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Enabling accurate modeling of power and energy consumption in 

an ARM-based System-on-Chip. 

Jose Nunez-Yanez University of Bristol, Geza Lore ARM Ltd 

 

Abstract:  Motivated by the importance of energy consumption in mobile electronics this 

work describes a methodology developed at ARM for power modeling and energy estimation 

in complex System-on-Chips (SoCs).  The approach is based on developing statistical power 

models for the system components using regression analysis and extends previous work that 

has mainly focused on microprocessor cores.  The power models are derived from post-layout 

power-estimation data, after exploring the high-level activity space of each component. The 

models are then used to conduct an energy analysis based on realistic use cases including web 

browser benchmarks and multimedia algorithms running on a dual-core processor under 

Linux. The obtained results show the effects of different hardware configurations on power 

and energy for a given application and that system level energy consumption analysis can 

help the design team to make informed architectural trade-offs during the design process.   

Keywords: energy modeling, power estimation, system-level modeling. 

1. Introduction 

Energy efficiency is one of the primary design constraints for mobile devices that need to 

operate autonomously for as long as possible [1].  The current rate of battery life 

improvement of around 5 % per year [2] means that the limited energy budget could delay the 

introduction of the future chips needed to support workloads whose complexity increases by 

one order of magnitude every five years [3].    Additionally, minimizing power consumption 

reduces the amount of heat dissipated requiring lower cost packaging, cooling solutions and 

increasing device reliability. Available studies show that a 10 degree increase in working 

temperature causes a 100% increase in failure rate [4].   

The first action required to achieve the objective of minimizing energy or power consumption 

is to understand how the available energy budget is being used in the system [5].  This means 

that not only the main components such as the processor cores should be considered, but the 

whole system should be analyzed using real workloads as inputs to account for the 

dependency of power on the dynamic behaviour of applications. These analysis results should 

be available before the device has been fabricated and should be accurate enough to guide the 
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design team in the process of making architectural decisions leading to a solution superior in 

power and energy terms.    

 Fig 1 depicts the typical main components that can be found in a modern mobile phone. This 

paper focuses on the interaction of the application processor and the memory subsystem. 

These parts account for roughly 30% to 50% of the total device power budget in compute 

intensive applications such as media playing [5].  The power consumption of the 

LCD/backlight combination and radios are the two other main component drains in the 

system but they are considered to be beyond the scope of this work.  With these constrains in 

mind the present work contributions are as follows:  

1. The introduction of a power modeling methodology based on implementation data and 

regression analysis at the system level. The methodology enables the creation of accurate 

models that can then be stimulated from only sparse trace information collected during long 

application runs. 

2. The analysis of power and energy consumption trends in a state-of-the-art multiprocessor 

architecture with realistic benchmarks including internet browsing and video coding running 

on a Linux operating system. 

 

     Fig. 1. High-level view of a mobile phone architecture 

 

The rest of the paper is organized as follows.  Section 2 positions this work in relation to 

existing work in the field of power modeling. Section 3 presents the power modeling 
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methodology in detail. Section 4 presents the target system investigated in this work centered 

around a dual-core processor. Section 5 summarizes the power models developed for the 

different components. Section 6 showcases the application of the methodology to the 

estimations of power and energy consumption for a set of benchmarks and real applications.  

Finally section 7 concludes this paper indicating its capabilities, limitations and stating future 

work.  

2. Related work 

This section makes a  classification between research that considers power modeling at 

individual component level and system level which is the approach followed in this work. 

2.1 Power modeling at the component level 

 

This section reviews power modeling that considers independent components like the 

microprocessor core.  

2.1.1 Microprocessor core 

 

The component that has received most attention is naturally the CPU [6].  The standard 

approach consists of using existing cycle-level architectural simulators such as SimpleScalar 

[7] extended with tightly coupled power estimation capabilities. The power models added to 

the simulators are based on either analytical or empirical techniques [8].  Analytical 

techniques are useful for regular structures such as RAM-based structures (cache, register 

files, buffers etc). These analytical models suffer from inaccuracies since they cannot 

properly capture node capacitance that depends heavily on design layout. They are 

complemented with empirical models based on power analysis of structures expected to be 

reused, with data extracted from recently designed processors.  This methodology is used in 

power modeling research tools such as Wattch[9], SimplePower[10], and PowerTimer [11].  

Wattch [9] is a power-performance simulator widely used within the academic community. 

The base performance simulator is SimpleScalar and can be used to investigate the effects of 

cache organization, pipelining, multi-instruction issue, etc on power.  The energy models 

used in Wattch are based on scaled power numbers obtained from published values or 

analytical equations for the regular structures. SimplePower [10] tries to improve accuracy by 

capturing power variations due to switching-activity in the processor logic blocks. Detailed 

simulation-based circuit energy is obtained for possible cycle-to-cycle transitions of the input 
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pins of the different subunits and the values are stored in look-up tables. A similar approach 

is followed in PowerTimer [11] that includes a hierarchical suite of energy functions that are 

refined as the design and simulation model evolves. This allows a progressive improvement 

of the estimation accuracy when the circuit data becomes available.  

These solutions share the common characteristic that they are focused on the processor and 

that the methodology is based on obtaining power data for each of the individual 

microarchitectural components present in the microprocessor. The power data is stored in 

look up tables in which a different entry exists for each possible input transition. These tables 

can grow very large and Wattch uses a simple fixed-activity model.  Wattch only tracks the 

number of accesses to a specific component and utilizes an average capacity value to estimate 

the power consumed. The number of functional units considered in the processor can become 

very large as shown in [2] that models the power for a single 8-bit carry-select adder 

decomposed into its individual constituent gates. This approach is expected to be accurate for 

individual components but scaling it to full processors is complicated, slows down the 

simulation speed considerably due to the number of components that is necessary to trace and 

has limited accuracy because, for example, it neglects the layout of these units in relation 

with the other units and this can introduce errors. The advantage of this fine level 

decomposition is that it allows the study of the power effects of replacing subunits, for 

example, using a different addition technique.  In contrast, our processor model is simpler 

although it is tuned to the Cortex-A9 processor [12] considered in this work and a different 

model should be developed if a different processor will be used. In essence our approach 

focuses on system architectural changes rather than microarchitectural changes in the 

processor. 

