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Multilevel modelling of social segregation 

The traditional approach to measuring segregation is based upon descriptive, non-

model-based, indices. A recently proposed alternative is multilevel modelling. We further 

develop the argument for a multilevel modelling approach by first describing and 

expanding upon its notable advantages, which includes an ability to model segregation 

at a number of scales simultaneously. We then propose a major extension to this 

approach by introducing a simple simulation method that allows traditional descriptive 

indices to be reformulated within a modelling framework. The multilevel approach and 

the simulation method are illustrated with an application that models recent social 

segregation among schools in London, UK. 

 

Keywords: binomial response model, hierarchical linear models, multilevel models, segregation 

indices, social segregation 



 

1. Introduction 

Studies of segregation have a long history in social science research (e.g. Wright, 1937; 

Duncan & Duncan, 1955). In the US, there has been great interest in measuring residential 

spatial segregation, particularly in relation to race and ethnicity (Massey & Denton, 1993; 

Taeuber & Taeuber, 1965). Research has focused on establishing how levels of segregation vary 

across areas and time. Typically, indices of segregation are calculated for individual cities for a 

series of years where each index score summarises the variation, for example, in the observed 

proportion of black individuals among the neighbourhoods in each city. Once calculated, these 

scores can be compared in order to describe changing patterns of segregation. 

Studies of segregation are also frequently carried out in educational research, again in 

relation to race and ethnic segregation, but this time among schools (Clotfelter, 1999; James & 

Taeuber, 1985; Zoloth, 1976) or universities. However, segregation studies are not limited to 

race and ethnicity; many other types of segregation including educational, occupational and 

social segregation have also been explored. For example, recent UK educational research has 

focused on measuring changing patterns of social segregation among schools with respect to 

student poverty (see Allen & Vignoles, 2007, for a summary).  

A wide range of indices have been proposed for measuring segregation and there is a long 

and considerable debate over their ideal properties (Hutchens, 2004; James & Taeuber, 1985; 

Massey & Denton, 1988; Reardon & Firebaugh, 2002; Taeuber & Taeuber, 1965; White, 1986; 

and, Zoloth, 1976). Indeed, as Jahn, Schmid, and Schrag (1947) point out, there is virtually no 

limit to the number and variety of segregation indices which might be constructed. Without 

wishing to deny the usefulness of such debates, we must emphasise that the indices that have 

been proposed are all functions of the observed proportions in the groups of interest. What is 



 

lacking is an attempt to model statistically the underlying process that generates the variation in 

the observed proportions. 

Goldstein and Noden (2003) argued that there are considerable benefits to using a multilevel 

modelling (Goldstein, 2010; or hierarchical linear model, Raudenbush & Bryk, 2002) approach 

to measuring and studying segregation. In its simplest form, this involves setting up a multilevel 

binomial response model for the proportion of interest, for example, the proportion of black 

residents in a neighbourhood or the proportion of poor children in a school. Group level random 

effects (where groups are neighbourhoods or schools in terms of the previous examples) are 

included in this model, to capture group differences in the underlying proportions, the variability 

of which is summarised by one or more parameters. In the simplest case, this requires just a 

single variance parameter. The estimate of this variance parameter provides a natural measure of 

the underlying degree of segregation; the larger the value of this parameter, the more dissimilar 

and therefore the more segregated the neighbourhoods or schools are. Statistical inferences about 

segregation can then be made in the usual way as standard errors and confidence intervals can be 

readily estimated. Furthermore, this model-based approach extends readily and naturally to the 

situation where multiple measures of segregation are required, for example, for multiple years of 

data, in which case there are multiple variance parameters and these can be made to depend on 

time, allowing inferences to be made as to whether the underlying degree of segregation has 

changed over time. Finally and most importantly, this model enables us to not just describe 

patterns of segregation, but to explain them further by modelling these variances as functions of 

variables such as area characteristics. 

The aim of the present paper is to further develop the argument for a multilevel modelling 

approach to measuring segregation. We first describe and expand upon the notable advantages of 



 

this approach outlined by Goldstein and Noden. We then propose a major extension to this 

approach by introducing a simple simulation method that allows traditional descriptive indices to 

be reformulated within this modelling framework. We present our arguments in the context of 

modelling social segregation among schools in relation to students’ free school meal (FSM) 

status, a commonly used proxy for student poverty (FSM is a proxy for low income as students 

are only eligible for FSM if their parents receive income benefits from the government).  The 

arguments we make, however, and the results we show will apply very widely to other types of 

segregation and other social systems, such as race and ethnic segregation among universities or 

segregation in relation to educational qualifications among neighbourhoods.  

In Section 2 we describe disadvantages common to all segregation indices based on observed 

proportions; we shall refer to this as the ‘descriptive’ approach. In Section 3, we introduce the 

multilevel binomial response model for segregation and then detail extensions to this model that 

can be used to address and expand the research questions often posed in segregation studies. In 

Section 4, we describe a simulation method that allows the traditional descriptive indices to be 

reformulated more satisfactorily within a modelling framework. Section 5 presents a step-by-step 

illustrative example of the multilevel modelling approach where we model changing patterns of 

social segregation among schools in London, UK. We conclude with a discussion of the ideas 

that are introduced in this paper. 

 

2. Descriptive indices and sampling variation 

A fundamental limitation of segregation studies is that researchers have typically failed to 

recognise the stochastic nature of descriptive indices.  Descriptive indices are based on observed 

proportions which include the effects of sampling variation. This leads all descriptive indices to 



 

be biased upwards and therefore to overstate the underlying or “true” degree of segregation. For 

example, in terms of our schooling application, suppose we allocated students to schools in a 

purely random fashion and calculated the proportions of FSM students in each school. We would 

certainly observe differences (which we would measure as segregation if using descriptive 

indices), but these would have arisen purely as a result of random sampling. Crucially, it is 

segregation that arises due to systematic underlying social processes (i.e. the complex 

intertwined residential and school choice decisions of parents and schools’ decisions over which 

students to admit) and not due to randomness that is of interest in terms of explaining changing 

patterns of segregation. Failure to distinguish segregation that arises due to systematic 

underlying social processes from the uneven spread of FSM students across schools which arises 

due to randomness will mistakenly lead us to conclude that there is systematic social segregation 

among schools when there is none. 

