
                          Chen, X., Canagarajah, C. N., Nunez-Yanez, J. L., & Vitulli, R. (2012).
Lossless video compression based on backward adaptive pixel-based fast
motion estimation. Signal Processing: Image Communication, 27(9),
961–972. 10.1016/j.image.2012.06.004

Early version, also known as pre-print

Link to published version (if available):
10.1016/j.image.2012.06.004

Link to publication record in Explore Bristol Research
PDF-document

University of Bristol - Explore Bristol Research
General rights

This document is made available in accordance with publisher policies. Please cite only the published
version using the reference above. Full terms of use are available:
http://www.bristol.ac.uk/pure/about/ebr-terms.html

Take down policy

Explore Bristol Research is a digital archive and the intention is that deposited content should not be
removed. However, if you believe that this version of the work breaches copyright law please contact
open-access@bristol.ac.uk and include the following information in your message:

• Your contact details
• Bibliographic details for the item, including a URL
• An outline of the nature of the complaint

On receipt of your message the Open Access Team will immediately investigate your claim, make an
initial judgement of the validity of the claim and, where appropriate, withdraw the item in question
from public view.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Explore Bristol Research

https://core.ac.uk/display/32602556?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1016/j.image.2012.06.004
http://research-information.bristol.ac.uk/en/publications/lossless-video-compression-based-on-backward-adaptive-pixelbased-fast-motion-estimation(d82e42a5-b649-4a61-80ab-449c9f056ea7).html
http://research-information.bristol.ac.uk/en/publications/lossless-video-compression-based-on-backward-adaptive-pixelbased-fast-motion-estimation(d82e42a5-b649-4a61-80ab-449c9f056ea7).html


Lossless Video Compression based on Backward

Adaptive Pixel-based Fast Motion Estimation

Xiaolin Chena,∗, Nishan Canagarajaha, Jose L. Nunez-Yaneza,
Raffaele Vitullib

aDepartment of Electrical and Electronic Engineering,
University of Bristol, Bristol, BS8 1UB, UK

bEupropean Space Agency (ESA), On-Board Payload Data Processing Section,
The Netherlands

Abstract

This paper presents a lossless video compression system based on a novel
Backward Adaptive pixel-based fast Predictive Motion Estimation (BAPME).
Unlike the widely used block-matching motion estimation techniques, this
scheme predicts the motion on a pixel-by-pixel basis by comparing a group
of past observed pixels between two adjacent frames, eliminating the need of
transmitting side information. Combined with prediction and a fast search
technique, the proposed algorithm achieves better entropy results and sig-
nificant reduction in computation than pixel-based full search for a set of
standard test sequences. Experimental results also show that BAPME out-
performs block-based full search in terms of speed and entropy. We also
provide the sub-pixel version of BAPME as well as integrate BAPME in a
complete lossless video compression system. The experimental results are
superior to selected state-of-the-art schemes.

Keywords: lossless compression, video compression, pixel-based prediction,
motion estimation, fast search.

∗Corresponding author
Email addresses: patlincxl@gmail.com (Xiaolin Chen),

Nishan.Canagarajah@bristol.ac.uk (Nishan Canagarajah),
J.L.Nunez-Yanez@bristol.ac.uk (Jose L. Nunez-Yanez), Raffaele.Vitulli@esa.int
(Raffaele Vitulli)

Preprint submitted to Image Communication June 26, 2012



1. Introduction

Recently, lossless video compression has become more and more impor-
tant, especially for emerging applications such as video archiving, digital
cinema, remote sensing, medical imaging etc. [1]. Similar with the lossy
counterpart, lossless video compression has been studied in both transform
and spatial domain. In transform domain, Oami and Ohta [2] proposed to
approximate the Discrete Cosine Transform (DCT) with an integer-matrix
transform and performed a mapping-based quantization process, to achieve
lossless capability. Also, various forms of 2-D [3, 4] and 3-D [5] wavelet
transforms were investigated in the context of lossless video compression. In
spatial domain, motion estimation is usually applied to remove the temporal
redundancy. Due to the shift-variant property [3, 6] and the added com-
plexity of operating in the transform domain, we are in favor of performing
motion estimation in the spatial domain.

There are generally two kinds of motion estimation: block-matching algo-
rithm (BMA) and pixel-based algorithm (PBA). BMA is simple and efficient.
A large number of researchers employed and improved BMA in their loss-
less video compression schemes [7, 8, 9, 10, 11]. Memon and Sayood were
among the pioneers looking into the problem of lossless compression of video
[7]. They presented a hybrid compression scheme that adaptively switches
between the temporal predictor based on BMA and the spectral predictor
which takes the best predictor among spectral planes. Brunello et al. [8]
introduced a temporal prediction scheme based on motion estimation and
optimal 3-D linear prediction. Carotti et al. [11] combined the CALIC [12]
framework with a temporal predictor which uses multi-frame motion esti-
mation and least square method to weigh predicted values from multiple
frames. The advanced video compression standard H.264/MPEG-4 AVC
[13], featuring multi-frame variable block-size block-base motion estimation,
has the advantage of being flexible and efficient. It has a 4x4 and a 16x16
block-based intraframe prediction, each of which supports 9 and 4 prediction
modes respectively. Its “High Profile” includes a simple predictive method
to encode the marcoblocks losslessly. These BMA based methods need to
transmit the motion vectors (MV) to the decoder. When high accuracy
of motion estimation is required, the size of MV often increases and thus
becomes a large burden. Pixel-based algorithm (PBA), on the other hand,
makes use of the past information so as to avoid sending large amount of MV
as side information. Yang et al. [14] proposed a simple pixel-based scheme

2



which adaptively chooses either intra-frame or inter-frame predictor by com-
paring the variance of the intra-frame and inter-frame neighbourhood. Its
inter-frame predictor directly takes the pixel in the previous frame with the
same position of the current pixel as predicted value. Carotti et al. [1, 15]
used the previous two frames to predict the pixel in the current frame. It
is based on the assumption that the motion registered between the previous
two frames continues at the present time. Li et al. [16] designed a temporal
predictor which used a local neighbourhood to do full search (FS) within the
search area and finds the one that minimizes the mean of absolute difference
(MAD). It also includes wavelet transform and spatial prediction in the video
compression system. These pixel-based motion estimation schemes need to
perform at least a certain amount of motion estimation on the decoder side
as well as the encoder.

However, much as it is efficient in temporal decorrelation, motion es-
timation is computationally intensive and can consume up to 80% of the
total computational requirement in the H.264/AVC encoder (JM software)
[17, 18, 19]. Therefore many fast search techniques have been invented to al-
leviate the heavy computation of full search, which exhaustively evaluates all
possible positions within the search area in the reference frame. In the pop-
ular block-matching algorithm, full search is assumed to be able to achieve
the best motion estimation accuracy, regardless of the bitrate, due to its
exhaustiveness which, however, leads to very heavy computation load. The
idea of fast search is to examine only a few positions instead of all positions
in the search area. This would often result in less accurate estimation of
the motion than using full search. The goal of fast search is to reduce the
computation as much as possible while maintaining the motion estimation
accuracy. Classical representative fast search examples are three step search
[20], diamond search [21, 22] and hexagonal search [23].

