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Continuation and Bifuration Analysis in HeliopterAeroelasti Stability ProblemsDjamel Rezgui1 and Mark H. Lowenberg2University of Bristol, Bristol, BS8 1TR, UKMark Jones3AgustaWestland Ltd, Yeovil, Somerset, UKClaudio Monteggia4AgustaWestland SPA, Casina Costa, ItalyThe dynamis of rotary wing systems is omplex and typially features highly non-linear and often unsteady aerodynamis as well as aeroelasti in�uenes. In ongoinge�orts to redue noise and vibration, ative devies suh as trailing edge �aps on therotor blades are being studied and these devies an introdue further nonlinearities.Therefore, it is important to be able to evaluate the stability of the overall systemwith a proper understanding of the global nonlinear behavior. Numerial ontinuationand bifuration analysis is well suited to this need, and this paper presents evidene ofthe tehnique providing a deeper insight into the stability of heliopter rotor systemsthan the methods typially adopted in industry. We �rst investigate the aeroelastistability of rotor blades of a medium-sized heliopter in hover and the periodiallyfored forward �ight ondition, in both trimmed and untrimmed ases. Then, bifur-ation analysis is used to predit the nonlinear stability of a single degree-of-freedomtrailing edge �ap added to the aeroelasti system, over a range of design parameters.The approah is novel in the ontext of real-world aeroelasti rotor models, and the1 Leturer in Rotorraft Tehnologies, Dept. of Aerospae Engineering, University of Bristol, UK, and AIAA Asso-iate Member.2 Reader in Flight Dynamis, Dept. of Aerospae Engineering, University of Bristol, UK, and AIAA Senior Member.3 Senior Engineer, Rotor Dynamis and Loads, Heliopter System Design, AgustaWestland Ltd, Yeovil, Somerset,UK.4 Manager, Rotor Dynamis and Loads, Heliopter System Design, AgustaWestland SPA, Casina Costa, Italy.1



emphasis here is on the potential for revealing important multiple-attrator dynamisrather than the study of a partiular system. The results presented highlight the ad-vantages of the approah, both in terms of generating an understanding of loal andmore global stability, and in the e�ieny in obtaining relevant results as parametersvary.
Nomenlature

( )′ = Di�erentiation with azimuth angle ψ.
˙( ) = Di�erentiation with time t.
Alat, Blong = Lateral and longitudinal yli pith angles.
Ii = Modal mass of mode i.
L, D = Elemental aerodynami �apwise and lagwise fore omponents, positive upward andforward respetively.
L0, D0 = Elemental aerodynami �apwise and lagwise fore omponents omputed when theblade's modes are evaluated, positive upward and bakward respetively.
M = Elemental aerodynami pithing moment about the setion shear enter, positive noseup.
M0 = Elemental aerodynami pithing moment omputed when the blade's modes are evalu-ated, positive nose up.
NB = Number of blades.
Qqi = Generalized fore of mode i.
R = Rotor radius.
T = Rotor osillation period.
Ti, Tav = Rotor instantaneous and average thrust.
Treq = Required rotor thrust.
UP , UT = Perpendiular and tangential omponents of the elemental �ow veloity.
ctef , ktef = Linear rotational damping and sti�ness oe�ients at the trailing edge �ap hinge.
hs, hc = Harmoni osillator states, hs = sin(Ωt) and hc = cos(Ωt).
p = Parameter vetor desribing the rotor and �ow properties.
qi = Generalized displaement of mode i.2



r = Elemental blade radial position.
t = Time.
u = Blade axial displaement.
w, v, ϕ = Blade �apwise, lagwise, and twist de�etions respetively.
wi, vi, ϕi = Flapwise, lagwise and twist omponents of the ith mode shape respetively.
wst, vst, ϕst = Blade �apwise, lagwise and twist steady state de�etions respetively.
x = State vetor.
Ω = Rotor speed.
β = Blade �apping angle.
βa1,req, βb1,req = Required lateral and longitudinal �apping angles respetively.
δ = Trailing Edge Flap (TEF) angle.
µ = Advane ratio.
νi = Indued veloity at blade radial position r and azimuth ψ.
ν0, νs, νc = Average, lateral and longitudinal indued veloity omponents respetively.
ωqi = Modal frequeny of mode i.
φ = In�ow angle.
ψ = Azimuth angle.
θcol = Colletive pith angle.
θp = Pre-deformed blade pith angle, θp = θpt + θcol − Alat cos(ψ)−Blong sin(ψ).
θpt = Blade pre-twist or built-in twist angle.

I. IntrodutionThe dynamis of rotary wing systems involve omplex interations of aerodynami, strutural,material and geometri nonlinearities. In the heliopter industry, the trend towards higherperformane gains and lower vibration and noise levels has led to the development of more omplexrotor systems, whih inorporate novel design features, utilizing for example: omposite materials,semi-ative lag dampers and ative trailing edge �aps. These features tend to inrease the levelsof nonlinearity in the rotor system, whih means that a proper nonlinear analysis of the bladedynamis is required. Traditionally, di�erent mathematial tehniques have been used to studythe aeromehanial and aeroelasti blade stability, at di�erent �ight regimes. These tehniques3



