} = sign(u;)(4; )

—alY) = sign(u,)

O

It is now possible to define a static nonlinear operator
H—[u,ﬁp](.) :R™ — R?>™ as
] Q)

[quzl
g

Lemma 1 can be used to obtain the following result.

which ends the proof

Dﬂ[l] Jal2) (U)
DZﬁp] (u)

Lemma 2 (Non-square sector condition) The  operator
My g (0) : R™ — R* from (7) satisfies, for all
Whi, Wiz, Wai, Wap € D™ andu € R™:

S1 = Dy gz (u) Wii (Au — Dy gz (u) >0 (8)
8o := Dz (u) Wig(Au — Dy giz (w)) > 0 9)
Ss := Dy giz1 (u) Wa1 (u — Dzgpz (u)) > 0 (10)
84 = Dzyiz (u) Waa(u — Dzyey (u)) > 0 (11)

where A = diag(ay, ..., a,,) andq; is defined in (2).
Proof: First consider the inequality;. As Dy gz (.) is

decentralised an#d’;; € D™ we have

S = ZDi(Ui)Wll,i(O‘iui — Di(uy;))

=1

(12)

whereW;; ; denotes thé'th diagonal element ofV;; > 0.
Application of Lemma 1, then implies th&y > 0. Inequal-
ities S, andS; follow similarly and inequalityS, is simply
the standard sector inequality ([15]) for the deadzoné&l

Remark 1. The non-squarevernacular arises because
Lemma 2 provides “sector-like” inequalities for then-
squarenonlinear operatai;,j ;=1 (.) : R™ — R*™ defined
above. InequalityS, is a standard sector inequality ([15])
and inequalityS; was introduced in [30], but inequalities
S, andSs, relatingq'?l and¢[?! are new to this paperld

Direct calculation verifies the following fact.

Fact 1 Assume thaﬁ?] > a&” for all i € I[1,m], then

DZa[u (Satﬁ[z] (u)) = Da[l] 711[2] (U) (13)

3 A two-stage anti-windup architecture

The non-square sector condition finds natural application
in several nonlinear AW problems. Figure 1 depicts the
general configuration wherP represents the linear plant,
K the nominal linear controlleny(t) € R™ is the ex-
ogenous input (references and disturbancgg), € R"v

the measured output(t) € R™= the performance output,

.z

Two-stage

Fig. 1. Two-stage anti-windup architecture

u(t) € R™ the demanded (unconstrained) control signal,
4(t) = Satg(u) the input to the plant. Two AW compen-
sators appear in the loop: the firét[!! is the compensator
driven byq'l = Dz (u); the secondA? is the compen-
sator driven byy?) = Dz, (u). These compensators inject
corrective signals!!! andv?! into the controller.

In Figure 1, typically one compensator would be activated
to assist the linear controller when saturation was mild, an
the second would be activated upon more severe saturation.
This two stage framework was first introduced in [30] and
considered, using an equivalent architecture, more rgcent
in [24,25]. There are several special cases of interest:-

2 _

(1) Immediate AWAssume thati = ul'l and either;

oo Vi e I[1,m]or A?l = 0. Then onlyA!" is ever
active and activation occurs when “physical” saturation
occurs i.e. we have the standard (“immediate” [32])
AW case [9,29,6] considered in most of the literature.
Deferred action/Delayed AWAssume thati = al!!

andal! < a® Vi e I[1,m]. Then if Al) = 0 (i.e.

not present), we have the delayed AW case of [22].
Here, the AW compensatok,[?!, is not activated unless
the control signal exceeds some Iexzé?], which is
itself larger than the physical actuator Iim'm%}] = Uj;.
Anticipatory AW Assume thati = @[?! and again that
aly < al?h i e I[1,m]. Then if Al = 0 (i.e. not
present), we have the anticipatory AW case of [32].
In this case Al!l is activated before the control signal

exceeds physical constraimg] = Uj.