While full search and fast search have been widely used in block-matching
motion estimation [13, 8], only full search is adopted by pixel-based schemes
[16]. Fig. 1 shows the main trend of algorithms in literature (solid line).
One of our contributions, as the dash line shown in Fig. 1, is to bridge
pixel-based algorithms and fast search, on which we are not aware of any
research work in literature. This well serves our goal to develop a lossless
video compression system that is able to achieve high compression ratio with
reduced complexity. Our previous letter [24] has introduced the concept of a
backward adaptive pixel-based fast predictive motion estimation (BAPME)
for this purpose. In this paper, we will provide the first complete descrip-

3



Block-based
motion estimation

Pixel-based
motion estimation

Fast search Full search

Figure 1: Main trend of algorithms in literature vs. our approach (dash line).

tion of BAPME and discuss more details of it in depth. We also provide
the sub-pixel version of BAPME, as well as a complete lossless video com-
pression system using BAPME. We have to emphasize that the techniques
proposed here mainly aim for lossless video compression and hence we are
not considering the rate-distortion problem.

This paper is organized as follows. In Section 2, we propose a pixel-based
fast predictive motion estimation and discuss its performance and complex-
ity. The sub-pixel version of the motion estimation and its empirical perfor-
mance are presented in Section 3, followed by the complete system and its
performance in Section 4. Conclusions are drawn in Section 5.

2. Pixel-based Fast Predictive Motion Estimation

In this section, we describe the Backward Adaptive pixel-based fast Pre-
dictive Motion Estimation (BAPME) scheme and discuss various issues of
it. The goal of BAPME is, without transmitting any overheads, to obtain
smaller residual after motion estimation and to reduce the computational
complexity. Because no motion vector is transmitted, BAPME is a symmet-
ric coding scheme, where the whole procedure has to be performed at both
the coder and the decoder. In brief, the main novelties of BAPME are: 1)
it is pixel-based; 2) it includes a new prediction scheme for initial motion
vector; 3) it performs fast search on our designed routine. We explain these
features in detail below.

1. The proposed motion estimation scheme is conducted on a pixel-by-
pixel basis, due to the natural difficulties of block-matching: first, ob-
jects in video usually have irregular shapes. Some schemes introduced
variable block size (from 16 × 16 to 4 × 4) to adapt to the video con-
tents [13, 18], but this still has limitation in shapes and increases the

4



complexity and the amount of side information; second, the rigid mo-
tion (e.g. rotation and zoom) and nonrigid motion (e.g. elastic or
deformable motion) are hard to model by rigid blocks; third, the trans-
mission of side information is undesirable. To this end, we seek an alter-
native pixel-based approach which cares for each individual pixel and
possibly achieves better motion estimation accuracy without sending
any side information. In contrast with BMA, our pixel-based scheme
is more “prediction-based” rather than “matching-based”, because the
pixel to be coded is not included in any matching operations and the
fast search criterion only serves as a reference for prediction.

2. BAPME works in two stages. Firstly, it predicts an initial motion
vector (MV) using a new prediction scheme. We study the characteris-
tics of MVs and carefully design a MV prediction scheme consisting of
four predictors. Note that we still use the term “motion vector” here
although we do not send them as side information.

3. In the second stage, starting from the initial MV obtained from the
previous stage, BAPME employs a target window, which is a neigh-
bourhood of the current pixel, to search within a search range in the
previous frame and locates the MV that minimises the sum of absolute
difference (SAD) of the target window. This search is conducted on
a fast diamond search pattern [21, 22]. The fast search technique is
normally applied in BMA, but we use it in PBA to reduce the compu-
tational complexity and to increase the prediction accuracy.

We explain the technical details of the two stages below.

2.1. Initial Motion Vector Prediction

The first stage of the proposed scheme is initial motion vector prediction.
MV prediction has been used to reduce search steps in BMA [19, 17]. Since
this initial motion vector is used as the starting point of the following fast
search, it does not only to speed up the overall search but also to make better
prediction of the motion and to reduce the likelihood of MV being trapped
in a suboptimal point, which occurs sometimes when an MV with minimal
SAD but irrelevant content is found.

There are some analyses on the empirical average MV distribution for
BMA in literature [25, 26]. The experiments were carried out by using full
search with SAD as the block distortion criterion. It was revealed that for the
Rec.601 RGB standard test sequences, within a search range of 31×31, about

5



square area

cross area

diamond area

Figure 2: Search areas: cross, diamond and square region (pixels are denoted on grid
crossings).

23% MVs were at zero (0, 0), 47% in the cross region, 48% in the diamond
region and 52% in the square region within an absolute distance of 2 pixels, as
shown in Fig. 2. For CIF and QCIF sequences, within a search area of 15×15,
more than 74% and 90% MVs concentrate in the cross region, and over 81%
and 93% MVs are within the 5 × 5 square region. In our own experiments,
full search using 4×4 block size within a commonly used search range of ±32
is applied on the G plane of the RGB sequence “football” and on the Y plane
of the YUV sequence “bus”. The resulting MV distributions are displayed in
Fig. 3. From both figures, apart from the high peaks at the centre, there are
lower bumps along the cross regions. This means that the MVs are highly
peaked at the centre (0,0) and the cross regions. Fig. 3b indicates that the
MV distribution of “bus” concentrates on one direction because the sequence
“bus” shows two buses running horizontally with different speed. In Fig. 3a,
there is a small peak far away from the centre, which happens when there is
abrupt changes in the scene. Another way to observe the behaviour of MV
is through the MV field. A MV field is an image showing the direction and
length of the MV of each block by arrows. The MV field of two frames in
the CIF sequence “foreman”, shown in Fig. 4, illustrates that a large part of
the video is static or slow-moving and the MVs are mostly correlated, either
in terms of length or direction.

6



(a) Motion vectors distribution of RGB video
“football”

(b) Motion vectors distribution of YUV video
“bus”

Figure 3: Motion vectors distribution obtained using full search and 4×4 block size within
a search range of ±32 pixels.

Although the above analyses and observations are done by performing
block-based search, they still provide a good reference of the behavior of the
MVs given that block-based search can reasonably discover the true motion.
Therefore, we can summarise some characteristics of motion and motion vec-
tors:

• Most of the motion in video sequences at standard frame rate (30f/s)
is slow and smooth.

• Motion vectors often concentrate in centre area due to stillness and in
cross area due to simple translation;

• Generally, there exists more horizontal motion than vertical motion
in natural video sequences, e.g. car running as in Fig. 3b or human
walking etc.

• It might be beneficial to use a large search area when the motion ac-
tivity is high. However, it is difficult to classify the motion magnitude,
as it can vary a lot in a few frames or even within a frame. Moreover,
enlarging the search area will significantly increase computation and
side information for BMA full search.

7



0 5 10 15 20 25 30 35 40 45
0

5

10

15

20

25

30

35

40

Figure 4: Motion vector field of two frames in sequence “foreman”. The arrows indicate
the direction and length of the motion vector of each 8× 8 block.

• There is often high correlation among neighbouring MVs, indicating
smooth motion. This is not always true as in Fig. 4 that there exist
some “outliers” in the motion field. It is because sometimes noise
exists or lighting condition changes, or the block-matching method is
incapable of dealing with complicated motion.

Motivated by these motion features, we propose to use a set of four motion
vector predictors – west predictor, neighbour predictor, median predictor and
centre predictor ({ ~MVw, ~MVnei, ~MVm, ~MV0}). Among them, the neighbour
predictor is newly designed and the other three have been introduced for
BMA in the literature. We assume here that each frame is scanned in the
raster order and pixels above and to the left of the current pixel are known.

1. West predictor ~MV w. Based on the above analyses and a commonly
agreed conclusion that the movement in the horizontal direction is much

8



frame i-1 frame i

Figure 5: Neighbour predictor for initial MV prediction of pixel pi(x, y). The MV of
pi(x, y − 1) is chosen if p̃i(x, y) ≈ pi(x, y − 1), see Section 2.1.

heavier than that in the vertical direction for natural video sequences
[17], we take the MV of the pixel to the west of the current pixel as
one of the predictors.

