

Fischer, R. A., Campbell, A. J., Shofner, G. A., Lord, O. T., Dera, P., & Prakapenka, V. B. (2011). Equation of state and phase diagram of FeO. Earth and planetary science letters, 304(3-4), 496-502. 10.1016/j.epsl.2011.02.025

Link to published version (if available): 10.1016/j.epsl.2011.02.025

Link to publication record in Explore Bristol Research PDF-document

University of Bristol - Explore Bristol Research

General rights

This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available: http://www.bristol.ac.uk/pure/about/ebr-terms.html

Take down policy

Explore Bristol Research is a digital archive and the intention is that deposited content should not be removed. However, if you believe that this version of the work breaches copyright law please contact open-access@bristol.ac.uk and include the following information in your message:

- Your contact details
- Bibliographic details for the item, including a URL
- An outline of the nature of the complaint

On receipt of your message the Open Access Team will immediately investigate your claim, make an initial judgement of the validity of the claim and, where appropriate, withdraw the item in question from public view.

1	Equation of state and phase diagram of FeO
2	
3	Rebecca A. Fischer ^{a,*,1} , Andrew J. Campbell ^{a,1} , Gregory A. Shofner ^a , Oliver T. Lord ^{b,2} ,
4	Przemyslaw Dera ^c , and Vitali B. Prakapenka ^c
5	
6	^a Department of Geology, University of Maryland, College Park, MD 20742, USA
7	^b Department of Earth Sciences, University of Bristol, Wills Memorial Building, Queen's
8	Road, Bristol, BS81RJ, UK
9	^c Center forAdvanced Radiation Sources, 9700 South Cass Avenue, Building 434A,
10	Argonne, IL 60439, USA
11	*Corresponding author. Email: rfischer@uchicago.edu. Phone: (773) 834-1085. Fax:
12	(773) 702-9505
13	¹ Present address: Department of the Geophysical Sciences, University of Chicago, 5734
14	South Ellis Avenue, Chicago, Illinois 60637, USA
15	² Present address: Department of Earth Sciences, University College London, Gower
16	Street, London, WC1E 6BT, UK
17	
18	
19	Abstract
20	
21	Wüstite, Fe _{1-x} O, is an important component in the mineralogy of Earth's lower
22	mantle and may also be a component in the core. Therefore the high pressure, high
23	temperature behavior of FeO, including its phase diagram and equation of state, is

24	essential knowledge for understanding the properties and evolution of Earth's deep
25	interior. We performed X-ray diffraction measurements using a laser-heated diamond
26	anvil cell to achieve simultaneous high pressures and temperatures. Wüstite was mixed
27	with iron metal, which served as our pressure standard, under the assumption that
28	negligible oxygen dissolved into the iron. Our data show a positive slope for the
29	subsolidus phase boundary between the B1 and B8 structures, indicating that the B1
30	phase is stable at the P - T conditions of the lower mantle and core. We have determined
31	the thermal equation of state of B1 FeO to 156 GPa and 3100 K, finding an isothermal
32	bulk modulus $K_0 = 149.4 \pm 1.0$ GPa and its pressure derivative $K_0' = 3.60 \pm 0.4$. This
33	implies that 7.7 ± 1.1 weight percent oxygen is required in the outer core to match the
34	seismologically-determined density, under the simplifying assumption of a purely Fe-O
35	outer core.
35 36	outer core.
	outer core. Keywords: wüstite; high pressure; equations of state; phase equilibria; oxygen fugacity
36	
36 37	
36 37 38	
36 37 38 39	Keywords: wüstite; high pressure; equations of state; phase equilibria; oxygen fugacity
 36 37 38 39 40 	Keywords: wüstite; high pressure; equations of state; phase equilibria; oxygen fugacity
 36 37 38 39 40 41 	Keywords: wüstite; high pressure; equations of state; phase equilibria; oxygen fugacity 1. Introduction
 36 37 38 39 40 41 42 	Keywords: wüstite; high pressure; equations of state; phase equilibria; oxygen fugacity 1. Introduction Wüstite, Fe _{1-x} O, is an important endmember of (Mg,Fe)O in the Earth's lower

46 phase equilibria, diffusion, and related physical and chemical properties (Frost and

47 McCammon, 2008). If oxygen is a primary light element component in the core, then its 48 impact on the density of Fe-rich melts is critical to interpreting the composition, 49 dynamics, and evolution of the core. Therefore it is essential to understand the high 50 pressure, high temperature phase relations and thermodynamics of the Fe-O system. In 51 this study we focus on the thermal equation of state and subsolidus phase diagram of 52 stoichiometric iron oxide, FeO.

53 Under ambient conditions wüstite is stable in the B1 (NaCl-type) crystal structure. With room temperature compression it undergoes a rhombohedral $\mathbf{R}\overline{\mathbf{3}}$ (Mao et al., 1996) 54 55 distortion around 17 GPa, with the transition pressure depending on the degree of 56 hydrostaticity (Fei, 1996; Fei and Mao, 1994). This distortion has also been reported to 57 be to a monoclinic C2/m phase, both at high pressures (Kantor et al., 2008) and at 1 bar 58 and low temperatures (Fjellvåg et al., 2002). Diamond cell and shock wave experiments 59 show a transformation of wüstite to the B8 (NiAs-type) crystal structure at high pressures 60 and temperatures (Fei and Mao, 1994; Jeanloz and Ahrens, 1980; Knittle and Jeanloz, 61 1991; Kondo et al., 2004; Murakami et al., 2004; Ozawa et al., 2010; Yagi et al., 1988), 62 based on X-ray diffraction and electrical resistivity measurements. However, the location 63 and slope of the B1/B8 transition is inconsistent among these studies, with some 64 reporting a vertical slope around 70 GPa at high temperatures (Knittle and Jeanloz, 1991; 65 Murakami et al., 2004; Yagi et al., 1988) and others indicating a strongly positive slope 66 in pressure-temperature space (Kondo et al., 2004; Ozawa et al., 2010). Some investigators have failed to observe the transition to the B8 phase altogether (Mao et al., 67 68 1996; Sata et al., 2005; Seagle et al., 2008; Yagi et al., 1985), and have attributed this to 69 differences in stoichiometry (Seagle et al., 2008) or kinetic barriers at room temperature

(Mao et al., 1996). The melting curve of $Fe_{1-x}O$ has been determined up to pressures and temperatures of 77 GPa and 3100 K (Fischer and Campbell, 2010), with reasonable agreement between multi-anvil press (Ringwood and Hibberson, 1990) and diamond anvil cell experiments (Boehler, 1992; Fischer and Campbell, 2010; Shen et al., 1993).

The thermal equation of state of FeO is important for interpreting the 74 75 seismological structure of the Earth's lower mantle and the density deficit, relative to pure 76 iron, of Earth's outer core. Room temperature studies have shown that the degree of 77 nonstoichiometry in wüstite does not significantly affect its bulk modulus (Fei, 1996), 78 although some ambiguity remains (Mao et al., 1996; McCammon, 1993). The equation of 79 state and high pressure phase transition in wüstite has also been studied by shock 80 compression (Jeanloz and Ahrens, 1980; Yagi et al., 1988). A recent static compression 81 study expanded the equation of state of FeO to high temperatures, where the B1 (non-82 distorted) phase is stable to much higher pressure (Campbell et al., 2009); this yielded an isothermal bulk modulus $K_0 = 146.9$ GPa with a fixed pressure derivative $K_0' = 4$. 83

84 In this study, we aim to constrain the B1/B8 phase boundary of FeO using X-ray 85 diffraction in a laser-heated diamond anvil cell, to resolve between existing discrepancies 86 in the literature data. We also aim to determine the thermal equation of state of B1 FeO at 87 higher pressures and temperatures than previous studies (Campbell et al., 2009), 88 extending the existing dataset into the P-T region of the outer core. This will allow for 89 calculations of the amount of oxygen required to match the observed density deficit in the 90 outer core, and also improved understanding of the iron-iron oxide oxygen fugacity 91 buffer at core conditions, with minimal extrapolation required over pressure and 92 temperature.