inlude time history simulation (time integration tehniques), parametri resonane analyses [1�3℄,perturbation methods [4, 5℄ and Floquet analysis [5�7℄. In fat, in most operating onditions, theheliopter blade aeromehanial and aeroelasti stability is well understood in both the aademiand industrial setors, inluding ases of very high tip speed ratios. Extensive reviews in the �eldare those by Friedmann and Hodges [8℄, and Friedmann [9℄.However, many of the above stability methods depend on assumptions that are questionablefor newer rotor on�gurations suh as rotors with very �exible blades or with ative/atuatedelements, where highly nonlinear dynamis are introdued. In addition, these methods may notprovide the omplete stability piture. For example, the methods an predit the loal stability ofthe blade, but the regions of attration in that ase are not de�ned. In other words, the bladesmight be stable for small disturbanes but feasible disturbanes may be large enough for theloal stability to be lost and the atual outome is not indiated. In nonlinear mathematis, theregions of attration an be obtained by prediting the multiple-attrator struture governing thenonlinear dynamis of a system in the larger state spae. This struture portrays the main as wellas seondary solutions, both stable and unstable, whih an give an indiation of how large theperturbations would need to be for the dynamial system to hange its behavior from that preditedby loal stability analysis. Therefore, it an be inferred that, unlike loal linearized methods,nonlinear stability methods an not only indiate the dependene of system stability on parametervariation, inluding boundaries in parameter spae between stable and unstable onditions, butthey also provide more global information on likely behavior via the solution of multiple attratorsand their in�uene on dynami response. One of these powerful nonlinear analyses is dynamialsystem theory, implemented in the form of bifuration and ontinuation methods. The bene�ts ofthese methods over those mentioned above lies not only in gaining a more global piture of thesystem dynamis through the omputation of multiple solution branhes, but also in the e�ienyin obtaining these solutions with their stability and identifying the types of bifuration, whihindiate hanges in the dynamis [10℄.
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In the aerospae setor, the use of bifuration and ontinuation tools is beoming morewidespread. In partiular, it is inreasingly adopted to investigate nonlinear airraft �ight dynamisand ontrol problems. However, the appliation of ontinuation and bifuration methods has beenlimited to a small number of heliopter dynamial problems, suh as �ight mehanis [11�17℄,ground resonane [18, 19℄ and examination of rotor vortex ring state [20℄. Furthermore, almost allof the investigations whih utilize these nonlinear tools an be regarded as researh studies and itis still hard to �nd these tools adopted in industry for prodution airraft. In reent years, thestability of rotor blades in autorotation was investigated by Rezgui et al. [21, 22℄ and Lowenberg etal. [23℄ using nonlinear dynamis theory implemented numerially in the form of ontinuation andbifuration methods. The same tehniques were also adopted by Rezgui et al. [24℄ to investigatethe aeroelasti rotor blade stability of heliopter rotor blades. This investigation showed that thesetehniques are powerful in the identi�ation of instability senarios of rotor blades and unoveringthe multiple solution struture driven by the nonlinearities in the rotor system. However, this workfoused mainly on the appliability of the methods to heliopter blade stability problems withoutfully disussing the e�ets and importane of nonlinearities on the global dynamis and hene theglobal stability of the rotating aeroelasti blade.The inlusion of omplex ative or even passive dynami systems in a rotating blade mayintrodue further nonlinearities, whih an introdue undesirable behavior within the operatingrange and physial design spae. One of these devies is the Trailing Edge Flap (TEF), whihhas been onsidered by heliopter manufaturers for vibration redution, noise redution andperformane gains. For example, the experimental BK117 was the �rst worldwide �ying heliopterwith an ative rotor TEF system [25℄. TEFs an be intelligently atuated and ontrolled in alosed-loop fashion to loally hange the aerodynami lift and moment distributions on the blades,and thus, obtain the desired gains. Furthermore, due to the presene of TEF dynamis the blademotion an be signi�antly a�eted by the ouplings between the blade degrees-of-freedom [26℄.There are a number of studies that investigated the stability of TEFs inorporated in a rotorsystem suh as the work by Shen and Chopra [27℄ and Maurie et al. [28℄. However, these studies5



investigated only the loal linearized stability - using small perturbation motions about steadytrimmed solutions - using the Floquet method and the nonlinear stability aspets were not studied.In a previous work, Straub and Charles [29℄ studied the oupled blade/�ap dynamis using theomprehensive heliopter ode CAMRAD II and showed that the TEF spring sti�ness a�etsthe stability of �ap-pith and fundamental blade torsion modes. Again this analysis was basedon eigen-analysis and the global nonlinear aspets of the oupled blade/�ap dynamis were notinvestigated. Therefore, it is still not lear if nonlinearities inherent in the TEF system or thosealready inherent in the rotor system an lead to undesirable behavior of the oupled TEF/bladesystem. Other examples of soures of nonlinearity in the rotor system inlude nonlinear dampingproperties of passive or semi-ative lag dampers, hardening e�ets of pith-link mehanisms andfree-play in the swash-plate system.This paper shows, for the �rst time, possible stability senarios for a trailing edge �ap onan aeroelasti rotor, whih are driven by the inherent nonlinearities in the oupled TEF/bladesystem. The approah is suitable for both low-order and more omplex models. Relevant oneptsin ontinuation and bifuration analysis are desribed in se. II. Then in se. III, the aeroelastimodel is introdued and its nonlinear behavior examined using bifuration analysis. The trailingedge �ap is introdued to the model in se. IV and the resulting nonlinear harateristis explained.Conlusions on the bene�ts and appliability of the methods are drawn in se. V.II. Continuation and Bifuration Methods for Rotorraft AppliationsThe basi idea of the numerial ontinuation and bifuration tehniques is the alulation of thesteady solutions of a dynamial system as one of its parameters, alled the ontinuation parameter,is varied aross a pre-de�ned range. The omputed solutions onstrut a number of branhes thatould be either stable or unstable. To determine the stability, either an eigen or Floquet analysisis arried out at eah omputed solution, depending on the nature of the solution. For instane,in hover the blade behavior an be onsidered to be in equilibrium (�xed points), hene an eigenanalysis is arried out for stability, whereas in forward �ight, the blades behave in a periodi manner6



