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Abstract 

Thermal barrier coatings (TBC) are used widely on a range of components that operate at high temperatures. We report 

measurement of the factor that is required to convert the Raman shift to stress for air plasma sprayed yttria (7 wt %) 

stabilized tetragonal zirconia (ZrO2) (YSZ) thermal barrier coatings. The factor is evaluated for the as-coated condition 

and also following a heat treatment at 1000 °C for 1050 h. Two Raman bands at 608 cm−1 and 640 cm−1 have been 

investigated in a diamond anvil cell under hydrostatic pressure up to ∼24 GPa. In the range of zero to ∼1.6 GPa, a linear 

behavior was observed in terms of the shifts of these two Raman bands with a gradient similar to dense bulk tetragonal 

ZrO2. From these measurements the factors to convert wavenumber shift to stress have been derived. The application of 

these conversion factors to stress measurement in TBC coated test specimens and components is discussed. 
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Introduction 

Stress analyses of ceramic materials have been reported that deal with the determination of residual and 

applied stresses using spectroscopic techniques based on the Raman piezospectroscopic (PS) effect.1–

3 Stress changes the frequency of the vibrational modes of the ceramic lattice and thus the wavenumber of 

the Raman bands. The factor used to relate Raman shift to residual stress is a pre-requisite for the 

application of this technique to the determination of stress. Any PS characterization aiming to use a Raman 

effect in ceramics must start with precise, case-by-case calibration procedures.1 Thin air-plasma-sprayed 

yttria-stabilized zirconia (APS-YSZ) thermal barrier coatings (TBC) are widely used on turbine blades to 

sustain an appreciable temperature difference, allowing operation at high temperatures. The physical 

properties of the TBC depend upon both the composition and the microstructure.1 These coatings normally 

consist of three layers: an outer ceramic coating and a metallic bond coat that provides good adherence of 

the ceramic coating to the underlying substrate. The third layer (predominately Al2O3) develops between the 

ceramic coating and the bond coat during exposure at the service temperature and is termed the thermally 

grown oxide (TGO) layer.4 The growth of this oxide is one of the factors that contributes to the spallation of 

the TBC in the later stages of service life. To be able to evaluate the life of coated turbine blades, it is 

important to measure the progressive change in residual stresses in the TBC and TGO layers. Therefore, the 

calibration of the PS Raman effect with respect to the externally applied stress and internally generated 

secondary residual stress requires consideration of the specific microstructure for the material under 

investigation. 

There are published conversion factors for dense bulk tetragonal zirconia, including yttria stabilized zirconia 

(YSZ) and pure tetragonal zirconia5,6 under both uniaxial7 and hydrostatic5 external loading. However, well-

established calibration factors for APS-YSZ coatings have not yet been determined3,5,6,8–10 despite the fact 

that APS-YSZ is widely used on turbine blades. In addition, little consideration has been given to potential 

changes that may arise as a consequence of exposure to service conditions. In this paper, the conversion 

factor for APS-YSZ in the as-sprayed and a simulated service-exposed condition have been investigated. 

 
Experimental 

The starting materials for these experiments are APS-YSZ on a single crystal CMSX4 super alloy substrate 

with an intermediate Amdry 995 bond coat in the as-coated condition and a second specimen heat-treated 

for 1050 h at 1000 °C. Two micro-scale specimen disks with a diameter of ∼100 µm and a thickness of ∼30 

µm were cut from both APS-YSZ specimens using an ultraviolet laser ablation system. Hydrostatic stresses 

were applied to the specimens using a diamond anvil cell (DAC). The arrangement is shown schematically 

in Fig. 1a and a general view of the DAC is shown in Fig. 1b. Each specimen was loaded into a 150 µm 

diameter sample chamber created by drilling a hole in a stainless steel gasket pre-indented to a thickness of 

∼50 µm and mounted on the lower of the two opposing diamond anvils (Fig. 1a). The remaining space in the 



sample chamber was then filled with a 4:1 methanol:ethanol mixture as the hydrostatic pressure 

medium,11together with a few ruby grains (with a grain size of 1 to 3 µm) as an internal pressure standard. 

