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Abstract:  

Accurate analysis of composite delamination using interface elements relies on 

having sufficient elements within a softening region known as the cohesive zone ahead of a 

crack tip. The present study highlights the limitations of existing formulae used to predict 

numerical cohesive zone length and demonstrates modifications necessary for improved 

accuracy. Clarification is also provided regarding the minimum number of interface 

elements within the cohesive zone. Finally, appropriate values of numerical interfacial 

strength are examined. The results presented will aid the application of mesh design 

techniques that both preserve numerical accuracy, whilst minimising computational 

expense.   
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Nomenclature 

Interface Element Properties: 

G = Strain Energy Release Rate (N/mm) 

GC = Critical Strain Energy Release Rate (N/mm) 

K = Interface Element Stiffness prior to damage initiation (N/mm3) 

σ  = Interface Element Stress (MPa)  

σmax = Interfacial Strength (MPa) 

δ = Interface Element Relative Displacement (mm) 

δe = Interface Element Relative Displacement at damage initiation (mm) 

δf = Interface Element Relative Displacement at final failure (mm) 

Laminate Material Properties:  

E11,  E22, E11 = Young’s Moduli (MPa) 

G12,  G13, G23 = Shear Moduli (MPa) 

ν12, ν13, ν23 = Poisson’s Ratios 

where subscripts 1, 2 and 3 denote the principal material axes 

Laminate Geometric Properties 

h = Laminate Half Thickness (mm) 

B = Laminate Width (mm) 
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X = Specimen Length (mm) 

a = Crack Length (mm) 

a0 = Initial Crack Length prior to crack propagation (mm) 

I = Second Moment of Area (mm4) 

Other: 

P = Load (N) 

∆ = Cantilever Tip Displacement (mm) 

lch = Characteristic Cohesive Zone Length in an infinite body (mm) 

lch,slender = Characteristic Cohesive Zone Length in a slender body (mm) 

E’ = Equivalent Elastic Modulus used in the characteristic length equation for orthotropic 

materials (MPa)  

LCZ = Numerical Cohesive Zone Length (mm) 

LCZ,f = Fully Developed Numerical Cohesive Zone Length (mm) 

Nel = Number of elements within the numerical cohesive zone 

Lel = Element Length (mm) 

Where applicable, subscripts I, II and m are used to denote properties under mode I, mode 

II and mixed mode loading respectively. 



Published in Engineering Fracture Mechanics, 2008, 75(16), 4774-4792 
doi:10.1016/j.compositesa.2011.12.016 

 4 

1. Introduction and Motivation 

Interface elements are specialised finite elements used to simulate crack initiation 

and propagation in numerical models. Over recent years, they have become increasingly 

used for modelling composites, particularly in relation to delamination [1,2,3,4,5,6,7] and 

adhesive bond-line failure [8,9,10,11]. Compared with alternative analysis techniques such                                                              

as the Virtual Crack Closure Technique (VCCT), they offer the advantages of 

encompassing both crack initiation and crack propagation and the ability to model multiple 

crack paths, without the need for computationally expensive crack-path following 

algorithms. In addition, they do not require the direction of crack propagation to be known 

a priori, and cracks have the potential to propagate along any path where interface elements 

are placed [12]. Figure 1 demonstrates a typical simulation of composite delamination in a 

mode I Double Cantilever Beam (DCB).  

(Insert figure 1 showing interface element representation) 

An interface element’s behaviour is governed by a traction-displacement curve, 

relating element stress (traction) to mode I (opening) and mode II (shear) nodal 

displacements. Although a variety of geometric shapes have been used for this traction-

displacement curve, a bi-linear form is commonly implemented for modelling composite 

delamination (see figure 2). This consists of the following main features: 

1. An initial elastic region until reaching a maximum stress (σmax), which represents 

the interfacial strength. 

2. A subsequent softening region until zero stress is reached and element failure 
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occurs. 

3. The total area enclosed by the curve is equal to the fracture toughness of the 

material. 

(Insert figure 2 showing bi-linear traction displacement curve and main features) 

Ahead of a numerical crack tip, we can define a region known as the cohesive zone, 

in which elements experience irreversible deformation (i.e. region δe - δf on the traction 

displacement response shown in figure 2). Figure 3 illustrates the development of this zone, 

using the simple example of a mode I DCB specimen subject to a linearly increasing tip 

displacement. As displacement initially increases, the interface element adjacent to the 

crack tip rapidly reaches its maximum interfacial strength and moves onto the softening 

region of the traction-displacement response. As tip displacement increases further, 

adjacent elements also undergo irreversible deformation, allowing a cohesive zone length, 

LCZ, to be defined, over which stress increases up to the maximum interfacial strength some 

distance ahead of the crack tip. The length of the cohesive zone reaches a maximum, LCZ,f,  

at the point where the crack tip interface element fails completely and the crack starts to 

propagate.  

