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Continuation and Bifur
ation Analysis in Heli
opterAeroelasti
 Stability ProblemsDjamel Rezgui1 and Mark H. Lowenberg2University of Bristol, Bristol, BS8 1TR, UKMark Jones3AgustaWestland Ltd, Yeovil, Somerset, UKClaudio Monteggia4AgustaWestland SPA, Cas
ina Costa, ItalyThe dynami
s of rotary wing systems is 
omplex and typi
ally features highly non-linear and often unsteady aerodynami
s as well as aeroelasti
 in�uen
es. In ongoinge�orts to redu
e noise and vibration, a
tive devi
es su
h as trailing edge �aps on therotor blades are being studied and these devi
es 
an introdu
e further nonlinearities.Therefore, it is important to be able to evaluate the stability of the overall systemwith a proper understanding of the global nonlinear behavior. Numeri
al 
ontinuationand bifur
ation analysis is well suited to this need, and this paper presents eviden
e ofthe te
hnique providing a deeper insight into the stability of heli
opter rotor systemsthan the methods typi
ally adopted in industry. We �rst investigate the aeroelasti
stability of rotor blades of a medium-sized heli
opter in hover and the periodi
allyfor
ed forward �ight 
ondition, in both trimmed and untrimmed 
ases. Then, bifur-
ation analysis is used to predi
t the nonlinear stability of a single degree-of-freedomtrailing edge �ap added to the aeroelasti
 system, over a range of design parameters.The approa
h is novel in the 
ontext of real-world aeroelasti
 rotor models, and the1 Le
turer in Rotor
raft Te
hnologies, Dept. of Aerospa
e Engineering, University of Bristol, UK, and AIAA Asso-
iate Member.2 Reader in Flight Dynami
s, Dept. of Aerospa
e Engineering, University of Bristol, UK, and AIAA Senior Member.3 Senior Engineer, Rotor Dynami
s and Loads, Heli
opter System Design, AgustaWestland Ltd, Yeovil, Somerset,UK.4 Manager, Rotor Dynami
s and Loads, Heli
opter System Design, AgustaWestland SPA, Cas
ina Costa, Italy.1



emphasis here is on the potential for revealing important multiple-attra
tor dynami
srather than the study of a parti
ular system. The results presented highlight the ad-vantages of the approa
h, both in terms of generating an understanding of lo
al andmore global stability, and in the e�
ien
y in obtaining relevant results as parametersvary.
Nomen
lature

( )′ = Di�erentiation with azimuth angle ψ.
˙( ) = Di�erentiation with time t.
Alat, Blong = Lateral and longitudinal 
y
li
 pit
h angles.
Ii = Modal mass of mode i.
L, D = Elemental aerodynami
 �apwise and lagwise for
e 
omponents, positive upward andforward respe
tively.
L0, D0 = Elemental aerodynami
 �apwise and lagwise for
e 
omponents 
omputed when theblade's modes are evaluated, positive upward and ba
kward respe
tively.
M = Elemental aerodynami
 pit
hing moment about the se
tion shear 
enter, positive noseup.
M0 = Elemental aerodynami
 pit
hing moment 
omputed when the blade's modes are evalu-ated, positive nose up.
NB = Number of blades.
Qqi = Generalized for
e of mode i.
R = Rotor radius.
T = Rotor os
illation period.
Ti, Tav = Rotor instantaneous and average thrust.
Treq = Required rotor thrust.
UP , UT = Perpendi
ular and tangential 
omponents of the elemental �ow velo
ity.
ctef , ktef = Linear rotational damping and sti�ness 
oe�
ients at the trailing edge �ap hinge.
hs, hc = Harmoni
 os
illator states, hs = sin(Ωt) and hc = cos(Ωt).
p = Parameter ve
tor des
ribing the rotor and �ow properties.
qi = Generalized displa
ement of mode i.2



r = Elemental blade radial position.
t = Time.
u = Blade axial displa
ement.
w, v, ϕ = Blade �apwise, lagwise, and twist de�e
tions respe
tively.
wi, vi, ϕi = Flapwise, lagwise and twist 
omponents of the ith mode shape respe
tively.
wst, vst, ϕst = Blade �apwise, lagwise and twist steady state de�e
tions respe
tively.
x = State ve
tor.
Ω = Rotor speed.
β = Blade �apping angle.
βa1,req, βb1,req = Required lateral and longitudinal �apping angles respe
tively.
δ = Trailing Edge Flap (TEF) angle.
µ = Advan
e ratio.
νi = Indu
ed velo
ity at blade radial position r and azimuth ψ.
ν0, νs, νc = Average, lateral and longitudinal indu
ed velo
ity 
omponents respe
tively.
ωqi = Modal frequen
y of mode i.
φ = In�ow angle.
ψ = Azimuth angle.
θcol = Colle
tive pit
h angle.
θp = Pre-deformed blade pit
h angle, θp = θpt + θcol − Alat cos(ψ)−Blong sin(ψ).
θpt = Blade pre-twist or built-in twist angle.

I. Introdu
tionThe dynami
s of rotary wing systems involve 
omplex intera
tions of aerodynami
, stru
tural,material and geometri
 nonlinearities. In the heli
opter industry, the trend towards higherperforman
e gains and lower vibration and noise levels has led to the development of more 
omplexrotor systems, whi
h in
orporate novel design features, utilizing for example: 
omposite materials,semi-a
tive lag dampers and a
tive trailing edge �aps. These features tend to in
rease the levelsof nonlinearity in the rotor system, whi
h means that a proper nonlinear analysis of the bladedynami
s is required. Traditionally, di�erent mathemati
al te
hniques have been used to studythe aerome
hani
al and aeroelasti
 blade stability, at di�erent �ight regimes. These te
hniques3