Importantly, the magnitude of the upwards bias exhibited by descriptive indices varies 

according to the numbers of individuals the proportions are calculated upon and according to the 

magnitude of the proportions themselves (Carrington & Troske, 1997; Ransom, 2000). It follows 

that observed differences in segregation across areas or time may simply be due to, not only 

sampling variation, but also to differences in these two factors without any real underlying 

difference in the processes that could be generating variation. Such differences may therefore 

also lead to misleading statements about changing patterns of segregation.  

 

2.1. A simple index 

To illustrate the impact of basing indices on observed proportions, we shall start by 

considering the simplest possible case of two observed proportions which we denote 1y  and 2y . 



 

In terms of our application, these would be the observed proportions of FSM students in two 

schools. For simplicity we assume that there is the same number of students in each school. A 

simple segregation index is the absolute difference in observed proportions between school 1 and 

school 2 which we can write as 
1 2y y . 

Now consider the case where each school has the same propensity to attract FSM students 

and that this propensity remains constant over time. In other words, the schools have a common 

underlying proportion which is stable across time. Even though there is no underlying difference 

between schools, the observed proportions at each point in time will in general vary randomly 

about the common underlying proportion. Since the simple index is defined as an absolute 

difference it will always be positive and hence have an upwards bias, the magnitude of which 

will be a function of the number of students in each school and the size of each school’s 

underlying proportion. This can be shown by making the standard assumption of binomial 

sampling variation for the two observed proportions 

  

 ~ Binomial ,jy n   

 

where n  is the common school size,   is the common underlying proportion and  1,2j j   

indexes the two schools. When there is a zero true underlying difference, the expected value of 

the index is given by 
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Where pi  is the mathematical constant and the expression within the square root is the standard 

binomial sampling variance. This expression is a decreasing function of the number of students 

in each school: as the sample upon which the observed proportions are based increases, the 

observed proportions 1y  and 2y  will both tend towards the underlying value of   and so their 

absolute difference will tend to 0. In addition, the expression is a concave function of the 

underlying proportion; the expression increases up to 0.5   and thereafter decreases. Thus, for 

example, if over time the common school size remained stable, but the common underlying 

proportion rose from 0.10 to 0.15 the value of the index based on observed proportions would 

rise by almost 20%. The same increase would occur if the common underlying proportion 

remained stable, but the size of each school reduced by a third. In this case falling school rolls 

would be mistakenly interpreted in a descriptive approach, as increased segregation. 

 

 

2.2. The dissimilarity index 

Through simulation, we can illustrate what happens to indices based on observed 

proportions, for any index we choose. Here, we focus on the most widely used index of 

segregation: the dissimilarity index (Duncan & Duncan, 1955); details for other commonly used 

indices are given in the Appendix. The dissimilarity index D is written as 
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where FSM

jn  and non-FSM

jn  are the number of FSM and non-FSM students in school j  and FSMN  

and non-FSMN  are the total number of FSM and non-FSM students across all schools. The index is 



 

bounded by 0 (no segregation, all schools have the same observed proportion of FSM students) 

and 1 (complete segregation, no schools are observed with both FSM and non-FSM children). 

The value of D is interpreted as the proportion of FSM children that would have to move schools 

in order to achieve an even distribution of FSM students across all schools. Note that this 

interpretation relies on not replacing the moved FSM students with non-FSM students and so, for 

example, a school wholly populated by FSM students would be evacuated. Cortese, Falk, and 

Cohen (1976) argued that it is often of more interest to know the value of a modified version of 

D which gives the proportion of FSM children that would have to be exchanged while keeping 

the number of students in each school constant. In this paper we present our arguments in terms 

of the original, and more frequently used definition of D, but we note that similar findings apply 

to the modified version. 

As with the simple index described previously, D will be biased upwards as it is based on 

observed proportions rather than underlying proportions. Figure 1 shows the expected value of D 

(vertical-axis) when the true value is 0, that is when each school has the same underlying 

proportion, for different combinations of school sizes (horizontal-axis) and underlying 

proportions which reflect those typically found in London schools. As with the simple index, the 

expected value of D is a decreasing function of the number of students in each school, but unlike 

the simple index, it is also a decreasing function of the underlying proportion. We see that the 

bias is substantial for small schools with a low common underlying proportion. For example, 

when the common underlying proportion is 0.1 and when there are 30 students per school, 

schools will incorrectly appear systematically segregated to the extent that some 25 percent of 

FSM students would have to move schools to achieve an even distribution of FSM students 

across all schools. Furthermore, while reduced, this bias is noticeable even for the largest school 



 

sizes and the highest underlying proportions. For example, even when the common underlying 

proportion is 0.50 and when there are 300 students per school, schools would appear 

systematically segregated to the extent that some 5 percent of FSM students would have to move. 

The Appendix demonstrates similar findings for the other commonly-used indices. 

In many settings it is clear that there is genuine segregation and so interest shifts to 

establishing whether segregation varies systematically across areas or over time rather than 

whether it exists at all. Simulation results (not shown) show that the magnitude of the expected 

upwards bias on the D and other indexes  decrease as the degree of underlying segregation 

increases. However, observed differences in index scores will always, in part, be due to sampling 

variability and so must be interpreted cautiously. 

 

3. Multilevel binomial response models for segregation 

The multilevel binomial response model offers a statistical modelling approach to 

segregation that differs fundamentally from the descriptive approach in that it explicitly models 

the underlying process that generates the observed proportions. The approach disentangles 

underlying proportions from the binomial sampling variation that is additionally present in the 

observed proportions. In doing so, it allows statements and inferences to be made about the true 

underlying degree of segregation rather than simply the observed degree. The multilevel 

extension to the standard binomial response model reflects the clustering inherent in segregation 

data. For example, in studies of spatial segregation individuals are clustered into 

neighbourhoods, while in studies of school segregation children are clustered into schools. As we 

shall demonstrate, multilevel models can be extended in a range of ways to address interesting 

research questions about segregation. In this section, we shall present these models in terms of 



 

social segregation among schools. For further details of multilevel binomial response models, see 

Goldstein (2010) and Raudenbush and Bryk (2002). 