(Insert figure 3 showing cohesive zone development in a mode I DCB) 

It is important to draw a clear distinction between the true physical cohesive zone 

length, defined as the length over which irreversible damage processes occur ahead of a 

crack tip and the numerical cohesive zone length, over which interface elements lie on the 

softening part of their traction-displacement response. For an accurate numerical 



Published in Engineering Fracture Mechanics, 2008, 75(16), 4774-4792 
doi:10.1016/j.compositesa.2011.12.016 

 6 

representation of the physical cohesive zone, the shape of the traction-displacement curve 

must reflect the stress distribution associated with damage mechanisms occurring ahead of 

the physical crack tip [13]. However, this stress distribution is very difficult to measure 

experimentally and, if only a global analysis of the structure’s load-displacement response 

is required, results are relatively insensitive to the exact shape of the traction-displacement 

curve, provided that the correct interfacial strength and fracture toughness are applied [12]. 

This explains why the bi-linear traction-displacement curve, which is geometrically the 

most simple form to implement, has become commonly used for delamination analyses 

[5,6,7]. Furthermore, once a crack has initiated in a structure and a cohesive zone exists, 

results are relatively insensitive to the exact value of interfacial strength and only the 

fracture toughness value is of critical importance [14].  

In order to conduct an accurate delamination analysis, the mesh must be sufficiently 

fine to ensure that enough interface elements exist within the cohesive zone length at the 

point of crack propagation. However, for large structural models, it is also important to 

avoid the computational expense of an excessively fine mesh. Therefore, mesh optimisation 

relies on accurate values for both cohesive zone length and the minimum number of 

interface elements required within this. An accurate prediction of cohesive zone length is 

also required in interface element fatigue degradation laws [15].  

When pioneering the use of cohesive zone models in finite element analyses of 

crack formation and growth in concretes, Hillerborg et al. [16] presented a characteristic 

length parameter (lch) for isotropic materials, which is a material property given by the 

following equation: 
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For the analysis of crack growth in orthotropic materials, modified versions of equation (1) 

have been developed [12, 17], which for mode I and mode II loading are given by:  

2
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σ
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=   (2b)     

where E’ is an equivalent elastic modulus (MPa) for orthotropic materials, whose value 

depends on the material’s longitudinal modulus, transverse modulus, shear modulus, depth 

and whether plane stress or plane strain conditions exist [17]. This replaces the isotropic 

elastic modulus in equation (1). The procedure for calculating E’ is provided in Appendix 

A. 

 Values equal to or close to the characteristic length have since been suggested by 

several authors [12,14,17] for predicting the maximum numerical cohesive zone length,  

LCZ,f, and hence, required mesh density, in finite element analyses. The present study 

highlights that the characteristic length can significantly over-predict the maximum 

numerical cohesive zone length. This finding is consistent with existing analytical solutions 

for cohesive zone length. For example, Planas and Elices [18] have compared fully 

developed cohesive zone lengths in remotely loaded, isotropic, infinite bodies resulting 

from rectilinear, linear and exponential softening traction-displacement laws. They found 

the cohesive zone length to be given by (π/8) lch, 0.731 lch and 2.92 lch for rectilinear, linear 
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and exponential softening laws respectively. This strong dependence of cohesive zone 

length on traction-displacement curve shape has also been shown by Smith [19], who 

developed closed form cohesive zone length solutions for a range of power law curves. One 

of these curves gave a close approximation of the linear softening law and similar results to 

those of Planas and Elices were gained. 

There are several significant differences between these analytical solutions for 

cohesive zone length and the present numerical study. All the examples quoted are based 

on the development of cracks in isotropic materials, but as highlighted by Yang et al. 

[12,17] and shown by equations (2a) and (2b), when analysing cohesive zone length in 

orthotropic materials, the elastic modulus in the characteristic length equation becomes a 

function of the material’s longitudinal modulus, transverse modulus, shear modulus, depth 

and plane stress or plane strain conditions. In Turon et al.’s previous study [14], the value 

of E’ was assumed equal to the transverse modulus when predicting cohesive zone length. 

The present study highlights the importance of including the additional parameters listed 

above in the calculation of cohesive zone length for orthotropic materials.  

