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ABSTRACT- The acoustic radiation force resulting from a 2D focused Gaussian beam 

incident on cylindrical objects in an inviscid fluid is investigated analytically. The incident 

and the reflected sound fields are expressed in terms of cylindrical wave functions and a 

weighting parameter, describing the beam shape and its location relative to the particle. 

Our main interest here is to study the possibility of using Gaussian beams for axial and 

lateral handling of rigid cylindrical particles by exerting attractive forces, towards the 

beam source and axis, respectively. Results have been presented for Gaussian beams with 

different waist sizes and wavelengths and it has been shown that the interaction of a 

focused Gaussian beam with a rigid cylinder can result in attractive axial and lateral forces 

under specific operational conditions. Results have also revealed that attractive axial 

forces generally occur when the backscattering amplitude is suppressed.  The results 

provided here may provide a theoretical basis for development of single-beam acoustic 

handling devices.  
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1. INTRODUCTION 

In his pioneering work in the early 1990s, Wu showed the feasibility of acoustic 

entrapment of very fine Latex particles (in order of 270 m) using two collimated focused 3.5 

MHz Gaussian ultrasonic beams, propagating along opposite directions [1]. Wu had also shown 

that the same configuration could be used for transportation of Latex particles by moving one of 

the broadband focusing transducers. This innovative acoustic trapping tool was considered as a 

suitable alternative when other customary trapping devices, such as optical or electromagnetic 

tweezers are inapplicable. In the years since then, many experimental and theoretical studies 

have been conducted for the calculation of the exerted radiation force and investigating the 

feasibility of acoustic entrapment. While the experimental activities have been mainly 

concerned with the application of standing waves and Gaussian beams [1-7], a better 

understanding of the nature of the problem has been gained through the development of a 

number of mathematical models using King’s derivation of the exerted radiation force and the 

standard wave decomposition method [8-19]. The problem of acoustic radiation force for 

Gaussian beams, on the other hand, has often been dealt with using ray acoustics method; see 

for example [20]. In the next paragraphs, we shall provide a review of these two methods and 

the application of Gaussian beams for acoustic manipulation of fine particles.   

The problem of acoustic radiation force on rigid and elastic spherical/cylindrical particles 

in an unfocused sound field has been the subject of many studies [15-31]. The very first studies 

on acoustic radiation force are those by King [8], Embleton [21], Gor’kov [22] and Nyborg [23], 

in which, several theoretical models for the calculation of the radiation force on spherical 

particles in different acoustical fields had been developed [24]. The problem of acoustic 

radiation force on a rigid cylinder was first investigated by Awatani [25]. This study was then 

more elaborated by Hasegawa et al [26] to take into account the elasticity of the target cylinder. 

In a later study, Wu et al [27] presented an analytical model for the acoustic radiation load on a 

rigid cylinder suspended in a plane progressive or standing-wave. The acoustic radiation 
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pressure resulting from a plane wave incident upon spherical and cylindrical shells was also 

studied by Hasegawa et al [28] and it was shown that the differences between the frequency 

dependence of acoustic radiation pressure on spherical and cylindrical shells are more 

pronounced than those between solid spheres and cylinders. Wei et al [29] calculated the 

acoustic radiation force on a compressible cylinder in a standing wave. More recently, the time-

averaged acoustic pressure acting on cylinders suspended in an inviscid/viscous fluid, due to a 

standing sound field has been investigated by Wang and Dual [30] using finite element and 

lattice Boltzman methods. The same authors have recently presented a theoretical model for the 

calculation of the mean force and the torque on a rigid cylinder of arbitrary size in a low-

viscosity fluid, and compared their results with numerical simulations carried out using a finite 

volume method [31].  

Focused acoustic beams have been used in many applications, such as acoustic levitation 

[32, 33], acoustic microscopy and imaging [34, 35], medical diagnosis [36], non-destructive 

inspection of materials [37], etc. Despite the wide practical applications of Gaussian beams, only 

a few mathematical models have been developed for acoustic scattering of such beams by 

spherical and cylindrical particles. The same also applies to the mathematical modelling of the 

acoustic radiation force exerted on different types of particles. Some of the available studies are 

reviewed here. Acoustic radiation force on a small compressible sphere in different types of 

focused beams, such as focused piston field, has been studied by Wu and Du [38]. Wu, also, 

developed a simple model using ray acoustics approach for the calculation of the acoustic 

radiation force on an absorbing disk in a focused beam [39].  Acoustic radiation force on a rigid 

sphere in the close vicinity of a circular vibrating piston has also been studied by Hasegawa et al 