 

3.1. The two-level variance components binomial response model for proportions 

Model 1, a basic two-level variance components binomial response model for proportions is 

written as 1 
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where 
jy  is the observed proportion of FSM students in school j , 

jn  is the total number of 

students in that school and 
j  is the unknown underlying proportion of FSM students. The 

underlying proportion is related to the linear predictor 
0 ju   through a link function and here 

we have specified the logit link. Assuming that we have correctly specified the linear predictor, 

the variation in the observed proportions, conditional on the underlying proportions, will be 

binomial with variance  1j j jn   for school j . Thus the model explicitly recognises the 

binomial sampling variation in the observed proportions. 

Taking the antilogit of 0  gives the proportion of FSM students in the median school. If the 

mean proportion (often referred to as the population average proportion) across all schools is 

desired, it can be obtained via simulation (Goldstein, 2010), but this is not pursued here.2 The 
ju
 

are random effects that vary across schools. Here we consider these random effects to be 



 

normally distributed with mean zero and variance 2

u . If we assume that this model is a good fit 

to the data then we can regard the estimate of this variance as a ‘natural’ and parsimonious 

measure of segregation. The sampling distribution for the estimate of this variance is available 

and we interpret larger variances as describing greater degrees of segregation.3 If there is no 

segregation, the  
ju  are zero and so is the variance 2

u . 

 

3.2. Adding an additional level of analysis 

Segregation may occur at a variety of levels. For example, Massey and Hajnal (1995) and 

Massey, Rothwell, & Domina (2009) claim that since 1900 the level at which black-white 

segregation occurs in the US has progressively shifted from the macro level (states and counties) 

to the micro level (municipalities, neighbourhoods and blocks). In this section, we demonstrate 

how to use the multilevel modelling approach to simultaneously model segregation at multiple 

levels and then in Section 3.3 we will additionally show how segregation can be modelled as a 

function of time.  

In terms of social segregation in London schools, we might ask: how much segregation is 

there between the Local Authorities (LAs; LAs in England correspond to school districts in the 

US) to which schools belong and then, having explicitly modelled segregation at this level, how 

much segregation remains between schools? Segregation between LAs might reflect LA 

differences in education policy or LA differences in economic processes that affect where in 

London poor families live. The segregation that remains among schools within each LA might 

further reflect school selection processes.  



 

Model 2 is a three-level version of Model 1 which includes a LA random effect 
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where 
jky  is the observed proportion in school j  in LA k , 

jkn  is the total number of students 

in that school and 
jk  is the school’s unknown underlying proportion. The LA random effects kv  

account for the variation in underlying proportions across LAs and are summarised by the 

variance 2

v , which measures the degree of segregation among LAs. The larger this variance, the 

more dissimilar and therefore segregated students are across LAs. The random effects 
jku  now 

account for the variation in schools’ underlying proportions around the average proportion for 

their LA. Thus, the variance 2

u  measures the pooled average degree of segregation among 

schools within LAs. Comparing Model 2 to 1 allows a test for significant segregation at the LA 

level. Similarly, comparing Model 2 to a model without school level random effects allows a test 

of whether there is significant segregation at the school level. 

Simultaneously exploring segregation at multiple levels is a very important element of our 

approach because of the potential confounding of variation across levels. If a higher level is 

ignored in the multilevel analysis, then as Tranmer and Steel (2001) show, the estimated variance 

is redistributed to lower levels that the models do include. Thus, including schools at level 2 in a 

model, but excluding LAs at level 3, will result in a misattribution of any true between LA 

variation to the school level; the degree of segregation at the school level will be overstated. 



 

3.3. Adding an additional response variable 

It is also standard in segregation studies to measure segregation for multiple areas or for 

multiple points in time. In the context of our example, measuring segregation for multiple points 

in time requires data for additional cohorts (i.e. school years) of children. One way to incorporate 

additional cohorts into Model 2 is to extend it to a multivariate response model. Data from 

additional areas could be added in the same way. This extension allows a separate mean, LA 

variance and school variance for each cohort. The model simultaneously measures whether 

segregation at the LA level and at the school level has increased over time. It is possible to find 

segregation increasing over time at one level and decreasing at the other. Such a finding may 

then reflect the operation of quite different processes at each level. For example, economic 

processes associated with the labour market at the LA level could result in greater homogeneity 

over time between LAs while school selection processes could simultaneously be leading to 

greater segregation among schools within LAs.  

Model 3 is a bivariate response model where the two responses correspond to two different 

cohorts of children 
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where the superscripts (1) and (2) refer to the two cohorts. Thus, 
 1

jky  is the observed proportion 

in cohort 1 in school j  in LA k , 
 1

jkn  is the total number of students in that school-cohort and 

 1

jk  is the school-cohort’s unknown underlying proportion. The variables
 2

jky , 
 2

jkn  and 
 2

jk  give 

the corresponding values for cohort 2. Taking the antilogits of  1

0  and  2

0  gives the proportion 

of FSM students in the median school in each cohort while the LA and school level variances 

measure the degree of segregation among LAs and schools for each cohort. The LA and school 

level covariances 
(12)v  and 

(12)u  will be large and positive if LAs and schools respectively have 

stable intake differences in their proportion of FSM students over time. 

 

3.4. Modelling segregation as a function of predictor variables 

Having measured the average degree of segregation among schools within LAs, it is of 

interest to examine whether average levels of school segregation vary across LAs as a function 

of LA characteristics. One set of interesting LA characteristics are their school admissions 

policies. In London, some LAs select children into schools based on their academic ability. 

Higher levels of selection on academic ability can be expected to lead to higher levels of social 

segregation as children’s test scores are typically positively associated with their socioeconomic 

status. The multilevel modelling approach allows us to model school segregation as a function of 

LA characteristics such as their selection policies, and so is able to move beyond simply 

measuring changing patterns of segregation. In doing so, the multilevel modelling approach can 

extend the research questions typically posed in segregation studies. As an illustration, suppose 

we are able to classify LAs into three broad types based on their selectivity: low, medium and 

high. Model 4 measures how school segregation differs across these three types 
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where 1kx , 2kx  and 3kx  are binary indicator variables for the three LA types. Taking the 

antilogits of  
1

t
 ,  

2

t
  and  

3

t
  gives, for cohort t  the proportion of FSM students in the median 

school within each LA type. The LA variances 2

(1)v  and 2

(2)v  measure the degree of 

segregation among LAs in each cohort having adjusted for the differences in the median 

proportions between the three LA types. The school variances 2

1( )u t , 2

2( )u t  and 2

3( )u t  measure, 

for cohort t , the average degree of segregation among schools within LAs separately for each 

LA type. Further LA level predictor variables can be entered into the model to control for 

confounding LA characteristics and to model how school segregation varies in terms of 

additional LA characteristics. 