- 9495 2. Experimental Methods

97	The equation of state of FeO was determined by measuring its lattice parameter
98	using synchrotron X-ray diffraction during laser-heating in a diamond anvil cell. The FeO
99	was mixed with metallic Fe to ensure that the oxide was saturated in iron, and
100	presumably stoichiometric, at high pressures and temperatures (Campbell et al., 2009;
101	Seagle et al., 2008; Stølen and Grønvold, 1996). Seagle et al. (2008) laser heated
102	wüstite+Fe mixtures up to 93 GPa and found the recovered samples to be stoichiometric;
103	we assume a similar equilibration took place in our higher pressure sample, but this could
104	not be verified directly because the anvils broke before decompression and the sample
105	was destroyed.
106	Sample material was prepared by mixing $Fe_{0.94}O$ powder ($a = 4.302 \pm 0.001$ Å;
106 107	Sample material was prepared by mixing $Fe_{0.94}O$ powder ($a = 4.302 \pm 0.001$ Å; McCammon and Liu, 1984) with Fe powder in a ratio of 1:1.23 by mass, which produces
107	McCammon and Liu, 1984) with Fe powder in a ratio of 1:1.23 by mass, which produces
107 108	McCammon and Liu, 1984) with Fe powder in a ratio of 1:1.23 by mass, which produces a \sim 10 wt% oxygen content in the mixture. The mixture was mechanically ground under
107 108 109	McCammon and Liu, 1984) with Fe powder in a ratio of 1:1.23 by mass, which produces a ~10 wt% oxygen content in the mixture. The mixture was mechanically ground under ethanol to a grain size of ~1 μ m, then dried in an oven at 85°C for one hour. The powder
107 108 109 110	McCammon and Liu, 1984) with Fe powder in a ratio of 1:1.23 by mass, which produces a ~10 wt% oxygen content in the mixture. The mixture was mechanically ground under ethanol to a grain size of ~1 μ m, then dried in an oven at 85°C for one hour. The powder was pressed in a diamond anvil cell to form a foil approximately 70 μ m in diameter and 5
107 108 109 110 111	McCammon and Liu, 1984) with Fe powder in a ratio of 1:1.23 by mass, which produces a ~10 wt% oxygen content in the mixture. The mixture was mechanically ground under ethanol to a grain size of ~1 μ m, then dried in an oven at 85°C for one hour. The powder was pressed in a diamond anvil cell to form a foil approximately 70 μ m in diameter and 5 μ m thick. A rhenium gasket, initially 250 μ m thick, was preindented to ~27 GPa, and a

pressure medium and thermal insulator. The sample assembly was oven-dried at 85°C for
one hour after cell loading but before pressurization.

117 Angle-dispersive X-ray diffraction experiments were performed at beamline 13-118 ID-D (GeoSoilEnviroCars) of the Advanced Photon Source, Argonne National 119 Laboratory (Prakapenka et al., 2008; Shen et al., 2005). The incident X-ray beam was 120 monochromatic ($\lambda = 0.3344$ Å) and measured 5 µm x 5 µm. Diffracted X-rays were 121 recorded using a MAR165 CCD detector, with the sample-to-detector distance calibrated by 1 bar diffraction of CeO₂. Exposure times were typically 5 s. 122 123 The X-ray diffraction patterns were integrated to produce two-theta plots using 124 Fit2D (Hammersley et al. 2006). Peak fitting of the integrated patterns was performed 125 using PeakFit (Systat Software). Overlapping peaks were deconvoluted in nearly all 126 cases. Overlapped peaks that could not be deconvoluted were not used, except in a small 127 number of cases when necessary to constrain the uncertainty for a hexagonal phase, and 128 when their use or exclusion did not change the calculated lattice parameter within error. 129 Pressures were determined from the volume of hcp-iron, using the thermal equation of 130 state of Dewaele et al. (2006). This equation of state was calibrated against both room 131 temperature and shock wave compression to >200 GPa, and includes an explicit, 132 theoretically derived electronic contribution. Uncertainties in pressure were calculated 133 based on the uncertainty in temperature and the uncertainty in the lattice parameters of 134 hcp-iron, which were determined from four to seven d-spacings. 135 Our calculation of pressure is based on the unit cell volume of iron and the 136 temperature of the sample, corrected for an axial temperature gradient (Campbell et al.,

137 2007). In using iron as the pressure standard, we are assuming both mechanical and

thermal equilibrium between the Fe and FeO, which were intimately mixed (Campbell et
al., 2009). Deviatoric stresses on the sample are expected to be negligible, as are
compositional inhomogeneities that might place the pressure standard and the sample
material under slightly different *P-T* conditions. We are also assuming that there is no
dissolved oxygen in the iron that is altering its unit cell volume, which is supported by an
earlier study of recovered Fe+FeO samples (Ozawa et al., 2010).

144 The sample was compressed to a target pressure and laser-heated from each side 145 by 1.064 µm Yb fiber lasers with 'flat top' profiles created by Pi-shaping optics, with the 146 laser power on each side being independently adjustable (Prakapenka et al., 2008). The 147 temperature was slowly stepped up by increasing the laser power until a target 148 temperature was reached, and then the laser power was decreased gradually to zero, with 149 diffraction patterns being obtained both on heating and cooling cycles. Temperatures 150 were determined spectroradiometrically (Heinz and Jeanloz, 1987) using the graybody 151 approximation over the 600-800 nm range of thermal emission, and were measured 152 during the collection of each diffraction pattern. The laser-heated spots were $\sim 20-25 \,\mu m$ 153 in diameter, much larger than the X-ray beam to minimize radial temperature gradients, 154 and were coaligned with the beam using X-ray induced fluorescence from the NaCl 155 insulator. Upstream and downstream laser powers were adjusted during heating to 156 equalize the intensity of the thermal emission on the two surfaces of the sample. All 157 temperature measurements used in this study were recorded on the upstream side of the 158 sample, because of technical difficulties with measurements on the downstream side 159 during this set of experiments. Temperatures were measured from a region 5 µm in

160 diameter in the center of the laser-heated spot, comparable in size to the area probed by161 the X-rays.

162	Temperatures measured on the surface of the sample were corrected downward by
163	3% to account for an axial temperature gradient through the thickness of the sample,
164	based on a sample thickness of ~5 μ m (Campbell et al., 2007, 2009). Reported
165	uncertainties in temperature incorporate an analytical uncertainty of 100 K (Shen et al.,
166	2001), as well as the uncertainty from the correction for the axial temperature gradient
167	(Campbell et al., 2007, 2009).
168	To verify the accuracy of the temperature measurements, a sample of pure iron
169	loaded in an MgO pressure medium was analyzed to check the location of the hcp-fcc
170	phase transition in iron. The sample was pressurized to 36.4 ± 0.5 GPa before heating,
171	based on the lattice parameter of hcp-Fe (Dewaele et al., 2006). The phase transition in
172	iron was bracketed between volumes and temperatures of $6.014 \pm 0.006 \text{ cm}^3/\text{mol}$, $1563 \pm$
173	107 K (hcp-Fe) and $6.140 \pm 0.080 \text{ cm}^3/\text{mol}$, $1609 \pm 108 \text{ K}$ (fcc-Fe) on heating, which
174	agrees with the published phase diagram of Komabayashi and Fei (2010).
175	
176	
177	3. Results
178	
179	The pressure-volume-temperature $(P-V-T)$ data from the synchrotron X-ray
180	diffraction experiments are listed in Table S1 of the Supplementary Material. The lattice
181	parameters of hcp-Fe were calculated from four to seven of the following peaks: 100,
182	002, 101, 102, 110, 103, 112. The lattice parameter of B1-FeO was determined from