Furthermore, the analytical traction-displacement curves discussed above prescribe 

maximum cohesive traction at zero crack opening displacement. However, when 

implementing a cohesive zone law in a numerical model, it is necessary to have an initial 

rising part of the traction-displacement curve, which is generally taken as linear to simulate 

the elastic response of the interface until the point of damage initiation.  

Finally, the above analytical solutions are for infinite bodies, where material depth 

has no influence on cohesive zone length. For analysis of composite delamination and 
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bond-line failure, it is critical that the effects of specimen thickness on cohesive zone length 

are studied, due to the slender nature of typical laminates. Williams and Hadavinia [20] 

conducted an analytical investigation of cohesive zone models applied to a slender DCB 

specimen, incorporating a range of traction-displacement laws. Their work was motivated 

by developing analytical solutions for the equivalent crack length in a purely elastic 

material, as opposed to the length of the cohesive zone. Based on previous studies of crack 

bridging models [21,22], Cox and Yang proposed modified forms of the characteristic 

length equations for infinite bodies (equations (2a) and (2b)), which they suggest should be 

used for estimating cohesive zone length in slender laminates, with centred cracks, under 

mode I and mode II loading respectively [12]: 

4
34
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σ
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where h is the laminate half-thickness and E’II,slender is a mode II equivalent elastic modulus 

for a slender body, which takes a different form to that used in equation (2b) (see Appendix 

A). The mode I equivalent elastic modulus takes the same form as that used in equation 

(2a). These formulae are based on the assumption that the characteristic length parameter, 

lch, provides an accurate prediction of cohesive zone length in an infinite body, which as 

previously discussed, is not necessarily the case. In addition, no guidance is provided 

concerning what constitutes a slender laminate.  
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No numerical studies have been presented to validate the accuracy of equations (2) 

and (3) across a range of material properties, structural geometries and load conditions. The 

present paper addresses this need by investigating whether the functional forms of these 

equations are applicable to numerical cohesive zone lengths and under what conditions 

each formula provides the greatest level of accuracy. This is of significant importance, both 

in mesh optimisation techniques for interface element models, and the development of 

fatigue laws based on the degradation of interface elements within the cohesive zone.   

With respect to the minimum number of interface elements required within the 

cohesive zone for an accurate failure analysis, recommendations in the literature show a 

wide variation, ranging from two to more than ten [14]. Recent composite delamination 

analyses using interface elements have suggested that 2-3 elements are sufficient for mode I 

load cases [14,23]. This study provides a more detailed investigation, with respect to the 

development of the numerical cohesive zone, for mode I, mode II and mixed mode load 

cases. 

A final aim of the paper is to examine appropriate values of interfacial strength for 

modelling composite delamination. This is motivated by a technique recently demonstrated 

by Turon et al. [14] for reducing the required mesh density, by using a reduction in 

numerical interfacial strength to increase the cohesive zone length. Such a method is very 

beneficial for delamination analyses involving typical composite epoxy resins, which can 

have cohesive zone lengths of less than 1mm if a realistic interfacial strength is applied. As 

discussed above, a reduced numerical interfacial strength is allowable due to evidence that 

once a crack has initiated, results are relatively insensitive to the exact value of this 
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parameter, provided that an accurate fracture toughness (area enclosed by the traction-

displacement curve) is maintained. However, a previous investigation by Blackman et al. 

[9] has shown that excessively low values of interfacial strength can result in an inaccurate 

load-displacement analysis. In this case, a polynomial traction-displacement law was 

implemented, in which the interface element stiffness varies prior to reaching the maximum 

interfacial strength (i.e. in the region 0 - δe  shown on figure 2). Whilst the present study 

uses a bi-linear law, in which interface element stiffness remains constant in this region, the 

effects of reducing interfacial strength appear consistent with those previously highlighted 

by Blackman et al. This suggests that limits should be set on allowable reductions in 

interfacial strength as a means of reducing the required mesh density. As for standard mesh 

design techniques, Turon et al.’s procedure [14] relies on accurate values of numerical 

cohesive zone length and the minimum number of interface elements required within this.   

2. Interface Element Formulation 

The interface elements used for this study take the form of solid hexahedral 

elements with a small initial thickness and are governed by a bi-linear constitutive law. 

This was developed from a discrete interface element formulation, which has been 

successfully implemented to model both matrix cracking and delamination within notched 

composites using the explicit finite element code LS-DYNA [7]. Full details of the 

formulation are given in this previous study and so only a brief overview is now provided. 