 

 

 



 

3.5. Assumptions of the multilevel modelling approach 

Like all statistical models, the multilevel binomial response model makes particular 

assumptions about the form of the relationship between the response and predictor variables – in 

the present case using a logit link function – and the distribution of the various random effects – 

in the present case we assume that they are normally distributed. The model parameters depend 

on the link function and distributional assumptions specified in the models. Different forms of 

link function can be expected to yield different behaviours at different points on the probability 

scale. This, however, is readily studied, and in our application in Section 5, changing the link 

function from the logit to the probit or complementary log-log makes little difference to any 

substantive conclusions. Similarly, normal probability plots for these models suggest that the 

normality assumption for the higher-level residuals (on the logit scale) does provide an adequate 

fit for the data. An important advantage of the statistical modelling approach is that different 

choices can be evaluated against the data to find a set that are the most appropriate and 

parsimonious.  

 

4. Simulating segregation indices based on the fitted multilevel model 

One of the perceived advantages of some descriptive indices is that they can be given a 

relatively simple interpretation. Thus, as described in Section 2, the widely used dissimilarity 

index D is bounded by 0 (no segregation) and 1 (complete segregation) and gives the proportion 

of FSM children that would have to move schools to give an even distribution of FSM students 

across all schools. There are also guidelines on interpreting the magnitude of some descriptive 

indices, for example, in terms of racial segregation in the US, a D of less than 0.3 is considered 

low, between 0.3 and 0.6 as moderate and above 0.6 as high (Massey & Denton, 1993). In 



 

comparison with this, a variance on the logit scale may appear to be more difficult to interpret. 

However, once we have determined that a particular model provides an adequate description of 

the data, we can report the underlying degree of segregation using any descriptive index we wish 

by applying the relevant descriptive index formula to underlying proportions simulated from the 

fitted model. These calculated indices based on simulated data will not be functions of the 

number of students in each school as they are based on underlying proportions which, unlike the 

observed proportions, contain no binomial sampling variation. However, as with D based on 

observed proportions (see Section 2.2), D simulated from the model parameters is still a function 

of the overall proportion and we shall demonstrate this in Section 4.2. 

 

4.1. Simulating the dissimilarity index based on the fitted multilevel model 

We shall illustrate our simulation method in terms of calculating the dissimilarity index D for 

Model 1 although the same principles apply to the other common segregation indices and the 

more complex models proposed in Section 3. First, we fit the model using a suitable estimation 

method, see below. The simulation method then consists of repeating the following steps for a 

large number M  of iterations, where m  indexes the iterations 

 

1. Simulate one value for each of the J  school level random effects    2ˆ~ N 0,
m

j uu  . 

2. Compute the values of 
 m

j  by using the antilogit function 
    0

ˆantilogit
m m

j ju    

3. Compute the count of each type of student: 
   FSMm m

j j jn n ;   
   non-FSM FSMm m

j j jn n n  . 

4. Aggregate the counts across the J  schools: 
   FSM FSMm m

j

j

N n ; 

   non-FSM non-FSMm m

j

j

N n . 



 

5. Compute the dissimilarity index  
 

 

 

 

FSM non-FSM

FSM non-FSM

1

2

m m

m j j

m m
j

n n
D

N N
  . 

 

The point estimate for D  is given by the mean of  m
D  over the M  iterations while its 

sampling variation is summarised by the 95% interval calculated by taking the 2.5th and 97.5th 

percentiles of the list of M  values formed by placing  m
D  in rank order.  

In more complicated models where we calculate multiple values of D , for example, for the 

different cohorts in Model 3, interest lies in studying the point estimates and 95% intervals for 

the differences in these values. 

The above simulation method underestimates the sampling variation of D  since it ignores 

the sampling variation of the estimated model parameters 
0̂  and 2ˆ

u . The method can be 

improved by repeating it a large number of times where, at each iteration, we randomly draw a 

pair of values from the estimated joint sampling distribution of the model parameters. This is 

conveniently carried out using Markov chain Monte Carlo (MCMC) methods where the random 

draws are provided by the MCMC parameter chains.  

 

4.2. The relationship between the dissimilarity index and the multilevel model parameters 

The simulation method can also be used to derive the relationship between any simulated 

descriptive index and the variance parameter. This involves replicating the simulation method a 

large number of times for each of a range of values of the variance parameter while holding the 

overall proportion and school sizes constant. Figure 2 shows the expected value of D (vertical-

axis) across a range of values of the variance on the logit scale (horizontal-axis) for different 

fixed values of the overall proportion and for fixed school sizes of 200 students per school.  



 

The figure shows that the expected value of D varies slightly according to the overall 

proportion of FSM students. Thus, even if there has been no underlying change in segregation, a 

large change in the overall proportion would lead to an apparent change in segregation as 

measured by the simulated descriptive indices. It can be argued that it is more reasonable to have 

a segregation measure that does not depend on the underlying proportion, in which case a 

common value of the underlying proportion can be imposed. 

The expected value of D, holding the overall proportion constant, is a monotonically 

increasing function of the variance and so converting between the logit and index scale is an 

order preserving transformation. This means that when we specify, for example, a model with 

separate school level variances for a series of cohorts, the rank ordering of the point estimates of 

D simulated from the estimated variances will be the same as the rank order of the estimated 

variances themselves. Likewise, differences shown to be significant on the logit scale will also 

be significant on the index scale. Thus, to establish whether segregation has significantly 

increased over time, or to establish in which areas segregation is highest, inferences can be made 

solely in terms of variance parameters. Further, the Appendix demonstrates that the expected 

values of all common segregation indices are monotonically increasing functions of one another. 

It can also be argued that choice of index is unimportant for comparing changes in 

segregation. For example, to establish which of two areas experienced a greater increase in 

segregation, we would compare the increase in segregation for the first area with that for the 

second. The approximately linear relationship between the two scales for all but large differences 

in segregation means that it does not matter which index is used since the ratio of the two 

increases will be approximately the same. Choice of index will only be important when the 

increases in segregation being compared relate to very different parts of the logit/index scales. 



 

However, it does not seem substantively wise to compare areas that are so fundamentally 

different. 