Another challenge also present in the above described techniques is that the low level 

switching activity needed to address the look up tables will not be generally   available in 

simulators such as SimpleScalar that make a number of simplifications to make the 

simulation numerically efficient [6]. The speed efficiency of simulators such as SimpleScalar 

is obtained by abstracting away the microarchitectural details but these details are required to 

obtain an accurate power figure. The solution is to add back some of this complexity but this 

slows down the simulation significantly [6]. Overall the discrepancies among the power data 

obtained by these simulators can be considerable not only affecting the absolute power values 

but, more importantly, the power trends which could make the designer make the wrong 

decisions as established in [6].  
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More recently the work done in [13] targets  the IBM POWER architecture using linear 

regression, focusing on how to select the activity measures suggesting a combination of 

experience and a mathematical systematic approach. The resulting power model for the 

POWER family of processors uses a total of 36 activity measures and is considerably more 

complex than the proposed power model for the cores in the current work. In our case the 

selection of activity measures is restricted to measures that are easily accessible in the 

analyzed IP and that are abstract enough so that they can be collected from alternative 

simulation models as well.    

The application of linear regression to power modeling without explicit workload activity as 

done in this paper is investigated in [14]. PowerTimer is used with an out-of-order 

superscalar processor simulator [15] to obtain power estimates based on transistor-level 

power analysis and resource utilization statistics.  The approach consists of monitoring the 

system utilization varying a set of parameters that include the L2 cache size, main memory 

latency, number of physical registers, while running the SPEC CPU2000 [16] benchmarks. 

This data is then used to build the power models using regression techniques. The resulting 

power models reduce the amount of simulation needed in the sense that they can predict 

power based on a number of selected parameters such as number of functional units, number 

of reservation stages, pipeline depth, number of physical registers, etc. Nevertheless, since 

there is strong dependence between power and workload a number of predictors are added to 

the power models to reflect processor activity such as L1 cache misses, branch 

misspredictions, etc requiring some simulation data.  

All the methods discussed so far require low-level knowledge of the processor under 

investigation comprising circuit-level, gate-level or register transfer descriptions. Other work 

logs the number of instructions executed without considering microarchitectural effects.  

Techniques based on instruction-level power analysis [17] leave out important details such as 

pipeline stalls, cache misses, circuit state that affect switching activity etc. For example a 

modern out-of-order superscalar processor such as the one considered in this work expends a 

significant amount of energy extracting instruction level parallelism,  register renaming, etc 

compared with the activation of functional units  corresponding   to  the executed 

instructions. Alternatively, functional unit power analysis based on analytical expressions has 

also been developed that require no detailed knowledge of the processor circuitry [18] and is 

expected to increase accuracy compared with instruction-level. The basic idea is the 

distinction of functional blocks like the processing unit, instruction management unit, internal 

memory etc. Power is measured in the fabricated chip and arithmetic functions are developed 
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for each block to determine its power consumption depending on a set of activity measures. A 

number of scenarios are run in the hardware to stress each functional block. The method 

identifies six functional blocks (clock tree, instruction management unit, processing unit, 

internal memory, L1 data cache and L1 instruction cache). It does not consider what happens 

beyond the L1 cache.  The measures considered include L1 hits, CPU stall cycles, number of 

executed instructions, etc.  A non-linear model is obtained using curve fitting and the 

resulting equations that define the power for each functional unit depend on a single activity 

measure. For example the power of the processing unit depends only on the number of 

executed instructions.  

2.1.2 System interconnect 

 

Another component that has received significant attention is the system interconnect (bus or a 

network-on-chip). The analysis done in [19] indicates that external memory accesses are a 

major source of energy consumption in an embedded system. The work concludes that this is 

especially the case in multimedia platforms where power associated with off-chip accesses 

can dominate the overall power budget since the algorithms are more memory bound.  

Networks-on-chip are considered in [20]. The work presented in [20] indicates that power 

estimation considering only the total volume of data transported incurs inaccuracies since it 

abstracts away congestion. The proposed rate-based methodology measures traffic in a given 

sample period similarly as the approach follow in [20].  The rate-based methodology is used 

in [20] with linear regression to develop power models for the Hermes NoC where it is shown 

to decrease the error to around 6% compared with Synopsys PrimePower.  

2.2 Power modeling at the system level 

 

This section reviews power modeling that considers a system form by a set of interacting   

components.  

2.2.1 Power modeling based on high-level activity 

 

The proposed research falls into this category in which reference power consumption values 

are obtained based on a power estimation tool. A similar power estimation methodology 

targeted at the system-level is presented in [21]. The processor power model is not based on 

regression analysis but is simpler, based on just two states (busy and idle) with power 

assigned to each state based on an average obtained over many clock cycles. Linear 
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regression is used for the interconnect with a model of higher complexity than that for the 

CPU. The reference power data for each of these two models is based on pre-layout data 

obtained using a proprietary tool called CubicPower. The proposed work is based on post-

layout data since our experience tells us that otherwise significant inaccuracies are introduced 

especially for modern processor cores such as the Cortex application processors that have 

customized implementation flows for optimal efficiency.  The use of effective power 

management by the OS has been shown in [22] in which a power model allows the OS to 

obtain accurate estimates of a running process power consumption. The model is similar to 

the proposed approach although only based on four set of events for the four available 

performance counters in the selected computer system.  Our model uses more low-level 

events and introduces the concept of states (e.g core active,  core stall).  Initial experiments 

showed that these additional measurements were needed in the proposed approach to obtain 

the target level of accuracy of around 5%.    