For each loading step, the pressure in the chamber was measured by photo-stimulated luminescence piezo-

spectroscopy (PLPS) emission from the ruby grains according to the calibration undertaken by He and 

Clarke.12 Since the conditions within the DAC were hydrostatic, the constant 7.61 cm−1 GPa−1 for the R2 

(14432 cm−1) peak shift was used. The shifts of the Raman peaks were recorded at the same time to 

determine the conversion factor. Under each loading condition, 3 to 5 locations around the specimen were 

investigated and at each location 3 spectra were acquired to check both the experimental uncertainty and 

the variation of the stress around the specimens. Therefore, for each stress point, 9 to 15 measurements 

undertaken on the specimen were averaged and the standard deviation plotted as an error bar. A long 

working distance (LWD) Olympus lens with a 50× magnification and a numerical aperture of 0.55 was used 

when acquiring the spectra. 

The cross-section of the APS-YSZ, presented in Fig. 2a, shows the complex microstructure and Fig. 2b 

shows typical Raman spectra for APS-YSZ. The measurements were made using a Renishaw Ramanscope 

spectrometer, model 2000, fitted with a laser source with a wavelength, λ, of 632.8 nm and an integrated 

microscope that allows the observation of the specimen surface. The peaks were fitted using a mixed 

Gaussian and Lorentzian method after the removal of the background.12 The peaks centered at 608 

cm−1 and 640 cm−1 were selected for measurement and calibration because of their large signal-to-noise 

ratio and pronounced intensity. The other peaks as shown in Fig. 2b have significantly reduced intensity at 

many locations in both the as-coated and heat-treated specimens. It was noteworthy that most of the spectra 

collected during these experiments included the full six-peak tetragonal zirconia pattern, whereas at some 

locations there was a reduced intensity of peaks located within the lower frequency range. This scenario 

limits the application of the peak centered at 465 cm−1 for calibration of APS-YSZ as proposed by Limarga et 

al.13 based on bulk dense pure YSZ material. 

 
Results 
 
Loading Response of APS-YSZ 

In the first experimental run, the as-coated APS-YSZ specimen was loaded to a compressive stress of ∼14 

GPa, unloaded slowly to zero, and then reloaded to ∼24 GPa.† The aim of these repeated cycles of loading 

and unloading was to establish whether any deformation damage was introduced into the APS-YSZ during 

the first loading cycle. The hydrostatic stress-induced shift of the Raman peak centered at 640 cm−1 is 

plotted in Fig. 3. At low stress, the Raman shift follows a linear response to applied hydrostatic stress, but at 

high stress the response indicates a nonlinear elastic behavior as observed in macro-scale testing.14,15 No 

hysteresis or plasticity was observed during the repeat loading, unloading, and reloading cycles. 



The linear relationship found between the externally applied stress and Raman shifts at low range is 

consistent with the behavior of pure, dense bulk YSZ material.5–7,10,16 Elastic stiffening of the material with 

increasing stress was observed at values above ∼15 GPa. This may be due to the consolidation of the 

specimen by the closure of flaws and pores. Certainly it is one of the distinct characteristics reported for 

structured tetragonal zirconia compared with pure bulk YSZ.2,17 In addition, a reversible phase transformation 

from tetragonal zirconia to cubic zirconia was observed in this experiment at ∼15 GPa, which is higher than 

the 8 GPa transition pressure reported for undoped tetragonal zirconia.2 We defined the appearance of the 

cubic zirconia phase in terms of the sudden increase in intensity of a peak centered at ∼570 cm−1 and the 

more pronounced intensity at ∼610 cm−1.6 The higher transition stress level is consistent with the fact that the 

microstructure of the YSZ accommodates part of the externally applied stress together with enhanced 

stability of the tetragonal phase. 

In general, the nonlinear elasticity response of APS-YSZ at high stresses recovered elastically and did not 

introduce any obvious damage within the lower loading range. This covers the range of interest for the 

measurement of TBC stresses, which is normally lower than 1.5 GPa.13,18 Therefore, in the second 

experimental run, an as-coated specimen was heat-treated for 1000 h at 1050 °C, then loaded from zero to 

∼1.6 GPa and unloaded to zero in small steps to establish the Raman conversion factor. The Raman shifts 

both for 608 cm−1 and 640 cm−1 peaks show a linear response with the increase of hydrostatic stress as 

shown in Figs. 4a and 4b. 

An unavoidable issue in this experimental work, which may contribute to the stiffening in as-coated 

specimens under high stress, is that when the pressure in the DAC exceeded about 10 GPa, the liquid 

mixture transformed into an amorphous solid state so that the stress state was no longer purely 

hydrostatic.11 Non-hydrostatic stresses can create inhomogeneous strain in a crystal and this is reflected in 

the broadening of the R1 and R2 ruby peaks as the loading conditions changed in the DAC as shown in Fig. 