[40]. In all the above studies, the particles were positioned on the axis of the beam and the 

effects of off-axial/centre scattering were not considered. In some recent experimental and 

theoretical investigations [20, 41-43], it has been shown that Gaussian beams can effectively be 

used for axial and transverse entrapment of miro- and nano-scale particles. Preliminary 

analytical studies of Lee et al [20] and Lee and Shung [41] using ray acoustics approach also 
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showed the feasibility of acoustic tweezing and trapping of arbitrarily located spherical objects 

using a highly focused high frequency Gaussian beam. These studies have shown that Gaussian 

beams can be used for trapping particles in both axial and transverse directions, although the 

latter is expectedly much easier. These theoretical findings were also experimentally confirmed 

using a single focused Gaussian ultrasound beam, for entrapment of very fine lipid droplets (in 

order of 125 m) [41-43]. Besides the transverse entrapment, it was also shown that a high 

frequency focused beam could be used to laterally move micro-droplets towards the focus point. 

As a promising result, Lee et al have shown that the proposed acoustic technique offers 

entrapment over a much wider spatial range than the equivalent optical devices [42, 43].  

Gaussian beams have received considerable attention in electromagnetics, optics, as well as 

acoustics, because of their interesting features. From a practical point of view, the technique for 

manufacturing Gaussian transducers are relatively easy and available, as opposed to other types 

of beams, such as Bessel beam, Bessel- Laguerre beam, etc. Additionally, from a mathematical 

point of view, Gaussian beams possess some interesting characteristics which make them an 

appropriate choice for many applications [44]: Firstly, the wave-front of Gaussian beams 

behaves like a plane wave in the vicinity of the beam waist, but gradually converts into a 

spherical wave beyond the Rayleigh zone; secondly, it has no maxima and minima in the near-

field, which is characteristics of the Fresnel field of a piston transducer; thirdly, the energy of 

the beam is chiefly confined within a finite divergence angle, and also the beam energy in the 

far-field is localized in a single beam free of diffraction lobes (characteristics of Fraunhofer field 

of piston transducers [45]). Also, with the application for acoustic handling in mind, one of the 

most important advantageous of using focused-beams, such as Gaussian beams, for 

manipulation of particles (as a single-beam device), instead of standing wave, is that the 

operational restrictions associated with the short spacing between the transducers in standing-

wave acoustic manipulation techniques can be alleviated, as explained in Refs. [42, 43].  

Motivated by the recent experimental studies on the viability of the development of single-

beam acoustic tweezers using Gaussian beams [42, 43], we provide a theoretical model for the 
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calculation of the radiation force resulting from a 2D focused-Gaussian beam on rigid cylindrical 

objects. A better understanding of the interaction of acoustic Gaussian beams by different 

particles may help us to improve the performance of the existing acoustic trapping techniques 

and develop more advanced particle-handling devices. The remainder of the paper is structured 

as follows: In the next section, we shall present the mathematical modelling of the problem. The 

incident Gaussian field is represented in the cylindrical coordinate system in terms of Bessel 

functions of integer orders and some weighting coefficients.  The scattered field is modelled and 

the unknown scattering modal coefficients are determined for a rigid cylindrical object. A 

rigorous mathematical modelling is provided for the calculation of the radiation force 

experienced by cylindrical objects in complex sound fields. Section 3 is devoted to numerical 

results and discussions for acoustic radiation force and far-field acoustic pressure. Finally, 

Section 4 concludes the paper and provides some ideas for future work.  

 

2. MATHEMATICAL ANALYSIS 

Consider the scattering of a Gaussian beam by an infinitely long, immovable, acoustically 

rigid cylindrical particle of radius a. The surrounding fluid medium is assumed infinite, lossless, 

with density   and speed of sound  . A schematic of the problem is shown in Fig. 1. Two 

Cartesian coordinate systems are used to describe the problem: (   ) corresponds to the 

coordinate system of the beam, centred at the origin of the beam, and (   ) is used for the 

cylindrical particle, see Fig. 1. A cylindrical coordinate system (   ) is also introduced for 

describing the reflected sound field. The axial and transverse distances between the beam 

centre and the particle are denoted by (     ), respectively. In Section 2.1, we shall provide the 

mathematical modelling of the incident Gaussian beam in cylindrical coordinate system.  The 

mathematical modelling and calculation of the exerted radiation force will be dealt with in 