2. Neighbour predictor ~MV nei. We construct this new predictor to make
use of the spatial correlation among pixels for motion estimation. It is
based on the assumption that if the current pixel belongs to the same
object as any one of its known neighbouring pixels, they are very likely
to move together from the previous frame, or in other words, be in the
same relative position in the previous frame. As illustrated in Fig. 5,
for example, if the pixel pi(x, y − 1) is identified as being in the same
group with the current pixel pi(x, y) in the current frame i, we predict
that pi(x, y) moves together with pixel pi(x, y− 1). So the MV of pixel
pi(x, y − 1) in the current frame is chosen as the predictor of the MV
of the current pixel. However, to define which neighbouring pixel is in
the same group with the current pixel is not an easy task. A possible
solution is segmentation, but its complexity might outweigh the bene-
fit that an initial MV prediction can bring. Instead, we observed that
pixels in the same group are generally connected and have similar pixel
intensity. Therefore, we decide whether an adjacent pixel (west, north-
west, north and northeast to the current pixel) is a “pair” with the
current pixel by comparing their intensity, and the one with smallest
difference is chosen. Since the value of the current pixel is unknown in

9



a backward adaptive scheme, we consider that it is reasonable to make
a good prediction of the current pixel pi(x, y) and use the predicted
value p̃i(x, y) for the comparison. The Gradient-Adjusted Prediction
(GAP) from CALIC [12] is simple and effective in spatial prediction,
and hence we adopt it here to predict the current pixel. Note that
using this prediction does not put more burden on the computational
complexity since there are often areas where temporal prediction does
not perform well and spatial prediction is considered as a very help-
ful alternative in a robust video coding system. We will describe our
proposed complete video compression system in Section 4.

3. Median predictor ~MVm. It is used due to the nature of the smooth
and continuous movement in most of the sequences. Median predictor
calculates the median value of the MVs of the pixels to the west, north
and northeast of the current pixel.

4. Centre predictor ~MV0. The above analyses show that there often exist
a large static area in video and MV is often centre-biased, so we include
(0, 0) as an initial motion vector predictor.

From the four initial MV candidates, we choose the initial MV with the
minimum SAD in a target window.

~MV init(m, n) = argmin(m,n)SAD(m, n) (1)

SAD(m, n) =
∑

(x,y)∈tw

|pi(x, y)− pi−1(x + m, y + n)| (2)

where (m, n) is the initial MV candidates, tw is the target window, and
pi(x, y) and pi−1(x, y), (x, y) ∈ tw denote the pixels within the target window
in current frame i and previous frame i−1, respectively. We will be discussed
the selection of target window in the next subsection.

Table. 1 shows the empirical average probability of these initial MV being
the final chosen MV after motion estimation and the probability of none of
them being the final one. If the initial MV is exactly the same as the final one,
the search steps in the next stage are reduced to only 2 (large and small DS
once each), as will be demonstrated in the next subsection. If the probability
of the predictor is high, we regard the predictor as good because: a) it gives

good prediction for ~MV init; b) it saves search steps in the next stage. Among

the four predictors, the west predictor ~MV w has the highest probability, and
the newly designed neighbour predictor ~MV nei comes second. There are

10



Table 1: Probability of initial MV being the final MV (in %).

sequence ~MVw
~MVnei

~MVm
~MV0 none of them

Football 68.37 61.01 56.60 19.53 20.54
Mobile 67.61 57.33 55.66 4.41 20.77
Susie 61.51 51.47 45.94 7.72 25.82
Missa 54.74 40.86 36.86 8.35 31.62
Claire 72.90 66.68 55.41 44.74 16.19
Average 65.03 55.47 50.09 16.95 22.99

Table 2: Probability of chosen initial MV being the final MV (in %).

sequence ~MV0
~MVm

~MVnei
~MVw

Football 18.95 39.09 10.45 5.61
Mobile 4.21 52.16 8.34 9.64
Susie 8.34 39.79 12.01 9.08
Missa 8.26 30.63 11.24 13.59
Claire 53.19 15.10 7.15 3.92
Average 18.59 35.35 9.84 8.37

about 23% final MVs that are different from any of the initial predicted
MVs. The values on each row do not sum up to 100%, because some of the
MVs from different predictors are the same, e.g. sometimes ~MV w = ~MV m.

At this point, it is also interesting to know how these predictors are dis-
tinct from each other. We show the probability of the chosen initial MV
being the final MV in Table 2. Different from Table 1, these values show the
distinction among different predictors and there is no overlap among predic-
tors. The percentage of each predictor does not include the amount that is
overlapped with the previously examined predictors, so the order of examin-
ing predictors does affect these values. The order of examining predictors in
this table is { ~MV0, ~MVm, ~MVnei, ~MVw}. In terms of the effect of the newly
introduced neighbor predictor, in our experiment there are around 7% of it
being chosen as the initial vector while being different from other predictors.

11



This table cannot show the usefulness of each predictor quantitatively, but
it does provide evidence that each predictor contributes to the prediction.

Given the results in Table 1 and Table 2, we would like to keep the
whole prediction set to improve the robustness of the scheme, especially when
dealing with more complex motion. To keep the computation cost minimum,
when two MV candidates are the same, the SAD only needs to be calculated
once. The order of checking the MV candidates also affects the result slightly.
This is due to the fact that different MVs might give the same SAD, which is
also the reason of the second column in Table 2 being slightly different with
the fifth column in Table 1. For this reason, changing the order of checking
the MV predictors results in slight difference of the probability in Table 1, but
it does not affect the probability ranking of predictors in our experiment. So
we give higher priority to the predictor that is more likely to predict the final
MV according to Table 1. Although the result of Table 1 is obtained with
a certain prediction order, in our experiment we also compare other possible
orders of arranging the predictors. Therefore, the order is arranged based
on this probability from high to low, which is { ~MVw, ~MVnei, ~MVm, ~MV0},
resulting in minimum amount of search steps in the following fast search.
Note that based on the order in Table 1, the amount of MVs being the final
MVs are 77% while it is 72.15% based on the order in Table 2. As will be
presented in Section 2.3, this prediction stage contributes a 0.06bits per pixel
(bpp) reduction to the zero-order entropy of the motion estimation scheme.

2.2. Pixel-based Fast Search

We propose to conduct pixel-based prediction on a fast search pattern
in the second stage of our scheme, with the initial motion vector from the
first stage as the search centre. This new approach enhances the accuracy of
pixel-based prediction.

The pixel-based predictor uses a target window to evaluate the motion
between the current frame i and previous frame i − 1. We define the target
window as upper-left pixels of the current pixel pi(x, y) in frame i, as in
Fig. 6a. The order of the pixels is arranged according to their Euclidean
distance to the current pixel. The shape and the size of the target window
can be adjusted if needed. Table 3 shows our experiment results using target
window size of 25, 18, 15, and 12 on the test sequences. The result indicates
that choosing 18 neighbouring pixels is adequate and gives the best results
compared to a bigger or smaller target window. For each pixel to be coded,
the predictor searches within a search range 2W × 2H in frame i− 1 for the

12



17 14 10 7 5 8 11

16 13 6 2 1 3 9

15 12 4 0

24 23 21 19 18 20 22

17 14 10 7 5 8 11

16 13 6 2 1 3 9

15 12 4 0
17 14 10 7 5 8 11

16 13 6 2 1 3 9

15 12 4 0

search range

2
H

2W

frame i-1 frame i

target window

(a) Target windows in the current frame and previous
frame, within search range 2W × 2H.