)

©)

» <

E(A[l]’AD])

H(-)ﬁ[ll,a

Fig. 2. Two-stage AW problem with operatbi(.) ;1] ;2

Assuming that: = @', and using the identitie® = v — ¢!

andq = ¢I'? + ¢!, Figure 1 can be re-drawn as Figure



A Riy + Ry AL + 2ABs AV By By(AVay + Voo —Uy) By RyiCf + 2B AV Dy

* —2Vy, +2V 0 (AVa + Va —Up)D;
11 22 ( 21 22 1)D1o <0 (14)
* * —~I Dy,
* * * 7")/] + D12V21D/12
SA/CL + AcLS Blfjl + SC&*L By, SC;,CL
* -2V, + U D, + D,U, D, U,D’
11 17 1Uq i SR (15)
* * —~I D,
* * * —vI

2 whereT,,, : w — z has the state-space representation

~ ~ x
x A Bw B1 BQ
- = = w
u = c Dw ?1 D2 q[12]
7-zw ~ z Cz D.w D;1 D,y
e
(12]
q
= Hﬁ[l]’ﬂp] (U)
[qm 1
(16)

wherez is the state of,,. X represents the interconnection

of all the linear elements of the system (i.e. that formedgisi

assumed to have the following state-space realisations

T. = A.xe + BepW + Beyy +v

K ~ vy T (18)
u = Ccl‘c+Dcww+Dcyy+U2
i‘p = Apl‘p + Biw + Bau

P~ z = Cll'p + Dyjyw + Dioti (19)

Yy = Cg.lﬁp + D21w + Dggﬂ

The plant input is given by, = Sat (u), wherea = alll.

4.1 Existence Conditions

the realisations of plant, controller and AW compensators) The main result provides existence conditions for a defierre

4 An application to deferred-action anti-windup

For reasons of brevity and for the purposes of comparison, sume that the matriced = (I — D,y Da2)~

the remainder of the paper will concentrate deferred-

action AW[22,23,26]. The non-square sector condition will
be exploited to yield deferred-action AW synthesis condi-
tions, which are similar to those of the standard AW case

[9]. It will be shown, theoretically and numerically, thtet

nonsquare sector condition provides improvements over the

results in [22,26].

In the deferred action AW case, it is assumed thét = 0
andA[?l = A has a state-space realisation

Azgw + A2q[2]

C.Ca’w =
v A- A
A~ v = ! = ot Taw + 41 q[2] Taw € R™o®
V2 A32 42
N—— N——
A3 Ay

17)
whereg?! = Dz (u). Noting thatv!] = 0, it is assumed
thatv[?! =: v. Following [23], the plant and controller are

action compensator of order,,, for a given.A.

Proposition 1 Consider the interconnection (16) and as-
Land A =

(I — D22 D.,)~" exist and thatA[!) = 0. Assume also that,
for a given.A, there exist positive definite matrices

Ri R
R[ 11 R

] ,Se R$p+nc)x(np+n6), Ry € Ripxnp
* R22

(20)
positive definite diagonal matrice®;, Vi1, Vi, Voo €
D™, and a scalary such that the matrix inequalities (14)

and (15) hold together with

R-S>0 1)
rank(R — S) < ngy (22)
AV —U; <0 (23)
AV — Vg <0 (24)

where the constant matricel- 1., B1, Ccr, Bw, Cs.cr, D1,
Dy, D1, D.,, are given in the appendix. Then there exists
an AW compensataA, (17), which guarantees that the in-
terconnection in equation (16) is globally internally skab

1 and that theZ, gain of the magr,, is less thany.

b Forw(t) =0, limy—eo 2(t) = 0 for all 2(0) € R metnaw



Remark 2: The above inequalities resemble those found in Using (25), inequality (28) is equivalent to the inequality
standardinear AW ([9]): inequality (14) involves open-loop