 

This include measures taken from the performance counters available in  the microprocessor 

cores but also other states and events manually selected in the SoC and not available to the 

software.  A similar approach is used in [23] in which event counters are used to define an 

energy-aware scheduling policy which is implemented in the Linux Kernel.  The approach is 

applied to a commercial architecture/board and it can only use the performance counters 

available to the software running in the microprocessor. In both cases energy modeling is 

used to better understand how applications are consuming the available energy and take 

actions affecting clock rate and voltage scaling to save energy.  Our objective is different 

since we want to be able to make energy-aware system-level decisions at a pre-silicon stage 

when RTL code (or parts of it) is available but no system has been built. 

2.2.2  Power modeling based on physical measurements 

 

Physical measurements are generally considered the most accurate way of determining power 

consumption but they do have limitations. Firstly, physical measurements need fabricated 

chips which is too late and expensive in the design cycle. Secondly, process variability is 

expected to distort the measurements obtained from a limited number of fabricated chips.   

System power analysis using physical measurements in a smartphone is performed in [5]. In 

this case physical power measurements are taken at the component level on a piece of real 

hardware. This is possible because the smartphone under consideration (Openmoko 
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FreeRunner) includes this capability but this is much more limited in general commercial 

devices. The device is instrumented to measure the power of CPU, RAM, GSM, LCD panel 

and touch screen, LCD backlight, WiFi, etc while running an Android 1.5 port and diverse 

applications.  The backlight is found to be the main source of power consumption when the 

screen is on.  The results also show that DRAM power can exceed CPU power in certain 

synthetic workloads but in practical situations CPU overshadows DRAM by a factor of two 

or more.  

Instead of using the physical probes available in an experimental device to measure the power 

of individual components the work in [24] monitors overall power comsumption in a standard 

smartphone while running a set of applications that stress different parts of the system.  The 

data obtained in this way is used to build the power models using linear regression 

techniques.  The smartphone is then used normally by users while specially designed 

software logs the activity of the different parts of the system. The log data and power models 

are then used to identify the screen and the application processor as the main sources of 

power comsumption. An optimization is proposed that gradually reduces screen brightness to 

achieve a 10% reduction in total system power.   

The following limitations have been identified in the previous works that are addressed in this 

paper. Firstly, power is calculated using pre-layout information so the  accuracy will be 

reduced. In contrast our power models are derived from data obtained after a full 

implementation of the RTL designs and use PrimeTime PX [25] as the source of the 

reference power estimate. PrimeTime PX is a standard tool, and its level of accuracy is 

accepted by the industry, given properly characterized libraries and silicon process models. 

Secondly, the results tend to be based on benchmarks not necessarily representative of 

realistic use cases. Finally, modern multi-core configurations are not considered.  

3. Methodology 

 

This section presents the power characterization and modeling methology targeted to IP 

components that have RTL available that can be implemented before real silicon is available. 

3.1 Methodology overview 

The presented methodology provides a way of estimating the power or energy consumption 

of computer systems under real use cases with a reasonable simulation speed and 

computational complexity. In our systems of interest, a significant portion of the power 
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budget is spent in complex SoCs, which primarily are implemented using the standard cell 

based methodology. The industry standard way of accurate power analysis of these designs 

relies on RTL or post-layout netlist simulations. This process requires low level design 

information to be able to deliver accurate power estimates. The required inputs include a 

post-layout, clock tree inserted netlist, extracted parasitics, characterized libraries used at 

synthesis, and most importantly a very detailed (per net) capture of the switching activity of 

the design. We call this standard power analysis methodology “back-end power analysis” as 

it can be performed in the back-end ASIC design flow. There are two main reasons why 

back-end power analysis is slow and is infeasible for full application workloads. Firstly, 

capturing the switching activity required as an input is slow, because it requires RTL or 

netlist simulation and the monitoring of every net in the design. Secondly, the power 

estimation process itself is slow, for the same reason of having to account for every net in the 

design. We found that the application of regression modelling to estimate the power or 

energy consumption of RTL IP can provide sufficient accuracy within a 5% error, while 

maintaining the number of input variables low, therefore removing the major speed limiting 

factors mentioned above. Regression analysis can also be used to model other system 

components, which are not implemented using RTL synthesis. 

The granularity of power estimation is at the component level, e.g.: CPU cores, slave 

components in a SoC or commercial of the shelf memory chips. It is useful to compose total 

power consumption as the sum of static power consumption and active power consumption: 

ActiveStaticTotal PPP +=  

Static power is the part which is independent of the actual activity of the component, or the 

activity only has second order effect on this term. Active power is the part which is primarily 

determined by the activity of the component, but it can also depend highly on other factors. 

These two terms represent the leakage and dynamic powers of a SoC component, but the 

separation is also useful for describing other components of a system.  

In this paper we present the methodology and results apply to active power modeling of RTL 

IP while its extension to include static power will be conducted in future work. The current 

research is based on a silicon process optimized for low leakage (TSMC 40LP), and therefore 

the static power represents a small percentage of total power and this has prioritized active 

over static power. Additionally, the higher threshold voltages needed to obtain low leakage 

means that the supply voltage in the low power process must be increased and the dynamic 

power is actually higher compared with a high performance process at the same frequency.  
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If RTL is not available power models can be extracted from data sheets or direct 

measurement in running silicon. Direct measurements make sense for IP blocks that are going 

to be reused so silicon is already available and in principle should be more accurate than RTL 

characterization. Nevertheless, direct measurements assume that the available silicon allows 

the measurement of power corresponding to the individual IP block and it could also 

introduce inaccuracies due to process variability if the measurements are done on a single 

device.  

3.2 RTL characterization flow 

To accurately model the active power or energy consumption of a SoC component, we use 

regression analysis, where the dependent variable is the expected active power or energy 

consumptions for the given building block, while the regressors are high level metrics of 

activity. The high level activity metrics used should be easy to capture from simulation. The 

choice of these metrics is a critical consideration in building power models for IP blocks and 

requires a detailed understanding of the operations of the component. Section 5 details the 

power models developed for the components considered in this work. 

The other important requirement of regression analysis together with the choice of the 

regressors is the quality of the sample used for regression. To ensure high accuracy of our 

models, we use the industry standard back-end power analysis flow to produce our reference 

power or energy consumption data. Fig. 2 illustrates our RTL characterization flow, which 

involves the following steps: 

1. Create a representative reference implementation of the RTL using the target process 

technology. 