Initial search
 centre

Large diamond
search pattern

Chosen in large
diamond search

Small diamond
search pattern

Chosen in small
diamond search

(b) Diamond search pattern

Figure 6: Pixel-based adaptive motion estimation, see Sec. 2.2. (a) Target window (b)
Diamond Search Pattern

Table 3: Zero-order entropy of BAPME residue using different target window sizes, in bits
per pixel(bpp)
XXXXXXXXXXXXwindow size

sequence
Football Mobile Susie Missa Claire Average

25 4.946 4.456 3.652 3.662 2.514 3.846
18 4.914 4.470 3.636 3.661 2.525 3.841
15 4.915 4.480 3.641 3.665 2.535 3.847
12 4.932 4.505 3.657 3.672 2.546 3.862

target window which minimises the SAD in Eq. (4) with the target window
in the frame i. Note that in our experiment, there is no direct link between
the size of the target window and the search range.

Using SAD as the criterion of selecting the best predictor is due to its
simplicity and effectiveness in our experiments. We compare the zero-order
entropy of the residue of BAPME using SAD and mean square errors (MSE)
as the motion distortion criteria in Table 4. MSE is also a popular choice for
measuring motion distortion. It is good at detecting the edges but is more
sensitive to outliers. MSE is given by

MSE =
1

N

∑
(x,y)∈tw

(pi(x, y)− pi−1(x + m, y + n))2 (3)

where N is the number of pixels within the target window, which is 18
in our experiment for both criteria. Table 4 shows that SAD gives slightly
better results than MSE. In addition to the much less complexity of SAD, we
choose SAD for our scheme. Note that the block-based decode side motion

13



Table 4: Zero-order entropy of BAPME residue using different motion distortion criteria,
in bpp.

sequence Football Mobile Susie Missa Claire Average

SAD 4.914 4.470 3.636 3.661 2.525 3.841
MSE 4.929 4.489 3.650 3.674 2.518 3.852

vector estimation/derivation (DMVD) [27] also has a similar approach in
terms of defining a target area and using a matching scheme to obtain the
motion vector, but BAPME differs in taking advantage of prediction and fast
search, which will be described soon. In the end, the current pixel pi(x, y) is
predicted by

p̂i(x, y) = pi−1(x + m0, y + n0) (4)

where (m0, n0) is the final MV for pi(x, y) in the search range.
We propose applying the above pixel-based predictor on a fast search

pattern so that the target window only examines a few search points instead
of exhaustively examining every position within the search range. We choose
the simple diamond search (DS) pattern for three reasons: a) the previous
MV analyses show that a large portion of “best MVs” resides on the cross
region, which is covered directly by the DS pattern; b) the large DS pattern
covers eight directions with similar step size to ensure a thorough evaluation
in various directions; c) it has better accuracy for motion estimation than the
hexagonal pattern [23], which is important for lossless compression because a
smaller amount of residual can be achieved. Therefore, we perform diamond
search following the steps in Fig. 6b. Starting from the initial MV as search
centre, the target window in previous frame is checked on the large DS pattern
with step size 2 until the position with minimum SAD is found at the centre.
Then the target window is checked on a small DS pattern with step size
1. The small DS pattern is only evaluated once and the MV that minimises
SAD is chosen as the final MV, denoted as (m0, n0) in Eq. (4). The benefit of
this method, especially when combined with the initial MV prediction, is not
only reducing the complexity, but also providing directional prediction on the
object motion. The performance results in the following section demonstrate
this. Note that using a simple DS pattern serves for a proof-of-concept
purpose here, and future work on applying more sophisticated fast search
pattern can possibly improve the efficiency and accuracy.

14



2.3. Experimental Performance of BAPME
To evaluate the performance of BAPME, we carry out experiments on the

green colour component of a set of Rec. 601 standard RGB test sequences.
Although our method only applies to the green component in this section,
it can be applied in the same way in any other components. Since BAPME
is designed for lossless video compression, we are only concerned with the
compression ratio. One of the most straightforward and meaningful ways to
reveal this is to calculate the entropy of the sequence residue after motion
estimation. First, we examine performance of the new prediction and fast
search in BAPME by comparing it with other pixel-based motion estimation
methods in Table 5. Full search(FS), hexagonal-based search (HEXBS) [23]
and diamond search (DS) [21, 22] using the same target window as BAPME
without prediction are chosen for comparison. This is because: a) full search
has been recognized as giving better performance than fast search methods
due to it exhaustiveness; b) HEXBS is a fundamental and popular fast search
pattern; c) DS is a benchmark fast search motion estimation and is also the
fast search pattern that we adopted. The search range is restricted to ±32.
Note that the FS, DS and HEXBS here are pixel-based searching using our
target window, so they do not need to send any motion vector and thus the
result in Table 5 does not include any side information. Our experiment
shows that enlarging the search range does not improve the result for these
test sequences. For better understanding the distinction of BAPME from
BMA, we also calculate the mean of absolute differences (MAD) of pixels in
the target window for different pixel-based algorithms in Table 6, with the
same setting as the experiment in Table 5. Note that the MAD here does not
calculate the difference between the pixel values and its estimate, but rather
give the match of the target window and thus cannot directly be compared
with the entropy in Table 5.

We highlight the best entropy and the best MAD value for each sequence
respectively in Table 5 and Table 6. Table 6 shows that full search (FS) has
the best MAD amongst all these motion estimation schemes, which is con-
sistent with the theory and with our common knowledge of BMA. However,
Table 5 shows that HEXBS and DS occasionally outperform FS in terms of
zero-order entropy, which does not occur in BMA. This important and inter-
esting finding is because BMA FS always obtains the global minimal mean
of errors in each block and these errors are directly encoded, which naturally
leads to minimum entropy. However, in PBA, although FS still obtains the
minimum MAD, as in Table 6, it does not guarantee the best prediction on

15



Table 5: Zero-order entropy of residue of different pixel-based algorithms within search
range ±32, in bpp. Size of the video is in parentheses.

sequence FS HEXBS DS BAPME

Football (720×486) 4.91 5.25 5.05 4.91
Mobile (720×576) 4.56 4.60 4.53 4.47
Susie (720×480) 3.68 3.82 3.71 3.64
Missa (360×288) 3.66 3.71 3.68 3.66
Claire (360×288) 2.59 2.52 2.52 2.52
Average 3.88 3.98 3.90 3.84

Table 6: Average MAD of different pixel-based algorithms within search range ±32.

sequence FS HEXBS DS BAPME

Football 4.61 10.18 7.34 5.85
Mobile 3.32 4.24 3.89 3.73
Susie 1.81 3.19 2.46 2.16
Missa 1.68 2.43 2.23 2.11
Claire 0.82 0.98 0.94 0.92
Average 2.45 4.20 3.37 2.95

the current pixel. Since the target window in PBA does not include the pixel
to be encoded, the position with minimum SAD is not necessarily an optimal
point for the current pixel. The target window in a BMA is for “matching”,
while in PBA it is more for providing information for “prediction”. HEXBS
and DS can roughly estimate the motion directions and avoid the situations
of finding a target window with minimal SAD but non-relevant content, as
possibly in FS. Consequently, they can sometimes provide better prediction
than FS in this pixel-based setting. Moreover, based on this advantage of
DS, BAPME includes a new initial MV predictor which makes use of the
intra-frame spatial correlation to help with motion estimation, resulting in
improved performance. It achieves lower or equivalent entropy than other
schemes on every sequence. On average, it outperforms FS by 0.04bpp,
HEXBS by 0.14bpp and DS by 0.06bpp. Compared the performance of DS
and BAPME, we can also see the improvement brought by the initial MV
prediction. We have to mention that [16] suggests a pixel-based method with
possible refined search approach using initial MV and smaller target window.