The formulation can be illustrated in a single three-dimensional map, as used by 

several previous authors [5,6,7,24], by representing the normal opening mode (mode I) on 

the 0 - σ - δnormal plane, and the transverse shear mode (mode II) on the 0 - σ - δshear plane, 
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as shown in figure 4. The triangles 0 - max,Iσ  - f,Iδ  and 0 - max,IIσ  - f,IIδ  are the bi-linear 

responses in the pure opening and pure shear modes respectively. Any point on the 0 - 

δnormal - δshear plane represents a mixed-mode relative displacement.  

(Insert figure 4 showing the mixed mode 3-D map) 

The mixed mode damage onset displacement, δm,e, and interfacial strength, σm,max, are 

calculated using a quadratic damage onset criterion: 

1)0,max(
2

max,II

II

2

max,I

I =⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

σ
σ

σ
σ    (4) 

The mixed mode failure displacement corresponding to complete decohesion is calculated 

using the following power law failure criterion: 

1
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αα

     (5) 

where )0.2~0.1(∈α  is an empirical parameter derived from mixed-mode tests, ICG  and 

IICG  are critical energy release rates for pure mode I (opening) and pure mode II (shear) 

respectively. Equation (5) allows the fully debonded locus, represented by the relative 

displacement corresponding to complete interface failure, f,mδ , to be determined (see figure 

4). 

3. Benchmark Applications 

The baseline specimen geometry, laminate properties and interfacial properties used 

for the present investigation are as specified in figure 5 and table 1. These are based on 
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experimental data using HTA/6376C [25], for which numerous researchers have previously 

conducted numerical delamination analyses under both static [26,27] and fatigue loading 

[15,28]. The analyses presented here have been conducted under mode I, mode II and 

mixed mode loading, using the DCB, 3 Point End Notched Flexure (3ENF) and Fixed Ratio 

Mixed Mode (FRMM) specimens respectively. The details of each model, including 

boundary conditions and properties of the numerical interface are shown in figure 6. It 

should be noted that the mode II interfacial strength of 60MPa is significantly higher than 

that of 30MPa [15,28] and 40MPa [26,27] applied by previous authors. As discussed in 

section 4.3, this was necessary to perform an accurate quasi-static load-displacement 

analysis of the 3ENF and FRMM specimens. Numerical results have been compared with 

both experimental results and corrected beam theory results (see appendix B) for the mode I 

and mode II load cases. Since no experimental data was available in the open literature for 

the mixed mode load case, only a comparison with corrected beam theory, with α set to 1 in 

equation (5), has been made.     

(Insert figure 5, table 1 and figure 6)  

4. Results   

4.1 Minimum Number of Interface Elements required within the cohesive zone 

As shown by figure 7, for the mode I DCB, the numerical cohesive zone length at 

the point of initial crack propagation (i.e. the crack tip interface element reaching zero 

traction) was measured as 1.2mm for an element length, Lel, of 0.125mm. Plotting a 

trendline through results for element lengths of 0.25mm and 0.5mm also provides close 
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agreement with this value. 

(Insert figure 7) 

Referring to figure 8(a), it is evident that all of these element lengths enable an 

accurate analysis of the global load-displacement response. However, the smoothness of the 

solution in the propagation regime decreases with increasing element length caused by 

dynamic effects as each interface element fails, due to the increasing fracture energy 

released by larger elements. A global damping factor of 5 was applied in all analyses to 

remove high frequency oscillations whilst maintaining accurate results. With element 

length increased to 1mm, it is no longer possible to capture the cohesive zone stress 

distribution and the accuracy of the analysis decreases. Results become progressively worse 

with further reductions in mesh density (see figure 8(b)).  

(Insert figure 8) 

In the present study, the number of interface elements within the cohesive zone, Nel, 

is defined as: 

el

f,CZ
el L

L
N =       (6) 

where LCZ,f  is the length of the cohesive zone at the point of first element failure, when 

using a fine mesh that enables the cohesive zone stress distribution to be accurately 

captured. In the present analyses, LCZ,f  was measured using a 0.125mm element length for 

the DCB and FRMM specimens and a 0.25mm element length for the 3ENF specimen. The 

longer element length used for the 3ENF specimen was possible due to the greater length of 
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the cohesive zone. 

The trends discussed above suggest that the minimum value of Nel required to gain 

an accurate analysis of the mode I DCB specimen lies somewhere between 1.2 and 2.4, the 

values calculated for element lengths of 1mm and 0.5mm respectively. This appears 

consistent with previous mode I studies [14,23], which have suggested that at least 2 

elements are required within the cohesive zone for an accurate global load-displacement 

analysis.  