2. Create representative power benchmarks for the IP. 

3. Create a test bench to simulate the execution of power benchmarks on the RTL. 

4. Simulate a large set of power benchmarks on the test bench. Capture the high level 

activity metrics and the switching activity. 

5. Using the back-end power analysis flow, extract the power or energy consumption of the 

power benchmarks based on the captured switching activity using the reference 

implementation. 

6. Build the regression models based on the captured high level activity metrics, and 

corresponding power/energy consumption estimates. 

There are some important thoughts that should be kept in mind about the steps. 
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Firstly, as the actual power consumption of the implemented design has a significant 

dependence on the actual implementation flow, the reference implementation ideally should 

match the target implementation. The reference implementation should be done using the 

same technology libraries, timing constraints, clock tree structure, process corner, floor plan, 

power/clock gating strategy, utilization factor, etc expected in the target design. In most 

cases, some of these settings must be approximated based on user experience because they 

are not known before the definition of the final chip.  

When creating the power benchmarks, it is important that they are designed in such a way, 

that they exercise the whole of the relevant activity space, i.e.: the power benchmarks must 

make sure that all possible activities which significantly influence energy consumption are 

discovered during the characterization process. 

Building the test bench for RTL simulation is conceptually straightforward. One can use 

either directly the RTL or the netlist obtained through the reference implementation flow. 

Netlist simulation is an order of magnitude slower than RTL simulation. The benefit of netlist 

simulations is that we can obtain more accurate power estimates from the back-end power 

analysis tools, as there is direct access to capture the complete set of low-level activity of the 

implementation. RTL simulation is faster, but we can only capture the switching activity of 

synthesis invariant nets, therefore the reference power estimates are less accurate. Based on 

our experiments, we found that RTL switching activity based power estimates still provide an 

acceptable level of accuracy for the reference data, within 5% difference from the values 

provided by netlist simulation. Therefore we choose this option to benefit from faster 

simulation speed for the characterization process. 
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Fig. 2. RTL IP characterization flow 

 

The simulations of the power benchmarks themselves are also straight forward.  The low-

level switching activity needs to be captured. This can be done using the standard VCD 

format or an aggregate switching activity format (e.g.: SAIF). For average power analysis in 

the back-end flow, both formats give the same result. VCD files tend to be very large in size 

and they grow with simulation time. We use the aggregate switching activity format, as we 

are only interested in total energy consumption (average power), and their fixed size makes 

them easier to handle. The high level activity metrics also need to be captured. There is no 

standard format for this. We simply use RTL counters connected to signals indicating the 

high level activities, and write the values of these counters into a text file at the end of the 

simulation. 

Back-end power analysis is a standard step in the implementation flow, and provides an 

average power consumption value for the reference implementation, given an aggregate 

switching activity file. In our work, we used Synopsys PrimeTime PX. 

The regression model can be built based on the corresponding high level activity metrics and 

back-end energy estimates. We found that simple linear models have a satisfactory accuracy 
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within a 5% error, given that we use appropriate regressors. Ideally the regressors should be 

activity metrics that have a clear impact on power and that are high-level enough so that 

simulations that do not involve RTL can also be used to collect them. Two primary types of 

activity metrics are considered: 

� State like metrics which measure the time spent in some form of state. A few 

examples in case of a CPU are: time spent not executing instructions (caused for 

example by waiting for external memory accesses) or time spent actively processing. 

� Event like metrics which count the number of occurrences of some form of event. 

Examples for a CPU: Number of L1 data cache hits or misses, number of instructions 

executed. In case of memory or network interfaces examples can be: number of bytes 

transferred, number of transactions completed. 

These means that Energy consumption can be estimated as follows: 
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where: 

J = Number of state like activity metrics in the model 

K = Number of event like activity metrics in the model 

Tj  = Time spent in state j (activity metric value) 

Pj  = Power contribution of state j 

Nk  = Number of occurrences of event k (activity metric value) 

Ek = Energy cost of event k 

a = High-level Activity vector: (T1  T2 … TJ  N1  N2 …  NK ) = (a1  a2 …  aM)  

m = Vector of unknown power model coefficients: 

(P1 P2 … PJ E1 E2 … EK)
T
 = (m1  m2 …  mM)

T 

 

The model coefficients m can be calculated using for example the standard Least-Squares 

method based on the (activity vector, back-end power estimate) pairs collected from 

simulation. 
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4. Target system 

The target system is illustrated in Fig. 3. and corresponds to the shaded area of Fig. 1. Its 

central component is the Cortex-A9 multiprocessor core. The Cortex-A9 multiprocessor is an 

application processor introduced by ARM in 2007. The Cortex-A9 is designed around a 

dynamic length, multi-issue superscalar, out-of-order, speculating 8-stage pipeline.  

Additional processing includes a wide SIMD data processing engine called NEON. In this 

research a dual-core configuration is considered representative of current mobile phone 

architectures while frequency is set at 800 MHz achievable in the low-power process 

investigated. Extending the methodology to other technologies or system configurations (e.g 

four processor cores) is straight forward after collecting the proper activity measures and 

adjusting the power models. 