(limit yles) due to the rotor lift asymmetry, hene Floquet theory is used to determine the stability.A bifuration is the qualitative hange in the system behavior as a parameter is varied. Inother words, when the stability of a system is hanged or lost, the system bifurates. The points atwhih these stability hanges happen are alled bifuration points. When the system is nonlinear,new solution branhes may emerge from the bifuration points, leading to the presene of multiplesolutions for the same set of system parameters. The identi�ation of these di�erent solutionbranhes helps to unover the global dynamis of the system. Of partiular interest is when theblades, for example, are loally stable for small disturbanes but not neessarily for large ones, andvie-versa.Therefore, the strategy in implementing ontinuation and bifuration methods is to followone solution branh as one or more parameters are varied to loate bifuration points. Theemerging branhes are then followed to onstrut a more omplete piture of the system dynamis(bifuration diagram). Furthermore, other advantages of ontinuation methods are their e�ienyand auray in following the solution branhes as well as in deteting and identifying thebifuration points, ompared with other time history or frequeny domain methods. The di�erenttypes of bifurations that an our in equilibria or periodi orbits are not disussed in this pa-per; the reader is referred to general texts suh as referenes [10℄ for more bakground on the subjet.The ontinuation algorithm used in this analysis is implemented in the ontinuation and bifura-tion software AUTO [30℄. AUTO is open soure software for ontinuation and bifuration problemsof ordinary di�erential equations, originally developed by Eusebius Doedel, with subsequent majorontributions by several people1 where it is urrently available on a number of platforms [30, 31℄.Besides many other types of equations, AUTO an perform extensive bifuration analysis of ordinary[1℄ The software an be downloaded from http://indy.s.onordia.a/auto
7

http://indy.cs.concordia.ca/auto


di�erential equations (ODEs) of the form:
ẋ(t) = f(x(t), p), x ∈ ℜn, p ∈ ℜm, f : ℜn ×ℜm −→ ℜn (1)subjet to initial onditions, boundary onditions, and integral onstraints. Here x is the statevetor and p denotes one or more parameters. n and m are the numbers of states and parametersrespetively. Equation (1) is written in the generi (nonlinear) state-spae form, where thestate-derivatives are funtions of the states and some parameters. One advantage of this form is theability of passing the model variables to and from the analysis tool regardless of the environmentwhere the system equations are oded (implementation proedures must be observed). Thisattribute provides a stability tool whih not only is independent of the model but also is ableto ouple with a wide range of modeling platforms, whih an be partiularly bene�ial in theheliopter industry.The main two types of steady solutions whih desribe the rotor blade behavior in the onven-tional operating envelope are equilibrium and limit yle solutions. Conventionally, heliopter rotormodels are written in the non-autonomous form, in that the independent variable t (or ψ) appearsexpliitly in the equations. Of ourse in the hover ase, the blade is in equilibrium and hene themodel does not expliitly depend on the time variable t (or ψ), even if they appear in the standardequations. Therefore, for onveniene the time variable t (or ψ) an be �xed to a onstant valuewithout a�eting the model dynamis. On the other hand, in forward �ight, the blade dynamisis heavily dependent on the blade azimuthal loation, mainly beause of the periodi aerodynamiforing. In this ase, the independent variable t (or ψ) has to be onverted to a state variable.Of ourse, one an always designate the time t or azimuth angle ψ as additional states, in orderto transform the system to an autonomous one. This an either be ahieved by ψ̇ = Ω, where ψis a state or by ṫ = 1, where t is a state and the azimuth angle an be alulated as ψ = Ω t,assuming Ω is onstant. However, if the above method is used (either ase), the new time statewill monotonially inrease and hene will not desribe osillatory behavior. Therefore, to solve thisproblem, a harmoni osillator model is used to realize the periodiity of all states. The harmoni8



osillator equations are:
ḣs = hs + Ω hc − hs (h2s + h2c)

ḣc = −Ω hs + hc − hc (h2s + h2c)

(2)or
h′s = hs + hc − hs (h2s + h2c)

h′c = −hs + hc − hc (h2s + h2c)