16



Table 7: Zero-order entropy of residue comparison of block-based FS with different block
size and BAPME, within search range ±32, in bpp.

sequence 16× 16 8× 8 4× 4 BAPME

Football 5.25 (5.27) 4.68 (4.79) 4.54 (5.16) 4.91
Mobile 4.54 (4.55) 4.44 (4.53) 4.12 (4.71) 4.47
Susie 3.81 (3.84) 3.64 (3.78) 3.22 (3.89) 3.64
Missa 3.87 (3.90) 3.65 (3.81) 3.12 (3.83) 3.66
Claire 2.56 (2.57) 2.48 (2.57) 2.11 (2.71) 2.52
Average 4.01 (4.03) 3.79 (3.91) 3.42 (4.06) 3.84

But it is based on full search without prediction and no performance data
on their motion estimation is available for comparison.

We are also interested in the performance difference of the pixel-based
BAPME and BMA. Therefore, we compare BAPME to block-based FS with
different block size, since FS works best in BMA in terms of bit rates.
The search range of both is ±32. Table 7 shows the residue entropy of
FS excluding side information in the second to fourth columns. It indi-
cates that the zero-order entropy of BAPME is placed between block size
16 × 16 and 8 × 8. The uncompressed side information requires 2log2(2 ×
search range)/(block size)2 bpp. We compress it with the state-of-the-art
JPEG-LS as in [8], the overall entropy including compressed side information
is shown in parentheses. In our experiment BAPME is superior to conven-
tional block-based FS in terms of overall zero-order entropy by a significant
margin.

2.4. Complexity Analysis of BAPME

Previous research favours BMA over PBA for video coding, mostly due to
the simplicity and speed of BMA. In this section we analyse the complexity of
BAPME and demonstrate that pixel-based scheme can also be both effective
and efficient. We compare the computational complexity of BAPME and
block-based FS in Table 8. The number of search points per pixel in BAPME
is calculated by

SPbapme = SPinit + 8 + M × (Sds − 1) + 4 (5)

where SPinit indicates the search points in the initial MV prediction, shown
in the second row of Table 8, followed by 8 search points in the first large

17



Table 8: Computational complexity comparison of BAPME and block-based full search.
The units for rows 2-4 are search points, and for rows 5-8 are the absolute difference
computation.

sequence Football Mobile Susie Missa Claire Ave.

SPinit 2.27 2.48 2.55 2.67 1.93 2.38
Sds 1.16 1.19 1.24 1.31 1.14 1.21
SPbapme 15.01 15.37 15.65 17.48 14.55 15.34
Cbapme 270.13 276.62 281.75 289.96 261.96 276.09
Cfs(±8) 289 289 289 289 289 289
Cfs(±16) 1089 1089 1089 1089 1089 1089
Cfs(±32) 4225 4225 4225 4225 4225 4225
SIR(±8) 7.0 4.5 2.6 -0.3 10.3 4.7
SIR(±16) 303.1 293.7 286.5 275.6 315.7 294.4
SIR(±32) 1464.1 1427.4 1399.5 1357.1 1512.9 1430.3

DS pattern. Sds is the search steps in DS. M is either 3 or 5, when the
search direction is towards the edge or the corner of the diamond pattern,
respectively. On average, there are 80% search steps moving towards the
corner and 20% towards the edge [26]. In addition, there are 4 search points
in the small DS. The search points per pixel for block-based FS depend on
the search range.

SPfs = (2× search range + 1)2 (6)

The amount of absolute difference computation per pixel, shown on the fifth
to eighth rows of Table 8, is calculated by

Cbapme = SPbapme × tw size (7)

Cfs = SPfs (8)

From the above equations we obtain the Speed Improvement Rate (SIR)
of BAPME over block-based FS. SIR is commonly used to measure the speed
improvement [23, 26, 28], given by

SIR =
Cfs − Cbapme

Cbapme

× 100% (9)

From Table 8, BAPME is slightly faster than a block-based FS scheme when
the search range is ±8, but is almost 3 times faster when the search range of

18



FS is ±16, and is 14 times faster when the search range is ±32. Note that the
data about BAPME in Table 8 is obtained with search range ±32. Changing
the search range does not affect the computational amount of BAPME too
much, since the fast search steps are very limited anyway. For block-based
FS, reducing the block size would largely increase the side information, and
enlarging the search range would increase both the side information and
computation significantly. On the other hand, for block-based fast search,
the number of search points are at the same level with our scheme. Because
we need to calculate the SAD of the target window for each pixel as in
Eq.(7), our scheme requires more computation than the block-based fast
search scheme, but with the bonus of more accurate prediction.

3. Sub-pixel Motion Estimation

The above motion estimation is performed with integer pixel as units.
However, motion displacement in real world is hardly exactly at integer pixel
positions. Although it is easy to use the nearest integer pixel to approxi-
mate the fractional pixel position value, improved motion estimation accu-
racy might be gained if we can actually use the value of the fractional pixel
for prediction. By comparing fractional pixel value in motion estimation,
a fractional motion vector is obtained. This is called sub-pixel motion esti-
mation. Sub-pixel motion estimation has been used in various video coding
standards, such as H.264/AVC [13] and VC-1 [29], and has been studied and
improved by many researchers [17, 30]. However, it is mostly used in block-
matching algorithms. In this section, we will explore the effect of sub-pixel
motion estimation on our pixel-based scheme BAPME.

3.1. Methodology

Sub-pixel motion estimation has half pixel (also called half-pel), quarter
pixel (also called quarter-pel) and even eighth pixel precision [13]. It is com-
putationally demanding due to the extra search points and interpolation, and
especially so for the quarter-pel precision and when complicated interpolation
is used [13]. Therefore, we perform BAPME first to obtain the best integer
MV, and then search for the interpolated half-pel position immediately adja-
cent to this position once. If quarter-pel precision is required, the quarter-pel
values around the chosen half-pel position are calculated and searched. We
use a smaller target window, which is the first seven neighbouring pixels in

19



Table 9: Zero-order entropy of different pixel-based algorithms with integer-pel and half-
pel motion estimation, within search range ±32, in bpp.

sequence Football Mobile Susie Missa Claire Ave.

FS-IP 4.91 4.56 3.68 3.66 2.59 3.88
FS-HP 4.87 4.50 3.64 3.62 2.54 3.83
DS-IP 5.05 4.53 3.71 3.68 2.52 3.90
DS-HP 4.99 4.41 3.66 3.62 2.48 3.83
HEXBS-IP 5.25 4.60 3.82 3.71 2.52 3.98
HEXBS-HP 5.17 4.44 3.76 3.63 2.48 3.90
BAPME-IP 4.91 4.47 3.64 3.66 2.52 3.84
BAPME-HP 4.85 4.37 3.59 3.61 2.48 3.78

Fig. 6a, for calculating the SAD at half-pel position. This makes sense be-
cause at such a fine scale, only the most adjacent neighbouring pixels give
the relevant information for prediction. In our experiments, using a bigger
target window did not perform better than a small one. Currently we use
the bilinear interpolation to calculate the half-pel values for its simplicity
and satisfactory performance, and only the eight sub-pixels surrounding the
best integer pixel are searched once. However, integrating the quarter-pel
motion estimation is achievable and straightforward.