data; inequality (15) involves closed-loop data; and irsqu M A m i /]
ities (21) and (22) involve the inverse of the Lyapunov ma- AP+PA Mz PBaAC'We {DB“’ ~Cz
trices. Inequality (15) stipulates that, as global resafts *x Moo Ma3 Wi D, D,
sought, the un-saturated closed-loop system must be asymp- i | <0 (29
totically stable; inequality (14) stipulates that the opeop * * My WaDu ?22 (29)
plant must also be stable. The additional rows/columns in * * * —~I D,
inequalities (15) and (14) and the two additional LMI’s, 23 . . . « I
and (24), arise because the controller is required to &tabil - T
the closed-loop alone during periods of mild saturation, be
fore AW-compensator activation. 0o where
Proof. The proof parallels that of [9] but with amendments PP i
due to Lem?na 2.pWheA[1](s) = (Ef?![he state-space realisa- Mo : PBu+C Wl S, (20)
tion of the linear portion off,, (X in Figure 2) is given by Maz = _~2VY11 +~W1~D1 + D (31)
Msz .= W1Dy + D/1W2 - (W12 + ng) (32)
- - T Mg := —2Was + WoDs + DLW. 33
P A Bw Bl 32 33 22 2472 2VV2 ( )
- = = w ~ ~
X~q|u|=|C|Dy Dy Dy 2] (25) and the nonsingular matric€g; , W, € D'}"*"™ are given by
z Cz Dzw Dzl ~z2 2] ~ ~ 1
q Wi .= AWH + Wi =: Ul_ (34)
WQ =AWy + Woy =: 02_1 (35)

wherezr € R *"+naw gnd expressions for the state-space

matrices are given in the appendix. This state-space &ealis 5,4 according to Lemma B, 1, Wia, Way, Was € D™*™.
tion can be alternatively written ([4]) T ey +
Projection Lemmalnequality (29) is equivalent to

Ao+ HiAGy | B, By Bi+ H{AG,

— Uy + H'AG +G'AH < 0 (36)
¥~ C() + HéAGl Dw D1 D1 + HéAGQ (26)
CzO + HSAGl -Dzw Dzl -Dzl + HSAGQ where
where the matrix of the AW compensator matrices is: AyP+PAg Vo2 PB1+CoWy PB, Cl,
* Msy Uy 23 WiD, D,
A= Al A2 \IJOZ * * \110733 Wng D;,l
Az Aqg * * * —~I D.,
A matrix inequality problem:For 7, (interconnection of L * * * * =
3 andIl;n 421 (.)) to be internally stable withC, gain of @37
~ > 0, it is sufficient for a matrixP > 0 ([9,2]) to satisfy H:{HlP Hy W, HyWy 0 H3} (38)
d =
Z@Pa) 4y —ylwl? <0 Vew#0 (@D) G=[¢106:00] (39)
Using Lemma 2, inequality (27) holds far w # 0 if andVo12 = PBy + CoWh, Wo23 = WiDy + DiWs —
(W12 +W21') and\I/0733 = —2Wso +W2D1 +D/1W2 From
d 4 the Projection Lemma [4], (36) holds if and only if
%(x’P:v)+v‘1||z||2—7\|w||2+ZS¢ <0 (28 / /
i=1 WeloWe <0 and WyxY Wy <0 (40)

2 Well-posedness of the control loop can be easily argued via [9]. whereWs and Wy are, respectively, full column rank ma-
trices whose columns span the null spaces;/adnd H. It
is now shown that (14), (15) and (21)-(24) imply (40) and
Proposition 1.



Inequality (15).Partitioning the matrixP as ([9])

whereS € P (nptne)x(nptne) gnd P, € Pl ¥ e allows

the left- hand inequality in (40) to be reduced to inequality
(15) in the proposition.

Inequality (14) DefiningQ := P~! and partitioningQ as

_|Rle.

* | Q33
then enables the right-hand inequality in (40) to be written
as inequality (14) where

Q11 Qi2|Q13

Vii= [:J1W11p.1 (42)
Vo= U2~VV21 U2~ ) ) (43)
Voo = —UsWooUs + U2(W12 + W21)U1 (44)

Inequalities (21) and (22Qs inequality (15) is expressed in
terms ofS and inequality (14) interms @&, it is necessary
to find conditions which ensure th& = Q !, viz

St P,

* P33

= [R @ (45)

]>0
* Q33

According to [20], necessary and sufficient conditions for
there to exist matriceB,, Ps3, Q. and@s3 satisfying equa-
tion (45), is that inequalities (21) and (22) both hold.

Inequalities (23) and (24 .emma 2 requires the matrices
W11, Wi, Way, Was to all be diagonal and positive definite.