183	three to six of the following peaks: 111, 200, 220, 311, 222, 400, 331, and those of B8-
184	FeO were calculated from up to four of the following peaks: 002, 100, 101, 102, 112,
185	104, 202. A unit cell volume for B8-FeO is only reported when at least two non-
186	overlapping peaks were observed. In addition, the lattice parameter of B2-NaCl was
187	determined from the observed <i>d</i> -spacings of three to six of the following <i>hkl</i> peaks: 100,
188	110, 111, 200, 211, 220. Figure 1a and b shows a diffraction pattern collected at 144 GPa
189	and 3025 K with peaks corresponding to B2-NaCl, B1-FeO, and hcp-Fe, while Figure 1c
190	shows a pattern collected at 151 GPa and 1665 K with peaks corresponding to B2-NaCl,
191	B8-FeO, and hcp-Fe.
192	Figure 2 illustrates the comparison of our B1-FeO <i>P-V-T</i> data with those of
193	Seagle et al. (2008), Campbell et al. (2009), and Ozawa et al. (2010), which were all
194	synchrotron X-ray diffraction studies of wüstite coexisting with metallic iron. All of these
195	data were obtained using a laser-heated diamond anvil cell, except for the data up to ~ 10
196	GPa from Campbell et al. (2009), which were obtained in a multi-anvil press. This study
197	and Ozawa et al. (2010) report pressures based on the unit cell volume of hcp-Fe
198	(Dewaele et al., 2006); for comparison, the pressures of the Seagle et al. (2008) and
199	Campbell et al. (2009) data have been recalculated based on the unit cell volume of iron,
200	using the equation of state of hcp-Fe (Dewaele et al., 2006) or fcc-Fe (Campbell et al.,
201	2009). These studies had originally reported pressures based on the unit cell volume of
202	B1- or B2-NaCl; the difference in calculated pressure between the NaCl and Fe pressure
203	standards for those data is 0.3%, on average.
204	Figure 3 shows our B8-FeO <i>P-V-T</i> data and those of Ozawa et al. (2010). Also
205	shown for comparison are the lone data point from Kondo et al. (2004), who studied

206 $Fe_{0.95}O$ using ruby fluorescence to measure the pressure (Mao et al., 1978), and the lone 207 data point from Fei and Mao (1994), who studied Fe_{0.98}O and used the equation of state 208 of gold (Anderson et al., 1989) to calculate the pressure. 209 Figure 4 shows the phase diagram of FeO. The B1 and B8 phases of FeO were 210 frequently seen to coexist in these experiments. Presumably this is hysteresis from the 211 kinetics of the transformation, as well as a contribution from the aforementioned thermal 212 gradients in the laser-heated sample. We determined the phase boundary by monitoring 213 the growth in relative intensities of several peaks in each phase. For example, P-T214 conditions in which the B1 peak intensities were increasing and the B8 peak intensities 215 were decreasing relative to the previous X-ray diffraction pattern were assigned to the B1 216 stability field (Kondo et al., 2004; Murakami et al., 2010). 217 218 219 4. Discussion 220 221 4.1. B1/B8 phase transition 222 The B1/B8 phase boundary observed in this study is broadly consistent with that 223 of Kondo et al. (2004), but at slightly lower temperatures than would be expected from

the results of Ozawa et al. (2010) (Figure 4). The disagreement between these datasets

could be due to the large uncertainties in temperature reported by Ozawa et al. (2010);

otherwise, the high degree of curvature required for a phase boundary to match both of

those datasets, in addition to the present results, is unlikely. Our data are incompatible

with the phase boundaries of Fei and Mao (1994), but it is important to note that we

229 measured the B1/B8 transition, while they measured the rhombohedral/B8 transition, at 230 temperatures far from the triple point. However, any B1/B8/rhombohedral triple point 231 based on our data and those of Fei and Mao (1994) would be in violation of 232 Schreinemaker's rules (Zen, 1966), because of the angles between the phase boundaries 233 at the B1/B8/rhombohedral triple point that are required by the combination of our data 234 with those of Fei and Mao (1994) (Figure 4). One or more additional phase boundaries 235 could also resolve these apparent disagreements in the phase diagram of wüstite, but no 236 such transitions were detected in this study. 237 Our B1/B8 transition matches the shock wave results of Jeanloz and Ahrens

(1980) within the large uncertainty of their temperature measurement, but it is
inconsistent with the high-pressure phase transition reported by Knittle and Jeanloz
(1991). Knittle and Jeanloz (1991) did not obtain any structural information, so their
results could correspond to an electronic transition that is distinct from the B1/B8
transition.

Regardless of these small inconsistencies between various studies, our phase diagram confirms the conclusion of Ozawa et al. (2010) that it is the B1 structure of FeO, not the B8 structure, that is stable under the *P-T* conditions relevant to the Earth's lower mantle and outer core. Therefore, it is the equation of state of B1-FeO that we apply to calculations of the core density deficit and oxygen fugacity buffers (Sections 4.3 and 4.4).

248

249 *4.2. Equations of state*

250 Our new higher-pressure P-V-T data on B1-FeO are not precisely described by an 251 extrapolation of the equation of state of Campbell et al. (2009), with the extrapolated

252 equation of state predicting pressures in excess of 5 GPa higher than those measured.

Therefore, we have redetermined the equation of state of B1-FeO, expanding the dataset used by Campbell et al. (2009) with the addition of higher *P-T* data from this study and from Ozawa et al. (2010), which allows us to fit more parameters in the equation of state. We have also constructed an equation of state for B8-FeO, which had not previously been determined for iron-saturated wüstite.

$$P = P_{300}(V) + (\gamma/V)[E(\theta_{\rm D}, T) - E_{300}(\theta_{\rm D}, 300)]$$
(1)

with the 300 K isothermal pressure (P_{300}) described by a third-order Birch-Murnaghan equation of state (Birch, 1952) and the thermal pressure term based on a Debye model of vibrational energy (*E*), with Grüneisen parameter $\gamma = \gamma_0 (V/V_0)^q$ and Debye temperature θ_D $= \theta_0 * \exp[\gamma_0/q^*(1 - (V/V_0)^q)]$. We did not explicitly include any anharmonic or electronic contributions to the thermal pressure. This reduced the number of fitted parameters, which was necessary given the resolution of our data.

266 The equation of state parameters for B1- and B8-FeO are listed in Table 1. For 267 B1-FeO, we fit the present data along with those of several previous studies (Campbell et 268 al., 2009; Ozawa et al., 2010; Seagle et al., 2008). We fixed the parameters V_0 269 (McCammon and Liu, 1984), θ_0 (Stixrude and Lithgow-Bertelloni, 2007), and q, finding 270 a good fit to the data for q = 0.5. Our fitted values of K_0 and K_0' (149.4 GPa and 3.60, 271 respectively) show excellent agreement with the trade-off for these parameters 272 determined by Fei (1996) for B1-FeO, whose preferred values were 149 GPa and 3.5. 273 Isotherms calculated from our equation of state of B1-FeO are shown in Figure 2. We find that K_0' must be less than four to fit the higher-pressure data, which explains the 274

275 misfit between these data and the extrapolated equation of state of Campbell et al. (2009), 276 who fixed K_0' to 4.0 in their analysis.