3.2. Experimental Performance of Sub-pixel Motion Estimation

We present the experimental performance of BAPME with half-pel pre-
cision. Table 9 shows the zero-order entropy of the residue after FS, DS,
HEXBS and BAPME with integer-pel (IP) and half-pel (HP) precision. Usu-
ally, it is not easy to gain a lot of bit saving when the entropy is already
reduced to a very low level from previous steps, while it might be relatively
easier to improve from a coarser decorrelation scheme because there is likely
more redundancy remaining. However, Table 9 indicates that half-pel mo-
tion estimation gives more benefit to BAPME than to the pixel-based FS on
every sequences. It saves 0.05 bpp for FS and 0.06 bpp for BAPME. Our
explanation for this is that BAPME actually finds an integer MV that is
closer to the true MV, and hence it is possible to find a better half-pel MV
around this integer MV.

To take a closer look at the contribution of half-pel motion estimation
to BAPME, we summarise the effective half-pel search ratio and better and

20



Table 10: Effective half-pel search ratio, and better and worse half-pel ratio(in %).

sequence Football Mobile Susie Missa Claire Ave.

Effective HP 0.76 0.75 0.71 0.68 0.50 0.68
better HP 0.37 0.37 0.31 0.30 0.15 0.30
worse HP 0.27 0.25 0.21 0.20 0.11 0.21

worse half-pel ratios in Table 10. Effective half-pel search ratio measures
how often the final half-pel MV being different (either better or worse) from
the integer-pel MV chosen from small DS. Better half-pel and worse half-pel
ratios measure how often the actual errors given by half-pel MV are smaller
or bigger than the ones resulted from integer-pel MV. Table 10 shows that
the average effective half-pel search is 68%, out of which about 30% of half-
pel are better and 21% are worse. This says that half-pel motion estimation
is not always effective on every pixel. Since the half-pel value does not
exist and is obtained by interpolation, it might introduce some noise during
this operation and hence the worse half-pel. But overall, half-pel motion
estimation brings improvement on the result by having more better half-pel.

The above analysis provides evidence that half-pel motion estimation does
give reasonable bit rate savings, given that we only use a simple version.
We expect more benefit from the sub-pel motion estimation when better
interpolation and quarter-pel multiple iteration search is used. Generally,
the bit rate saving tends to diminish as the sub-pixel precision increases. The
computational complexity also increases significantly as motion estimation
goes to finer scale. We can tailor BAPME for a trade off between performance
and complexity.

4. Complete Lossless Video Compression System

Based on the proposed motion estimation scheme BAPME, we propose
a complete lossless video compression system, named BAPME-VC (BAPME
based Video Compression). Motion estimation can effectively predict the pix-
els when video frames are closely correlated temporally, that is when there
is smooth and slow motion between adjacent frames. But it does not always
work well when there are abrupt changes or complicated motion in scenes
which is difficult to capture by motion estimation. Consequently, a robust
video compression scheme normally includes image compression techniques
to exploit the intra-frame correlation when the above scenarios happen. For

21



Motion
estimation
(BAPME)

Intra-frame
prediction
(GAP[12])

Spectral
prediction

(LMMIC[30])

preprocessing

Prediction selection

Context
modelling

Arithmetic
coding

previous
 frame

YUV/G 
sequence

RGB
sequence

compressed
sequence

Figure 7: The complete lossless video compression system BAPME-VC.

colour videos, a spectral prediction technique is also included. Therefore, we
combine the proposed motion estimation scheme BAPME, the intra-frame
prediction scheme GAP [12] as well as the spectral prediction from our pre-
vious work [31] in the proposed video compression system.

4.1. System Overview

Fig. 7 illustrates the schematics of BAPME-VC. It follows the compres-
sion paradigm which proceeds as prediction, context modelling and arith-
metic coding. The prediction part consists of motion estimation (BAPME),
intra-frame prediction (GAP [12]) and spectral prediction (LMMIC [31]).
Since GAP is used in the initial MV prediction, it is easy to reuse it. While
all of them are available for any input video sequence, some are more efficient
than others under different circumstances. Here we are mainly concerned
about the most common types of sequences, YUV and RGB sequences.

For YUV sequences, since they are already colour decorrelated by the
RGB-to-YUV transform, we apply the motion estimation and intra-frame
prediction on each component. A prediction selection scheme is designed to
select a better prediction based on the past performance of both predictors
in the local area. We will give the formulation for this selection later in this

22



section. The solid lines in Fig. 7 show the route that YUV video compression
should go.

For RGB sequences, there exists a large amount of spectral redundancy.
Therefore, we apply motion estimation and intra-frame prediction on the
green (G) band, and process the red (R) and blue (B) bands in a similar
manner as [31]. Band R and B are preprocessed to obtain the band difference
and then are processed by the spectral prediction, which is a band-shifting
based on a median predictor [31]. In our experiments, spectral prediction
works better than using BAPME and GAP on band R and B, possibly due
to the spectral correlation is more significant in RGB sequences and is easier
to remove. The band G of the RGB sequence follows the solid lines in Fig. 7,
while the R and B band follow the dash lines. Context modelling [31] and
arithmetic coding are shared by both routes.

The prediction selection takes the prediction errors from BAPME and
GAP, and adaptively decides which prediction error to output. It first cal-
culates the sum of errors of each predictor in a local neighbourhood:

E = eW + eN + eNW + eNE + eWW + eNN + eNNE (10)

where eW is the predicted error of a certain predictor on pixel W, and so
on for others. The predictor which gives a smaller E is regarded as good
predictor in the local neighbourhood and hence the corresponding prediction
error is sent to the context modelling module. Our experiment result shows
that this selection gives a right ratio of about 65% on average.

Similar to image compression, context modelling is also used in video
compression to further exploit the higher-order redundancy. We use a simi-
lar model as in CALIC [12]. But different parameters are used to account for
the different characteristics of the residual resulting from BAPME, GAP and
spectral prediction. The contexts need be to constructed using the neighbour-
ing pixels W, N, NW, NE, WW, NN and NNE. For intra-frame prediction
GAP, the original pixels in current frame are used. For motion estimation
BAPME, the differences between the pixels in current frame and the pixels
in the motion compensated target window in previous frame are used in-
stead. For spectral prediction, the band differences are used as the same way
in [31]. This modelling scheme, although not yet fine tuned, improves the
compression performance, as will be demonstrated below.

23



4.2. Experimental Performance

We present the experimental performance of BAPME-VC for YUV and
RGB sequences respectively in this subsection.

YUV Sequences. For YUV sequences, we use two sets of commonly used
test video sequences in CIF and QCIF format. We compare our compres-
sion scheme BAPME-VC with JPEG-LS [32], CALIC [12], ADAP [4], LI [16]
and H.264/MPEG-4 AVC lossless mode [13]. JPEG-LS is the lossless image
compression standard. CALIC is the benchmark algorithm for lossless im-
age compression. ADAP is a block-based lossless video compression scheme
using integer wavelet transform and motion estimation. LI is a pixel-based
scheme that integrates motion estimation and various types of integer wavelet
transform. LI [16] is claimed to achieve one of the best compression ratios
in literature. H.264/MPEG-4 AVC is the latest standard for video coding
using block-oriented motion estimation. The results here are from its loss-
less mode. The results of JPEG-LS, CALIC, ADAP and LI in Table 11 and
Table 12 are extracted from [4] and [16]. However, due to the unavailability
the software of ADAP and LI, it is impossible for us to carry out a thorough
comparison on all sequences, and hence the blank in some parts of the tables.
For H.264, we run the widely available software implementation x264 (version
0.83.1391) [33] in our experiments. We specify the main configuration as: 1
reference frame, 3 B-frames between I- and P-frames, 32 pixels search range,
enabled CABAC (Context-Adaptive Binary Arithmetic Coding) and variable
partitions. Based on this configuration, we run x264 with both integer-pel
(IP) and sub-pel (SP) motion estimation. The sub-pel option uses SAD for
mode decision and one quarter-pel iteration. In the following comparison,
BAPME-VC only operates on integer-pel precision. And different from LI
[16] which optimizes the search ranges for each video sequence, we simply fix
our search range to ±32 in the following comparison.