in
lude time history simulation (time integration te
hniques), parametri
 resonan
e analyses [1�3℄,perturbation methods [4, 5℄ and Floquet analysis [5�7℄. In fa
t, in most operating 
onditions, theheli
opter blade aerome
hani
al and aeroelasti
 stability is well understood in both the a
ademi
and industrial se
tors, in
luding 
ases of very high tip speed ratios. Extensive reviews in the �eldare those by Friedmann and Hodges [8℄, and Friedmann [9℄.However, many of the above stability methods depend on assumptions that are questionablefor newer rotor 
on�gurations su
h as rotors with very �exible blades or with a
tive/a
tuatedelements, where highly nonlinear dynami
s are introdu
ed. In addition, these methods may notprovide the 
omplete stability pi
ture. For example, the methods 
an predi
t the lo
al stability ofthe blade, but the regions of attra
tion in that 
ase are not de�ned. In other words, the bladesmight be stable for small disturban
es but feasible disturban
es may be large enough for thelo
al stability to be lost and the a
tual out
ome is not indi
ated. In nonlinear mathemati
s, theregions of attra
tion 
an be obtained by predi
ting the multiple-attra
tor stru
ture governing thenonlinear dynami
s of a system in the larger state spa
e. This stru
ture portrays the main as wellas se
ondary solutions, both stable and unstable, whi
h 
an give an indi
ation of how large theperturbations would need to be for the dynami
al system to 
hange its behavior from that predi
tedby lo
al stability analysis. Therefore, it 
an be inferred that, unlike lo
al linearized methods,nonlinear stability methods 
an not only indi
ate the dependen
e of system stability on parametervariation, in
luding boundaries in parameter spa
e between stable and unstable 
onditions, butthey also provide more global information on likely behavior via the solution of multiple attra
torsand their in�uen
e on dynami
 response. One of these powerful nonlinear analyses is dynami
alsystem theory, implemented in the form of bifur
ation and 
ontinuation methods. The bene�ts ofthese methods over those mentioned above lies not only in gaining a more global pi
ture of thesystem dynami
s through the 
omputation of multiple solution bran
hes, but also in the e�
ien
yin obtaining these solutions with their stability and identifying the types of bifur
ation, whi
hindi
ate 
hanges in the dynami
s [10℄.
4



In the aerospa
e se
tor, the use of bifur
ation and 
ontinuation tools is be
oming morewidespread. In parti
ular, it is in
reasingly adopted to investigate nonlinear air
raft �ight dynami
sand 
ontrol problems. However, the appli
ation of 
ontinuation and bifur
ation methods has beenlimited to a small number of heli
opter dynami
al problems, su
h as �ight me
hani
s [11�17℄,ground resonan
e [18, 19℄ and examination of rotor vortex ring state [20℄. Furthermore, almost allof the investigations whi
h utilize these nonlinear tools 
an be regarded as resear
h studies and itis still hard to �nd these tools adopted in industry for produ
tion air
raft. In re
ent years, thestability of rotor blades in autorotation was investigated by Rezgui et al. [21, 22℄ and Lowenberg etal. [23℄ using nonlinear dynami
s theory implemented numeri
ally in the form of 
ontinuation andbifur
ation methods. The same te
hniques were also adopted by Rezgui et al. [24℄ to investigatethe aeroelasti
 rotor blade stability of heli
opter rotor blades. This investigation showed that thesete
hniques are powerful in the identi�
ation of instability s
enarios of rotor blades and un
overingthe multiple solution stru
ture driven by the nonlinearities in the rotor system. However, this workfo
used mainly on the appli
ability of the methods to heli
opter blade stability problems withoutfully dis
ussing the e�e
ts and importan
e of nonlinearities on the global dynami
s and hen
e theglobal stability of the rotating aeroelasti
 blade.The in
lusion of 
omplex a
tive or even passive dynami
 systems in a rotating blade mayintrodu
e further nonlinearities, whi
h 
an introdu
e undesirable behavior within the operatingrange and physi
al design spa
e. One of these devi
es is the Trailing Edge Flap (TEF), whi
hhas been 
onsidered by heli
opter manufa
turers for vibration redu
tion, noise redu
tion andperforman
e gains. For example, the experimental BK117 was the �rst worldwide �ying heli
opterwith an a
tive rotor TEF system [25℄. TEFs 
an be intelligently a
tuated and 
ontrolled in a
losed-loop fashion to lo
ally 
hange the aerodynami
 lift and moment distributions on the blades,and thus, obtain the desired gains. Furthermore, due to the presen
e of TEF dynami
s the blademotion 
an be signi�
antly a�e
ted by the 
ouplings between the blade degrees-of-freedom [26℄.There are a number of studies that investigated the stability of TEFs in
orporated in a rotorsystem su
h as the work by Shen and Chopra [27℄ and Mauri
e et al. [28℄. However, these studies5



investigated only the lo
al linearized stability - using small perturbation motions about steadytrimmed solutions - using the Floquet method and the nonlinear stability aspe
ts were not studied.In a previous work, Straub and Charles [29℄ studied the 
oupled blade/�ap dynami
s using the
omprehensive heli
opter 
ode CAMRAD II and showed that the TEF spring sti�ness a�e
tsthe stability of �ap-pit
h and fundamental blade torsion modes. Again this analysis was basedon eigen-analysis and the global nonlinear aspe
ts of the 
oupled blade/�ap dynami
s were notinvestigated. Therefore, it is still not 
lear if nonlinearities inherent in the TEF system or thosealready inherent in the rotor system 
an lead to undesirable behavior of the 
oupled TEF/bladesystem. Other examples of sour
es of nonlinearity in the rotor system in
lude nonlinear dampingproperties of passive or semi-a
tive lag dampers, hardening e�e
ts of pit
h-link me
hanisms andfree-play in the swash-plate system.This paper shows, for the �rst time, possible stability s
enarios for a trailing edge �ap onan aeroelasti
 rotor, whi
h are driven by the inherent nonlinearities in the 
oupled TEF/bladesystem. The approa
h is suitable for both low-order and more 
omplex models. Relevant 
on
eptsin 
ontinuation and bifur
ation analysis are des
ribed in se
. II. Then in se
. III, the aeroelasti
model is introdu
ed and its nonlinear behavior examined using bifur
ation analysis. The trailingedge �ap is introdu
ed to the model in se
. IV and the resulting nonlinear 
hara
teristi
s explained.Con
lusions on the bene�ts and appli
ability of the methods are drawn in se
. V.II. Continuation and Bifur
ation Methods for Rotor
raft Appli
ationsThe basi
 idea of the numeri
al 
ontinuation and bifur
ation te
hniques is the 
al
ulation of thesteady solutions of a dynami
al system as one of its parameters, 
alled the 
ontinuation parameter,is varied a
ross a pre-de�ned range. The 
omputed solutions 
onstru
t a number of bran
hes that
ould be either stable or unstable. To determine the stability, either an eigen or Floquet analysisis 
arried out at ea
h 
omputed solution, depending on the nature of the solution. For instan
e,in hover the blade behavior 
an be 
onsidered to be in equilibrium (�xed points), hen
e an eigenanalysis is 
arried out for stability, whereas in forward �ight, the blades behave in a periodi
 manner6