(3)where the hs = sin(Ω t) = sin(ψ) and hc = cos(Ω t) = cos(ψ) are solutions to Equations (2) and(3). The terms hs and hc an now be used to replae any sin(Ω t), sin(ψ), cos(Ω t) or cos(ψ)in the blade foring equations as appropriate. The azimuth angle an be alulated using thequadrant-artangent funtion ψ = atan2(hs, hc). This approah to the study of aeroelasti rotorblade dynamis has not previously been attempted, aording to the literature.III. Aeroelasti Stability of Heliopter Rotor BladesA. Rotor Blade ModelIn this setion, the use of ontinuation and bifuration analysis is illustrated in prediting thestability of heliopter main rotor blades in hover and forward �ight onditions. The objetive ofthis study is to determine how the inherent nonlinearities in a rotating aeroelasti blade manifestthemselves in terms of adverse blade behavior. The nonlinearities inluded in the mathematialmodel were kept to the minimum and inlude geometri, inertial and strutural terms arising fromthe formulation of the modal equations of a rotating blade, aerodynamis loads inluding statistall e�et but exluding dynami stall, and terms arising from oupling with the in�ow model.Although dynami stall is the primary soure of nonlinearity, it was not modeled here to fous onthe analysis of the e�ets of the other soures. We note, however, that state-spae representationsof unsteady aerodynamis suh as dynamis stall (e.g. Leishman and Beddoes [32℄, Goman andKhrabrov [33℄) are straightforward to inorporate within ontinuation and bifuration analysis.Modal representation is used for the strutural blade dynamis and hene eah blade isrepresented by a number of general modes (eight in this analysis: four �ap, two lag and twotorsional modes). The mode shapes, frequenies, and modal masses are omputed a priori at a9



given hover ase ondition. The omputed modal harateristis are assumed to remain una�etedby the hanges in �ight ondition. Although the model an inlude the dynamial equations forall blades of the rotor, it is adequate here to use a single bladed rotor model for the stability analysis.The fored response equation approah is used to desribe the aeroelasti dynamis of the blade.The equations used were developed in referene [34℄. Figure 1 depits a shemati drawing of theblade oordinate system and de�etions v, w and ϕ, whih an be alulated at eah blade radialposition r as follows:
w(r, t) =

n
∑

i=1

qi(t)wi(r) + wst, v(r, t) =

n
∑

i=1

qi(t)vi(r) + vst, ϕ(r, t) =

n
∑

i=1

qi(t)ϕi(r) + ϕst (4)where wi, vi and ϕi are the �apwise, lagwise and twist omponents of the ith mode shape respetively.
n is the number of modes and qi is the generalized displaement. wst, vst and ϕst are the blade�apwise, lagwise and twist steady state de�etions respetively. The formulation of this equationwas done in a manner suh that the orthogonality of the modes leads to an equation in whih themodal response depends only on the following foring omponents:1. the aerodynami foring (Qaero,qi);2. time dependent terms suh as the Coriolis fore (Qtdep,qi);3. blade pith dependent terms (Qpper,qi );4. nonlinear terms not inluded in the formulation of the modal equation (Qnlin,qi).The fored response equation for eah mode is:

q̈i = −ω2

qi
qi +

Qqi

Ii
i = 1, 2, 3, ... (5)where ωqi , Ii and Qqi are the modal frequeny, modal mass and generalized fore terms for eahmode i. The di�erentiation (¨) is done with respet to time t. It an be notied from equation (5)that the elasti damping is assumed negligible and hene is not aounted for. Eah mode shapeonsists of �ap, lag and twist mode shape omponents, wi, vi and ϕi respetively. The generalizedfore Qqi onsists of the four foring terms desribed above and an be written as follows:

Qqi = Qaero,qi +Qtdep,qi +Qpper,qi +Qnlin,qi (6)10
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jFig. 1 Shemati diagram for blade oordinate systems and deformation.where the expressions for the foring terms an be found in [34℄. For the aerodynami foring,a blade element tehnique is used for alulating the fores and moments ating on the blades.Quasi-steady aerodynami representation [35℄ is used for alulating the aerodynami loads at eahblade radial station, where the aerodynami oe�ients are interpolated from look-up tables fora range of angle of attak (−180◦,+180◦) and Mah number. It should be noted that the pro�leof the aerodynami oe�ients is nonlinear with Mah number and angle of attak in partiu-lar beyond the stall ondition. Blade/blade and blade/airframe interations are not onsidered here.The blade deformation due to bending and twisting a�ets the loal �ow veloities andalso angles of attak. In general, the omponents of the resultant �ow veloity at eah bladeelement arise from �ve soures, namely: blade rotation, free stream due to the heliopter move-ment, rotor indued veloity, rates of blade bending and rates of hange of the pre-deformedblade oordinates. Furthermore, the resultant �ow veloity is onventionally resolved intoomponents tangential and normal to the loal axes of the blade. The full expressions of theseomponents depend on many variables, inluding the positions of the blade elements before andafter deformation, and an be very long. Hene, they are not presented here but an be found in [34℄.The aerodynami foring Qaero,qi in Equation (6) is the most omplex term to evaluate inomparison to the rest of the foring terms. This is due to the ompliated nature of the �ow �eld11



around the aerofoil setion. The general form of Qaero,qi is given by the integral:
Qaero,qi =

∫ R

0

[

d(L− L0)

dr
wi +

d(D +D0)

dr
vi +

d(M −M0)

dr
ϕi

]

dr (7)where the three terms on the right hand side represent the fore distribution in the �apwise andlagwise diretion and the pithing moment distribution respetively. These terms are funtions ofthe �ow and blade properties, as well as blade ontrol angles.The rotor instantaneous thrust Ti an be evaluated simply by summing all elemental vertialfores L and multiplying this by the number of blades NB. i.e.
Ti = NB

N
∑

elem=1

L (8)where N is the number of blade elements. This value of thrust is only used to estimate the induedveloity within the rotor model. The thrust value used for performane and trimming proedureshas to be averaged out aross one rotor revolution.
Tav =