Section 2.2.  
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2.1. Incident Gaussian field 

The problem of scattering of laser and electromagnetic Gaussian beams by cylindrical 

objects has been the subject of various studies [46, 47]. Here, we shall investigate the same 

problem in an acoustic context. Let us first focus on the derivation of the incident Gaussian 

beam in its own coordinate system (   ), see Fig. 1. The incident Gaussian beam,   , with 

complex coordinate system, i.e. having amplitude and phase distribution, satisfies the following 

two-dimensional Helmholtz equation [46-49], 

    

   
 

    

   
         

 (1) 

where     ⁄  is the wavenumber,   is the angular frequency. An incident Gaussian beam with 

spatial distribution of    (     )     
     

and beam waist of    (in the focal plane), can be 

expressed in a Cartesian coordinate system as [50],  

  (   )  
  

  √ 
     ∫  

 
  

 

        
    

 

  

 

 (2)  

where    is the beam amplitude,   √  , the wavenumber is defined as    (     ), with    

and     being the longitudinal and transverse wavenumbers (     
    

 ), and   (   ). The 

parameter   | | corresponds to the incident wave beam width. The complex beam value    can 

also be expressed in a more standard way, as    
 

  ( )
  where the complex beam 

parameter  ( )          , is a generalized radius curvature and controls both the phase 

and amplitude distribution in the transversal plane. The imaginary part of   is known as the 

beam focal point (confocal parameter), defined as     
 

 
   

 , while    can shift the waist 

position in the axial direction. The focal point range is also known as the Rayleigh range (  ) of 

the Gaussian beam, characterizing the Lorentzian profile of intensity along the axis. The near- 
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and far-field of the beam can, subsequently, be defined by       and      , respectively. 

Furthermore, the phase of a Gaussian beam propagating in free space is given by [50] 

   
 

  
 [  (

  

 
)
 

]
  

        (
 

  
)  (3) 

where   (     )   , the first term is the phase term of a plane wave, the second term a phase 

shift in the transverse position, and the last term is the Gouy phase shift, which controls the 

phase shift within and in the vicinity of the Rayleigh range (  ), and is unique to Gaussian 

beams [50].  

Equation (2) gives the potential field of the incident Gaussian beam in a Cartesian 

coordinate system. However, in order to satisfy the appropriate boundary conditions on a 

cylindrical surface, it is more suitable to rewrite the above potential field in the cylindrical 

coordinate system (   ). Using a simple Cartesian coordinate system translation and change of 

variables                   , Eq. (2) can be rewritten as: 

  (   )  
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where        (    )  The above equation can be further simplified by expressing the last 

exponential term (plane wave term) in terms of Bessel functions of integer order, using Jacobi–

Anger expansion, as 

       (   )  ∑      (   )  (  )

 

    

  

 (5) 

where    is the Bessel function of the first kind. Finally, substituting Eq. (5) into (4), the incident 

Gaussian sound field can be represented in the following from, 
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  (   )     
    ∑     (         )   (  )

 

    

      

 (6) 

where the complex weighting functions,    , are obtained from the integral equation, 
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 In the limiting case, when the beam waist is very large, the weighting coefficient,   , tends 

to unity, and Eq. (6) will reduce to a simple plane progressive wave. Also, one must note that the 

above integral representation of the incident beam includes both the radiated field (|  |   ) 

and the evanescent field (|  |   ). Restricting ourselves to only the radiated field, the above 

integral equation becomes, 

  (         )  (
  

  
)
    

∫       
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where   is used as a shorthand for  (   ).  

 To proceed with the derivation of the radiation force, one first needs to describe the 

scattered field around the object. The sound field reflected from the surface of the cylindrical 

object can be expressed as,  

  (   )     
    ∑     (         )      

( )
(  )

 

    

      

 (9) 

where   
( )

   ( )     ( ) is the Hankel function of the first kind and    are the unknown 

scattering coefficients, to be determined from the appropriate boundary conditions at the 

surface of the object. In this paper, the cylindrical particle is assumed to be immovable and 
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acoustically rigid, which means the normal velocity on the particle is zero (Neumann condition), 

that is   ( 
 
  

 
)   ⁄ |

   
  ) [51]. Upon substitution of Eqs. (6) and (9) into this boundary 

condition, we obtain       
 (  )   

( ) (  )⁄ , where the prime denotes derivative with respect 

to the argument. The case of an acoustically soft cylinder will also be discussed later in Sec. 3.  