(limit 
y
les) due to the rotor lift asymmetry, hen
e Floquet theory is used to determine the stability.A bifur
ation is the qualitative 
hange in the system behavior as a parameter is varied. Inother words, when the stability of a system is 
hanged or lost, the system bifur
ates. The points atwhi
h these stability 
hanges happen are 
alled bifur
ation points. When the system is nonlinear,new solution bran
hes may emerge from the bifur
ation points, leading to the presen
e of multiplesolutions for the same set of system parameters. The identi�
ation of these di�erent solutionbran
hes helps to un
over the global dynami
s of the system. Of parti
ular interest is when theblades, for example, are lo
ally stable for small disturban
es but not ne
essarily for large ones, andvi
e-versa.Therefore, the strategy in implementing 
ontinuation and bifur
ation methods is to followone solution bran
h as one or more parameters are varied to lo
ate bifur
ation points. Theemerging bran
hes are then followed to 
onstru
t a more 
omplete pi
ture of the system dynami
s(bifur
ation diagram). Furthermore, other advantages of 
ontinuation methods are their e�
ien
yand a

ura
y in following the solution bran
hes as well as in dete
ting and identifying thebifur
ation points, 
ompared with other time history or frequen
y domain methods. The di�erenttypes of bifur
ations that 
an o

ur in equilibria or periodi
 orbits are not dis
ussed in this pa-per; the reader is referred to general texts su
h as referen
es [10℄ for more ba
kground on the subje
t.The 
ontinuation algorithm used in this analysis is implemented in the 
ontinuation and bifur
a-tion software AUTO [30℄. AUTO is open sour
e software for 
ontinuation and bifur
ation problemsof ordinary di�erential equations, originally developed by Eusebius Doedel, with subsequent major
ontributions by several people1 where it is 
urrently available on a number of platforms [30, 31℄.Besides many other types of equations, AUTO 
an perform extensive bifur
ation analysis of ordinary[1℄ The software 
an be downloaded from http://indy.
s.
on
ordia.
a/auto
7
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di�erential equations (ODEs) of the form:
ẋ(t) = f(x(t), p), x ∈ ℜn, p ∈ ℜm, f : ℜn ×ℜm −→ ℜn (1)subje
t to initial 
onditions, boundary 
onditions, and integral 
onstraints. Here x is the stateve
tor and p denotes one or more parameters. n and m are the numbers of states and parametersrespe
tively. Equation (1) is written in the generi
 (nonlinear) state-spa
e form, where thestate-derivatives are fun
tions of the states and some parameters. One advantage of this form is theability of passing the model variables to and from the analysis tool regardless of the environmentwhere the system equations are 
oded (implementation pro
edures must be observed). Thisattribute provides a stability tool whi
h not only is independent of the model but also is ableto 
ouple with a wide range of modeling platforms, whi
h 
an be parti
ularly bene�
ial in theheli
opter industry.The main two types of steady solutions whi
h des
ribe the rotor blade behavior in the 
onven-tional operating envelope are equilibrium and limit 
y
le solutions. Conventionally, heli
opter rotormodels are written in the non-autonomous form, in that the independent variable t (or ψ) appearsexpli
itly in the equations. Of 
ourse in the hover 
ase, the blade is in equilibrium and hen
e themodel does not expli
itly depend on the time variable t (or ψ), even if they appear in the standardequations. Therefore, for 
onvenien
e the time variable t (or ψ) 
an be �xed to a 
onstant valuewithout a�e
ting the model dynami
s. On the other hand, in forward �ight, the blade dynami
sis heavily dependent on the blade azimuthal lo
ation, mainly be
ause of the periodi
 aerodynami
for
ing. In this 
ase, the independent variable t (or ψ) has to be 
onverted to a state variable.Of 
ourse, one 
an always designate the time t or azimuth angle ψ as additional states, in orderto transform the system to an autonomous one. This 
an either be a
hieved by ψ̇ = Ω, where ψis a state or by ṫ = 1, where t is a state and the azimuth angle 
an be 
al
ulated as ψ = Ω t,assuming Ω is 
onstant. However, if the above method is used (either 
ase), the new time statewill monotoni
ally in
rease and hen
e will not des
ribe os
illatory behavior. Therefore, to solve thisproblem, a harmoni
 os
illator model is used to realize the periodi
ity of all states. The harmoni
8



os
illator equations are:
ḣs = hs + Ω hc − hs (h2s + h2c)

ḣc = −Ω hs + hc − hc (h2s + h2c)

(2)or
h′s = hs + hc − hs (h2s + h2c)

h′c = −hs + hc − hc (h2s + h2c)

(3)where the hs = sin(Ω t) = sin(ψ) and hc = cos(Ω t) = cos(ψ) are solutions to Equations (2) and(3). The terms hs and hc 
an now be used to repla
e any sin(Ω t), sin(ψ), cos(Ω t) or cos(ψ)in the blade for
ing equations as appropriate. The azimuth angle 
an be 
al
ulated using thequadrant-ar
tangent fun
tion ψ = atan2(hs, hc). This approa
h to the study of aeroelasti
 rotorblade dynami
s has not previously been attempted, a

ording to the literature.III. Aeroelasti
 Stability of Heli
opter Rotor BladesA. Rotor Blade ModelIn this se
tion, the use of 
ontinuation and bifur
ation analysis is illustrated in predi
ting thestability of heli
opter main rotor blades in hover and forward �ight 
onditions. The obje
tive ofthis study is to determine how the inherent nonlinearities in a rotating aeroelasti
 blade manifestthemselves in terms of adverse blade behavior. The nonlinearities in
luded in the mathemati
almodel were kept to the minimum and in
lude geometri
, inertial and stru
tural terms arising fromthe formulation of the modal equations of a rotating blade, aerodynami
s loads in
luding stati
stall e�e
t but ex
luding dynami
 stall, and terms arising from 
oupling with the in�ow model.Although dynami
 stall is the primary sour
e of nonlinearity, it was not modeled here to fo
us onthe analysis of the e�e
ts of the other sour
es. We note, however, that state-spa
e representationsof unsteady aerodynami
s su
h as dynami
s stall (e.g. Leishman and Beddoes [32℄, Goman andKhrabrov [33℄) are straightforward to in
orporate within 
ontinuation and bifur
ation analysis.Modal representation is used for the stru
tural blade dynami
s and hen
e ea
h blade isrepresented by a number of general modes (eight in this analysis: four �ap, two lag and twotorsional modes). The mode shapes, frequen
ies, and modal masses are 
omputed a priori at a9