1

2π

∫

2π

0

Ti dψ (9)The in�ow is aptured via a 3-state Pitt-Peters dynami wake model [36�38℄. This model permitsthe variations of the indued veloity in both the radial and azimuthal position. Furthermore, itallows the lag dynamis assoiated with moving a volume of air to be modeled. The in�ow modelis given for three states as
νi (r, ψ) = ν0 +

r

R
(νssin(ψ) + νc cos(ψ)) (10)where νi is the indued veloity at an element of radius r and azimuth position ψ. The induedveloity omponents ν0, νs and νc are given in the wind axes by:
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Taero, Laero and Maero are the thrust and the aerodynami rolling and pithing moments respe-tively in the wind axes, and expressions for the matries [τ ] and [Λ] an be found in [36�38℄.12



Finally, the main model equations, whih are represented by Equations (2), (5) and (11), anbe rearranged in terms of time derivatives of the state vetor x to produe the required state-spaeform:
ẋ = f(x, p) where x = {hs, hc, ν0, νs, νc, q1, q̇1, . . . , q8, q̇8}

T (12)It should be noted that the adopted method of modeling the blade dynamis (modal responseequation + blade element method + dynami in�ow model) is widely used in the heliopter industry.Moreover, to further inrease the auray of the model, the rotor model was onstruted in a formatthat not only allows adding extra states (e.g. blade degrees-of-freedom, in�ow states, et.), but alsomodeling more omplex features of the aerodynamis and/or the rotor struture (e.g. unsteadyaerodynamis, dynami stall, nonlinear modes, et).B. Analysis and Results1. Hover CaseThe rotor model was on�gured to have realisti blade and �ight harateristis for a mediumsized heliopter (maximum take-o� weight around 6.5 tonnes). Continuation runs were �rst arriedout in the hover �ight ondition over a range of olletive pith angles. The resulting bifurationdiagrams are depited in Figure 2, for the �rst lag (q1) and �rst �ap (q2) generalized displaements.In the stable hover ondition, the blade is in a steady state situation and hene there is no need touse the harmoni osillator method, sine there is no periodi foring to the system, nor to trim therotor to ertain thrust or �apping angle values.As θcol is inreased from 0◦, there is only one stable equilibrium (hover) branh, whih beomesunstable between 19.8◦ and 23◦. This equilibrium branh also destabilizes at θcol higher than
27.2◦. In the �rst instability ase, the main branh hanges stability at two Hopf bifurationpoints loated at 19.8◦ and 23◦. This type of bifuration ours when a omplex onjugate pair ofeigenvalues rosses the imaginary axis, with non zero imaginary parts. A Hopf bifuration is alsoassoiated with the birth of seondary periodi solutions (Limit Cyle Osillations `LCO's'). InFigure 2, both Hopf points are subritial leading to the birth of unstable periodi solutions, whih13
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Fig. 2 Bifuration diagram for hover ase using θcol as ontinuation parameter. Only the peakvalues of the periodi osillations in one yle are plotted.14



o-exist with setions of the stable equilibrium branh. A subritial Hopf is a hard bifurationwhih will lead to the solutions jumping to another attrator just after the bifuration point. Thisjump an be very dangerous partiularly if this latter attrator is far from the original branh.This is beause the divergene of the transient osillatory response, just after the Hopf, an bevery rapid and it may not be possible to go bak to the stable equilibrium solution, just before theHopf point, by modest variation of the system parameters, or without signi�ant hysteresis e�ets.The unstable periodi branh emerging from the Hopf point at θcol = 19.8◦ extends very slightlyas θcol is redued and then it folds bak at a limit point (fold bifuration) at θcol = 19.6◦. Thisbifuration point ours when one Floquet multiplier rosses the unit irle at a value of 1. Thesolution then beomes stable and extends as θcol is inreased. Furthermore, this stable periodibranh hanges stability a few times in the viinity of θcol = 23◦ due to the existene of threeother fold bifuration points, until it merges with the main equilibrium branh at the Hopf pointloated at θcol = 23◦. It an be shown that if the blade is disturbed from the unstable equilibriumbranh, it will always get attrated to the stable periodi branh. In other words, if the pith an-gle is between 19.8◦ and 23◦, the blade will eventually behave in a periodi manner, i.e. LCO's our.The Hopf point at θcol = 19.8◦ is found to be assoiated with the �rst �ap mode beomingunstable, whih stabilizes again at θcol = 23◦. It was also found that two other �ap modes loseand gain stability within the same range of olletive pith angles. This is depited by four otherHopf bifuration points within the unstable equilibrium branh. The unstable periodi branhwhih emerges from two of these points is plotted in Figure 2. This branh also experienes torus(Neimark-Saker) bifurations, whih will introdue limit yles of higher period or - more likely -quasi-periodi solutions.Figure 2 also illustrates the existene of a subritial Hopf and limit point bifuration, whihfold the seondary unstable periodi branh into a stable periodi one. If the olletive pith angleis inreased beyond 27.23◦, the solutions will jump to the stable periodi branh. It an also beseen that in the range θcol = 27.07◦ to 27.23◦ the blade an behave either in a stable equilibrium15