 

5. Social segregation among London schools: an application 

In England, pro-market education reforms of the secondary schooling system (ages 11 to 16), 

from 1988 onwards, set up new incentives and opportunities for schools and parents. Parents 

were given greater opportunity to choose a school for their children and were provided with 

school level examination results in the form of published school league tables (Leckie & 

Goldstein, 2009). This has created a continuing debate about whether social diversity or 

segregation among schools has changed as a result of parents exercising choice and continuing 

modifications to the curriculum and status of schools. In this debate, interest has focused on 

calculating segregation index scores which summarise the variation among schools in the 

proportion of FSM students. These scores are then compared across cohorts, to describe whether 

segregation, at the national and area scales has increased or decreased over time (e.g. Allen & 

Vignoles, 2007) and across areas, to describe where in England segregation is highest and 

lowest. 

 

The data 

The data are taken from the Annual School Census (ASC), a census of all schools in the state 

education system in England. We narrow our attention to schools in London and focus on the 

cohort of students who entered secondary schooling in 2002 and the cohort who entered in 2008. 

These are the first and last cohorts for which we have data. Schools in London come under the 

responsibility of 32 LAs: 12 in inner London and 20 in outer London. Across the two cohorts 



 

there are 416 schools and the vast majority of these are present for both cohorts. There are, on 

average, 185 students in each school-cohort, but in some cases there are as few as 100 or as 

many as 300. 

For each student, we have a binary response: whether they are eligible (1) or not (0) for FSM. 

However, for computational efficiency, we will estimate models for the equivalent binomial 

response: the proportion eligible for FSM in each school-cohort. We will not be including 

student level predictor variables in our models and so no information is lost by merging the 

student level data into school-cohort proportions. It is also helpful to illustrate these models in 

terms of proportions as many data used in segregation studies are released, for confidentially 

reasons, as proportions or counts (Subramanian, Duncan & Jones, 2001). The mean proportion in 

2002 was 0.28 and in 2008 it was 0.27. 

 

Estimation details 

We use MCMC estimation methods as implemented in MLwiN (Browne, 2009; Rasbash, 

Charlton, Browne, Healy & Cameron, 2009). We ran MLwiN through the Stata statistical 

software package by using the user written runmlwin Stata command (Leckie and Charlton, 

2011). Estimates obtained using the quasi-likelihood methods in MLwiN were used as initial 

values. The models were run for a burn-in of 5,000 iterations followed by a monitoring chain of 

50,000 iterations. We used hierarchical centring (Browne, 2009; Browne, Steele, Golalizadeh, & 

Green, 2009) to produce chains that exhibit better mixing and the standard default prior 

distributions provided by MLwiN. The default prior distribution used for the variance parameters 

is an inverse gamma  1 0.001,0.001  and for covariance matrices is an inverse Wishart with 

parameters equal to the quasi-likelihood estimates. In the case of small samples, the choice of 



 

default priors may be important (Browne, 1998), but for our data the number of schools is 

sufficiently large that altering the default prior to be uniform does not appreciably change the 

values for the school estimates. The small number of LA units considered in our illustrative 

application means that altering the default prior to be uniform does lead to small increases in the 

LA estimates, but these changes do not alter our substantive conclusions. Informal visual 

assessments of the parameter chains and standard MCMC convergence diagnostics suggested 

that the sampler was run for sufficiently long. The MCMC approach allows the fit of models to 

be compared via the deviance information criterion (DIC; Spiegelhalter, Best, Carlin, & van der 

Linde, 2002): models with smaller DIC values are preferred to those with larger values, with 

differences of 10 or more considered substantial. Where we simulate index scores from the 

model parameters, we simulate these from the MCMC point estimates rather than the MCMC 

chains of parameter estimates. Although the latter approach is preferable (see Section 4.1) in this 

instance the large scale nature of our data meant it would be computationally burdensome. 

 

5.1. The two-level variance components binomial response model for proportions 

We first fit the Model 1 (Equation 1), the simple two-level variance components binomial 

response model for proportions, to the 2008 cohort of students. This model measures the degree 

of segregation among London schools for our most recent year of data. Estimates are shown in 

Table 1. 

In the median school, the proportion of students in poverty is predicted as 

 antilogit 1.220 0.228  . The degree of segregation among schools is estimated as 1.087. 

Comparing the DIC to a model without school random effects (not shown) confirms the 

existence of segregation across London schools. 



 

If we use the simulation method described in Section 4.1 to calculate the dissimilarity index 

based on the parameter estimates of 0  and 2

u , we obtain a value of 0.366 with a 95% interval 

of (0.341, 0.391). This suggests that on average 37% of FSM students would have to move to 

other schools in London in order to achieve an even distribution of FSM students across all 

schools in the city. The dissimilarity index score based on the observed proportions is similar 

with a value of 0.355. 

 

5.2. Adding local authorities as an additional level of analysis 

Next we fit Model 2 (Equation 2), a three-level model which measures segregation 

simultaneously at the LA and school levels. Fitting the model gives the estimates shown in Table 

2. Model 2 offers only a very slight improvement in fit over Model 1 which did not include the 

LA random effects (the DIC is reduced by 2 points). The LA variance is almost as large as the 

school variance and their sum is similar to the estimate for the school variance in Model 1. Thus, 

almost half of the segregation previously seen as between schools in Model 1 is better described 

as segregation between LAs. One interpretation of the high degree of LA level segregation is that 

it reflects substantial differences in family income across LAs in London. However, not all 

children in London are schooled in the LA in which they live and so the degree of LA level 

segregation in the education system reported here might actually differ from the corresponding 

degree of LA level residential segregation. It is possible to extend the current model to explore 

whether the schooling system exacerbates or mitigates the degree of residential social 

segregation and we return to this and other possible extensions in the Discussion. Table 2 shows 

that the school level variance is also large suggesting that there is also considerable social 

segregation between the schools within each LA. Thus, even within LAs, where schools are 



 

located only a short distance apart, there is substantial variation in the proportion of poor 

students across schools. The LA variance is estimated less precisely than the school variance 

reflecting the low number of units at the LA level (32 LAs) compared to at the school level (380 

schools). 