given hover 
ase 
ondition. The 
omputed modal 
hara
teristi
s are assumed to remain una�e
tedby the 
hanges in �ight 
ondition. Although the model 
an in
lude the dynami
al equations forall blades of the rotor, it is adequate here to use a single bladed rotor model for the stability analysis.The for
ed response equation approa
h is used to des
ribe the aeroelasti
 dynami
s of the blade.The equations used were developed in referen
e [34℄. Figure 1 depi
ts a s
hemati
 drawing of theblade 
oordinate system and de�e
tions v, w and ϕ, whi
h 
an be 
al
ulated at ea
h blade radialposition r as follows:
w(r, t) =

n
∑

i=1

qi(t)wi(r) + wst, v(r, t) =

n
∑

i=1

qi(t)vi(r) + vst, ϕ(r, t) =

n
∑

i=1

qi(t)ϕi(r) + ϕst (4)where wi, vi and ϕi are the �apwise, lagwise and twist 
omponents of the ith mode shape respe
tively.
n is the number of modes and qi is the generalized displa
ement. wst, vst and ϕst are the blade�apwise, lagwise and twist steady state de�e
tions respe
tively. The formulation of this equationwas done in a manner su
h that the orthogonality of the modes leads to an equation in whi
h themodal response depends only on the following for
ing 
omponents:1. the aerodynami
 for
ing (Qaero,qi);2. time dependent terms su
h as the Coriolis for
e (Qtdep,qi);3. blade pit
h dependent terms (Qpper,qi );4. nonlinear terms not in
luded in the formulation of the modal equation (Qnlin,qi).The for
ed response equation for ea
h mode is:

q̈i = −ω2

qi
qi +

Qqi

Ii
i = 1, 2, 3, ... (5)where ωqi , Ii and Qqi are the modal frequen
y, modal mass and generalized for
e terms for ea
hmode i. The di�erentiation (¨) is done with respe
t to time t. It 
an be noti
ed from equation (5)that the elasti
 damping is assumed negligible and hen
e is not a

ounted for. Ea
h mode shape
onsists of �ap, lag and twist mode shape 
omponents, wi, vi and ϕi respe
tively. The generalizedfor
e Qqi 
onsists of the four for
ing terms des
ribed above and 
an be written as follows:

Qqi = Qaero,qi +Qtdep,qi +Qpper,qi +Qnlin,qi (6)10



Deformed

Undeformed

i

k

j

k

jFig. 1 S
hemati
 diagram for blade 
oordinate systems and deformation.where the expressions for the for
ing terms 
an be found in [34℄. For the aerodynami
 for
ing,a blade element te
hnique is used for 
al
ulating the for
es and moments a
ting on the blades.Quasi-steady aerodynami
 representation [35℄ is used for 
al
ulating the aerodynami
 loads at ea
hblade radial station, where the aerodynami
 
oe�
ients are interpolated from look-up tables fora range of angle of atta
k (−180◦,+180◦) and Ma
h number. It should be noted that the pro�leof the aerodynami
 
oe�
ients is nonlinear with Ma
h number and angle of atta
k in parti
u-lar beyond the stall 
ondition. Blade/blade and blade/airframe intera
tions are not 
onsidered here.The blade deformation due to bending and twisting a�e
ts the lo
al �ow velo
ities andalso angles of atta
k. In general, the 
omponents of the resultant �ow velo
ity at ea
h bladeelement arise from �ve sour
es, namely: blade rotation, free stream due to the heli
opter move-ment, rotor indu
ed velo
ity, rates of blade bending and rates of 
hange of the pre-deformedblade 
oordinates. Furthermore, the resultant �ow velo
ity is 
onventionally resolved into
omponents tangential and normal to the lo
al axes of the blade. The full expressions of these
omponents depend on many variables, in
luding the positions of the blade elements before andafter deformation, and 
an be very long. Hen
e, they are not presented here but 
an be found in [34℄.The aerodynami
 for
ing Qaero,qi in Equation (6) is the most 
omplex term to evaluate in
omparison to the rest of the for
ing terms. This is due to the 
ompli
ated nature of the �ow �eld11



around the aerofoil se
tion. The general form of Qaero,qi is given by the integral:
Qaero,qi =

∫ R

0

[

d(L− L0)

dr
wi +

d(D +D0)

dr
vi +

d(M −M0)

dr
ϕi

]

dr (7)where the three terms on the right hand side represent the for
e distribution in the �apwise andlagwise dire
tion and the pit
hing moment distribution respe
tively. These terms are fun
tions ofthe �ow and blade properties, as well as blade 
ontrol angles.The rotor instantaneous thrust Ti 
an be evaluated simply by summing all elemental verti
alfor
es L and multiplying this by the number of blades NB. i.e.
Ti = NB

N
∑

elem=1

L (8)where N is the number of blade elements. This value of thrust is only used to estimate the indu
edvelo
ity within the rotor model. The thrust value used for performan
e and trimming pro
edureshas to be averaged out a
ross one rotor revolution.
Tav =

1

2π

∫

2π

0

Ti dψ (9)The in�ow is 
aptured via a 3-state Pitt-Peters dynami
 wake model [36�38℄. This model permitsthe variations of the indu
ed velo
ity in both the radial and azimuthal position. Furthermore, itallows the lag dynami
s asso
iated with moving a volume of air to be modeled. The in�ow modelis given for three states as
νi (r, ψ) = ν0 +

r

R
(νssin(ψ) + νc cos(ψ)) (10)where νi is the indu
ed velo
ity at an element of radius r and azimuth position ψ. The indu
edvelo
ity 
omponents ν0, νs and νc are given in the wind axes by:
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