or in a stable periodi manner, depending on the perturbation levels subjeted to the blade.The maximum operating olletive pith angle for this heliopter is about 12◦ and hene itis well within the stable region. Although the blade behavior is expeted to be stable for thisoperating heliopter on�guration, the above results are useful in supporting the argument that thenonlinear dynamis of the aeroelasti rotating blade does not introdue any seondary branhesthat extend bak to the operating olletive pith range. This is beause of the fold bifurationsof the periodi branhes that emerged from the subritial Hopf bifuration points at θcol = 19.8◦and 27.23◦. Additional simulation results on�rmed that there are no isolated seondary branheswithin the operating olletive pith range. Finally, although the bifuration points ourred wellabove the 12◦ limit, this ase study provides a good example of how important the onstrutionof the bifuration diagram is in prediting the global nonlinear dynamis of the blade behavior.In ontrast, the traditional stability analysis fouses only on examining the stability of the mainbranh typially using eigen analysis or Floquet methods, without properly onsidering the e�etsof large perturbations. Although, time history simulation an be used to address this shortfall, it isdi�ult to obtain a lear piture of the underlying struture of the nonlinear dynamis, espeiallywhen unstable seondary branhes exist in the viinity of the main solution branh. In additions,for ases where the system is poorly damped, running a large number of time simulations beomesvery time expensive.Finally, for a more omplete investigation, the dependene on other parameters would also needto be studied using the ontinuation and bifuration analysis. However, for rotor blade aeroelastiityproblems, there is at least a moderate number of parameters that an a�et the blade stability, forexample blade strutural and inertial properties, blade ontrol angles and �ow parameters. Runningthe ontinuation analysis to over the whole parameter spae an be very time expensive or evenprohibitive. One solution to this problem is to pik one parameter as the ontinuation parameterwhile onstraining the others to satisfy a ertain ondition as the ontinuation analysis is performed.This method is illustrated in the next setion, where the trim ondition was seleted as a onstraint16



for the forward �ight ase.2. Forward Flight CaseUnlike many analyses, where rotor trimming is arried out �rst (using the harmoni balanemethod for example) prior to any stability alulations, some ontinuation and bifuration toolssuh as AUTO an ompute solutions and their stability simultaneously for given boundary orintegral onditions. This means that the ontinuation and trimming proedure an be done inparallel. In fat, the eigenvalues and Floquet multipliers are omputed at negligible extra ost to theontinuation analysis. In addition, the ontinuation methods used in this work does not require toonstrain the periodi solutions to a �xed number of harmonis. Therefore, more aurate solutionsas well as trim an be obtained. To ahieve rotor thrust and hub moments trim in forward �ight,three integral onditions were imposed. The propulsive trim ondition to balane the propulsivefore with heliopter drag was not expliitly imposed during the ontinuation. Instead, the rotorshaft inlination was interpolated based on a pre-supplied pro�le for a range of advane ratio of
0 < µ < 0.45. For higher values of µ, the shaft angle was �xed. The boundary onditions an beonstruted as follows:1. The thrust trim ondition: in this ondition the blade olletive pith angle θcol is obtainedby equating the average alulated thrust in one rotor revolution to the required thrust:

Tav =
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Ti dψ = Treq (13)2 & 3. Hub moment or �ap angle trim onditions: these onditions allow the determination of therequired yli pith angles (Alat and Blong) to ahieve the desired trim. For �ap trim, the�rst harmoni �ap omponents in longitudinal and lateral diretions an be equated to therequired values. This an be implemented as follows:
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Figure 3 illustrates the ontinuation results when the advane ratio is used as the ontinuationparameter for two rotor dis loading onditions: light and heavy loading onditions. The thrustgenerated in the heavy loading ondition is about 75% more of that in the light weight ase. Onlythe peak values of osillatory modal displaements of the �rst two modes are plotted. For the lightweight ase, the bifuration diagrams show that when µ is between approximately 1.03 and 1.19 theperiodi branh is unstable, due to the presene of two torus bifurations. Whereas, the instabilityours at a lower value of µ ≈ 0.82 for the other ase. To further srutinize the results, the variationof the damping of the modes was investigated from the omputed Floquet multipliers. It was foundthat the unstable periodi branh orresponds to the range of advane ratios when the damping ofthe �rst lag mode (mode 1) is negative. Hene, this indiates that this instability an be of the�ap-lag type.
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Fig. 3 Bifuration diagram for forward �ight ase using µ as ontinuation parameter. Onlythe peak values of the osillations in one yle are plotted.It should be noted that although the mathematial model might not be valid for very highadvane ratios ( µ > 0.8 for example) and the heliopter might not �y at µ > 0.55, it is ustomarywhen performing ontinuation analysis to extend the ontinuation parameter beyond the physialrange. The reason for this is to searh for any bifuration points - espeially those subritialones - that might lead to new solution branhes, whih return bak into the physial range.Although ontinuation methods that follow quasi-periodi branhes exist, the examination of the18