Similar results are exhibited for the 3 point ENF and FRMM specimens (figures 9 

to 12). In the case of the 3 point ENF, which has a numerical cohesive zone length of 

4.1mm (see figure 9), there is a significant reduction in the accuracy of results when 

increasing element length from 1.5mm to 2mm. For an element length of 1.5mm, results 

show close agreement with those obtained using finer meshes. When element length is 

increased to 2mm, the model fails to accurately capture the point of propagation and there 

are significant oscillations present in the propagation regime. This suggests that the 

minimum value of Nel for an accurate analysis lies somewhere between 2.05 and 2.73. (N.B. 

Results for the finest mesh used for the 3ENF, with an element length of 0.25mm, have not 

been displayed on figures 9 and 10 because, due to the long cohesive zone length, they 

show no significant variation from those for an element length of 0.5mm).  

For the FRMM specimen, which has a numerical cohesive zone length of 1.5mm, 

analysis accuracy deteriorates when element length is increased from 0.5mm to 1mm. This 

indicates that the minimum value of Nel lies between 1.5 and 3.   
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(Insert figures 9 to 12) 

Although further work remains to precisely define a minimum required Nel for 

accurate numerical analyses under various mode ratios, a conservative approach would be 

to require that Nel ≥ 3. This will ensure that the cohesive zone stress distribution at the point 

of first element failure is correctly captured, hence preventing delayed propagation onset.     

4.2 Cohesive Zone Length 

Since equations for estimating cohesive zone length are dependent on E’, GC, σmax 

and h (see equations (2) and (3)), their effects on the fully developed numerical cohesive 

zone length, LCZ,f,  have been investigated. Figure 13 shows the effects on LCZ,f  of 

independently varying these parameters for the benchmark HTA6376/C mode I DCB 

model, using a consistent element length of 0.125mm. (N.B. As shown in Appendix A, E’ 

is influenced by E11, E33 and G13, therefore, each of these parameters has been 

independently varied). Due to the uncertainties surrounding the accuracy of existing 

predictive formulae highlighted in the introduction, a scaling factor, M, has been applied to 

equations (2) and (3), to try and identify the best fit to numerical results. 

When comparing the numerical results with equations (2a) and (3a) (i.e. the 

characteristic cohesive zone lengths, lch,I and lch,slender,I, in infinite and slender bodies 

respectively), it was apparent that both formulae significantly over-predict the numerical 

cohesive zone length. As a result, using these formulae for mesh design risks the 

application of a mesh that is too coarse to accurately model failure. It was identified that 

applying M = 0.5 to equation (3a), which accounts for the influence of specimen depth, 

provides a reasonable and generally conservative correlation with the numerical results 



Published in Engineering Fracture Mechanics, 2008, 75(16), 4774-4792 
doi:10.1016/j.compositesa.2011.12.016 

 17 

across most of the parameter ranges investigated. In cases where material properties result 

in a very short cohesive zone length (e.g. high interfacial strength, low shear modulus, low 

transverse modulus), equation (2a), which takes no account of structural depth, begins to 

exhibit a closer match to the numerical results. Again, it is necessary to use M = 0.5 in 

order to gain a close match with the numerical results. It is apparent that this value falls 

between the analytical solutions for cohesive zone lengths in infinite bodies of M = π/8 and 

M = 0.731, for rectilinear and linear softening traction-displacement laws respectively [18]. 

Equations (2a) and (3a), with a scaling factor of M = 0.5 applied, have been plotted on 

figure 13 to highlight the trends discussed. 

(Insert figure 13) 

Very similar observations can be made for the mode II cohesive zone length results 

shown in figure 14, for an element length of 0.25mm. Again, equation (3b), which accounts 

for structural depth, generally provides the best correlation with numerical results, but it is 

necessary to apply M = 0.5 to gain a close match. Previous work by Massabo and Cox [22] 

has shown that the equivalent mode II modulus in the characteristic length equation for 

slender bodies, E’II,slender, takes the same value as the longitudinal modulus, E11, and is 

influenced by no other elastic moduli. However, the cohesive zone length in the 3ENF 

specimen is seen to increase from a value of 3mm for a shear modulus, G13, of 1000MPa to 

4.3mm for a shear modulus, G13, of 7000MPa. Therefore, whilst the influence of shear 

modulus is relatively weak compared to that of longitudinal modulus, it cannot be 

neglected. This highlights the difficulty in drawing a clear distinction between what 

constitutes a slender or infinite body. Relative to the mode I load case, the cohesive zone 
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lengths for mode II are significantly longer. As suggested by previous authors [12], this 

highlights that for typical composite material properties, it will generally be the mode I 

cohesive zone length that dictates the minimum mesh density. 