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. (11)
Taero, Laero and Maero are the thrust and the aerodynami
 rolling and pit
hing moments respe
-tively in the wind axes, and expressions for the matri
es [τ ] and [Λ] 
an be found in [36�38℄.12



Finally, the main model equations, whi
h are represented by Equations (2), (5) and (11), 
anbe rearranged in terms of time derivatives of the state ve
tor x to produ
e the required state-spa
eform:
ẋ = f(x, p) where x = {hs, hc, ν0, νs, νc, q1, q̇1, . . . , q8, q̇8}

T (12)It should be noted that the adopted method of modeling the blade dynami
s (modal responseequation + blade element method + dynami
 in�ow model) is widely used in the heli
opter industry.Moreover, to further in
rease the a

ura
y of the model, the rotor model was 
onstru
ted in a formatthat not only allows adding extra states (e.g. blade degrees-of-freedom, in�ow states, et
.), but alsomodeling more 
omplex features of the aerodynami
s and/or the rotor stru
ture (e.g. unsteadyaerodynami
s, dynami
 stall, nonlinear modes, et
).B. Analysis and Results1. Hover CaseThe rotor model was 
on�gured to have realisti
 blade and �ight 
hara
teristi
s for a mediumsized heli
opter (maximum take-o� weight around 6.5 tonnes). Continuation runs were �rst 
arriedout in the hover �ight 
ondition over a range of 
olle
tive pit
h angles. The resulting bifur
ationdiagrams are depi
ted in Figure 2, for the �rst lag (q1) and �rst �ap (q2) generalized displa
ements.In the stable hover 
ondition, the blade is in a steady state situation and hen
e there is no need touse the harmoni
 os
illator method, sin
e there is no periodi
 for
ing to the system, nor to trim therotor to 
ertain thrust or �apping angle values.As θcol is in
reased from 0◦, there is only one stable equilibrium (hover) bran
h, whi
h be
omesunstable between 19.8◦ and 23◦. This equilibrium bran
h also destabilizes at θcol higher than
27.2◦. In the �rst instability 
ase, the main bran
h 
hanges stability at two Hopf bifur
ationpoints lo
ated at 19.8◦ and 23◦. This type of bifur
ation o

urs when a 
omplex 
onjugate pair ofeigenvalues 
rosses the imaginary axis, with non zero imaginary parts. A Hopf bifur
ation is alsoasso
iated with the birth of se
ondary periodi
 solutions (Limit Cy
le Os
illations `LCO's'). InFigure 2, both Hopf points are sub
riti
al leading to the birth of unstable periodi
 solutions, whi
h13
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Fig. 2 Bifur
ation diagram for hover 
ase using θcol as 
ontinuation parameter. Only the peakvalues of the periodi
 os
illations in one 
y
le are plotted.14




o-exist with se
tions of the stable equilibrium bran
h. A sub
riti
al Hopf is a hard bifur
ationwhi
h will lead to the solutions jumping to another attra
tor just after the bifur
ation point. Thisjump 
an be very dangerous parti
ularly if this latter attra
tor is far from the original bran
h.This is be
ause the divergen
e of the transient os
illatory response, just after the Hopf, 
an bevery rapid and it may not be possible to go ba
k to the stable equilibrium solution, just before theHopf point, by modest variation of the system parameters, or without signi�
ant hysteresis e�e
ts.The unstable periodi
 bran
h emerging from the Hopf point at θcol = 19.8◦ extends very slightlyas θcol is redu
ed and then it folds ba
k at a limit point (fold bifur
ation) at θcol = 19.6◦. Thisbifur
ation point o

urs when one Floquet multiplier 
rosses the unit 
ir
le at a value of 1. Thesolution then be
omes stable and extends as θcol is in
reased. Furthermore, this stable periodi
bran
h 
hanges stability a few times in the vi
inity of θcol = 23◦ due to the existen
e of threeother fold bifur
ation points, until it merges with the main equilibrium bran
h at the Hopf pointlo
ated at θcol = 23◦. It 
an be shown that if the blade is disturbed from the unstable equilibriumbran
h, it will always get attra
ted to the stable periodi
 bran
h. In other words, if the pit
h an-gle is between 19.8◦ and 23◦, the blade will eventually behave in a periodi
 manner, i.e. LCO's o

ur.The Hopf point at θcol = 19.8◦ is found to be asso
iated with the �rst �ap mode be
omingunstable, whi
h stabilizes again at θcol = 23◦. It was also found that two other �ap modes loseand gain stability within the same range of 
olle
tive pit
h angles. This is depi
ted by four otherHopf bifur
ation points within the unstable equilibrium bran
h. The unstable periodi
 bran
hwhi
h emerges from two of these points is plotted in Figure 2. This bran
h also experien
es torus(Neimark-Sa
ker) bifur
ations, whi
h will introdu
e limit 
y
les of higher period or - more likely -quasi-periodi
 solutions.Figure 2 also illustrates the existen
e of a sub
riti
al Hopf and limit point bifur
ation, whi
hfold the se
ondary unstable periodi
 bran
h into a stable periodi
 one. If the 
olle
tive pit
h angleis in
reased beyond 27.23◦, the solutions will jump to the stable periodi
 bran
h. It 
an also beseen that in the range θcol = 27.07◦ to 27.23◦ the blade 
an behave either in a stable equilibrium15



or in a stable periodi
 manner, depending on the perturbation levels subje
ted to the blade.The maximum operating 
olle
tive pit
h angle for this heli
opter is about 12◦ and hen
e itis well within the stable region. Although the blade behavior is expe
ted to be stable for thisoperating heli
opter 
on�guration, the above results are useful in supporting the argument that thenonlinear dynami
s of the aeroelasti
 rotating blade does not introdu
e any se
ondary bran
hesthat extend ba
k to the operating 
olle
tive pit
h range. This is be
ause of the fold bifur
ationsof the periodi
 bran
hes that emerged from the sub
riti
al Hopf bifur
ation points at θcol = 19.8◦and 27.23◦. Additional simulation results 
on�rmed that there are no isolated se
ondary bran
heswithin the operating 
olle
tive pit
h range. Finally, although the bifur
ation points o