emerging quasi-periodi branhes from the torus bifurations here were done through a series oftime simulation runs. For the light weight ase depited in Figure 3, the only seondary branhfound was a stable quasi-periodi branh (not shown in Figure 3), whih is ontained in the range
1.03 ≤ µ ≤ 1.19 and onnets the two superritial torus bifurations points. Similarly for the se-ond loading ase, a stable quasi-periodi branh extends from the torus bifuration at µ ≈ 0.82 withinreasing values of advane ratio, most likely to reonnet with another torus bifuration at µ > 1.5.Figure 3 illustrates that inreasing the rotor dis loading an lead to instability ourring ata lower value of advane ratio. Therefore, it an be argued that for very high loading onditionsif the presene of additional soures of nonlinearity auses the torus bifurations to hange theirritiality, unstable quasi-periodi branhes may extend bak to the operating heliopter speedrange. Hene, the proper identi�ation of these seondary solutions beomes essential. Finally,although the ontinuation analysis was not used to follow the seondary quasi-periodi branhes,the methods proved very e�ient in ombining trimmed-�ight solutions with the stability analysisand identifying the types of the bifuration points. Furthermore, the implementation of the harmoniosillator model for studying rotating blade aeroelasti problems was demonstrated. This tehniqueallows the ontinuations analysis to follow periodi solutions inluding those arising from perioddoubling bifurations. The implementation of the harmoni osillator is useful for investigating notonly the aeroelasti stability of a passive blade but also when additional foring is present suh asthat of an atuated trailing edge �ap.IV. Aeroelasti Stability of Heliopter Rotor Blades with Trailing Edge FlapsAtive Trailing Edge Flaps (TEF) are reognized as e�etive means for reduing rotor-induedvibrations. However, the interation between the blade and TEF dynamis might give rise toinstability. Furthermore, determining the e�ets of the ativated �ap on the blade dynamiharateristis an be a hallenging task, in partiular with the inreased level of nonlinearityof the oupled blade/TEF/atuator/ontroller system. In this ase study, the ontinuation andbifuration tools were oupled with an industrial heliopter rotor ode to investigate the nonlinear19
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C: Flap centre of gravityFig. 4 Shemati diagram of the trailing edge �ap.stability of a passive trailing edge �ap inorporated in a �exible rotor blade. The aim is toinvestigate if the inherent nonlinearity in the blade/TEF system an result in unstable behavioreven without inluding any strutural or ontrol nonlinearities to the TEF system. Hene, thisstudy extends the urrent knowledge on the stability of rotor blade trailing edge �aps to unovertheir in�uene on the oupled blade/�ap nonlinear dynamis.The struture of the rotor model is very similar to that desribed in Case 1, in that a modalapproah is used for desribing the dynamis of the �exible blade where eah blade is represented byeight general modes (four �ap, two lag and two torsional modes). The olletive pith angle was setto an operating hover ase value, where the blades' modes are well damped. The TEF was modeledas a rigid ontrol surfae hinged at a hordwise distane xb from the leading edge of the blade, seeFigure 4. The strutural attahments of the TEF system to the rest of the blade and the drivingatuator in the passive mode (δac = 0) were represented by a linear rotational sti�ness quantity(ktef ), whih was assumed to at at the �ap hinge. The enter of gravity (C.G.) of the �ap is atdistane xc from the �ap hinge. Beause of the aerodynami and inertial ouplings between the �apand the blade dynamis the governing di�erential equations were re-arranged to allow writing themin the state-spae form (no aeleration terms on the right-hand-side of the equations).The parameters of interest in this study are the TEF hinge sti�ness and the �ap enter of20



gravity (C.G.) position from the �ap hinge. The variation of these two parameters was shown inthe literature [27℄ to a�et the linear stability of the �ap/blade system and hene bifuration pointsan be loalized. The �ap hinge sti�ness represents both the strutural spring sti�ness at the hingeand the sti�ening e�ets of the TEF atuator omponents and linkages (in passive mode). Themodel of the TEF sti�ness was purposefully hosen to be linear for two reasons. First, linear (orquasi-linear) sti�ness is su�ient to obtain the standard loal stability of the main branh. Seond,using a linear TEF sti�ness allows us to show whether or not the rih TEF dynamis (bifurationsand seondary (periodi) branhes) is entirely due to the soures of nonlinearity inherent in theoupled blade/TEF system and not beause of the �ap sti�ness itself. Although, it is not investi-gated here, it an be argued that additional nonlinearity in the �ap sti�ness or ativating the �apan introdue new bifurations and/or may hange the struture of the seondary solution branhes.Figure 5 presents the bifuration diagram for the TEF angle δ when the �ap C.G. position isused as the ontinuation parameter. Although the �ap hord is only 15% of the total blade hord,the ontinuation was run up to 50% of the blade hord. This was to searh for any bifurationthat may exist outside but lose to the physial parameter range. The results show the existeneof three bifuration points: two Hopf bifurations and one branh point bifuration. This latteris an indiation of a divergene senario, whereas the Hopf bifurations are related to �utter or�utter-like instability. It is evident that unstable onditions an arise in the physial limits of C.G.ratio, and that the instability at C.G. ratio of ira 0.22 ould potentially give rise to a solutionbranh that extends bak into the physial range.The loation of the bifuration points will vary with other parameters. A series of ontinuationruns was therefore performed using the �ap C.G. position as the ontinuation parameter for di�erenthinge sti�ness values. The ombined bifuration diagrams were plotted as a projetion plot in atwo-parameter plane (see Figure 6). This plot illustrates how the �ap C.G. position and sti�nessparameter plane an be divided into stable and unstable regions, where the bifuration pointstrae the stability boundaries. These boundaries an also be omputed diretly via 2-parameter21
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main equilibrium branh is stable. Additional nonlinear properties of the TEF system (inludingthe �ap, atuator and ontrol law) may lead to a riher bifuration diagram, with possible seondaryunstable branhes extending bak to small values of �ap C.G. positions. Seond, the ontinuationand bifuration methods are very powerful in unovering the struture of the TEF dynamis asonventional stability analysis would not provide this information. This is partiularly useful whenresponses under transient onditions are di�ult to predit when there are multiple attrators;however, the bifuration diagrams show learly where further studies - inorporating time historyruns - are needed and, indeed, how to interpret the results thereof.
Stable periodic branch