Table 11 presents the compression ratios of the selected schemes on the
CIF YUV sequences. It shows that BAPME-VC outperforms all the integer-
pel schemes in comparison on every sequences. It also works better than
H.264 sub-pel on sequence “Paris” and “Hall”, while is slightly worse than
H.264 sub-pel on sequence “foreman”. On average, BAPME-VC achieves
22% better bit rate over JPEG-LS, 21% better than CALIC, 5% better than
ADAP, over 7% better than H.264 integer-pel and 4.8% better than H.264
sub-pel. It also outperforms LI by 0.08bpp on “football”, even though it is a

24



Table 11: Compression rates comparison of selected schemes on CIF YUV sequences, in
bbp.

sequence Foreman Paris Hall Average

JPEG-LS 4.99 5.89 4.90 5.26
CALIC 4.83 5.89 4.81 5.18
ADAP 4.70 3.57 4.66 4.31
LI 4.478
H.264 (IP) 4.65 3.51 5.12 4.43
H.264 (SP) 4.32 3.45 5.12 4.30
BAPME-VC 4.40 3.35 4.51 4.09
gain over JPEG-LS (%) 11.78 43.09 7.95 22.28
gain over CALIC (%) 8.97 43.01 6.23 21.02
gain over ADAP (%) 6.44 5.97 3.15 5.12
gain over H.264 (IP) (%) 5.45 4.42 11.90 7.67
gain over H.264 (SP) (%) -1.84 2.68 11.83 4.80

sequence with high motion activity and our search range is smaller than the
one used in LI ((32×2+1) vs. 80).

The experimental performance on QCIF YUV sequences are shown in Ta-
ble 12. BAPME-VC outperforms others on most of the sequences. It obtains
36% bit rate reduction over JPEG-LS, 35% over CALIC, 7% over ADAP and
almost 4% over LI. Our scheme has a larger compression gain over JPEG-LS
and CALIC on QCIF than CIF sequences, probably due to the fact that there
is more temporal redundancy in smaller frame size sequences. BAPME-VC
also works better than H.264 integer-pel, and achieves comparable bit rates
with the H.264 sub-pel. Combined with the results from Table 11, BAPME
has shown great potential to excel since its integer-pel version is already
comparable with the H.264 sub-pel version. As presented in Section 3, the
most simple version of sub-pel can already give improvement to BAPME. We
expect even better performance when our scheme is equipped with a finer
sub-pel BAPME, which will be part of our future work.

RGB Sequences. The compression ratios of selected schemes on RGB se-
quences are shown in Table 13. The results of ADAP and LI are absent due
to the unavailability of the software, and x264 does not support RGB input.
But we can still see the compression gain of BAPME-VC over JPEG-LS

25



T
ab

le
12

:
C

om
pr

es
si

on
ra

te
s

co
m

pa
ri

so
n

of
se

le
ct

ed
sc

he
m

es
on

Q
C

IF
Y

U
V

se
qu

en
ce

s,
in

bp
p.

se
qu

en
ce

Fo
re

m
an

N
ew

s
Sa

le
sm

an
Si

le
nt

M
ot

he
r

A
ki

yo
C

ar
ph

on
e

C
la

ir
e

C
oa

st
gu

ar
d

A
ve

ra
ge

JP
E

G
-L

S
5.

87
5.

06
5.

86
4.

33
5.

25
4.

33
4.

98
3.

59
6.

02
5.

03
C

A
L

IC
5.

68
5.

11
5.

78
4.

18
5.

18
4.

31
4.

93
3.

67
5.

99
4.

98
A

D
A

P
4.

78
2.

33
3.

41
3.

49
3.

81
1.

55
4.

28
2.

53
4.

87
3.

45
L

I
4.

64
2.

20
3.

28
2.

84
3.

73
H

.2
64

4.
96

2.
20

3.
48

3.
13

3.
42

1.
38

4.
65

2.
60

4.
68

3.
39

(f
ul

l-
pe

l)
H

.2
64

4.
48

2.
14

3.
44

3.
03

3.
28

1.
34

4.
35

2.
51

4.
42

3.
22

(s
ub

-p
el

)
B

A
P

M
E

-V
C

4.
61

2.
15

3.
29

2.
82

3.
22

1.
49

4.
27

2.
54

4.
49

3.
21

ga
in

ov
er

21
.4

8
57

.5
0

43
.8

6
34

.8
1

38
.7

8
65

.6
7

14
.1

0
29

.2
2

25
.3

9
36

.2
3

JP
E

G
-L

S
(%

)
ga

in
ov

er
18

.8
5

57
.8

7
43

.0
4

32
.5

2
37

.8
6

65
.5

1
13

.3
8

30
.6

9
25

.0
3

35
.5

7
C

A
L

IC
(%

)
ga

in
ov

er
3.

67
7.

69
3.

41
19

.0
7

15
.6

5
3.

91
0.

22
-0

.2
9

7.
73

6.
99

A
D

A
P

(%
)

ga
in

ov
er

0.
66

2.
37

-0
.3

0
0.

53
13

.7
8

3.
88

L
i

(%
)

ga
in

ov
er

H
.2

64
7.

13
2.

27
5.

31
9.

68
5.

91
-7

.9
8

8.
18

2.
15

4.
10

5.
29

(f
ul

l-
pe

l)
(%

)
ga

in
ov

er
H

.2
64

-2
.9

0
-0

.3
4

4.
40

6.
76

1.
80

-1
1.

29
1.

70
-1

.0
5

-1
.6

8
0.

35
(s

ub
-p

el
)

(%
)

26



Table 13: Compression rates comparison of selected schemes on RGB sequences, in bpp.

sequence JPEG CALIC BAPME gain over gain over
-LS -VC JPEG-LS(%) CALIC(%)

Football 14.41 13.79 11.04 23.34 19.92
Mobile 14.08 13.62 11.36 20.04 17.37
Susie 11.26 10.77 9.60 14.76 10.86
Missa 11.27 10.94 8.36 25.78 23.53
Claire 7.41 7.07 6.02 18.83 14.88
Average 11.79 11.36 9.17 20.55 17.31

and CALIC, which is about 20% and 17% on average. As expected, more
bits reduction is achieved on sequences with more motion activity, such as
“football” and “mobile”.