The L1 instruction and data caches are both set at 32 KB as shown in Fig. 3. The cores are 

connected through a cache controller to a shared unified L2 cache. For this investigation we 

vary the size of the L2 cache between 128, 256, 512 or 1024 KB configurations. There are 

two 64-bit bus interfaces to the cache controller shared by the two cores. The L2 cache 

controller also has two 64-bit ports connecting it to the on-chip interconnect.   The 

interconnect uses the AMBA AXI3 protocol to connect a configurable number of masters and 

slaves,  and provides additional interfaces to AHB or APB compliant components as well. It 

provides support for multiple outstanding transactions and out-of-order transaction 

completion.  The interfaces to the masters and slaves can be synchronous or asynchronous 

with variable data widths. In the current configuration the interconnect has been configured 

with multiple synchronous clock domains and a fully connected crossbar.  The memory 

controller implements the interface to the LPDDR2 (Low Power DDR2) PHY using an 

industry standard DDR PHY interface (DFI) [26].  The clocks in the system are set to 800 

MHz for the processors, L1 and L2 caches, 200 MHz for the interconnect and 400 MHz for 

the memory controller and LPDDR2 memory. The processor and interconnect speed are 

chosen as representatives of the frequency in the TSMC 40LP process selected in this work 

while the LPDDR2 is set to its normal operating frequency. The memory models are 

behavioral models for LPDDR2 memory chips developed by Micron [27]. The dual data rate 

feature means that two 32-bit words are read or written per clock cycle. This is the reason 

why the DFI interface doubles the data width compared with the memory. The memory 

controller clocks at 400 MHz with a data width of 64 bits while the interconnect clocks at 200 

MHz and uses an interface of 128 bits to match the bandwidth of the memory controller.   A 
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third master is added to this system in the form of a traffic generator. This traffic generator is 

designed to generate a configurable amount of traffic in the interconnect directed to the 

external memory. This additional master could represent a GPU or hardware accelerator as 

shown in Fig. 1 in a real system. The HLA (High Level Activity) monitor collects all the 

trace information during the run.  

 

Fig. 3. Target system architecture 

To simulate this system running realistic benchmarks and Linux in a traditional RTL 

simulator would need an unfeasible amount of time with a typical equivalent frequency of 

100 Hz so we have used a specialized emulator machine (Cadence Palladium XP [28]). This 

emulator is a processor-based hardware/software verification and computing platform.  RTL 

gets compiled into binary code that runs on the specialized processors available in the 

emulator. The designs run up to an equivalent frequency of 4 MHz. This is a fraction of the 

performance that could be obtained with a FPGA-based emulation but it has the advantage 

that the compilation runs are much faster than the place and routing jobs needed for the 
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FPGA.  The high-level activity data is collected in the HLA monitor unit. Once this activity 

data has been extracted from the emulator the power models can be used to observe how 

system energy changes in each of the system components with time. 

5. SoC power models 

The linear regression methodology described in section 3 was used to obtain the power 

models for the memory controller, interconnect and processor cores which are IP cores 

developed by ARM and RTL is available for them.  The power models for the LPDDR2, L2 

cache and PHY were obtained based on data sheets and available Spice models.  A summary 

of the activity metrics used for the power models in the system and the obtained normalized 

power coefficients are presented in Table 2.  

5.1 CPU power model 

To characterize the CPU power that includes the L1 caches, we built a test bench connecting 

the CPU to a DRAM controller via an AXI interconnect, in a similar setup as in our target 

system. The L1 cache is added to the CPU model because the fully implemented  Cortex A9 

hard macro already includes the L1 cache and removing it will imply the design of a new 

hard macro that will not represent the available product. The L1 is considered as an additional 

unit that forms part of the processor implementation and its activity is traced using the 

available performance counters since it is expected to have an impact on power. We used 

random instruction sequences as power benchmarks. The random instruction sequences have 

a constrained proportion of integer to floating point instruction ratios and contain typical 

program structures such as one and multi dimensional loops, memory intensive regions, etc. 

to ensure the activity space is thoroughly covered.  

We found that the performance counters of the Cortex-A9 processor are good activity metrics 

for power modeling, and we mainly used these metrics as regressors. We also used a few 

additional terms, which are derived from the performance monitor signals through simple 

Boolean functions. Using the performance counters as regressors has the additional benefit 

that they can be captured easily from silicon, therefore validating the model against a test 

chip is relatively easy. Fig. 4 shows the histogram of model error compared to the reference 

power data.  
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5.2 L2 cache power model 

The L2 memories are generated by a memory compiler as hard macros.  To obtain a power 

model for the L2 we make use of the data sheets generated by the memory compiler. The data 

sheets provide information on the read and write currents and voltage settings so it is possible 

to estimate the power used by each type of access to each memory block.  

The L2 cache memory is set associative with a total of 16 ways except for the smaller 

configuration of 128 KB with only 8 ways due to limitations in the memory compiler. 

 

 

Fig. 4. CPU power model error 

The architecture is shown in Fig. 5 for the 1 MB configuration with a total of 16 ways and 32 

bytes per cache line.  The RAM block SRAM2KX128 corresponds to a memory with 2K 

words and 128 bit per word and is generated with the Artisan high density single port SRAM 

RVT memory compiler using the TSMC 40nm LP libraries.   Each RAM block contains 32 

KB of memory and it is replicated 32 times to generate the 1 MB data memory. A tag 

memory word is associated to each L2 cache line. Similar memory blocks are generated for 

the other cache configurations considered in this investigation. The power implications of 

each type of access are summarized in Table 1. Table 2 shows the model coefficients for each 

of the  L2 cache configurations :  1024, 512, 256 and 128 KB. 
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          Fig. 5. L2 cache organization 

 

 

Table 1. L2 power model components 

 Read data 

power 

Read tag power x16 (x8 

for 128KB) 

Write tag power Write data power 

Data read hit yes yes no no 

Data read miss no yes yes yes 

Data write hit yes no yes yes 

Data write miss  yes yes yes 

Instruction read hit yes yes   

Instruction read miss  yes yes yes 

Data write miss with 

eviction 

yes yes yes yes 

Data read miss with 

eviction 

yes yes yes Yes 

5.3 memory controller power model 

Similarly to the CPU, we used randomized stimulus as power benchmarks to characterize the 

memory controller power model. We connected the memory controller to a traffic generator 

which generated randomized read and write requests, with different constraints on total 

bandwidth requested, proportion of read and write operations, transaction burst lengths, inter 

transaction time distributions, etc.  Fig. 6 shows the histogram, of the model error. 