As before, we use the simulation method to report the estimated variances in terms of the 

dissimilarity index. The results show a score of 0.267 for LA level segregation compared to 

0.283 for school level segregation. Thus, just as the LA point estimate of the variance was 

smaller than the school variance, the simulated LA dissimilarity index score point estimate is 

smaller than that for schools. The scores suggest that 27% of FSM children in London would 

have to move to schools in other LAs in order to eradicate segregation between LAs (but not 

within LAs). To instead eradicate segregation within LAs (but to leave segregation between LAs 

unchanged), on average 28% of FSM students in each LA would have to move to other schools 

within their LA. The 95% interval for the LA level dissimilarity index is considerably wider than 

that for the school level index reflecting the lower precision for the LA variance compared to that 

for the school variance. 

 

5.3. Adding a second cohort as an additional response variable 

Next we fit Model 3 (Equation 3), the two cohort version of Model 2, which measures 

changes in LA and school level segregation over time. We fit the model to the earliest and latest 

cohorts for which we have data: 2002 and 2008. Recall that these two cohorts contain entirely 

different children: the first cohort contains those children that entered secondary schooling in 

2002; the second those that entered in 2008. The estimates are shown in Table 3. 



 

In 2008, the median school had a slightly higher proportion of FSM students than in 2002 

(24.3% compared to 23.7%); however the MCMC chain for the difference in these parameter 

estimates shows this can be explained by random variation. 

The 2008 LA variance is smaller than the 2002 variance and so LA level segregation reduces 

between the two cohorts. The school level variance also reduced over this period indicating that 

segregation within LAs also fell. Comparisons of the DIC to simpler models which restrict the 

two LA level variances to be equal and the two school level variances to be equal (not shown) 

indicate that the model which does not constrain these pairs of variances to be equal is to be 

preferred, so both the LA and school  reductions in segregation shown in this model are 

statistically significant. The LA level covariance implies a very high correlation of 0.99 = 

( 0.615 0.743 0.523 ) between the 2002 and 2008 LA random effects. Thus, there has been 

almost no reordering of London LAs in terms the proportion of FSM students they teach over the 

seven year period. The school level correlation is smaller, but is still extremely high (0.91). Thus, 

even within LAs, there has been little change in the ordering of schools; there is a great 

continuity in terms of poverty for London schools over time. 

We again use the simulation method to report the estimated variances in terms of the 

dissimilarity index. The results show a score of 0.312 for LA level segregation in 2002 which 

reduced to 0.268 in 2008. At the school level, segregation dropped from 0.321 to 0.292. The drop 

in the simulated index scores suggest that the proportion of FSM students that would have to 

move to schools in other LAs in order to eradicate LA segregation dropped from 31% to 27% 

between the two cohorts. The equivalent drop at the school level was less marked: on average, 

32% of the 2002 FSM students would have to move to other schools within their LAs to 

eradicate segregation within LAs compared to 29% in 2008. To test whether this drop in school 



 

level segregation was significant, we follow the method outlined in Section 4.1, and calculate the 

difference between the 2008 and 2002 index scores at each iteration of the MCMC algorithm. 

The 95% interval for the difference in scores (-0.037,-0.021) does not include 0 and so the 

degree of school segregation in 2008 is judged significantly less at the 5% level than it was in 

2002.4 

 

5.4. Modelling segregation as a function of local authority predictor variables 

In Models 2 and 3 we found that within LAs FSM students were segregated across schools. 

One explanation is the way students are admitted to schools. Seven of the outer London LAs 

operate a selective admissions system whereby initially high achieving students are sent to 

‘grammar schools’ based on their performance in entrance exams. These schools select on ability 

and since children’s test scores tend to be positively associated with family income, grammar 

schools tend to teach lower proportions of FSM students than neighbouring non-grammar 

schools. It therefore seems likely that schools in selective LAs might be more segregated in 

terms of poverty than those in non-selective LAs. To explore this, we fit Model 4 (Equation 4) 

and use the three binary LA level indicator variables to distinguish between three groups of LAs: 

(1) the 12 non-selective LAs in inner London; (2) the 13 non-selective LAs in outer London; and 

(3) the seven selective LAs in outer London. The non-selective LAs in outer London are 

distinguished from those in inner London to provide a fairer comparison group for the group of 

selective LAs since the latter group are only located in outer London. Inner London is also 

considerably more deprived than outer London and so segregation measures are often reported 

separately for these two areas (see, for example, Johnston, Burgess, Harris, & Wilson, 2008). 

The results are presented in Table 4 



 

This model offers a slight improvement in fit over Model 3. We first consider the results for 

the 2008 cohort. The estimates show that 38% of students in the median school located within 

inner London are eligible for FSM, compared to 23% in non-selective outer London LAs and just 

12% in the selective LAs. These estimates clearly show the higher degree of poverty seen in 

inner London schools. Adjusting for these differential rates of poverty leads to a substantial 

reduction in the estimates of the LA variances compared to those reported in Model 3. Thus, 

while there are large differences in poverty between these three types of LAs, within each type, 

the LAs are relatively similar. At the school level, the estimated variance parameters show that 

schools in inner London LAs are typically less segregated than those in outer London LAs. For 

schools in outer London LAs we see that those located within selective local authorities are by 

far the most segregated in London. Thus, it appears that allowing schools to select on ability 

indirectly leads them to select on poverty and therefore imbalances schools in terms of their 

social mix. 

Comparing the 2008 results to those for 2002 shows that the percentage of FSM students 

taught in inner London decreased over the six years (the percentage in the median school 

dropped from 40% to 38%) while the percentage taught in outer London increased slightly (from 

22% to 23% in the non-selective LAs and from 11% to 12% in the selective LAs). There is 

therefore some suggestion that inner and outer London have become more similar (i.e. less 

segregated) in terms of the proportion of FSM students taught in their schools. The LA variance 

also decreased over the period suggesting that, within each type, LAs have become more similar 

(i.e. less segregated) in terms of the proportion of FSM students they teach. Further, all three 

school variances also decreased over the period suggesting that FSM students became less 



 

segregated across schools within all three types of LA. In sum, these results indicate that 

schooling in London has become less segregated at a range of levels over the six year period. 

Finally, we use the simulation method to present the estimated variances in terms of the 

dissimilarity index. To conserve space, Table 4 presents the simulated index scores at the school 

level only. For the 2008 (2002) cohort, the mean index scores are 0.242 (0.278) for inner 

London, 0.266 (0.300) for the non-selective outer London LAs and 0.383 (0.400) for the 

selective outer London LAs. Thus, we again see that segregation among schools is considerably 

higher for those located in selective LAs than for those in non-selective LAs and that all three 

types of LA became less segregated over the period. 