5. The two ruby peaks (R1: 14400 cm−1, R2: 14432 cm−1) have a stable full width at half-maximum (FWHM) 

as the stress increased, but they significantly broaden when the stress reaches ∼10 GPa. This indicates that 

the introduction of anisotropic stress conditions results in stress along the diamond loading axis that is not 

exactly the same as the stress in the plane perpendicular to the diamond loading axis. Gadag et 

al.19 suggested that it is difficult to precisely quantify the anisotropy, especially if the crystal is not cubic. 

However, ruby is a relatively stiff material with a bulk elastic modulus of about 254 GPa,20,21 so it is 

intrinsically less sensitive to non-hydrostatic components of stress. The stress in the DAC, therefore, was still 

calculated using the hydrostatic factor of 7.61 cm−1 GPa−1 even when the value was in excess of 10 GPa. 

This approximation will tend to minimize the stiffening trend for the YSZ at higher stresses. 

 
 
 
 
 



Raman Conversion Factor 

In the application of Raman spectroscopy to TBCs formed by air plasma spraying of YSZ, the stresses of 

interest are normally less than 1 GPa and are in the linear range of the loading curve (Fig. 3). The externally 

applied hydrostatic stress, σ, is calculated using the following relationship: 

σij 1⁄4 υij=Πij  

 
where Δν is the Raman shift of the peak (cm−1) from the stress free state and Π is the conversion factor. We 

consider only the principal stress tensor in this hydrostatic loading environment. Shifts to a higher frequency 

indicate a compressive stress. 

The factor to convert the Raman shift to stress was quantified for both the as-coated and heat-treated 

specimens tested (Fig. 4). The peak at 608 cm−1 yielded Π values of 5.07 ± 0.1 GPa−1·cm−1 for as-coated 

APS-YSZ and 5.05 ± 0.1 GPa−1·cm−1 for heat-treated material (Fig. 4a). By comparison, the peak at 640 

cm−1 is related to externally applied stress by a Π value of 5.55 ± 0.1 GPa−1·cm−1 for the as-coated APS-YSZ 

and 5.65 ± 0.1 GPa−1·cm−1 for the heat-treated (Fig. 4b). There are a range of values that have been 

reported previously for tetragonal zirconia material in different conditions. Teixeira et al.10 presented a linear 

relationship between the applied tensile stress and the Raman shift and proposed that each shift equals 220 

MPa,22 which indicates a conversion factor of 4.54 GPa−1·cm−1. This value is fairly close to the value of 5.55 

± 0.1 GPa−1·cm−1 obtained for the 640 cm−1 wavenumber peak in this contribution. However, Teixeira did not 

provide detail for the loading and measurement system used. Other factors reported vary with the materials 

tested and the loading approach applied. For example, Tanaka et al.23 gave a uniaxial factor of 25 

GPa−1·cm−1 by loading a free-standing 8 wt % YSZ manufactured by APS, whereas Cai et al.6 obtained a 

uniaxial value of 1.1 GPa−1·cm−1 for dense yttria-stabilized cubic polycrystalline zirconia. For bulk dense 

materials under hydrostatic loading conditions, the variation in the conversion factors diminishes such that 

Alzyab et al.8 acquired a value of 3.2 GPa−1·cm−1 for 5 wt % YSZ and Bouvier et al.5 reported 2.79 

GPa−1·cm−1 for nanometric tetragonal zirconia. These values are significantly different for the APS-YSZ 

because they used single crystals and powdered specimens, respectively. Considering the results in this 

contribution, the factor given for the 608 cm−1 peak is smaller than that given by the 640 cm−1 peak and this 

trend is in agreement with data obtained previously.5–7 

The sintering of APS-YSZ by heat treatment has been reported to cause a change in the elastic modulus 

obtained by nano-indentation, which is a uniaxial compressive loading deduced modulus.24,25 In the present 

specimens, the sintering leads to linking of micro-cracks and splat boundaries to form larger cracks and 

boundaries together with a reduction in porosity. The current test considers the compliance of the material 

under hydrostatic pressure. The selected heat treatment of 1000 °C for 1050 h provides an APS-YSZ 

microstructure that is judged to bound the severe thermal history experienced by TBC coated blades in land-

based gas turbines during service.26 A nano-indentation test carried out on the heat-treated specimen 

validated that the sintering has completed since the elastic modulus values compare with the fully sintered 

data. Despite the changes in the elastic modulus and microstructure, the conversion factor remains 



unchanged within experimental error so that a single value can be used to measure stresses over the 

service life of coated turbine blades. 