urred wellabove the 12◦ limit, this 
ase study provides a good example of how important the 
onstru
tionof the bifur
ation diagram is in predi
ting the global nonlinear dynami
s of the blade behavior.In 
ontrast, the traditional stability analysis fo
uses only on examining the stability of the mainbran
h typi
ally using eigen analysis or Floquet methods, without properly 
onsidering the e�e
tsof large perturbations. Although, time history simulation 
an be used to address this shortfall, it isdi�
ult to obtain a 
lear pi
ture of the underlying stru
ture of the nonlinear dynami
s, espe
iallywhen unstable se
ondary bran
hes exist in the vi
inity of the main solution bran
h. In additions,for 
ases where the system is poorly damped, running a large number of time simulations be
omesvery time expensive.Finally, for a more 
omplete investigation, the dependen
e on other parameters would also needto be studied using the 
ontinuation and bifur
ation analysis. However, for rotor blade aeroelasti
ityproblems, there is at least a moderate number of parameters that 
an a�e
t the blade stability, forexample blade stru
tural and inertial properties, blade 
ontrol angles and �ow parameters. Runningthe 
ontinuation analysis to 
over the whole parameter spa
e 
an be very time expensive or evenprohibitive. One solution to this problem is to pi
k one parameter as the 
ontinuation parameterwhile 
onstraining the others to satisfy a 
ertain 
ondition as the 
ontinuation analysis is performed.This method is illustrated in the next se
tion, where the trim 
ondition was sele
ted as a 
onstraint16



for the forward �ight 
ase.2. Forward Flight CaseUnlike many analyses, where rotor trimming is 
arried out �rst (using the harmoni
 balan
emethod for example) prior to any stability 
al
ulations, some 
ontinuation and bifur
ation toolssu
h as AUTO 
an 
ompute solutions and their stability simultaneously for given boundary orintegral 
onditions. This means that the 
ontinuation and trimming pro
edure 
an be done inparallel. In fa
t, the eigenvalues and Floquet multipliers are 
omputed at negligible extra 
ost to the
ontinuation analysis. In addition, the 
ontinuation methods used in this work does not require to
onstrain the periodi
 solutions to a �xed number of harmoni
s. Therefore, more a

urate solutionsas well as trim 
an be obtained. To a
hieve rotor thrust and hub moments trim in forward �ight,three integral 
onditions were imposed. The propulsive trim 
ondition to balan
e the propulsivefor
e with heli
opter drag was not expli
itly imposed during the 
ontinuation. Instead, the rotorshaft in
lination was interpolated based on a pre-supplied pro�le for a range of advan
e ratio of
0 < µ < 0.45. For higher values of µ, the shaft angle was �xed. The boundary 
onditions 
an be
onstru
ted as follows:1. The thrust trim 
ondition: in this 
ondition the blade 
olle
tive pit
h angle θcol is obtainedby equating the average 
al
ulated thrust in one rotor revolution to the required thrust:

Tav =
1

2π

∫

2π

0

Ti dψ = Treq (13)2 & 3. Hub moment or �ap angle trim 
onditions: these 
onditions allow the determination of therequired 
y
li
 pit
h angles (Alat and Blong) to a
hieve the desired trim. For �ap trim, the�rst harmoni
 �ap 
omponents in longitudinal and lateral dire
tions 
an be equated to therequired values. This 
an be implemented as follows:
1

π

∫

2π

0

β sin(ψ) dψ =
1

π

∫

2π

0

β hs dψ = βa1,req (14)
1

π

∫

2π

0

β cos(ψ) dψ =
1

π

∫

2π

0

β hc dψ = βb1,req (15)17



Figure 3 illustrates the 
ontinuation results when the advan
e ratio is used as the 
ontinuationparameter for two rotor dis
 loading 
onditions: light and heavy loading 
onditions. The thrustgenerated in the heavy loading 
ondition is about 75% more of that in the light weight 
ase. Onlythe peak values of os
illatory modal displa
ements of the �rst two modes are plotted. For the lightweight 
ase, the bifur
ation diagrams show that when µ is between approximately 1.03 and 1.19 theperiodi
 bran
h is unstable, due to the presen
e of two torus bifur
ations. Whereas, the instabilityo

urs at a lower value of µ ≈ 0.82 for the other 
ase. To further s
rutinize the results, the variationof the damping of the modes was investigated from the 
omputed Floquet multipliers. It was foundthat the unstable periodi
 bran
h 
orresponds to the range of advan
e ratios when the damping ofthe �rst lag mode (mode 1) is negative. Hen
e, this indi
ates that this instability 
an be of the�ap-lag type.
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TR: Torus bifurcation  
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Fig. 3 Bifur
ation diagram for forward �ight 
ase using µ as 
ontinuation parameter. Onlythe peak values of the os
illations in one 
y
le are plotted.It should be noted that although the mathemati
al model might not be valid for very highadvan
e ratios ( µ > 0.8 for example) and the heli
opter might not �y at µ > 0.55, it is 
ustomarywhen performing 
ontinuation analysis to extend the 
ontinuation parameter beyond the physi
alrange. The reason for this is to sear
h for any bifur
ation points - espe
ially those sub
riti
alones - that might lead to new solution bran
hes, whi
h return ba
k into the physi
al range.Although 
ontinuation methods that follow quasi-periodi
 bran
hes exist, the examination of the18



emerging quasi-periodi
 bran
hes from the torus bifur
ations here were done through a series oftime simulation runs. For the light weight 
ase depi
ted in Figure 3, the only se
ondary bran
hfound was a stable quasi-periodi
 bran
h (not shown in Figure 3), whi
h is 
ontained in the range
1.03 ≤ µ ≤ 1.19 and 
onne
ts the two super
riti
al torus bifur
ations points. Similarly for the se
-ond loading 
ase, a stable quasi-periodi
 bran
h extends from the torus bifur
ation at µ ≈ 0.82 within
reasing values of advan
e ratio, most likely to re
onne
t with another torus bifur
ation at µ > 1.5.Figure 3 illustrates that in
reasing the rotor dis
 loading 
an lead to instability o