Note thatA, W117I]'1,V21 are all positive definite and
diagonal. Also, by inequality (24)y 22 — AV is also
positive definite, and diagonal by construction. Therefore
the diagonal elements 6%, can be obtained as the positive
roots of them quadratic equations defined by (51):

& _*(V22.i*(¥iV21,i>+\/(v22,i‘aiV21,i)2‘*‘4(’%V21,'i01,iW11,iUI,i
T 20, W11 ;01,5

- (52)
Thus,U; can be chosen positive definite. Hen¥g; > 0
implies W5, > 0 from equation (43). Next from (35),

Wao = Uy ' — AWy (53)
Therefore ag/, is now known to be positive definite (and
thus full rank).1Ws, > 0 is equivalent to

UQ — .AV21 >0 (54)

Returning to equation (52;?2@ is

—(Vagi—a; Va1 i)/ (Vaz i—i Vo ;) 2+4a; Vo1 i Vi1
20; WU
—(V22,z‘—0£iV21,i)+\/(V22,i—ai‘é1,i)2+4ai‘/§1,i‘/§2,i
2aiW11,i01,i

az‘/Ql 7

= 55
041W11 zUl % ( )

> azv21 S

This therefore implies inequality (54). In the above deriva
tion the first inequality is due t&1; > V5, implied by
inequality (14) and the second inequality is because

Uiil:aiwll,i+Wl2,i>aiW11,i = aiWH,iUI,i < 1(56)

O

As with [9], Proposition 1 states non-convex conditions
for an AW compensator of arbitrary ordet(,) to exist.
Similarly to [9], convex conditions can be obtained when

However, the inequalities (14) and (15) have been statedw = 0 (static AW) andn,,, > n,. A useful corollary of

in new varlablesUl,VH,Vgl andV,s. While diagonality
follows trivially, to see thail/y1, W14, Way1, Was are indeed
positive definite, note that

e V; > 0 directly impliesWW;; > 0 from equation (42)
e Inequality (23) yields

AVH — le = AfLWHle — fjl <0 (46)
= AU1W11U1 — Ul (AWH + W12)U1 <0 (47)
=4 —fJ1W12fJ1 <0=Wi2>0 (48)

e Equation (44) can be re-written as
Vg = AV + Us(— AW + Wi2) U, (49)
= AVy — AU, W11 Uy + U Vo Uy (50)
(Vag — AV)Up = —AU W1, U3 + U Vyy (51)

Proposition 1 is the full-order case given below.

Corollary 1 For a given.A, there exists am,'th order AW
compensator of the form (17) satisfying the properties of
Proposition 1 if inequalities (15), (14), (23) and (24) of
Proposition 1 are satisfied and, in additid®; — S1; > 0.

4.2 Anti-windup compensator construction

The construction of the deferred-action AW compensator,
is performed in a similar manner to [9]. In order to obtain
A, and henceA, from the data returned by Proposition 1,
the following procedure should be followed.

(1) Obtaining P > 0: Similar to [9,4], P can be con-
structed according to standard re-construction algo-
rithms. FirstlyP, € R("»+7e)xnaw js determined from

ST'RS!

-Sst=ppP (57)



Then P33 € R"ew*"ew j5 constructed as

P33 =1+ PSP, (58)
Finally P is constructed according to equation (41).

(2) W11, Wi, Way, Wsy are obtained using equations
(34), (35), (42), (43) and (52).

These matrices are then used to constiygtG and H and
inequality (36) solved for the AW compensator matrices

4.3 Relation to existing delayed anti-windup results

This section compares Proposition 1 to two existing
deferred-action AW synthesis approaches: the pseudo LPV
approach introduced by [23] and used in [22,32]; and the
standardor square sectompproach proposed in [25], but
also used in earliewo-stageAW in work [30].