277 For B8-FeO, we fit the present data along with those of Ozawa et al. (2010). This 278 phase is not recoverable to ambient conditions, so V_0 is a fitted parameter, and a 279 reduction in the number of other fitted parameters was achieved by fixing $K_0' = 4$ and q =280 1 and assuming the Debye temperature to be equal to that of B1-FeO (Stixrude and 281 Lithgow-Bertelloni, 2007). It was necessary to hold these parameters fixed due to the 282 limited P-T range of the B8 data, and as a consequence, this equation of state should not be extrapolated far outside the range of the data. The zero-pressure volume V_0 for B8-283 284 FeO was found to be 2.1% smaller than that of B1-FeO (McCammon and Liu, 1984) 285 (Table 1). We found a lower value of K_0 for B8-FeO than for B1-FeO (137.8 GPa vs. 286 149.4 GPa), but we used a higher value of K_0' for the B8 phase, so it is less compressible 287 at the high pressure conditions under which it exists. We also found different values of γ_0 288 for the two phases, but their γ become very similar at high pressures due to the different q289 values in the fits. Isotherms calculated from our equation of state of B8-FeO are shown in 290 Figure 3. There is significant misfit between our equation of state and the data points of 291 Fei and Mao (1994) and Kondo et al. (2004). Both of these studies used non-292 stoichiometric wüstite, while this study and Ozawa et al. (2010) used iron-saturated FeO, 293 but stoichiometric effects should cause the data of Fei and Mao (1994) and Kondo et al. 294 (2004) to be shifted to smaller volumes of wüstite, whereas their data have larger 295 volumes than are predicted by our equation of state (Figure 3). The cause of this 296 discrepancy is unknown, though it could have the same underlying basis as the 297 disagreement over the B1/B8 phase boundary between our data and those of Fei and Mao

298	(1994) (Section 4.1). The data point of Kondo et al. (2004) does agree with our equation
299	of state within its large pressure uncertainty, but the misfit should be greater taking into
300	account the effects of stoichiometry.

302 *4.3. Core density deficit*

303 We can use the knowledge that wüstite is stable in the B1 structure under the P-T 304 conditions of the Earth's core (Section 4.1) and our improved equation of state for B1-305 FeO at core conditions (Section 4.2) to evaluate the core density deficit. Several 306 assumptions are required for this analysis. We assume the pressure at the core-mantle 307 boundary (CMB) to be 135.8 GPa (Dziewonski and Anderson, 1981), and we use an 308 outer core temperature of 4000 ± 500 K at the CMB based on the analysis of Anderson 309 (2003). We also assume that the outer core is convecting near adiabatic conditions (Birch, 310 1952), and that iron and iron-rich alloys experience a 1-2% volume increase upon melting 311 at core pressures (Anderson, 2003). Although it is likely that the outer core contains 312 significant amounts of more than one light element, including O, S, Si, and/or C 313 (McDonough, 2003), in this analysis we consider an outer core whose light element 314 component is purely oxygen. 315 Figure 5 illustrates the density difference between pure iron (Dewaele et al., 316 2006), calculated along an adiabat, and a seismologically-determined density profile of 317 the Earth's core, the Preliminary Reference Earth Model (PREM) (Dziewonski and 318 Anderson, 1981). Using the assumptions described above, we find that PREM is $10.4 \pm$ 319 0.9% less dense than solid hcp-iron at the core-mantle boundary. Approximately 1-2% of 320 this density difference can be accounted for by the ΔV of melting of iron (Anderson,

321 2003), but the remainder must be due to the presence of one or more light elements in the322 core, such as oxygen.

323 Our equation of state for B1-FeO can be used to place firm constraints on the 324 amount of oxygen in Earth's core, because it requires no extrapolation in pressure and 325 only a small extrapolation in temperature to be applied at the *P*-*T* conditions of the CMB. 326 For a core model containing only iron and oxygen, we find that 7.7 ± 1.1 weight percent 327 oxygen would be required in the outer core to match PREM at the core-mantle boundary. 328 Allowing for the presence of nickel in the core slightly alters this result. Correcting the 329 outer core density to account for a Ni/Fe atomic ratio of 0.058 in the core (McDonough, 330 2003), we find that 7.9 ± 1.1 weight percent oxygen would be necessary to match PREM 331 at the CMB for an Fe-Ni-O core.

332 Figure 5 shows that the slopes of the adiabatic density profiles of hcp-Fe and B1-333 FeO do not exactly match that of PREM when these equations of state are extrapolated 334 over the *P*-*T* range of the Earth's core. Their slopes also do not match each other, due to 335 the K_0' value for FeO being smaller than that of iron (3.60 vs. 5.38) (Dewaele et al., 336 2006). For this reason, we have limited our calculations of the core density deficit to the 337 core-mantle boundary, minimizing extrapolation. If oxygen is the dominant light element 338 in the core, these differences in curvature could be due to several factors, including: 339 PREM not accurately describing the precise density variations through the core; the need 340 for an additional term in these equations of state when extrapolating them to such high 341 pressures and temperatures; a compositional gradient through the outer core; a more 342 complex mixing relationship between Fe and FeO at these conditions; or the presence of 343 one or more other light elements.

345 *4.4. Oxygen fugacity buffer*

346 Oxygen fugacity (fO_2) governs many key physical and chemical properties of 347 minerals, including insulator-metal transitions, diffusion rates, rheological properties, and 348 elemental partitioning. The fO_2 of the Earth's interior is dominated by the valence state of 349 iron, the most abundant multivalent element in the planet. Therefore it is critical to 350 understand the Fe-FeO oxygen fugacity buffer at pressures and temperatures relevant to 351 the deep Earth. In this study we have extended the equation of state of B1-FeO to higher 352 P-T conditions, allowing us to extend calculations of the Fe-FeO fO_2 buffer to these more 353 extreme conditions. 354 We have calculated this buffer by comparing the equations of state of B1-FeO 355 (Section 4.2), fcc-Fe (Campbell et al., 2009), and hcp-Fe (Dewaele et al., 2006), 356 following the method of Campbell et al. (2009): 357 $\log fO_2 = \log fO_2(1 \text{ bar}) + (0.8686/\text{R}T) \int \Delta V dP$ (2)358 where ΔV is the volume difference between FeO and iron. The calculated buffer is strictly 359 applicable only for FeO in the B1 structure, and only for high-spin FeO. Iron-poor 360 (Mg,Fe)O in the Earth's lower mantle may undergo a spin transition to the low-spin state 361 (Cohen et al., 1997; Lin et al., 2005), which will likely have a significant effect on the Fe-362 FeO oxygen fugacity buffer. 363 The calculated fO_2 buffers are shown in Figure 6, and tabulated values at smaller 364 pressure increments are shown in Table S2 of the Supplementary Material. The results 365 found here are similar to those presented in Campbell et al. (2009), with the buffers 366 calculated in this study differing from those of Campbell et al. (2009) by less than 0.2 log

367	units up to 100 GPa, the highest pressure shown by Campbell et al. (2009). However, this
368	discrepancy increases with pressure, becoming larger at the higher pressures achieved in
369	this study. We confirm the results of Campbell et al. (2009) that the absolute fO_2
370	values increase with pressure at each temperature, and that the slope $\partial (\ln fO_2)/\partial T _P$
371	decreases with pressure, eventually becoming a slope of approximately zero at 60 GPa
372	and negative at higher pressures. Also included in Table S2 is a polynomial expression of
373	the Fe-FeO buffer as a function of pressure and temperature, which can be used as a
374	convenience to interpolate between the tabulated values.
375	The oxygen fugacity buffers calculated in this section are specifically for
376	stoichiometric FeO, because that is the endmember component in the important
377	applications to high-pressure mineral physics and the chemistry of the Earth's mantle. In
378	applications where FeO-bearing silicates or oxides exist with Fe-bearing metal, the
379	oxygen fugacity of a system can be determined relative to the Fe-FeO buffer. Near
380	ambient pressure, nonstoichiometric wüstite is the stable oxide that coexists with metallic
381	iron, so the iron-wüstite buffer is frequently applied with respect to these
382	nonstoichiometric oxides, especially when this solid state buffer is used directly to
383	control the oxygen fugacity in low-pressure experiments. However, above several GPa,
384	stoichiometric FeO becomes stable in the presence of Fe (Campbell et al., 2009; Seagle et
385	al., 2008; Stølen and Grønvold, 1996), so even when used directly to buffer a system, it is
386	the Fe-FeO reaction that is relevant.
387	Nevertheless, it is interesting to consider whether nonstoichiometric wüstite
388	becomes stable again at high pressures when coexisting with metallic Fe. The relevant
389	reaction is $Fe_{1-x}O + xFe \neq FeO$, and the pressure dependence of this reaction is