urring ata lower value of advan
e ratio. Therefore, it 
an be argued that for very high loading 
onditionsif the presen
e of additional sour
es of nonlinearity 
auses the torus bifur
ations to 
hange their
riti
ality, unstable quasi-periodi
 bran
hes may extend ba
k to the operating heli
opter speedrange. Hen
e, the proper identi�
ation of these se
ondary solutions be
omes essential. Finally,although the 
ontinuation analysis was not used to follow the se
ondary quasi-periodi
 bran
hes,the methods proved very e�
ient in 
ombining trimmed-�ight solutions with the stability analysisand identifying the types of the bifur
ation points. Furthermore, the implementation of the harmoni
os
illator model for studying rotating blade aeroelasti
 problems was demonstrated. This te
hniqueallows the 
ontinuations analysis to follow periodi
 solutions in
luding those arising from perioddoubling bifur
ations. The implementation of the harmoni
 os
illator is useful for investigating notonly the aeroelasti
 stability of a passive blade but also when additional for
ing is present su
h asthat of an a
tuated trailing edge �ap.IV. Aeroelasti
 Stability of Heli
opter Rotor Blades with Trailing Edge FlapsA
tive Trailing Edge Flaps (TEF) are re
ognized as e�e
tive means for redu
ing rotor-indu
edvibrations. However, the intera
tion between the blade and TEF dynami
s might give rise toinstability. Furthermore, determining the e�e
ts of the a
tivated �ap on the blade dynami

hara
teristi
s 
an be a 
hallenging task, in parti
ular with the in
reased level of nonlinearityof the 
oupled blade/TEF/a
tuator/
ontroller system. In this 
ase study, the 
ontinuation andbifur
ation tools were 
oupled with an industrial heli
opter rotor 
ode to investigate the nonlinear19
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A: Feathering axis

B: Flap hinge

C: Flap centre of gravityFig. 4 S
hemati
 diagram of the trailing edge �ap.stability of a passive trailing edge �ap in
orporated in a �exible rotor blade. The aim is toinvestigate if the inherent nonlinearity in the blade/TEF system 
an result in unstable behavioreven without in
luding any stru
tural or 
ontrol nonlinearities to the TEF system. Hen
e, thisstudy extends the 
urrent knowledge on the stability of rotor blade trailing edge �aps to un
overtheir in�uen
e on the 
oupled blade/�ap nonlinear dynami
s.The stru
ture of the rotor model is very similar to that des
ribed in Case 1, in that a modalapproa
h is used for des
ribing the dynami
s of the �exible blade where ea
h blade is represented byeight general modes (four �ap, two lag and two torsional modes). The 
olle
tive pit
h angle was setto an operating hover 
ase value, where the blades' modes are well damped. The TEF was modeledas a rigid 
ontrol surfa
e hinged at a 
hordwise distan
e xb from the leading edge of the blade, seeFigure 4. The stru
tural atta
hments of the TEF system to the rest of the blade and the drivinga
tuator in the passive mode (δac = 0) were represented by a linear rotational sti�ness quantity(ktef ), whi
h was assumed to a
t at the �ap hinge. The 
enter of gravity (C.G.) of the �ap is atdistan
e xc from the �ap hinge. Be
ause of the aerodynami
 and inertial 
ouplings between the �apand the blade dynami
s the governing di�erential equations were re-arranged to allow writing themin the state-spa
e form (no a

eleration terms on the right-hand-side of the equations).The parameters of interest in this study are the TEF hinge sti�ness and the �ap 
enter of20



gravity (C.G.) position from the �ap hinge. The variation of these two parameters was shown inthe literature [27℄ to a�e
t the linear stability of the �ap/blade system and hen
e bifur
ation points
an be lo
alized. The �ap hinge sti�ness represents both the stru
tural spring sti�ness at the hingeand the sti�ening e�e
ts of the TEF a
tuator 
omponents and linkages (in passive mode). Themodel of the TEF sti�ness was purposefully 
hosen to be linear for two reasons. First, linear (orquasi-linear) sti�ness is su�
ient to obtain the standard lo
al stability of the main bran
h. Se
ond,using a linear TEF sti�ness allows us to show whether or not the ri
h TEF dynami
s (bifur
ationsand se
ondary (periodi
) bran
hes) is entirely due to the sour
es of nonlinearity inherent in the
oupled blade/TEF system and not be
ause of the �ap sti�ness itself. Although, it is not investi-gated here, it 
an be argued that additional nonlinearity in the �ap sti�ness or a
tivating the �ap
an introdu
e new bifur
ations and/or may 
hange the stru
ture of the se
ondary solution bran
hes.Figure 5 presents the bifur
ation diagram for the TEF angle δ when the �ap C.G. position isused as the 
ontinuation parameter. Although the �ap 
hord is only 15% of the total blade 
hord,the 
ontinuation was run up to 50% of the blade 
hord. This was to sear
h for any bifur
ationthat may exist outside but 
lose to the physi
al parameter range. The results show the existen
eof three bifur
ation points: two Hopf bifur
ations and one bran
h point bifur
ation. This latteris an indi
ation of a divergen
e s
enario, whereas the Hopf bifur
ations are related to �utter or�utter-like instability. It is evident that unstable 
onditions 
an arise in the physi
al limits of C.G.ratio, and that the instability at C.G. ratio of 
ir
a 0.22 
ould potentially give rise to a solutionbran
h that extends ba
k into the physi
al range.The lo
ation of the bifur
ation points will vary with other parameters. A series of 
ontinuationruns was therefore performed using the �ap C.G. position as the 
ontinuation parameter for di�erenthinge sti�ness values. The 
ombined bifur
ation diagrams were plotted as a proje
tion plot in atwo-parameter plane (see Figure 6). This plot illustrates how the �ap C.G. position and sti�nessparameter plane 
an be divided into stable and unstable regions, where the bifur
ation pointstra
e the stability boundaries. These boundaries 
an also be 
omputed dire
tly via 2-parameter21
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Fig. 5 Bifur
ation diagram for an elasti
 rotor blade with TEF in hover over TEF C.G.position, for �ap sti�ness of 200 lbs-ft/rad.
ontinuation runs, where the solutions generated are 
onstrained to mat
h the bifur
ation 
riteria(Hopf or bran
h point bifur
ation in this 
ase). Note that this stability map in parameter spa
erefers to the stability of the main solution surfa
e � as shown in the Figure 5 � and not of anyother solution bran
hes arising from bifur
ation points. It 
an be seen that the stable TEF C.G.range de
reases for low �ap sti�ness values. An example s
enario where the �ap sti�ness 
an bedramati
ally redu
ed is the failure 
ase of the TEF a
tuator (zero sti�ness).Finally, 
ontinuation runs were performed to tra
e the periodi
 bran
hes emerging from theHopf bifur
ations. Figure 7 illustrates the results of these runs in the form of a more 
ompletebifur
ation diagram 
ompared to that of Figure 5. It 
an be seen that periodi
 behavior of the�ap is quite 
omplex and is subje
ted to di�erent types of bifur
ations, in
luding folds (limitpoints) and torus bifur
ations. There exist a number of stable LCO segments where some of thesegments 
o-exist over the same C.G position range. This means that the �ap as well as the blade
an os
illate in two or more di�erent forms for the same value of C.G. position, depending onlyon initial 
onditions. Furthermore, it 
an be seen that the periodi
 bran
h undergoes a number22
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Fig. 6 Stability map in TEF C.G. position and TEF sti�ness plane 
onstru
ted from a seriesof bifur
ation diagrams for an elasti
 rotor blade with TEF in hover.of torus bifur
ations whi
h will - in turn - lead to the birth of additional quasi-periodi
 solutionbran
hes (not shown here).The results of Figure 7 illustrate how the fold bifur
ations led to the multipli
ation of thenumber of di�erent periodi
 solutions within the same C.G. position range. The 
ase when thesolution bran
h be
omes unstable is of great importan
e, as the unstable bran
h 
an be seen as aboundary between two di�erent dynami
s (e.g. equilibria and LCO's) in parti
ular, when unstableperiodi
 solutions 
o-exist with the main stable equilibrium bran
h. This 
an be seen in Figure 7for C.G. position > 0.124 and it 
an be shown that a moderate disturban
e of the trailing edge�ap of the order of 2◦ 
an lead to unstable behavior even though the main equilibrium bran
his stable. Although pra
ti
ally in this 
ase, a small value of C.G. position - residing in the �rststable stable range (< 5%) - will be sele
ted in the TEF design, the latter result provides twovery important 
on
lusions. First, the nonlinearities (aerodynami
, geometri
, inertial, stru
tural)inherent in the blade/TEF system are enough to give rise to unstable �ap behavior even when the23