4.3.1 The pseudo LPV approach ([22])

This approach essentially involves one replacing thefiarti
cial) saturation element by a time-varying gain which takes
values in a polytope, and then using this to obtain an LPV-
like representation of the system. By convexity, this leads
to a number of LMIs involving a common quadratic Lya-
punov function which have to be solved at the vertices of
the polytope. While we claim no improvement prerfor-
manceover this approach, its downsides are that, in the dy-
namic case ([22]), the order of the LPV-based compensator
IS Ngw = np + ne (Unlike the standard approach in [9] and
our results whem,,, = n,); also the computational com-
plexity increases rapidly as the number of control inputs in
creases since the number of matrix inequalities scal2® as

4.3.2 The standard “square” sector approach

This approach was used in [24,25] and is based on the fol-
lowing inequalities, adapted from equations (3) and (4) in
[25],

g (Sat g

1(w))W (ASata, (u)-Dzzn

Dz (2 (u)W (u — Dz,

1(Satge (u)>0 (59)
21 (w)) >0 (60)

whereW, W e D"*™. Note that: (i) there are only two
“sector” inequalities above, compared to the four in the-non
square sector condition of Lemma 2 (Clearly, it is acknowl-
edged in [26] that sector bounds can be conservative, noting
that also two sector inequalities are used in [26]); and (ii)
inequality (60) is exactly inequality (4) in Lemma 2, which

is a standard sector condition associated with the deadzone
Also, using Fact 1, inequality (59) can be written as

1 (u) =

Next, inequalityS; in Lemma 2 implies, folV € D"*™,

Dy gz (u)W (ASat 2 Dyny g (u)) >0 (61)

Dy um( YW (Au — Dy g (u)
=Dz gz (W)W (A(Satgie (u)+Dzge (w)—Dam g (u))
—Dum,ua]() (ASat g2 (u) — Dy iz (U))

= Dait giz1 (u) AW Dz12 (1) = 0 (62)
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Fig. 3. Circuit examplexy(t), large pulse. Nominal linear re-
sponse: solid blue. Saturated response: dotted black. Immediate
anti-windup: dashed red. Delayed anti-windup: solid black

L
10 20

Fig. 4. Circuit example:y(t), small pulse. Nominal linear re-
sponse: solid blue. Saturated response: dotted black. Immediate
anti-windup: dashed red. Delayed anti-windup: solid black

Hence asD ) g2 (u) AW Dz 2 (u) > 0 for all u € R™,

it follows that inequalityS; in Lemma 2impliesinequality
(59). Therefore, the two inequalities from [25] are implied
by two of the inequalities in Lemma 2, but Lemma 2 in-
cludestwo additional inequalities not preseint [25] i.e. the
standard sectoresults of [25] are conservative and, in fact,
are a special case of the non-square condition derived here.
Equally, the (standard) sector based deferred-actiorheynt
sis conditions reported in [26, Theorem 2] implies greater
conservatism (see Sect. 5.3), although the design of an anti
windup compensator of plant ordey is possible as for [25].

5 Numerical examples
5.1 Circuit Example

Consider the circuit example used in [10,22,23]. The phys-
ical control bounds are = @l'! = 1. A standard full-order
“immediate” AW compensator was designed ([9]) yielding

a performance bound of = 58.46. A deferred actioPAW
compensator was also designed, using Proposition 1 and
A = a = 0.9 (meaning that® = (1 — a)~'alll = 10)

and had an associated performance boung 6f61.03.
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Fig. 6. Comparison ofL, gains €) for different values ofa
for the circuit example: Proposition 1 (solid line); results using
Fig. 5. Hippe’'s exampley(t), small pulse. Nominal linear re-  sector-based results from [26](dotted line)

sponse: solid blue. Saturated response: dotted black. Immediate

anti-windup: dashed red. Delayed anti-windup: solid black 160
Figure 3 shows the responsg{) of the system to a “large” g square
pulse reference signal. Both AW compensators lead to im- 1o
proved closed-loop performance in the presence of satura- 120
tion, but performance is somewhat poorer than the linear L w0
behaviour. Figure 4 shows the respongg)) of the system 8
to a “small” reference signal: the immediate AW compen- 60
sator leads to a sluggish response which is worse than that 40
with no AW, but the delayed AW compensator leads to a 20
response much closer to ideal linear behaviour. 0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
a