Unstable periodic branch

Stable equilibrium branch

Unstable equilibrium branch

LP: Fold bifurcation 

HB: Hopf bifurcation 

TR: Torus bifurcation  

BP: Branch point bifurcation  

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
−0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

  LP

  LP

  LP

  LP

  LP   TR

  LP

  TR  TR

  LP  TR
  LP

  LP

  TR
  TR

  LP
  BP

  BP

Flap C.G. ratio position from flap hinge (w.r.t. chord)

M
ax

 tr
ai

lin
g 

ed
ge

 fl
ap

 a
ng

le
 (

de
g)

  HB   HB

  LP
  LP

  TR

Fig. 7 Bifuration diagram for an elasti rotor blade with TEF in hover over TEF C.G.position, for �ap sti�ness of 200 lbs-ft/rad. Only the peak values of the periodi osillationsin one yle are plotted.
24



V. ConlusionThis paper presented new implementations of bifuration and ontinuation methods instudying the nonlinear heliopter aeroelasti blade stability with and without trailing edge �aps.The aeroelasti model was onstruted in a generi state spae form. Initially, the analysis wasapplied to investigate the aeroelasti stability of a �exible rotor blade for a range of olletivepith angles. The results illustrated that even in the hover ase the global nonlinear dynamisof the blade are quite omplex, giving rise to stable and unstable periodi branhes. However,the heliopter on�guration used in this ase was very stable whih resulted in the nonlinearharateristis inherent in the rotating blade to take e�et outside the operating olletive pithrange. Nevertheless, the results showed how unstable limit yle branhes o-existed with themain stable equilibrium branh. Additional nonlinearities may extend these unstable branhesloser to the operating olletive pith angle range. Two forward �ight ases were also shownrequiring implementation using a harmoni osillator to impose the neessary periodially foredondition. This exhibited nonlinear behavior beyond the operating envelope of the heliopter,although relatively lose to the higher speed regions for the heavy weight ase. The e�ienyof the tehnique in ombining trimmed-�ight solutions with the stability analysis was demonstrated.The study was then extended to address the nonlinear stability of a passive trailing edge�ap inorporated in the elasti blade for the hover ase. It was shown that not only were thestability boundaries for the trailing edge �ap omputed using the ontinuation tehniques, butalso seondary stable and unstable periodi branhes were followed. The results predited thatunstable periodi branhes o-exist with the main stable equilibrium branh for the same values of�ap enter of gravity position. This meant that large enough disturbanes of the trailing edge �ap,of the order of 2◦, ould lead to unstable behavior even though the main equilibrium branh isstable. These results illustrate the advantage of using ontinuation and bifuration methods overthe onventional stability analysis, whih would fail to provide this type of non-loal information.The analysis presented in this paper not only illustrates that ontinuation and bifuration25



methods are appliable to studying the rotating blade aeroelasti stability, but also on�rms thatthe dynamis of the blade behavior are very omplex and nonlinear, even in the hover ondition.It was shown that the loal linearized analysis is not su�ient to guarantee the stability of thetrailing edge �ap and large but possible perturbations of the order of 2◦ an lead to undesirabledynamis. Although most of the omplex behavior of the blade was found outside the operationalparameter range for this heliopter, the added omplexity of future rotor systems inluding thoseof the trailing edge systems will introdue di�erent types of nonlinearity that an have adversestability e�ets within the operating parameter spae and hene need to be treated with are.Finally, the ontinuation and bifuration tools were essential in unovering the global blade dynamiswhen multiple solutions oexist. Therefore these tools o�er onsiderable advantages in aeroelastistability analyses of future rotor on�gurations, in partiular where new devies suh as ativetrailing edge �aps, semi-ative lag dampers and ative pith-links introdue additional nonlinearitiesto the system. VI. AknowledgmentThe authors would like to thank AgustaWestland for funding and supporting of the work pre-sented in this paper. Referenes[1℄ Horvay, G., �Rotor Blade Flapping Motion,� Quart. Appl. Math, Vol. 5, No. 2, 1947, pp. 149 � 167.[2℄ Horvay, G. and Yuan, S. W., �Stability of Rotor Blade Flapping Motion when the Hinges are Tilted:Generalization of the `Retangular Ripple' Method of Solution,� Journal of the Aeronautial Sienes,Vol. 10, 1947, pp. 583 � 593.[3℄ Shutler, A. G. and Jones, J. P., �The Stability of Rotor Blade Flapping Motion,� Aeronautial ResearhCounil, R & M No. 3178, May 1958.[4℄ Wei, F. and Peters, D., �Lag Damping in Autorotation by a Perturbation Method,� Proeedings of theAmerian Heliopter Soiety 34th Annual Forum, Washington, D.C., 1978, pp. 78 � 25.[5℄ Peters, D. A., �Flap-Lag Stability of Heliopter Rotor Blades in Forward Flight,� Journal of AmerianHeliopter Soiety, Vol. 20, No. 4, 1975, pp. 2 � 13,doi:10.4050/JAHS.20.2. 26
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