 

6. Discussion 

The multilevel modelling approach to segregation is essentially concerned with modelling 

the underlying proportions of interest and treats the observed proportions as just one stochastic 

realisation from an underlying social process. This approach therefore allows us to make 

statistical inferences about the underlying patterns of segregation and how these change over 

time: we can make inferences and construct interval estimates in the usual ways. Furthermore, 

patterns of segregation can be modelled simultaneously at multiple levels in the data, for 

example, at multiple organizational levels in an education system or at multiple spatial scales. 

Furthermore, we can model segregation as a function of predictor variables, such as area 

characteristics. In doing so, the multilevel modelling approach is not just able to measure 

patterns of segregation, but offers a way to explain the existence of such patterns and why they 

change over time. These possibilities are not easily available in the descriptive index approach 



 

and it is therefore difficult to see how that approach can further extend our understanding of 

segregation. 

However, if values of a traditionally used index are still desired, for example, for the purpose 

of presenting findings to a general audience, we have shown how these can be simulated from 

the estimated parameters of the multilevel model. It is then possible to make statistical inferences 

about the underlying social process in terms of the chosen index and we have illustrated how this 

can be done. The advantages of using a model for the analysis and, if desired, simulating index 

scores for the purpose of presenting findings strongly suggests that this should become the 

standard approach. Our own view, however, is that there may be little to be gained from 

simulating such indices when there are straightforward interpretations of the estimated model 

parameters themselves. Indeed, the simulated index scores for all common segregation indices 

are monotonically increasing functions of the model variance parameters and so simulating index 

scores from the variances are order preserving transformations – the rankings of the areas or 

years that are being examined are unaltered. Further, the relationship between simulated index 

scores and the variance on the logit scale is approximately linear for all but large differences in 

segregation and so when, for example, the increases in segregation experienced by two areas are 

compared, the increase experienced in one area relative to the other is approximately the same 

whether we choose to work with the estimated variances or simulated index scores; either way, 

we arrive at the same conclusions. 

The multilevel modelling approach to segregation can be extended in many ways beyond 

those covered in this paper. We can fit non-hierarchical, cross-classified models (Rasbash & 

Goldstein, 1994; Raudenbush, 1993) to disentangle residential and school segregation when 

schools are not nested within neighbourhoods or vice versa. We can fit models with multivariate 



 

responses to jointly model social segregation and, for example, academic segregation in relation 

to student achievement scores. Unlike the descriptive approach to segregation, non-binary 

response types, such as achievement scores measured on a continuous or ordinal scale, pose no 

problems for the multilevel modelling approach.  Models with unordered multinomial responses 

can also be fitted to model multigroup segregation, where interest lies in modelling segregation 

among three or more sub-groups of the population (Reardon & Firebaugh, 2002). Finally, models 

with spatially correlated random area effects can be fitted to model spatial segregation (Reardon 

& O’Sullivan, 2004). 

While our discussion has been in the context of social segregation among schools, the 

statistical issues we discuss are equally relevant to race and ethnic and other kinds of segregation 

as well as to measuring segregation among different types of institution or segregation among 

neighbourhoods. Further work is currently underway, extending the multilevel approach to 

modelling multigroup ethnic segregation among schools and ethnic spatial segregation among 

neighbourhoods. 

 



 

Appendix 

While the dissimilarity index D is the most widely used segregation index (see Section 2.2), 

many other indices exist. The Gini index (Duncan & Duncan, 1955) and the isolation index 

(Bell, 1954; Lieberson, 1981) are also commonly used segregation indices while Theil’s 

information-based entropy index (Theil, 1972; Theil and Finizza, 1971) was recently 

recommended as satisfying a range of desirable index properties (Reardon & Firebaugh, 2002). 

The Gini index G  is given by 
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where FSM

jn  and FSM

'jn  are the number of FSM students in school j  and 'j  respectively while 
jn  

and 
'jn  are the total number of students in the two schools. FSMN  is the total number of FSM 

students across all schools and N  is the total number of students of either type across all 

schools. The index is bounded by 0 (no segregation, all schools have the same observed 

proportion of FSM students) and 1 (complete segregation, no schools are observed with both 

FSM and non-FSM children).  

The isolation index I  is given by 
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The index is bounded from below by FSMN N , the overall proportion of FSM students (no 

segregation), and 1 (complete segregation). The value of I provides a useful interpretation as the 

probability that a random FSM student attends a school with another FSM student. The index is 

also interpreted as the mean exposure of FSM students to other FSM students. 

Thiel’s information-based entropy index H  is given by 
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where E  defines the diversity across all schools and is termed the entropy 
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defines the diversity within school j  
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Like D and G, H is bounded by 0 (no segregation, all schools have the same observed proportion 

of FSM students) and 1 (complete segregation, no schools are observed with both FSM and non-

FSM children). 

Figure 3 corresponds to Figure 1 (see Section 2.2) and shows the expected value of D, G, I 

and H, based on observed proportions, when there is no underlying segregation. The expected 



 

values are plotted against school size for when the overall FSM proportion is 0.25. The figure 

shows that all four indices are biased upwards as the observed proportions include the effects of 

sampling variability. We note that Thiel’s information-based entropy index suffers from the 

smallest bias and this is expected given that the index has been shown to satisfy a range of 

desirable index properties (Reardon and Firebaugh,2002). 

Figure 4 corresponds to Figure 2 (see Section 4.2) and shows the expected value of D, G, I 

and H, based on underlying proportions for different degrees of underlying segregation. The 

expected values are plotted against the variance on the logit scale for when school sizes are 200 

students per school and for when the overall FSM proportion is 0.25. The figure shows that the 

expected value of each index, holding the overall proportion constant, is a monotonically 

increasing function of the variance. Thus converting between any pair of simulated indices is an 

order preserving transformation and, as discussed in Section 4.2, makes the choice of index after 

fitting the multilevel model arbitrary. 

 



 

Notes 

1. The model is described as two-level since we could consider the school level proportion 

response as the average of many student level binary responses. Thus, in essence, we are fitting 

these binary responses at level 1, nested within schools at level 2. Indeed were we to do this we 

would obtain identical parameter estimates as the two models are equivalent. 