(Insert figure 14) 

In order to investigate the accuracy of equations (2) and (3) in situations where the 

structural depth has a less significant influence, an additional mode I DCB model was 

created, using the specimen geometry and material properties shown in table 2. This is 

based on data provided in reference [14] for a T300/977-2 specimen, which has a 

significantly increased mode I fracture toughness, GIC (+74%), interfacial strength, σI,max 

(+200%), specimen depth, h (+32%), initial crack length, a0 (+57%), and longitudinal 

modulus, E11 (+25%), relative to the HTA/6376C specimen. A consistent element length of 

0.125mm was again used.   

(Insert table 2) 

Figure 15 highlights that for these material properties, the specimen depth has a 

much less significant influence across the range of parameters investigated and equation 

(2a) frequently gives a more accurate prediction of numerical cohesive zone length than 

equation (3a). Again, it is necessary to apply M = 0.5 to gain a close match to the numerical 

results. Only for cases where the variation of a material property significantly extends the 

cohesive zone length, such as reduced interfacial strength or increased fracture toughness, 

does equation (3a) provide the best correlation. It is always the minimum of the two 

analytical values, provided by equations (2a) and (3a) respectively, which provides the 
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closest match to numerical results.  

(Insert figure 15) 

The cohesive zone length results for both the mode I and mode II load cases suggest 

that a reasonable match to the numerical results is always obtained by applying M = 0.5 to 

the minimum value from equations (2) and (3). Further work remains to investigate 

appropriate values of M for alternative traction-displacement laws and for a wider range of 

crack lengths and structural geometries. 

Combining these results with those discussed in section 4.1, the proposed mesh 

design strategy for a general mixed mode load case, when using a bi-linear traction-

displacement law, is as follows: 

i) Predict the minimum possible length of the fully developed cohesive zone, LCZ,f,predicted, 

using the formula, 

( )[ ])b(3),a(3),b(2),a(2.Eqnmin5.0L predicted,f,CZ =   (7) 

Based on the cohesive zone results presented in figures 13 to 15, the only case where 

this formula risks providing a significant over-prediction of cohesive zone length is 

when the transverse modulus, E33, has a value above 12,000MPa. This is apparent from 

figure 15, where the numerical cohesive zone length for the T300/977-2 DCB model 

shows a maximum variation of 30% below that predicted by equation 3(a) with a 

scaling factor of M = 0.5 applied.   

ii) Divide this result by 3 to calculate the maximum allowable element length, Lel,max, in 

order to ensure that at least 3 interface elements are present within the fully developed 
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cohesive zone: 

3
L

L predicted,f,CZ
max,el =       (8) 

4.3 Effects of varying Numerical Interfacial Strength 

Figures 16 to 18 show the effects of varying mode I and mode II interfacial strength 

on the load-displacement analyses of the benchmark DCB, 3ENF and FRMM specimens. 

For each specimen, results are presented in the following forms: 

i) Using a fine mesh, which enables the cohesive zone stress distribution to be accurately 

captured for all values of numerical strength investigated. The fully developed cohesive 

zone length, LCZ,f, for each value of interfacial strength is also shown so that the 

accuracy of the analyses can be related to this parameter.  

ii) Using a coarse mesh, where the number of elements within the cohesive zone is initially 

less than the minimum required value, when applying the baseline interfacial strength 

(see section 4.1). This enables allowable reductions in interfacial strength to be 

investigated, when using this technique to reduce the minimum required mesh density, 

as originally proposed by Turon et al. [14]. 