 

Fig. 6. Memory controller power model error. 
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5.4 Interconnect power model 

To develop the power model for the interconnect the CPU cores in Fig 3 were replaced by 

two traffic generators capable of sweeping the activity space generating different traffic 

types. The third traffic generator shown in Fig 4 represented a second master type (e.g GPU, 

hardware accelerator). There are a two main reasons why the CPU RTL models were not 

used directly. Firstly, power characterization should be based on benchmarks that exercise the 

interconnect thoroughly sweeping the activity space with different types and volume of traffic 

and this is easier to control with simple traffic generators. Secondly, adding the RTL 

simulation of the Cortex A9 multiprocessor will slow down the simulation unnecessarily.  

The model error that measures how the resulting linear equation estimates power against the 

PrimeTime PX results is shown in Fig. 7.   

 

Fig. 7. Interconnect power model error. 

5.5 LPDDR2 and PHY power models 

The power model for the LPDDR2 memory device is built based on the methodology 

described in [29], adapted for LPDDR2 memories, using data from publicly available 

datasheets from [27]. The PHY is characterized based on SPICE simulation at different 

bandwidth levels. 

 

 

Table 2. Power models activity counts. 

 Model Summary 

Parameter Value Type Description 

core_state_active  100  

 

 

 

 

Counts the number of 

cycles the core is in 

active state executing 

instructions 

core_state_stall  112 Counts the number of 
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CPU state 

 

cycles the core is in 

stall state waiting for 

some additional inputs 

before progressing 

core_state_wfi  0.12 Counts the number of 

cycles the core is in 

standby mode with 

most of the clocks 

disable.  

intc_state_clock_enabled  82 Counts the number of 

cycles during which the 

integer clock is enabled 

neon_state_clock_enabled  51 Counts the number of 

cycles  the neon data 

engine unit is enabled 

Integer_instruction_renaming  0.11  

 

 

 

 

 

 

CPU event 

 

Number of instructions 

going through the 

register renaming stage. 

floating_point_instrucion_renaming  0.19 Counts the number of 

floating point 

instructions going 

through the register 

rename stage 

neon_instruction_renaming  0.05 Counts the number of 

neon instructions going 

through the register 

rename stage 

d_cache_miss  0.87 Counts the number of 

L1  data cache accesses 

that resulted in a data 

cache miss 

i_cache_miss  0.22 Counts the number of 

L1 instruction cache 

misses. 

data_read_hit  101.0/93.5/90.5/57.2  

 

 

 

 

 

L2 cache event 

 

Counts the number of 

L2 data cache read 

accesses that result in a 

cache hit. 

data_read_request  131.2/121.0/116.7/83.89 Counts the number of 

L2 data cache read 

accesses.  

data_write_hit  103.9/96.2/92.8/59.52 Counts the number of 

L2 data cache write 

accesses that result in 

cache hit.  

data_write_request  131.2/121.0/116.7/83.89 Counts the number of 

L2 data cache write 

accesses. 

Instruction_read_hit 101.0/93.5/90.5/57.20 Counts the number of 

L2 instruction read 

accesses that result in a 

hit. 

Instruction_read_request  131.2/121.0/116.7/83.89 Counts the number of 

L2 instruction read 

accesses. 

write_channel_cpu_0  0.065  

 

 

 

Counts the number of 

write transfer in the 

cpu0/axi interface 

read_channel_cpu_0  0.075 Counts the number of 
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 Interconnect 

event 

 

read transfer in the 

cpu0/axi interface 

write_channel_cpu_1 0.073 Counts the number of 

write transfer in the 

cpu1/axi interface 

read_channel_cpu_1 0.078 Counts the number of 

read transfer in the 

cpu1/axi interface 

write_channel_tg  0.055 Counts the number of 

write transfer in the 

tg/axi interface 

read_channel_tg  0.043 Counts the number of 

read transfer in the 

cpu/axi interface 

read_channel_slave  0.055  

Memory 

controller event 

 

Counts the number of 

read transfer in the 

memory controller/axi 

interface 

write_channel_slave  0.056 Counts the number of 

write transfer in the 

memory controller/axi 

interface 

dfi_write_data_enable  112.5  

 

PHY event 

 

Counts the number of 

write enables in the 

dfi/memory chips 

interface. 

dfi_read_data_enable  112.5 Counts the number of 

read enables in the 

dfi/memory chips 

interface. 

activate_command  5.98  

 

 

LPDDR2 event 

 

Counts the number of 

activate commands in 

the memory chips. 

read_command  2.16 Counts the number of 

read commands in the 

memory chips. 

write_command  1.83 Counts the number of 

write commands in the 

memory chips. 

clock_enable_all_banks_precharge  24.97  

 

 

 

LPDDR2 state 

 

Counts the number of 

clock enable with all 

banks precharched 

events the memory 

chips. 

clock_disable_all_banks_precharge  0.85 Counts the number of 

clock disable with all 

banks precharched 

events the memory 

chips. 

clock_enable_some_banks_precharge  30.46 Counts the number of 

clock enable with some  

banks precharched 

events the memory 

chips. 
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5.6  System power model validation 

 

In principle, the ideal way to validate the system power model is to measure silicon 

implementing the IP components and then compare these values with the values obtained 

from the power model running a set of realistic applications. As already mentioned this 

method is not perfect since it does suffer from inaccuracies from the variability present in 

deep-submicron implementations and measures taken in a single or small set of boards. In 

this research such a real-silicon implementation was not available so an alternative approach 

was used.  A set of applications was selected as a validation data set independent of the 

applications that had been used to characterize the models. A simulation of the RTL was 

performed running these applications and both the high level activity metrics and low level 

switching activity were collected. The back-end power analysis flow was used to extract the 

power and energy consumption of the validation benchmarks and the obtained results were 

compared with using the power models and the high level activity metrics. The results are 

shown in Fig. 8 as a relative error. Notice that this error must be added to the error introduced 

by back-end power analysis flow to obtain an absolute error measurement. Synthetic 

benchmarks such as CPU stress show a very high accuracy with more realistic benchmarks 

such as matrix multiplication and FFT showing around a 5% error.  