The application of this conversion factor to the measurement of residual stress on components or test 

specimens is a reversed process of the calibration. The Raman shifts are measured and stress is deduced 

from the parameters obtained from the linear curves in Figs. 4a and 4b. Hence, it is important to consider 

differences in the conditions of externally applied stress used in the calibration and intrinsic residual stresses 

in a test specimen together with the sampled volume. Residual stress is a secondary stress so that there is 

no displacement of the body.27 The information collected from Raman spectra is a description of the average 

stress state of the material in the probed volume. As shown by the present workers there is dispersion of the 

incident laser beam within the APS-YSZ to produce a cone-shaped volume so that the beam increases from 

an initial 1.5 µm diameter to ∼35 µm diameter at a depth of ∼40 µm.28 Thus, splat boundaries, pores, and 

other micro-scale flaws are contained within a typical sampled volume. A mix of nano-scale columnar 

prismatic and equiaxed YSZ grains is contained within the splats as shown in Fig. 6. The length of the 

prismatic grains is ∼500 nm, and the size of the equiaxed grains varies from 50 nm to 200 nm in diameter. 

Both the intra-granular and inter-granular defects were observed at the fracture surface. Considering the 

large number of grains sampled, the orientation of unit cells can therefore be assumed to be isotropic, and 

the stress to be in a multi-axial state. Therefore, the hydrostatically calibrated conversion factors can be 

readily applied to gain the hydrostatic stress level in the probed volume. However, it should be noted that the 

stress calculated from the Raman shifts represents the average of the multi-axial local stress in the probed 

volume. It cannot be used to determine whether the whole YSZ layer is in a biaxial, uniaxial, or hydrostatic 

state. The macro-scale stress state of the layer is defined by macro-scale elasticity theory.27 For example, in 

TBCs, where the YSZ layer is ∼200 µm thick and the substrate is of the order of centimeters thick, linear 

elastic generalized plane stress theory is normally adopted to assume that the YSZ is in the biaxial stress 

state. 

 
Conclusions 
In summary, the factors to convert wavenumber shifts to stress in Raman spectroscopy have been evaluated 

for peaks at 608 cm−1 and 640 cm−1 for both as-coated and thermally aged APS-YSZ. These factors 

obtained from the 640 cm−1peak are 5.65 GPa−1·cm−1 for as-coated and 5.55 GPa−1·cm−1 when heat-treated 

at 1000 °C for 1050 h. The corresponding values for the peak at 608 cm−1 are 5.07 GPa−1·cm−1 and 5.05 

GPa−1·cm−1, respectively. Taking into account the experimental error of ±0.1 GPa−1·cm−1 together with the 

good repeatability of this calibration, we conclude that thermal aging does not affect the Raman conversion 

factor. In addition, the response is linear over the range up to 10 GPa, thereby giving confidence when 

making measurements of stress up to this value. The use of a single conversion factor provides confidence 

in the measurement of stresses within TBC coated components subject to a range of thermal exposures 

typical of those encountered in service of land-based gas turbines. 
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FIG. 1.  

( a) The schematic arrangement of the diamond loading system and ( b) the general view 
of the diamond anvil cell. 

 

 

  



FIG. 2.  

APS-YSZ ( a) scanning electron micrograph showing as-coated cross-section 
microstructure, and ( b) typical Raman spectra of tetragonal zirconia together with a 
spectrum showing the disappearance of the Raman peaks in the range 100 cm−1 to 500 
cm −1. 

 

  



FIG. 3.  

Shift of the 640 cm −1 Raman peak of the as-coated specimen subjected to hydrostatic 
stress. 

 

  



FIG. 4.  

The shifts of ( a) the 608 cm −1 peak and ( b) the 640 cm −1 peak for TBC specimens 
subject to hydrostatic stress. 

 

  



FIG. 5.  

R1 and R2 peak broadening on loading, unloading, and reloading cycles. 

 

  



FIG. 6.  

Scanning electron image of a fracture surface revealing both prismatic and equiaxed 
zirconia grains. 

 

 

 

 

 

 

 

 