390	determined by the volume difference $V(FeO) - V(Fe_{1-x}O) - xV(Fe)$. The present study
391	provides the equation of state of FeO, and equations of state exist for both fcc and hcp
392	phases of Fe (e.g., Campbell et al., 2009; Dewaele et al., 2006), but the equations of state
393	of wüstites are not precisely determined over the <i>P</i> - <i>T</i> range of interest. However, it has
394	been concluded by Fei (1996) that the bulk modulus of $Fe_{1-x}O$ is constant for all x; if we
395	suppose for purposes of this calculation that all other thermoelastic parameters are also
396	independent of x , then we can evaluate the equation of state for any wüstite based on the
397	equation of state parameters for FeO in this study (Table 1) and the zero-pressure lattice
398	parameters of McCammon and Liu (1984). Our results of this calculation show that for
399	all values of x, the volume change $V(FeO) - V(Fe_{1-x}O) - xV(Fe)$ is negative over all
400	conditions calculated (0 to 200 GPa; 300 to 2500 K). Therefore, stoichiometric FeO, and
401	not nonstoichiometric wüstite, remains the stable oxide coexisting with Fe at all high P - T
402	conditions above the several GPa range as reported by Stølen and Grønvold (1996).
403	
404	
405	5. Conclusions
406	
407	The phase diagram of stoichiometric FeO, and the equations of state of its B1 and
408	B8 structures, were measured to high temperatures and pressures reaching those of the
409	Earth's outer core. The positive slope for the phase boundary between the subsolidus B1
410	and B8 phases of FeO is broadly consistent with those reported by Kondo et al. (2004)
411	and Ozawa et al. (2010). These results confirm that the stable phase of FeO at conditions
412	of the Earth's deep interior has the B1 structure, not the B8 structure. The equation of

state of B1-FeO reported by Campbell et al. (2009) did not precisely describe these new
higher pressure data, but the updated equation of state presented here accurately describes
not only our new data but also those of several previous studies (Campbell et al., 2009;
Ozawa et al., 2010; Seagle et al., 2008). We also combined our data with those of Ozawa
et al. (2010) to construct an equation of state for B8-FeO.

418 Using our improved equation of state for B1-FeO and earlier equations of state for 419 fcc- and hcp-Fe (Campbell et al., 2009; Dewaele et al., 2006), we have recalculated high-420 pressure, high-temperature Fe-FeO oxygen fugacity buffers, improving the accuracy of 421 these buffers over those reported by Campbell et al. (2009) at pressures >100 GPa. The 422 equation of state for B1-FeO can be compared to that of hcp-Fe (Dewaele et al., 2006) 423 and the seismologically determined density of the Earth's core (Dziewonski and 424 Anderson, 1981), to analyze the core density deficit. For a core composition in which 425 oxygen is the sole light element, 7.9 ± 1.1 weight percent oxygen would be required in 426 the outer core to match PREM at the core-mantle boundary. 427

428 Acknowledgments

430	Portions of this work were performed at GeoSoilEnviroCARS (Sector 13),
431	Advanced Photon Source (APS), Argonne National Laboratory. GeoSoilEnviroCARS is
432	supported by the National Science Foundation - Earth Sciences (EAR-0622171) and
433	Department of Energy - Geosciences (DE-FG02-94ER14466). Use of the Advanced
434	Photon Source was supported by the U. S. Department of Energy, Office of Science,
435	Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. We thank
436	the anonymous reviewers for constructive comments. This work was supported by the
437	National Science Foundation by grant EAR 0847217 to A.J.C.

438 **References**

439

440	Anderson,	ΟL	2003	The	three-	dimen	siona	l phase	diagram	n of iron	in [.]	Dehant	V	
110	7 macroon,	O.L.,	2005.	1110	unico	union	Siona.	phuse	anagran	I OI HOIL	,	Domaine,	• • •	,

- 441 Creager, K.C., Karato, S.-i., Zatman, S. (Eds.), Earth's Core: Dynamics,
- 442 Structure, Rotation. American Geophysical Union, Washington, DC, pp. 83-103.
- 443 Anderson, O.L., Isaak, D.G., Yamamoto, S., 1989. Anharmonicity and the equation of
- 444 state for gold. J. Appl. Phys. 65, 1534-1543.
- Birch, F., 1952. Elasticity and constitution of the Earth's interior. J. Geophys. Res. 37,
 227-286.
- 447 Boehler, R., 1992. Melting of the Fe-FeO and the Fe-FeS systems at high pressure –

448 constraints on core temperatures. Earth Planet. Sci. Lett. 111, 217-227.

449 Boehler, R., 1996. Melting temperature of the Earth's mantle and core: Earth's thermal

450 structure. Annu. Rev. Earth Planet. Sci. 24, 15-40.

- 451 Campbell, A.J., Seagle, C.T., Heinz, D.L., Shen, G., Prakapenka, V.B., 2007. Partial
- 452 melting in the iron-sulfur system at high pressure: A synchrotron X-ray

diffraction study. Phys. Earth Planet. Inter. 162, 119-128.

- 454 Campbell, A.J., Danielson, L., Righter, K., Seagle, C.T., Wang, Y., Prakapenka, V.B.,
- 455 2009. High pressure effects on the iron-iron oxide and nickel-nickel oxide oxygen
 456 fugacity buffers. Earth Planet. Sci. Lett. 286, 556-564.
- 457 Chase Jr., M.W., 1998. NIST-JANAF Thermochemical Tables, 4th ed. : J. Phys. Chem.
- 458 Ref. Data Monograph No. 9. American Institute of Physics.
- 459 Cohen, R.E., Mazin, I.I., Isaak, D.G., 1997. Magnetic collapse in transition metal oxides
 460 at high pressure: Implications for the Earth. Science 275, 654-657.

- Dewaele, A., Loubeyre, P., Occelli, F., Mezouar, M., Dorogokupets, P.I., Torrent, M.,
 2006. Quasihydrostatic equation of state of iron above 2 Mbar. Phys. Rev. Lett.
 97, 215504.
- 464 Dziewonski, A.M., Anderson, D.L., 1981. Preliminary reference Earth model. Phys.
 465 Earth Planet. Inter. 25, 297-356.
- 466 Fei, Y., 1996. Crystal chemistry of FeO at high pressure and temperature, in: Dyar, M.D.,
- 467 McCammon, C., Schaefer, M.W. (Eds.), Mineral Spectroscopy: A Tribute to
 468 Roger G. Burns. The Geochemical Society, Houston, pp. 243-254.
- 469 Fei, Y., Mao, H.-k., 1994. In-situ determination of the NiAs phase of FeO at high-
- 470 pressure and temperature. Science 266, 1678-1680.
- 471 Fischer, R.A., Campbell, A.J., 2010. High pressure melting of wüstite. Am. Mineral. 95,
 472 1473-1477.
- 473 Fjellvåg, H., Hauback, B.C., Vogt, T., Stølen, S., 2002. Monoclinic nearly stoichiometric
 474 wüstite at low temperatures. Am. Mineral. 87, 347-349.
- Frost, D.J., McCammon, C.A., 2008. The redox state of Earth's mantle. Annu. Rev. Earth
 Planet. Sci. 36, 389-420.
- 477 Hammersley, A.P., Svensson, S.O., Hanfland, M., Fitch, A.N., Hausermann, D., 1996.
- 478 Two-dimensional detector software: From real detector to idealized image or two479 theta scan. High Press. Res. 14, 235-248.
- 480 Heinz, D.L., Jeanloz, R., 1987. Temperature measurements in the laser-heated diamond
- 481 cell, in: Manghnani, M.H., Syono, Y. (Eds.), High-Pressure Research in Mineral
- 482 Physics. Terra Scientific Publishing, Tokyo / American Geophysical Union,
- 483 Washington, pp. 113-127.