In figure 16(a), mode I interfacial strength is reduced from 45MPa (15MPa above 

the baseline value) to 5MPa for the DCB specimen, using a fine mesh with an element 

length of 0.125mm. Between 45MPa and 30MPa there is no significant change in the 

accuracy of the numerical analysis and both load-displacement curves show close 

agreement with corrected beam theory. From 30MPa to 10MPa, there is a gradual loss of 

stiffness in the elastic loading regime prior to crack propagation, but this is reasonably 
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small in magnitude and does not produce a large deterioration in analysis accuracy. When 

the numerical interfacial strength is decreased from 10MPa to 5MPa and the cohesive zone 

length increases from 3.25mm to 6mm, a much larger deterioration in stiffness occurs and 

the point of crack propagation is significantly delayed. Figure 16(b) shows the effects of 

reducing mode I interfacial strength for a coarse mesh of 1mm element length, which is 

unable to accurately capture the cohesive zone distribution at the point of first element 

failure when using the baseline value of 30MPa (see figure 8(b)). As interfacial strength is 

reduced, the same trends as those discussed for the fine mesh regarding loss of stiffness in 

the elastic regime are apparent. However, significant improvements in analysis accuracy in 

the propagation regime are gained due to an increased number of elements within the 

cohesive zone at the point of first element failure. 

(Insert figure 16)    

Figure 17(a) shows the effects of varying interfacial strength for the 3ENF 

specimen, using a fine mesh with an element length of 0.25mm. It is evident that for a 

mode II interfacial strength of 30MPa, as applied by previous authors [15,28], the analysis 

cannot accurately capture the peak load prior to crack propagation. This is due to a 

significant loss of stiffness during the elastic loading regime. However, with interfacial 

strength increased to a more realistic value of 60MPa, a much closer match to the corrected 

beam theory solution is obtained. No significant further improvement is gained by 

increasing interfacial strength to 90MPa. This justifies the value of 60MPa selected for the 

numerical mode II interfacial strength in the baseline model. The poor results gained using 

lower values of interfacial strength are believed to be due to the very long numerical 
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cohesive zone lengths (10.5mm for 30MPa and 20.25mm for 15MPa) and hence significant 

softening ahead of the crack tip. Figure 17(b) shows the effects of reducing interfacial 

strength using a coarse mesh with an element length of 2mm. This element length is greater 

than that of 1mm used for the DCB due to the longer cohesive zone length resulting from 

the baseline material properties. This means that for the 3ENF model, it is only when 

element length is increased from 1.5mm to 2mm that there becomes an insufficient number 

of elements within the cohesive zone to accurately capture the point of crack propagation 

(see figure 10). As for the DCB, reduced interfacial strength increases the accuracy of the 

analysis in the propagation regime. However, comparison with figure 17(a) shows that the 

initial point of crack propagation for a fine mesh cannot be regained. This is likely to be 

due to the coarseness of the mesh combined with the very sudden nature of crack 

propagation in the 3ENF specimen. 

(Insert figure 17) 

Figure 18(a) shows the effects of reducing mode I and mode II interfacial strengths 

in equal proportions below their baseline values for the FRMM specimen, when using a 

fine mesh with an element length of 0.125mm. The cohesive zone lengths exhibited for 

each combination of mode I and mode II interfacial strength appear to be dictated mainly 

by the mode I value. This explains why, similar to the mode I DCB, a significant loss in 

stiffness within the elastic regime only occurs when mode I interfacial strength is reduced 

below 10MPa and the cohesive zone length exceeds approximately 5mm. Figure 18(b) 

shows the effects of reducing mode I and mode II interfacial strengths, for a coarse mesh of 

1mm element length, which is unable to capture the cohesive zone distribution at the point 
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of first element failure when using the baseline values of 30MPa and 60MPa respectively 

(see figure 12). Similar to results for the mode I DCB, significant improvements in analysis 

accuracy within the propagation regime are obtainable with reduced interfacial strength but 

at the expense of reduced stiffness in the elastic regime.  

(Insert figure 18) 

The above findings indicate that care must be taken when reducing interfacial 

strength as a means of reducing the required mesh density in numerical models. For typical 

carbon epoxy properties, a very short mode I cohesive zone length exists, allowing 

significant reductions in mode I interfacial strength, without affecting the accuracy of 

global load-displacement analyses. However, mode II cohesive zone lengths are generally 

much longer, and similar mode II interfacial strength reductions can result in significant 

inaccuracies. Further investigation is required to provide a definitive value for the extent to 

which interfacial strength can be reduced in relation to numerical cohesive zone length, 

whilst preserving analysis accuracy, for a range of crack lengths. For the cases discussed 

above, a significant loss of stiffness in the elastic regime of the load-displacement curve is 

evident when the fully developed cohesive zone length exceeds approximately 5mm.  

5. Conclusions 

The present study has shown that a minimum of between 2 and 3 elements need to 

be present within the numerical cohesive zone for an accurate load displacement analysis to 

be performed under mode I, mode II and mixed mode load cases. This is necessary for an 

accurate representation of the numerical stress distribution within this zone at the point of 
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initial crack propagation.  