5. Conclusion

In this paper, we considered the possibility of borrowing strength from
both pixel-based algorithms and block-matching algorithms. We proposed
a novel Backward Adaptive pixel-based fast Predictive Motion Estimation
(BAPME) scheme. It operates on a pixel-by-pixel basis to provide highly ac-
curate motion estimation without transmitting any side information, while
taking advantage of fast search to maintain low complexity. In contrast with
block-matching algorithms where full search generally achieves better motion
estimation accuracy than fast search, BAPME outperforms the pixel-based
full search in our experiments. BAPME also obtains better overall zero-order
entropy than block-based full search when taking into account the side infor-
mation of block-based schemes. In our complexity analysis, BAPME is faster
than block-based full search. Moreover, the half-pel version of BAPME shows
promising results. We also presented the complete lossless video compression
system BAPME-VC, which integrates integer-pel BAPME and lossless image
compression techniques for intra-frame prediction. BAPME-VC outperforms
other state-of-the-art integer-pel schemes on three sets of test sequences and
achieves comparable bit rates with H.264 lossless mode sub-pixel version.
Overall, we believe that pixel-based motion estimation has shown its poten-
tial in contributing to modern video compression systems.

27



6. Acknowledgment

The authors are grateful for the support from ESA and EPSRC under
grant EP/D011639/1.

References

[1] E. Carotti, J. Martin, A. Meo, Backward-adaptive lossless compression
of video sequences, in: Proc. IEEE Int. Conf. on Audio, Speech, Signal
Processing, 2002, pp. 3417–3420.

[2] R. Oami, M. Ohta, Efficient lossless video coding compatible with
MPEG-2, in: Proc. IEEE Int. Conf. on Communications, Vol. 2, 1998,
pp. 901–905.

[3] Y. Gong, S. Pullalarevu, S. Sheikh, A wavelet-based lossless video coding
scheme, in: Proc. Int. Conf. on Signal Processing, 2004, pp. 1123–1126.

[4] S.-G. Park, E. J. Delp, H. Yu, Adaptive lossless video compression us-
ing an integer wavelet transform, in: Proce. IEEE Int. Conf. on Image
Processing, 2004, pp. 2251–2254.

[5] T. Qiu, X. Wu, Z. Xiao, Scalable lossy to lossless video coding via adap-
tive 3d wavelet transform and context modelling, in: Proce. IEEE Int.
Conf. on Image Processing, Vol. 2, 2000, pp. 855–858.

[6] H.-W. Park, H.-S. Kim, Motion estimation using low-band-shift method
for wavelet-based moving-picture coding, IEEE Trans. Image Process.
9 (4) (2000) 577–587.

[7] N. Memon, K. Sayood, Lossless compression of video sequences, IEEE
Trans. Commun. 44 (10) (1996) 1340–1345.

[8] D. Brunello, G. Calvagno, G. Mian, R. Rinaldo, Lossless compression of
video using temporal information, IEEE Trans. Image Process. 12 (2)
(2003) 132–139.

[9] M.-F. Zhang, J. Hu, L.-M. Zhang, Lossless video compression using
combination of temporal and spatial prediction, in: Proc. of Int. Conf.
on Neural Networks and Signal Processing, Vol. 2, 2003, pp. 1193–1196.

28



[10] I. Matsuda, T. Shiodera, S. Itoh, Lossless video coding using variable
block-size MC and 3D prediction optimized for each frame, in: Proc.
European Signal Processing Conf., 2004, pp. 1967–1970.

[11] E. Carotti, J. Martin, Motion-compensated lossless video coding in the
CALIC framework, in: Proc. IEEE Symp. on Signal Processing and
Information Technology, 2005, pp. 600–605.

[12] X. Wu, N. Memon, Context-based, adaptive, lossless image coding,
IEEE Trans. Commun. 45 (4) (1997) 437–444.

[13] I. E. G. Richardson, H.264 and MPEG-4 Video Compression – Video
Coding for Next-generation Multimedia, Wiley, 2003.

[14] K. Yang, A. Faryar, A context-based predictive coder for lossless and
near-lossless compression of video, in: Proce. IEEE Int. Conf. on Image
Processing, Vol. 1, 2000, pp. 144–147.

[15] E. Carotti, J. Martin, A. Meo, Low-complexity lossless video coding
via adaptive spatio-temporal prediction, in: Proce. IEEE Int. Conf. on
Image Processing, Vol. 2, 2003, pp. 197–200.

[16] Y. Li, K. Sayood, Lossless video sequence compression using adaptive
prediction, IEEE Trans. Image Process. 16 (4) (2007) 997–1007.

[17] Z. Chen, J. Xu, Y. He, J. Zheng, Fast integer-pel and fractional-pel
motion estimation for H.264/AVC, Journal of Visual Communication
and Image Representation 17 (2) (2006) 264–290.

[18] W. I. Choi, B. Jeon, J. Jeong, Fast motion estimation with modified
diamond search for variable motion block sizes, in: Proce. IEEE Int.
Conf. on Image Processing, Vol. 2, 2003, pp. 371–374.

[19] A. Tourapis, O. Au, M. Liou, Predictive motion vector field adaptive
search technique (PMVFAST) enhancing block based motion estima-
tion, in: Proc. Visual Commun. and Image Processing, 2001.

[20] T. Koga, K. Iinuma, A. Hirano, Y. Iijima, T. Ishiguro, Motion com-
pensated interframe coding for video conferencing, in: Proc. National
Telecommunication Conference, 1981, pp. G5.3.1–G5.3.5.

29



[21] J. Tham, S. Ranganath, M. Ranganath, A. Kassim, A novel unrestricted
center-biased diamond search algorithm for block motion estimation,
IEEE Trans. Circuits Syst. Video Technol. 8 (8) (1998) 369–377.

[22] S. Zhu, K. Ma, A new diamond search algorithm for fast block-matching
motion estimation, IEEE Trans. Image Process. 9 (2) (2000) 287–290.

[23] C. Zhu, X. Lin, L. Chau, Hexagon-based search pattern for fast block
motion estimation, IEEE Trans. Circuits Syst. Video Technol. 12 (5)
(2002) 349–355.

[24] X. Chen, N. Canagarajah, J. L. Nunez-Yanez, Backward adaptive pixel-
based fast predictive motion estimation, IEEE Signal Process. Lett.
16 (5) (2009) 370–373.

[25] C.-H. Cheung, L.-M. Po, A novel cross-diamond search algorithm for
fast block motion estimation, IEEE Trans. Circuits Syst. Video Technol.
12 (12) (2002) 1168–1177.

[26] C.-H. Cheung, L.-M. Po, Novel cross-diamond-hexagonal search algo-
rithms for fast block motion estimation, IEEE Trans. Multimedia 7 (1)
(2005) 16–22.

[27] M. Ueda, TE1: Refinement motion compensation using decoder-side
motion estimation, Tech. rep., JCT-VC (Jul. 2010).

[28] C. Zhu, X. Lin, L. Chau, L.-M. Po, Enhanced hexagonal search for fast
block motion estimation, IEEE Trans. Circuits Syst. Video Technol.
14 (10) (2004) 1210–1214.

[29] Society of Motion Picture and Television Engineers (SMPTE) 421M,
VC-1 Compression Video Bitstream Format and Decoding Process,
SMPTE, 2005.

[30] W. Lin, D. Baylon, K. Panusopone, M.-T. Sun, Fast sub-pixel motion
estimation and mode decision for H.264, in: Proc. IEEE Int. Symp. on
Circuits and Systems, 2008, pp. 3482–3485.

[31] X. Chen, N. Canagarajah, J. Nunez-Yanez, Lossless multi-mode inter-
band image compression and its hardware architecture, in: Proc. Conf.
on Design and Architecture for Signal and Image Processing, 2008, pp.
208–215.

30



[32] M. J. Weinberger, G. Seroussi, G. Sapiro, LOCO-I: A low complexity,
context-based, lossless image compression algorithm, in: Proc. Data
Compression Conf., 1996, pp. 140–149.

[33] V. Organization, x264, http://www.videolan.org/developers/x264.html.

31