- Jeanloz, R., Ahrens, T.J., 1980. Equations of state of FeO and CaO. Geophys. J. R. astr.
 Soc. 62, 505-528.
- Kantor, I., Kurnosov, A., McCammon, C., Dubrovinsky, L., 2008. Monoclinic FeO at
 high pressures. Z. Krist. 223, 461-464.
- Knittle, E., Jeanloz, R., 1991. The high-pressure phase diagram of Fe_{0.94}O: A possible
 constituent of the Earth's core. J. Geophys. Res. 96, 16169-16180.
- Komabayashi, T., Fei, Y., 2010. Internally consistent thermodynamic database for iron to
 the Earth's core conditions. J. Geophys. Res. 115, B03202.
- 492 Kondo, T., Ohtani, E., Hirao, N., Yagi, T., Kikegawa, T., 2004. Phase transitions of
- 493 (Mg,Fe)O at megabar pressures. Phys. Earth Planet. Inter. 143-144, 201-213.
- Lin, J.-F., Struzhkin, V.V., Jacobsen, S.D., Hu, M.Y., Chow, P., Kung, J., Liu, H., Mao,
- H.-k., Hemley, R.J., 2005. Spin transition of iron in magnesiowüstite in the
 Earth's lower mantle. Nature 436, 377-380.
- 497 Mao, H.-k., Bell, P.M., Shaner, J.W., Steinberg, D.J., 1978. Specific volume
- measurements of Cu, Mo, Pd, and Ag and calibration of the ruby R₁ fluorescence
 pressure gauge from 0.06 to 1 Mbar. J. Appl. Phys. 49, 3276-3283.
- Mao, H.-k., Shu, J., Fei, Y., Hu, J., Hemley, R.J., 1996. The wüstite enigma. Phys. Earth
 Planet. Inter. 96, 135-145.
- McCammon, C., 1993. Effect of pressure on the composition of the lower mantle end
 member Fe_xO. Science 259, 66-68.
- 504 McCammon, C.A., Liu, L.-G., 1984. The effects of pressure and temperature on non-
- 505 stoichiometric wüstite, Fe_xO: The iron-rich phase boundary. Phys. Chem. Miner.
- 506 10, 106-113.

507	McDonough, W.F., 2003. Compositional model for the Earth's core, in: Carlson, R.W.
508	(Ed.), Treatise of Geochemistry, Vol. 2. Elsevier-Pergamon, Oxford, pp. 547-568.
509	Murakami, M., Hirose, K., Ono, S., Tsuchiya, T., Isshiki, M., Watanuki, T., 2004. High
510	pressure and high temperature phase transitions of FeO. Phys. Earth Planet. Inter.
511	146, 273-282.
512	Ozawa, H., Hirose, K., Tateno, S., Sata, N., Ohishi, Y., 2010. Phase transition boundary
513	between B1 and B8 structures of FeO up to 210 GPa. Phys. Earth Planet. Inter.
514	179, 157-163.
515	Prakapenka, V.B., Kuba, A., Kuznetsov, A., Laskin, A., Shkurikhin, O., Dera, P., Rivers,
516	M.L., Sutton, S.R., 2008. Advanced flat top laser heating system for high pressure
517	research at GSECARS: Application to the melting behavior of germanium. High
518	Press. Res. 28, 225-235.
519	Ringwood, A.E., Hibberson, W., 1990. The system Fe-FeO revisited. Phys. Chem. Miner.
520	17, 313-319.
521	Sata, N., Hirose, K., Oshino, Y., Shen, G., 2005. High-pressure experiments on FeO up to
522	200 GPa. EOS Trans. AGU 86, Fall Meet. Suppl., Abstract MR31A-0124.
523	Seagle, C.T., Heinz, D.L., Campbell, A.J., Prakapenka, V.B., Wanless, S.T., 2008.
524	Melting and thermal expansion in the Fe-FeO system at high pressure. Earth
525	Planet. Sci. Lett. 265, 655-665.
526	Shen, G., Lazor, P., Saxena, S.K., 1993. Melting of wüstite and iron up to pressures of
527	600 kbar. Phys. Chem. Minerals 20, 91-96.
528	Shen, G., Mao, HK., Hemley, R.J., Duffy, T.S., Rivers, M.L., 1998. Melting and crystal
529	structure of iron at high pressures. Geophys. Res. Lett. 25, 373-376.

530	Shen, G.Y., River, M.L., Wang, Y.B., Sutton, S.R., 2001. Laser heated diamond anvil
531	cell system at the Advanced Photon Source for in situ x-ray measurements at high
532	pressure and temperature. Rev. Sci. Instrum. 72, 1273-1282.
533	Shen, G., Rivers, M.L., Wang, Y., Sutton, S.R., 2005. Facilities for high-pressure
534	research with the diamond anvil cell at GSECARS. J. Synchrotron Rad. 12, 642-
535	649.
536	Stixrude, L., Lithgow-Bertelloni, C., 2007. Influence of phase transformations on lateral
537	heterogeneity and dynamics in Earth's mantle. Earth Planet. Sci. Lett. 263, 45-55.
538	Stølen, S., Grønvold, F., 1996. Calculation of the phase boundaries of wüstite at high
539	pressure. J. Geophys. Res. 101, 11531–11540.
540	Yagi, T., Suzuki, K., Akimoto, S., 1985. Static compression of wüstite (Fe _{0.98} O) to 120
541	GPa. J. Geophys. Res. 90, 8784-8788.
542	Yagi, T., Fukuoka, K., Takei, H., Syono, Y., 1988. Shock compression of wüstite.
543	Geophys. Res. Lett. 15, 816-819.
544	Zen, EA., 1966. Construction and pressure-temperature diagrams for multicomponent
545	systems after the method of Schreinemakers geometric approach. U.S. Geological
546	Survey Bulletin 1225.
547	

~ 1 0	T .	^	
5/18	HIGHEO	lantini	16
548	Figure	Caption	I N

550	Figure 1. a: Diffraction image before integration, collected at 144 GPa and 3025 K. b:
551	Diffraction pattern from part A integrated azimuthally. Peaks correspond to B2-NaCl,
552	B1-FeO, and hcp-Fe. c: Diffraction pattern collected at 151 GPa and 1665 K, integrated
553	azimuthally, with peaks corresponding to B2-NaCl, B8-FeO, and hcp-Fe.
554	
555	Figure 2. Equation of state of B1-FeO. Filled circles: this study. Open triangles: Ozawa
556	et al. (2010). Open squares: Seagle et al. (2008). Open diamonds: Campbell et al. (2009).
557	All data and isotherms are color-coded by temperature range according to the legend.
558	Isotherms are calculated using the parameters in Table 1 for the midpoint of the
559	temperature range indicated, and they do not extend above the melting curve of Fischer
560	and Campbell (2010).
561	
562	Figure 3. Equation of state of B8-FeO. Filled circles: this study. Open triangles: Ozawa
563	et al. (2010). ×: Kondo et al. (2004). Cross: Fei and Mao (1994). Errors in volume from
564	this study were fixed at ± 0.1 cm ³ /mol when they could not be constrained by the data.
565	Fei and Mao (1994) do not report an error in pressure. All data and isotherms are color-
566	coded by temperature range, as in Figure 2. Isotherms are calculated using the parameters
567	in Table 1 for the midpoint of the temperature range indicated, and they do not extend
568	above the melting curve of Fischer and Campbell (2010).
569	