Finally, the far-field sound scattered by a cylindrical object can be expressed in terms of 

the form function   (    ), defined as [52], 

  (    )  (
   
 

)

 
 
      

  

  
  

 (10) 

where     denotes a large radial distance from the particle,           is the scattered 

pressure field, and    is the pressure amplitude of the incident wave.  

 

2.2. Acoustic radiation force 

The concept of time-averaged acoustic force acting on particles, due to the interaction with 

a sound field has been used in many applications such as ultrasonic imaging, elastography, and 

contactless particle handling. The time-averaged force acting on a particle immersed in an 

infinite and ideal fluid is given by [8, 26, 28]:  

   〈∬  (   ̂     ̂)    
  

〉  〈∬
 

 
|  | ̂  

  

〉  〈∬
 

    ̇
  ̂  

  

〉  

 (  ) 

where    is the boundary at its equilibrium position,        is the first-order velocity of the 

fluid,     (     ) is the first-order velocity of the fluid at the boundary,    and    are, 

respectively, the radial and tangential components of the velocity at the surface, the radial and 

tangential unit vectors are denoted by  ̂ and  ̂, respectively, and 〈 〉 represents time average. 

Since the particle is illuminated by a 2D Gaussian beam, i.e. no z-direction force components, the 
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exerted force can be written as,       ̂     ̂. An inspection of the above equation suggests 

that the radiation force exerted on a unit length of the cylinder in the  -and  - directions can be 

broken down into four components, as  

                                        (12) 

Noting that  ̂       ̂       ̂ and  ̂        ̂       ̂, the axial component of the exerted 

radiation force in Eq. (11) can be obtained from 
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In a similar way, the force component of the transverse radiation force, are given by 
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〈∫ (
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 (14-4) 

To further simplify the derivation of the radiation force, we may express the complex 

quantities as the summation of the real and imaginary parts; specifically,            

and      
     

 
.  Substituting Eqs. (6) and (9) into the total potential field, we obtain, 
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where             ,  and    and    are defined as 
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and 

   (    )  (  )      (  )  (18-1) 

       (  )      (  )  (18-2) 

Using time averaging, i.e. 
 

 
∫ {
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, one can readily obtain the following time 

average relations, 
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To find an analytical expression for the radiation force, the following orthogonality 

relations for trigonometric functions must be used in Eqs. (13) and (14):  
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Finally, substituting Eqs. (15) through (18) into (13) and (14), and making use of the above 

orthogonality and time averaging relations, we obtain: 

                        (21) 

where    

 
   |  |

  is the energy density,     is the cross-sectional area, and      and      are 

dimensionless radiation force parameters, given by: 
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The above radiation force relations can also be used for other types of incident beams, 

provided that they can be expressed as series of weighted plane wave components, similar to Eq. 

(6). Finally, in a limiting case, for a planar progressive wave (i.e. very large waist), one can show 

that    tend to unity and for the unknown scattering coefficient we will have        . In 

such case, the wave equation, and thus the radiation force equation, is reduced to an 

axisymmetric one, i.e.            . It can now be readily shown that        and the axial 

radiation force is given by the following well-known relation [26, 28]: 
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3. NUMERICAL RESULTS AND DISCUSSIONS 

The axial and transverse acoustic radiation forces on a rigid cylinder in a Gaussian beam 

will be numerically studied in this section. The main objective here is to examine the feasibility 

of using Gaussian beams for generating an acoustic pulling force on cylindrical objects. Results 

will be presented for a rigid cylinder submerged in water at atmospheric condition (  

        ,             ). To calculate the exerted axial/radial radiation forces using Eqs. (23) 

and (24), one first needs to evaluate the weighting coefficients,   , from Eq. (8). It has been 

shown before [53] that an asymptotical solution of Eq. (8) can be obtained for highly focused 

Gaussian beams (i.e. when most of the energy carried by the beam is confined within a finite 

divergence angle). In this paper, however, we need to calculate the radiation force caused by 

different Gaussian beams. Therefore, we shall instead evaluate    by performing a numerical 

integration using the trapezoidal method with a very small integration step length (        ) 

to ensure the convergence of the integration at different frequencies and beam widths. The 

numerical error due to the    integration is therefore quite negligible. As mentioned earlier, the 

integration is limited only to the radiated field (|  |   ). Calculations are performed with a 

maximum truncation number of          to ensure the proper convergence of the solution at 

high frequencies.  