 

 

Fig. 8.  Power model validation. 
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6. Power and Energy analysis 

This section uses the power models developed in section 5 to analyse the power and energy 

consumption for a set of realistic benchmarks representing web browser activity and video 

coding. Additionally, we also select a number of applications extracted from the SPEC 

CPU2000 benchmarks. The experiments highlight the effects of non-CPU components in 

system power. For reasons of market confidentiality the figures have been normalized and the 

units in the axis removed.  In any case, the contribution of the paper is not to show these 

absolute values but the relative changes in energy and power depending on system 

configuration and executed benchmark.   

6.1 Benchmarks description 

 

The browser activity benchmark is called Bbench [30].  Bbench is a set of browser 

benchmarks that can be used to measure web page render performance of a browser on a 

target system over a number of pages. In the configuration used in this work five pages are 

used corresponding to content from Amazon, ESPN, Wikipedia, Google and Craigslist. The 

browser selected is Firefox 3.5 and the benchmark performs a total of five loops loading and 

rendering all five pages in each loop. The first loop starts with empty caches while the idle 

time between each page load is 1 ms. This gives enough time to the browser to finish 

rendering the page before moving to the next one. We also select a proprietary 

implementation of the popular H.264 video codec to explore the power and energy 

consumption of a typical multimedia application.  This proprietary implementation 

corresponds to the decoder part and it is multi-threaded based on OpenMax [31] libraries. 

The decoder is configured with four parallel threads. Neither the SPEC CPU2000 

benchmarks nor the Firefox browser are multi-threaded but the Linux scheduler can launch 

them concurrently so that both cores can be active simultaneously. The SPEC CPU2000 

benchmarks used are vpr: (FPGA circuit placement and routing), gzip (Lempel-Ziv based 

lossless compression algorithm), eon (probabilistic ray tracer), bzip (Burrows-Wheeler 

transform compression algorithm with arithmetic coding), mcf (Combinatorial optimization: 

single-depot vehicle scheduling), crafty (chess game playing) and twolf (standard cell place 

and route).  All the benchmarks run under Linux kernel version 2.6.28 and the compiler used 

is arm-linux-gcc-4.3.2.  
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6.2  SPEC CPU2000 and video codec power analysis 

 

Fig. 9 shows the power analysis for the set of SPEC CPU2000 benchmarks and the H.264 

codec. Linux boot completes after the first 4 seconds of execution and the benchmarks are 

run sequentially. The power associated with L2 cache, PHY, memory controller and 

interconnect have been grouped in a non-core component to simplify the graph. 

Fig. 9 shows that the main source of power consumption for these benchmarks is the CPU but 

the combination of non-core and memory is comparable for some runs such as gzip2, bzip1 

and bzip2 indicating that power optimization based only on CPU data as done in the 

processor focused techniques reviewed in section 2 could be misleading. Fig. 9 also shows 

that power consumption varies significantly with the application and also with the data 

processed during each run.  The first two algorithms vpr and twolf consume similar power but 

this is considerably different from the power used by the eon1 and eon2 benchmarks. This 

could be due to the type of instructions used by the eon benchmarks being more power 

intensive than the vpr/twolf benchmarks or different instruction level parallelism so that more 

execution units are active in parallel. The power used in these four benchmarks in the 

memory and non-core components is comparable which is confirmed by observing the cache 

miss rates indicating that the access rate to lower levels of the memory subsystem is similar. 

Significant differences can be found between the gzip1 and gzip2 runs. The input data in the 

second case is more randomized and more difficult to compress. The algorithm generates a 

larger amount of accesses to the lower levels of the memory subsystem which is reflected in 

the higher power in the non-core and LPDDR2 components. The total power used by gzip2 is 

clearly higher than gzip1 but, on the contrary, gzip1 CPU power is comparable to gzip2.  This 

indicates that power optimization should focus on the system and memory hierarchy since in 

this case gzip2 is a more power intensive benchmark.  

The two bzip runs compress the same data as for gzip. In this case the randomized data does 

not need significantly more power but it increases the execution run time considerably, 

therefore increasing the energy needed by the application. LPDDR2 power is higher than 

CPU during some time intervals and the non-core plus LPDDR2 comparable to the CPU 

power again.  
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Fig. 9. Power analysis of the system components for the SPEC CPU2000 benchmarks 

(normalized power in Y axis). 
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Fig. 10. Power analysis of the system components for the SPEC CPU2000/H.264 benchmarks 

(normalized power in Y axis). 

Fig. 10 shows the results for the H.264 runs and two additional SPEC CPU2000 benchmarks. 

Both H.264 runs decode the same number of VGA frames from the same sequence but in the 

first case only one processor core is active while in the second case both processor cores are 

active so the 4 parallel threads can be distributed by the OS. The dual-core configuration 

execution time is approximately 10.2 seconds while for the single core is 23 seconds. This 

indicates a speed up factor of 2.25. This super-linear speed up can be explained with the 

effects of utilizing two L1 caches in the dual-core configuration, increasing the effective 

cache size.  This means that thanks to L1 cache snooping a core can find data in the second 

cache which is not present in its own cache reducing accesses to the L2 cache. 
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The mcf benchmark is a highly memory bound application and this is reflected in the results.  

The power used by the memory subsystem and non-core components is clearly larger than the 

processor core. It is also interesting that the power of the CPU is lower compared to crafty 

but this is not necessarily due to the instruction mix but the fact that the processor stalls more 

waiting for the memory subsystem to supply the required data. The resulting effect is that the 

power used by mcf is higher than crafty although the CPU power itself is lower highlighting 

once more the importance of system optimization.   

The results observed in these experiments can be used to determine the maximum power 

needs and the changes of power with time in the system dependent on data inputs and 

application reducing the requirements for over pessimistic design of components such as 

voltage regulators, board design, etc. The experiments also clearly indicate that non-core and 

system memory power can be higher than CPU power for realistic applications. This means 

that architectural decisions that lead to a reduction in CPU power could lead to an overall 

increase of power consumption if the power of system components increases. Therefore to be 

useful and accurate power modeling techniques need to consider system effects.  In the 

following section we illustrate this point with an example that shows how an architectural 

decision that seems to reduce CPU power increases overall system power and also system 

energy consumption. 