570	Figure 4. High <i>P-T</i> phase diagram of wüstite. Pink symbols: stability field of B8 (NiAs-
571	type) FeO. Blue symbols: stability field of B1 (NaCl-type) FeO. Filled circles: this study.
572	×: Kondo et al. (2004). Open triangles: Ozawa et al. (2010). Brown lines: phase
573	boundaries of rhombally-distorted wüstite (Fei and Mao, 1994). Black line: melting curve
574	from Fischer and Campbell (2010), extrapolated (dashed line) using Lindemann melting
575	law. Gray: approximate geotherm, after Boehler (1996). This study and Ozawa et al.
576	(2010) report phase stability of stoichiometric FeO, while Kondo et al (2004) used
577	$Fe_{0.95}O$, Fei and Mao (1994) used $Fe_{0.98}O$, and Fischer and Campbell (2010) used $Fe_{0.94}O$.
578	
578 579	Figure 5. Core density deficit. Grey line: PREM (Dziewonski and Anderson, 1981). Blue
	Figure 5. Core density deficit. Grey line: PREM (Dziewonski and Anderson, 1981). Blue line: density profile for B1-FeO, calculated from the parameters listed in Table 1. Orange
579	
579 580	line: density profile for B1-FeO, calculated from the parameters listed in Table 1. Orange
579 580 581	line: density profile for B1-FeO, calculated from the parameters listed in Table 1. Orange line: density profile for hcp-Fe, calculated from the equation of state of Dewaele et al.
579 580 581 582	line: density profile for B1-FeO, calculated from the parameters listed in Table 1. Orange line: density profile for hcp-Fe, calculated from the equation of state of Dewaele et al. (2006). Solid lines follow an adiabatic temperature profile for a CMB temperature of

Figure 6. Fe–FeO oxygen fugacity buffers at high pressures and temperatures. The 1 bar
buffer curve was calculated from Chase (1998), and high pressure curves were calculated
from Eq. (2) using fits to the data like those in Figure 2. These buffers are only valid for
B1-FeO in the high-spin state.

Table 1. Equation of state parameters for B1- and B8-FeO.

	B1-FeO	B8-FeO
V ₀ (cm ³ /mol)	12.256 ^ª	11.997 ± 0.018
K ₀ (GPa)	149.4 ± 1.0	137.8 ± 0.9
K ₀ ′	3.60 ± 0.04	4
θ ₀ (K)	417 ^b	417 ^b
Yo	1.41 ± 0.05	1.73 ± 0.12
q	0.5	1

Entries in italics were held fixed in the fit. ^aMcCammon and Liu (1984) ^bStixrude and Lithgow-Bertelloni (2007)

597 Supplementary Material

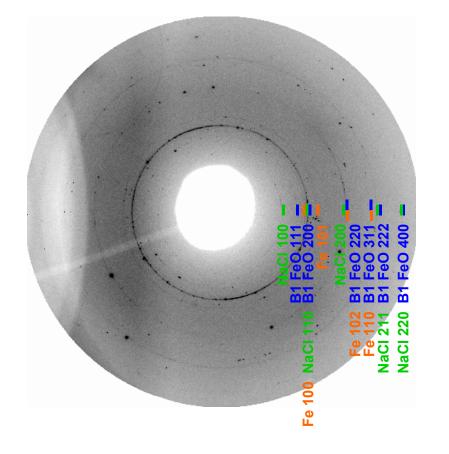
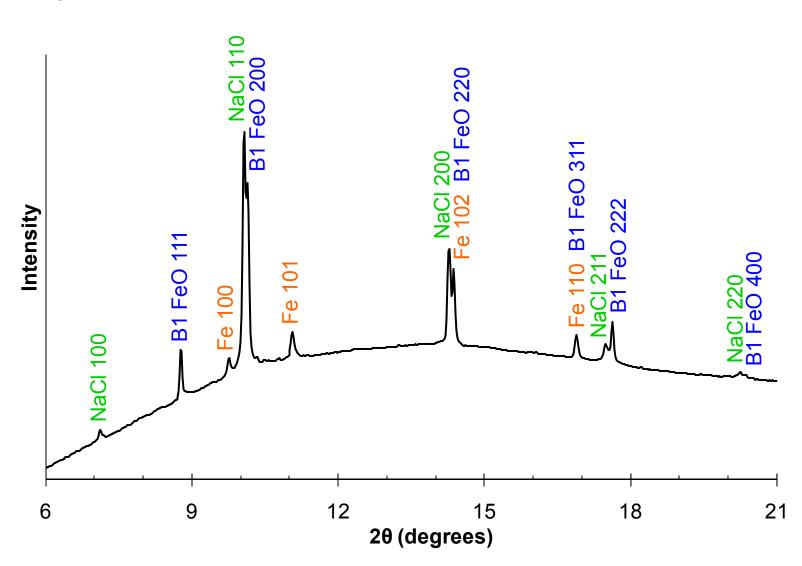
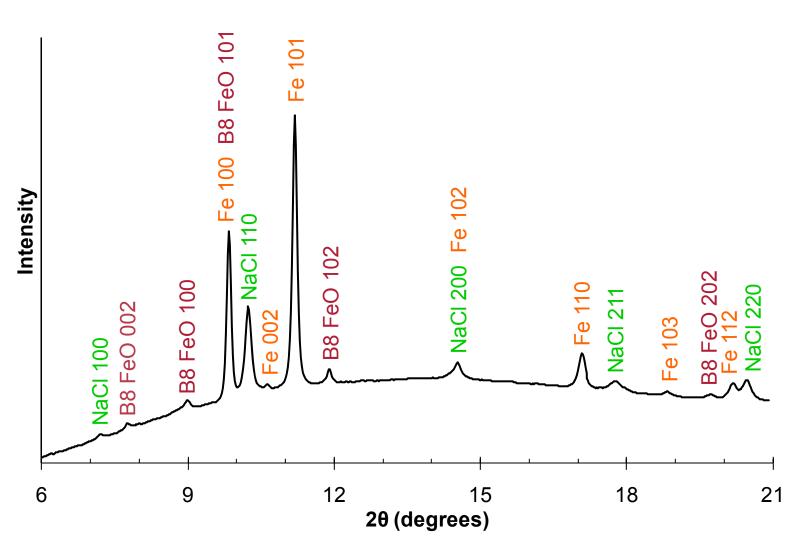
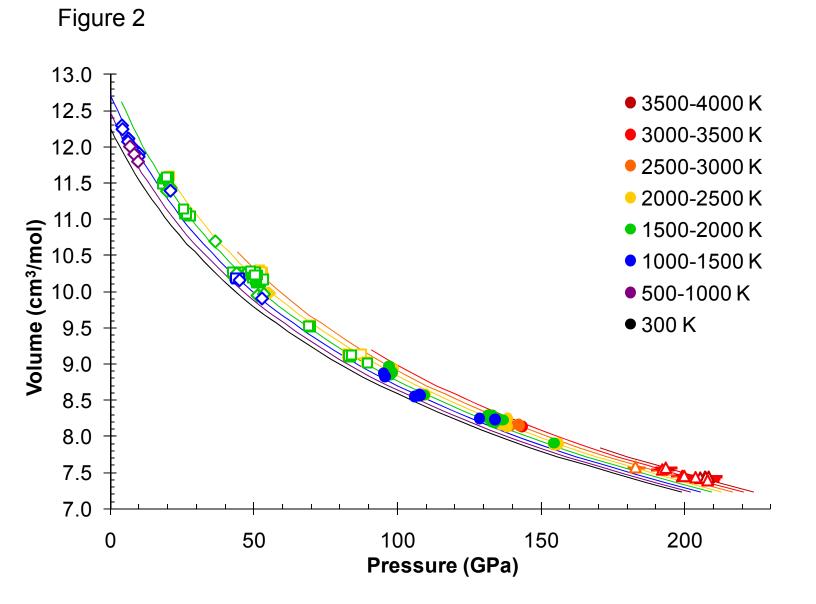
598