 To fully describe the problem, the following six parameters are required: wavelength 

(      ), beam’s basic parameters (     ), particle size ( ) and beam’s position relative to 

the particle (     ). Because of the large number of parameters involved in this modelling, we 

shall initially try to vary as many parameters as possible, see Figs. 2 and 3. The results 

presented here will be used in the rest of the paper for a more in depth study of the radiation 

force.  Figure 2 shows the effects of the axial (  ) and transverse (  ) position of the particle on 

the exerted axial radiation force due to a Gaussian beam with             operating 

at         (Fig. 2-a;           ), and        (Fig. 2-b;           ). Results are provided for 

four axial locations              . For a Gaussian beam with small wavelength (      ), Fig. 
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2-a, results have shown that the axial radiation force peaks when the particle is placed at the 

beam centre (    ,     ), and gradually decreases with    and   . More importantly, it has 

been observed that when the particle is located at         within the lateral range 

of      |    |     , the axial radiation force becomes negative, i.e. the particle can be pulled 

towards the source (shown by thick red line). The exerted axial radiation force tends to zero as 

the particle entirely leaves the beam domain (large | 
 
  |). The axial radiation force results at a 

lower frequency (      ) is presented in Fig. 2-b. Results show that increasing the beam 

wavelength (decreasing frequency) leads to the emergence of attractive axial forces over a 

number of   -ranges. Numerical evaluations have also shown that the effective   -ranges, over 

which the axial radiation force becomes negative, moves further away from the beam axis as the 

wavelength is increased (with constant Rayleigh range).  

 Figure 3 presents results for the transverse radiation force (y-direction) acting on an off-

axially located rigid cylinder within a Gaussian beam with            at different axial 

locations               and two wavelengths at         (Fig. 3-a;           ), and        

(Fig. 3-b;           ). Results show that the exerted transverse force generally repels the 

object away from the beam axis, where the sound intensity is maximum, except for particles 

located on the waist plane and laterally within a certain distance from the beam centre, shown 

by thick red lines. The above observations suggest that negative axial and lateral radiation 

forces can be produced generally when a focused Gaussian beam is concentrated on the very top 

(or bottom) of the particle. To complete the discussion, it is worth mentioning that the problem 

of lateral movement of spherical particles using Gaussian beams, to pull them towards the beam 

axis has been previously reported by other authors [41-43]. The magnitude of such attractive 

transverse forces is understandably greater than the negative axial forces, as seen in Figs. 2 and 

3. Using such a lateral force, combined with a negative axial force, one can move an object 

towards the beam origin. 
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 As shown in Fig. 2, attractive axial forces can be achieved using focused Gaussian beams 

under special conditions and over some certain   -ranges. In Figs. 4 through 6, we shall further 

study the effects of beam basic parameters,    and   , on the emergence of negative axial forces 

and the extent of the effective   -ranges. Results are presented over            and for 

beams with                  and             . Figure 4 shows the regions of negative 

axial forces when the object is positioned on the beam waist plane,     . The following 

observations have been made: Firstly, results show that the effective   -ranges moves laterally 

away almost linearly with  , particularly for beams with small waist. However, it can also be 

seen that at some frequencies the beam is unable to produce any negative axial force. Secondly, 

results have shown that the magnitude of the exerted attractive axial force increases with   . 

Also, for beams with large waists, attractive axial forces can be achieved at higher wavelengths 

(lower frequencies). Thirdly, the effective   -ranges broaden as     increases and negative axial 

forces can occur over multiple   - ranges. Additionally, our numerical studies have shown that 

attractive axial forces can still be achieved if the particle is located downstream of the beam 

focal plane (    ). Figure 5 and 6 provide results for a rigid cylinder located axially away from 

the beam waist, at        , and      , respectively. Results have shown that producing 

negative radiation forces using a Gaussian beam with small waist,             (Figs. 5-a 5-d 

and 5-g, Figs. 6-a 6-d and 6-g) becomes almost impossible if the object is located off the beam 

waist plane. For Gaussian beams with large   , however, attractive axial forces can still be 

achieved, but they now generally occur at much lower wavelengths. Finally, results have shown 

that the magnitude of the exerted negative axial forces reduce with    and will eventually 

disappear at large   .    