6.3  Web browsing power analysis 

 

Fig. 11 shows the power results from running the browser benchmark for different L2 cache 

configurations.  The first noticeable effect is that total power increases as the L2 cache size 

decreases (total_l21024k to total_l2128k), since more accesses are passed to the external 

memory.  On the other hand, Fig. 11 also shows that CPU power decreases for the smaller L2 

configurations (cpu_l21024k to cpu_l2128k). The reason for this is that the smaller L2 caches 

cause more stalling in the CPU while waiting for data to arrive from memory and this means 

that the power is lower since the CPU is idle. By observing the peaks in CPU power it is 

possible to identify when the browser loops finish as indicated in Fig. 11 (cold loop and 

warm loops).  The cold loop starts with empty caches while for the other four loops the 

caches have been filled with data and instructions (warm loops).  Memory power increases 

during the warm loops for the smaller cache configurations (lpddr2_128k and lpddr2_256k). 

It is basically constant for the 512K configuration and decreases slightly for the 1024K cache 

configuration. The reason is that the larger cache configurations reduce the traffic to external 



27 

 

memory but for the smaller configurations additional traffic takes place with data being 

evicted from the L2 cache during the warm loops.  

Fig.12 shows the average power for the components considered in Fig. 11 as a function of the 

L2 cache size.  The figure shows how the average power of the CPU increases slightly as 

cache size increases while the opposite is clearly true for the system power.  Web page 

rendering is a task with clearly identifiable on and off periods in contrast with long-running 

applications such as video decoding. Energy optimization can be seen, therefore, as a more 

appropriate objective instead of power optimization. Fig. 13 compares the energy 

requirements of the browser benchmarks for the different L2 cache configurations.  Total 

energy includes everything (multiprocessor CPU, L2 caches, memory and the rest of the 

components) and typically doubles the CPU only measure especially for the smaller cache 

configurations. The energy corresponding to the CPU shows that the reduction obtained from 

using larger L2 caches is small. The effect here is that the run time of the benchmark with the 

smaller cache increases and this should increase energy considerably but the power of the 

CPU with the smaller L2 caches decreases as seen earlier. Both effects (larger execution time 

and lower average power) cancel each other to some extent.  On the other hand, looking at 

total energy the positive effect of the larger caches is more significant with an energy 

reduction of 34 %. This indicates that the system must be considered and CPU only could 

lead to wrong conclusions like that the L2 cache size has a relatively small effect on energy. 

6.4 Single and  dual core comparison. 

Fig. 14 and 15 show the power and energy results comparing the execution of the 

benchmarks considered in section 6.2. In this case the Linux scheduler receives all the 

benchmarks in parallel and decides when each benchmark runs or switches out.  If the 

benchmarks are run sequentially as seen in the section 6.2 experiment the scheduler cannot 

do anything but wait when the current task is not ready (e.g I/O)  since they are all single-

threaded with the exception of the parallel H.264.  In this experiment, however, the scheduler 

can assign a different benchmark (as a separate process) to execute instead of stalling. This is 

true for both the single and dual core configurations. The single core configuration completes 

the whole set of benchmarks after 62.8 seconds while the dual core completes after 36.5 

seconds obtaining a 72% speed up. 

The energy comparison in Fig. 14 shows that the energy used by the dual core configuration 

is slightly larger than the single core (3% higher) while the energy used by the LPDDR2  and 

the non-core are lower for the dual core (19% and 20% respectively). Total energy is also 
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lower for the dual core (5% lower) indicating the importance of considering the system from 

an energy point of view. It is important to note that our test system does not implement 

dynamic voltage and frequency scaling. If this was the case then the dual core configuration 

could have scaled down its voltage/frequency operating point to complete the benchmarks in 

the same amount of time as the single core.  It is expected that this will result in a lower 

dynamic energy consumption for the dual-core although doubling the amount of logic will 

also increase static energy. Further work should aim at investigating the different 

static/dynamic energy trade-offs in parallel implementations. 

 

 

 

 

 

 

 

Fig. 11. Power analysis for the browser benchmarks in function of L2 cache configuration 

(normalized power in Y axis). 

  

Fig. 12. Average power analysis for the browser benchmarks in function of the L2 cache 

configuration (normalized power in Y axis).. 
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Fig. 13. Total energy analysis for the browser benchmarks in function of the L2 cache 

configuration (normalized power in Y axis). 

7. Conclusions. 

 

This research has presented a power modeling methodology based on power models 

developed using post-layout data and regression analysis. The usage of post-layout data 

enables a level of accuracy not possible with previous approaches that do not consider the 

implementation effects.  The extension of the methodology to include the rest of the 

components in the system requires the addition of power models based on data sheet 

information or physical measurement for third-party components or components with no RTL 

description. The investigation is based on a realistic scenario in which a set of standard 

benchmarks are run after booting Linux in a multiprocessor hardware.  The results highlight 

the importance of considering the whole system from a power point of view showing how 

changes in the system architecture can reduce CPU energy but increase system energy or 

increase average CPU power but reduce average system power.  The experimentation shows 

that an energy reduction of 34% can be obtained replacing a 128KB L2 cache with a similarly 

configured 1024KB L2 cache during Firefox web browsing although the effects on CPU 
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Fig .14. Power analysis for the SPEC CPU2000/H.264 benchmarks in function of core count. 

 

Fig. 15. Total energy analysis for the SPEC CPU2000/H.264 benchmarks in function of core 

count. 

energy are much more modest.  As future work we plan to investigate how the power models 

can be used in a high-level simulation environment to speed up power estimations. Additional 

refinements of the methodology will consider power control techniques such as dynamic 

voltage frequency scaling and also its extension to include static power. The power and 

energy results have been initially validated against applying the same methodology to an 

independent validation application set but an experimental board is also under development 
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that will enable direct power measurements of the system-on-chip and memory subsystem for 

further verification and correlation with the estimated results.  
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