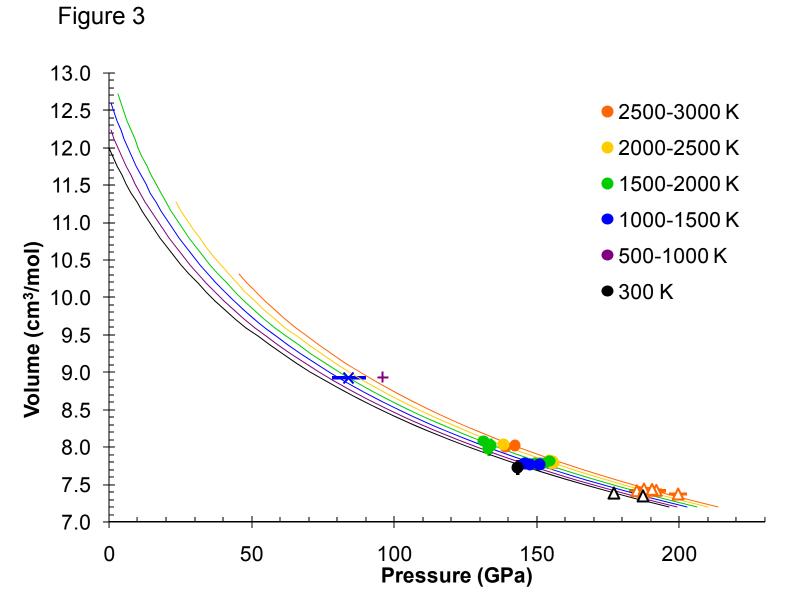
599	Supplementary	Table S1.	Pressure-volu	ume-temperatui	e data from s	synchrotron X	K-ray

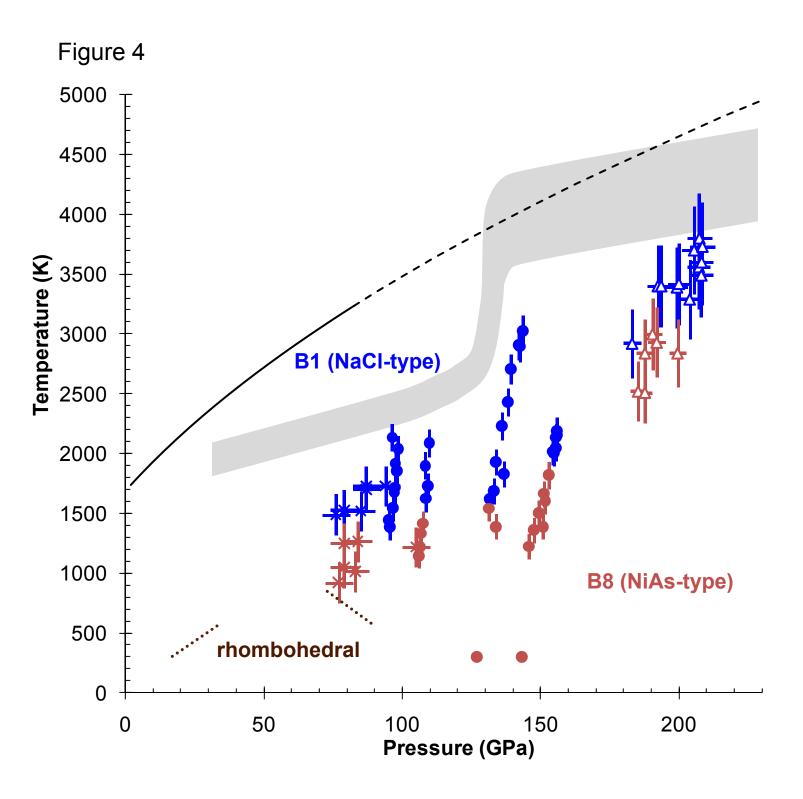
- 600 diffraction experiments. Pressures are determined from the unit cell volumes of hcp-Fe
- 601 using the equation of state of Dewaele et al. (2006). Reported temperatures are corrected
- 602 for an axial temperature gradient.

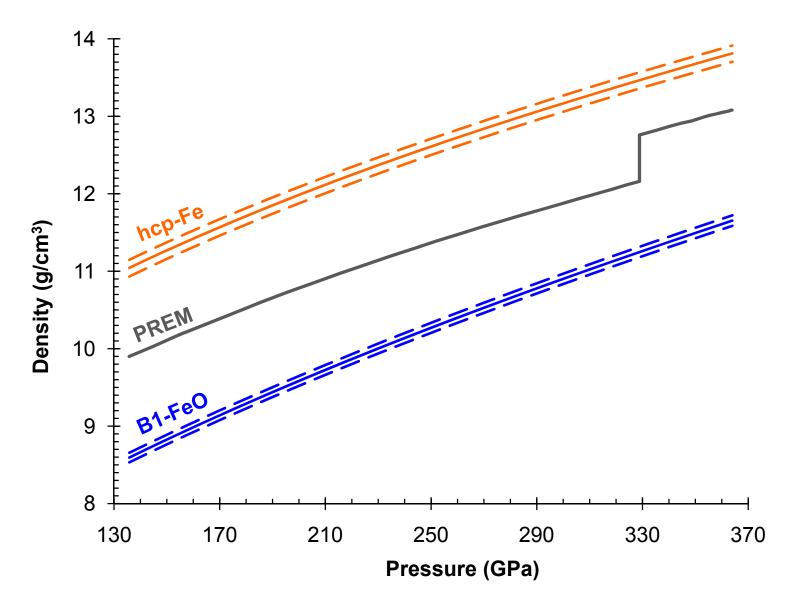
- 604 **Supplementary Table S2.** Tabulation of the Fe-FeO oxygen fugacity buffer at high
- 605 pressures and temperatures.

Figure 1a


Figure 1b





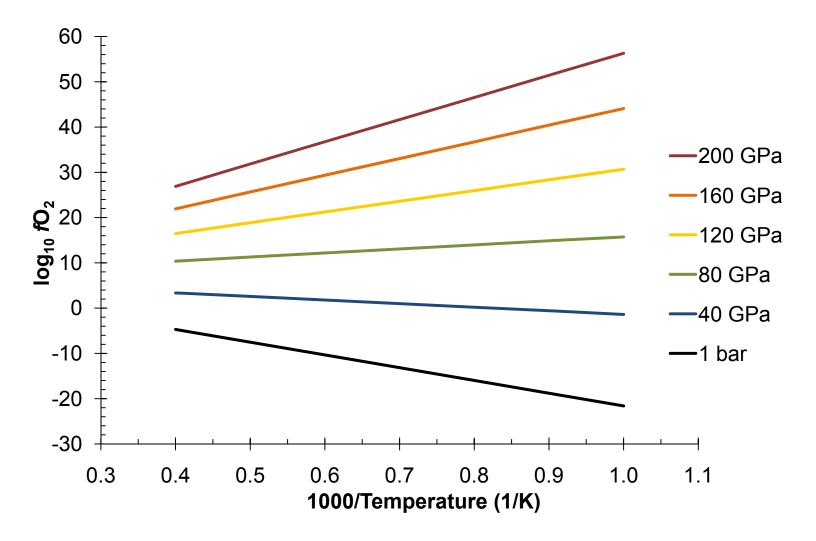


Figure 5

Figure 6