It has been shown before, for the case of Bessel beams [54, 55], that the emergence of the 

negative radiation forces can be related to the far-field scattered field. Marston, in the case of 

elastic spheres illuminated by Bessel beams, has shown that the regions where      is negative 

with a significant magnitude tend to occur where the back-scattered amplitude is suppressed 

[54, 55], which was explained to be related to the resonance frequencies of the particle. We shall 
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also briefly study this matter here for Gaussian beams. Figure 7 presents the back-scattered 

form-function results  (   ), using Eq. (10) versus    , for a cylinder located on the focal plane 

(    ), for three beam waist sizes,     ⁄           and    , at three wavelengths,   ⁄         , 

over some specific   -ranges (chosen from Fig. 4). The thick red lines show where the axial 

radiation force reverses in direction and becomes attractive. Comparisons of the near-field 

radiation force results (Fig. 4) and the far-field form-function results (Fig. 7) have shown that 

the back-scattered amplitude is very small over the effective    region , and reaches its 

minimum where the maximum pulling force is obtained. However, unlike the reasoning in 

Marston [54] and Azarpeyvand [55], this cannot be related to the resonances of the particle 

since the cylinder is assumed to be acoustically rigid. Also, from the results of the (   ⁄  

        ⁄               ) or (    ⁄         ⁄              ) cases, one can conclude that 

this condition is necessary, but not sufficient. 

To better understand the performance of the proposed single-beam acoustic tweezer for 

more realistic cases, it is important to consider particles with different boundary conditions. 

Acoustic manipulation of soft cylinders using a single Gaussian beam has also been investigated 

as part of this work. In this case, the appropriate boundary condition is      ̇   , which leads 

to       (  )   
( )

(  )⁄ . It has, however, been shown by performing several numerical 

simulations that the exerted axial acoustic radiation force for a soft cylinder is always repulsive 

and no acoustic attraction force could be obtained. The results in this paper were limited only to 

rigid/soft immoveable particles. The effects of particle’s compressibility, dissipative losses (for 

liquid, elastic, viscoelastic, and porous particles), when illuminated by a focused Gaussian beam 

will be investigated in a separate study. Finally, in order to check the overall validity of our 

model, Eq. (23) is evaluated for a Gaussian beam with a very wide waist, i.e.      , and results 

are compared with those obtained using the standard radiation force formulation, Eq. (25). 

Results presented in Fig. 8 show an excellent agreement between the results obtained using Eqs. 

(23) and (25).  



18 
 

4. CONCLUSIONS 

The problem of acoustic manipulation of cylindrical objects using a single focused Gaussian 

beam has been investigated. To help better understand the underlying mechanism of the 

emergence of acoustic pulling forces we have performed several simulations and have 

developed a number of criteria. It has been shown that a highly focused Gaussian beam can be 

used to produce negative axial radiation forces on rigid cylinders, when the beam is focused on 

the very top or bottom of the particle. It has also been found that Gaussian beams cannot 

produce pulling forces on acoustically soft cylinders. Furthermore, the comparison of the far-

field and near-field results has shown that the negative axial forces with significant magnitude 

tend to take place when the backscattering amplitude is considerably suppressed. The 

promising observations made in this paper open several new avenues for research in this area, 

such as, acoustic manipulation of spherical or irregular-shaped particles of different mechanical 

properties using Gaussian beams, and the application of other Gaussian-type beams for acoustic 

handling purposes, such as Hermite-Gaussian and Laguerre-Gaussian beams.   
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CAPTIONS 

FIG. 1. Problem geometry and the schematic of the coordinate systems used in the problem.  

FIG. 2. Axial radiation forces on a rigid cylinder in a Gaussian beam with            (a) 

                  (b)       ,           .   

FIG. 3. Transverse radiation forces on a rigid cylinder in a Gaussian beam with            (a) 

                  (b)       ,           . 

FIG. 4. Contour plots of negative radiation forces on a rigid cylinder located at       , in 

terms of    and   , at different                 and               

FIG. 5. Contour plots of negative radiation forces on a rigid cylinder located at         , in 

terms of    and   , at different                 and               

FIG. 6. Contour plots of negative radiation forces on a rigid cylinder located at         , in 

terms of    and   , at different                 and               

FIG. 7. Back-scattered form-functions,    versus       for three waist sizes    ⁄           

and    , at different wavelengths and lateral positions chosen from Fig. 4 (      ). 

FIG. 8. Comparison of results obtained using Eq. (23) for a Gaussian beam with a large waist and 

Eq. (25). 

 

 