5.2 Hippe's example

Consider the resonant plant from [12], where the con- Fig. 7. Comparison of’; gains ) for different values ofafor
trol boundsi = @l — 1. Instead of the state-feedback Hippe's example : Proposition 1 (§0I|d line); results using sec-
lcon.troller sulggestehd in [12], Wl? have u52e7d the fol- tor-based results from [26](dotted line)
owin - loop-shaping controller (see ~ ;
(Am [chZ{BCw]v CFC)7 [Dcs Dgcw]) and ( [ ]K 53 ChOIce OM
A key design parameter g, which affects the performance
of the deferred-action AW compensator. A similar parame-

—792.735 —46.978 2.104 ||—40.433 1.583- ter, G4 = 1 — A needs to be chosen in the delayed and an-

0
ticipatory cases ([22,32]). The solid lines in Figures 6 @&nd
0 —2L.741 —17.885 0.752 ||—12.356| O show how theL, gain of the closed-loop system varies as a
K~ 0 13.316 2.469 0.082 || 5.941 0 function of A = o« when Proposition 1 is used for AW syn-
0  —0554 0081 —1.019l —0263!| o thesis for the c'ircuit e>§ample gnd Hippe's example. In both
cases, th&, gain remains relatively small for smaller values
| 12,50 —909.19 —587.22 26.30 | —505.41[19.79 of o but then increases dramatically beyond a certain point.

It is therefore logical to choose close to where the sudden
A full-order immediate AW compensator was designed increase occurs. The dotted line in Figures 6 and 7 shows the

([9]), yielding a performance level = 12.6919. A deferred- L, gain calculated using the “square” sector results of [26];
action compensator withl = o = 0.45 (i.e. a[?! = 1.8182) the £, gains are somewhat higher with this approach. This
with performance levely = 25.0223, was also designed. is not surprising considering the conservatism of the “stan

dard” sector condition, compared to the non-square sector

When a “large” (magnitude 0.5) pulse demand is applied to condition proposed in this paper.

the system (not shown), the system without AW becomes
unstable. With both the immediate and delayed AW com- g condusions

pensator’s stability is maintained although performaree i

sluggish. Figure 5 shows the responsgg3)( of the system This paper has introduced a non-square sector condition as-
to the same sequence of pulses but with the amplitude re-sociated with a static nonlinear operaldj,; ;= which can
duced to a a fifth of its former value: the system without AW be exploited in several different nonlinear AW design prob-
behaves well, and as before, better than the system with im-lems. Convex synthesis conditions for the specific case of
mediate AW. However, the delayed AW compensator leads deferred-action AW have been given. It has been shown how
to a response much closer to ideal linear behaviour. these synthesis conditions parallel those in immediate AW



case and how they improve upon existing results available [6] S. Galeani, S. Tarbouriech, M.C. Turner, and L. Zaceari tutorial

for deferred-action AW synthesis [23,22,25].

A State-space matrices for delayed AW

The state-space matrices Bfare defined as

r - JU Acr BaAs| By | B1 | Bi+BaAs
A| By | B1 | B2
= = 0 A 0 0 As
C Dw D1 D2 = — ~ =
— = Ccr DaAs| Dy | D1 | Di+Daly
Cz Dzw Dzl Dz2 — ~ =
- - Cz,CL DAAS Dzw Dzl Dz1+DAA4

(A1)
where the linear closed-loop matrices are given by

_ACL Bw—

CCL Dw =

_Cz,CL Dzw_

[ Ay+B2ADe,Co BaAC. Bi+B2A(Dew+Dey Da1) |
chACQ Ac+chAD2QCc Bcw+chA(D21+D22Dcw)
ADCycz ACC A(Dcw+DcyD21)

|C1+D12ADcyC2 D12 AC. D11+D12A(Dew+Dey Dz1))|

(A.2)
and the auxiliary matrices are

_ —BsA |0 B2A
By | Ba ~ -
—— —BeyADas|I BeyADao
Dy |Da | = (A.3)
—— —ADcyD22|0 A
Dzl DA

—D12A |0 Di2A

whereA and A are defined in Proposition 1. Also, we have

Acp 0 Cl c
Ag= | °F A e e L G, =
0 0
07 0 I 0 0
G = H, = Hy = Hs =
00 By 0 D'y D'y
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