2. On the logit scale the logit for the median school is equal to the mean logit across all schools; 

the mean and median logits coincide. However, when these logits are transformed to 

probabilities, the mean and median probabilities do not typically coincide. This is due to the non-

linear nature of the logit link function. 

3. When the model is fitted by maximum likelihood, for example using adaptive quadrature, a 

likelihood ratio test can be used to compare Model 1 to the same model without the school level 

random effect. The test’s null hypothesis of a zero variance is on the boundary of the parameter 

space (we do not envisage a negative variance) and so the correct sampling distribution for the 

test statistic is a 50:50 mixture of a point mass at zero and a chi-squared distribution with 1 

degree of freedom. The correct p-value is therefore half the usual value that would be obtained 

for a chi-squared distribution with 1 degree of freedom (Goldstein, 2010, Section 2.8). 

4. As discussed in Section 4.2, we have to be careful when establishing whether changes in 

indices over time are significant as a systematic change in the overall proportion of FSM 

students could be mistaken for a systematic change in segregation. We recommended 

standardising the overall proportion over time. However, here the difference in the cohort 

specific intercepts was very small and not significant so no standardisation was required. 
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TABLE 1 

Parameter estimates for Model 1 

Parameter Estimate (Standard error) 

0  Intercept -1.220 (0.054) 

2

u  School variance 1.087 (0.087) 

  

uD  School dissimilarity index 0.366 (0.341, 0.391) 

  

DIC 3018.161 

Note: A 95% interval is reported for 
uD  rather than a standard error. 



 

 
TABLE 2 

Parameter estimates for Model 2 

Parameter Estimate (Standard error) 

0  Intercept -1.157 (0.134) 

2

v LA variance 0.516 (0.157) 

2

u  School variance 0.582 (0.050) 

  

vD  Simulated LA dissimilarity index  0.267 (0.199, 0.340) 

uD  Simulated School dissimilarity index  0.283 (0.262, 0.304) 

  

DIC 3016.454 

Note: A 95% interval, rather than a standard error, is reported for each simulated dissimilarity index. 

 



 

 
TABLE 3 

Parameter estimates for Model 3 

Parameter Estimate (Standard error) 
(1)

0  2002 Intercept -1.171 (0.159) 

(2)

0  2008 Intercept -1.136 (0.134) 

  

LA level  
2

(1)v  2002 LA variance 0.743 (0.215) 

(12)v  2002 and 2008 LA covariance 0.615 (0.179) 

2

(2)v  2008 LA variance 0.523 (0.153) 

  

School level  
2

(1)u  2002 school variance 0.782 (0.067) 

(12)u  2002 and 2008 school covariance 0.634 (0.054) 

2

(2)u  2008 school variance 0.626 (0.052) 

  

(1)vD  2002 Simulated LA dissimilarity index  0.312 (0.232, 0.398) 

(2)vD  2008 Simulated LA dissimilarity index  0.268 (0.200, 0.342) 

  

(1)uD  2002 Simulated School dissimilarity index  0.321 (0.298, 0.344) 

(2)uD  2008 Simulated School dissimilarity index  0.292 (0.271, 0.313) 

  

DIC  5899.353 

Note: A 95% interval, rather than a standard error, is reported for each simulated dissimilarity index. 



 

 

TABLE 4 

Parameter estimates for Model 4 

Parameter Estimate (Standard error) 
(1)

1  2002 Intercept for schools in inner London -0.402 (0.169) 

(2)

1  2008 Intercept for schools in inner London -0.508 (0.140) 

(1)

2  2002 Intercept for schools in non-selective LAs in outer London -1.290 (0.166) 

(2)

2  2008 Intercept for schools in non-selective LAs in outer London -1.199 (0.138) 

(1)

3  2002 Intercept for schools in selective LAs in outer London -2.140 (0.232) 

(2)

3  2008 Intercept for schools in selective LAs in outer London -2.007 (0.198) 

  

LA level  
2

(1)v  2002 LA variance 0.284 (0.095) 

(12)v  2002 and 2008 LA covariance 0.222 (0.077) 

2

(2)v  2008 LA variance 0.195 (0.066) 

  

School level for all LAs in inner London  
2

1(1)u  2002 school variance 0.571 (0.086) 

1(12)u  2002 and 2008 school covariance 0.416 (0.065) 

2

1(2)u  2008 school variance 0.415 (0.063) 

  

School level for non-selective LAs in outer London  
2

2(1)u  2002 school variance 0.662 (0.088) 

2(12)u  2002 and 2008 school covariance 0.514 (0.069) 

2

2(2)u  2008 school variance 0.504 (0.066) 

  

School level for selective LAs in outer London  
2

3(1)u  2002 school variance 1.293 (0.205) 

3(12)u  2002 and 2008 school covariance 1.166 (0.182) 

2

3(2)u  2008 school variance 1.171 (0.185) 

  

Simulated school level dissimilarity index scores  

1(1)uD  2002 School dissimilarity index (LAs in inner London) 0.278 (0.243,0.314) 

1(2)uD  2008 School dissimilarity index (LAs in inner London) 0.242 (0.211,0.275) 

2(1)uD  2002 School dissimilarity index (non-selective LAs in outer London) 0.300 (0.265,0.335) 

2(2)uD  2008 School dissimilarity index (non-selective LAs in outer London) 0.266 (0.237,0.296) 

3(1)uD  2002 School dissimilarity index (selective LAs in outer London) 0.400 (0.347,0.458) 

3(2)uD  2008 School dissimilarity index (selective LAs in outer London) 0.383 (0.332,0.440) 

  

DIC 5898.704 

Note: A 95% interval, rather than a standard error, is reported for each simulated dissimilarity index. 



 

 
FIGURE 1. Expected value of D based on observed proportions plotted against school size 

for different underlying proportions when there is no underlying segregation. 
 

Note: For each combination of school size and underlying proportion, 10,000 random samples were drawn in 

which each sample had 50 schools. 
 

 



 

 

 
FIGURE 2. Expected value of D based on underlying proportions plotted against the variance 

on the logit scale for different overall proportions. 

 



 

 

 
FIGURE 3. Expected value of D, G, I and H based on observed proportions plotted against 

school size when there is no underlying segregation. 

 



 

 

 

 

 
FIGURE 4. Expected value of D, G, I and H based on underlying proportions plotted against 

the variance on the logit scale. 

 