main equilibrium bran
h is stable. Additional nonlinear properties of the TEF system (in
ludingthe �ap, a
tuator and 
ontrol law) may lead to a ri
her bifur
ation diagram, with possible se
ondaryunstable bran
hes extending ba
k to small values of �ap C.G. positions. Se
ond, the 
ontinuationand bifur
ation methods are very powerful in un
overing the stru
ture of the TEF dynami
s as
onventional stability analysis would not provide this information. This is parti
ularly useful whenresponses under transient 
onditions are di�
ult to predi
t when there are multiple attra
tors;however, the bifur
ation diagrams show 
learly where further studies - in
orporating time historyruns - are needed and, indeed, how to interpret the results thereof.
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Fig. 7 Bifur
ation diagram for an elasti
 rotor blade with TEF in hover over TEF C.G.position, for �ap sti�ness of 200 lbs-ft/rad. Only the peak values of the periodi
 os
illationsin one 
y
le are plotted.
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V. Con
lusionThis paper presented new implementations of bifur
ation and 
ontinuation methods instudying the nonlinear heli
opter aeroelasti
 blade stability with and without trailing edge �aps.The aeroelasti
 model was 
onstru
ted in a generi
 state spa
e form. Initially, the analysis wasapplied to investigate the aeroelasti
 stability of a �exible rotor blade for a range of 
olle
tivepit
h angles. The results illustrated that even in the hover 
ase the global nonlinear dynami
sof the blade are quite 
omplex, giving rise to stable and unstable periodi
 bran
hes. However,the heli
opter 
on�guration used in this 
ase was very stable whi
h resulted in the nonlinear
hara
teristi
s inherent in the rotating blade to take e�e
t outside the operating 
olle
tive pit
hrange. Nevertheless, the results showed how unstable limit 
y
le bran
hes 
o-existed with themain stable equilibrium bran
h. Additional nonlinearities may extend these unstable bran
hes
loser to the operating 
olle
tive pit
h angle range. Two forward �ight 
ases were also shownrequiring implementation using a harmoni
 os
illator to impose the ne
essary periodi
ally for
ed
ondition. This exhibited nonlinear behavior beyond the operating envelope of the heli
opter,although relatively 
lose to the higher speed regions for the heavy weight 
ase. The e�
ien
yof the te
hnique in 
ombining trimmed-�ight solutions with the stability analysis was demonstrated.The study was then extended to address the nonlinear stability of a passive trailing edge�ap in
orporated in the elasti
 blade for the hover 
ase. It was shown that not only were thestability boundaries for the trailing edge �ap 
omputed using the 
ontinuation te
hniques, butalso se
ondary stable and unstable periodi
 bran
hes were followed. The results predi
ted thatunstable periodi
 bran
hes 
o-exist with the main stable equilibrium bran
h for the same values of�ap 
enter of gravity position. This meant that large enough disturban
es of the trailing edge �ap,of the order of 2◦, 
ould lead to unstable behavior even though the main equilibrium bran
h isstable. These results illustrate the advantage of using 
ontinuation and bifur
ation methods overthe 
onventional stability analysis, whi
h would fail to provide this type of non-lo
al information.The analysis presented in this paper not only illustrates that 
ontinuation and bifur
ation25



methods are appli
able to studying the rotating blade aeroelasti
 stability, but also 
on�rms thatthe dynami
s of the blade behavior are very 
omplex and nonlinear, even in the hover 
ondition.It was shown that the lo
al linearized analysis is not su�
ient to guarantee the stability of thetrailing edge �ap and large but possible perturbations of the order of 2◦ 
an lead to undesirabledynami
s. Although most of the 
omplex behavior of the blade was found outside the operationalparameter range for this heli
opter, the added 
omplexity of future rotor systems in
luding thoseof the trailing edge systems will introdu
e di�erent types of nonlinearity that 
an have adversestability e�e
ts within the operating parameter spa
e and hen
e need to be treated with 
are.Finally, the 
ontinuation and bifur
ation tools were essential in un
overing the global blade dynami
swhen multiple solutions 
oexist. Therefore these tools o�er 
onsiderable advantages in aeroelasti
stability analyses of future rotor 
on�gurations, in parti
ular where new devi
es su
h as a
tivetrailing edge �aps, semi-a
tive lag dampers and a
tive pit
h-links introdu
e additional nonlinearitiesto the system. VI. A
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