A clear distinction has been drawn between the physical cohesive zone length, the 

analytical cohesive zone length and that which results from a numerical representation 

using interface elements. For the first time, the length of the numerical cohesive zone has 

been investigated in detail and compared to closed form solutions across a range of material 

and geometric parameters. It has been demonstrated that using a bi-linear traction-

displacement curve, many current analytical formulae for cohesive zone length 

significantly over-predict numerical values. In addition, parameters not always included in 

current formulae for predicting cohesive zone length, such as specimen depth, longitudinal 

modulus and shear modulus, are shown to have a significant influence in slender, 

orthotropic materials. These findings have important implications in mesh design methods, 

which rely on an accurate prediction of cohesive zone length to minimise computational 

expense, whilst preserving the accuracy of numerical analyses. Modifications to existing 

formulae have been proposed for predicting cohesive zone length in standard fracture 

toughness tests, but they remain to be validated in more complex structural geometries. 

Their applicability to alternative types of traction-displacement response, such as 

exponential and trapezoidal forms, also requires investigation.  

It has been demonstrated that although reductions in numerical interfacial strength 

can be used to increase the cohesive zone length and reduce the required mesh density, 

limits exist on the allowable magnitude of these reductions. For typical carbon epoxy 

composite properties, the mode I cohesive zone length is generally very short, and 

significant reductions in mode I interfacial strength are possible, without affecting the 
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accuracy of global load-displacement analyses. However, comparable reductions in mode II 

interfacial strength can cause excessive material softening ahead of the crack tip, due to the 

development of extremely long cohesive zones. This results in failure to predict the peak 

load at which initial crack propagation occurs in global load-displacement analyses. 
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Appendix A: Calculation of Elastic Modulus for Cohesive Zone Length Equations 

The elastic constant E’ that appears in equations (1) and (2) is dependent on the mode of 

loading, whether plane stress or plane strain conditions exist and whether the specimen can 

be considered as slender or infinite. 

For a mode I crack in an infinite body under plane stress conditions [17]: 

11

5531

2/1

11

333311
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1 +
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where the bij are Voigt elastic constants defined by: 

∑=
=

6

1j
jiji b σε ,       (A.2) 

with ε1 ≡ ε11, … , ε6 ≡ ε12; σ1 ≡ σ11, … , σ6 ≡ σ12. For a specially orthotropic specimen (axes of 

orthotropy aligned with the axes of symmetry of the specimen), the Voigt elastic constants 

are related to the engineering elastic constants by: 

b11 = 1/E11, b12 = -ν12/E11, b66 = 1/G12, 

b22 = 1/E22, b23 = -ν23/E22, b55 = 1/G31,    (A.3) 

b33 = 1/E33, b31 = -ν31/E33, b44 = 1/G23, 

where Eii is the Young’s modulus in the xi direction, νij is a Poisson’s ratio and Gij is an 

engineering shear modulus. For the alignment of the specimen in figure 5, the engineering 

constants involved in '
IE  are E11, E33, G31 and ν31.  

For a crack in an infinite body that is loaded in shear, the elastic constant becomes: 
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In a slender body, a different elastic constant appears. For example, in a thin plate or beam 

containing a mid-plane crack propagating in the x1 direction and loaded in mode II, the 

elastic constant that appears in results for the cohesive zone length is the reduced Young’s 

modulus: 
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Appendix B: Corrected Beam Theory Equations 

(a) Mode I DCB 

Considering the DCB specimen (see figure 6(a)) as two single cantilever beams, of length 

equal to the crack length, a, simple beam theory can be applied to give: 

IE3
Pa2

11

3

I =Δ        (B.1)  

where, 

ΔI = Vertical separation of cantilever beam tips 

P = Point load applied to the free end of each cantilever  

E11 = Young’s Modulus of each cantilever along its length 

I = Second Moment of Area of each cantilever (=Bh3/12, where B and h are the specimen 

width and half-depth respectively, as defined in figure 5) 

In order to correct the displacement for shear deformation and for local deformations that 

occur around the crack tip, a corrected beam theory method can be used, in which equation 

(B.1) becomes: 

IE3
)ha(P2

11

3

I
χ

Δ
+

=       (B.2)  

where, 

χ = Correction Parameter 

h = cantilever depth 
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A value of χ can be determined both experimentally and analytically, but in this study, the 

analytical value presented by Reeder et al. is used [29], where: 
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and 
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The mode I strain energy release is given by [29]: 

IBE
)ha(P

G
11

22

I
χ+

=       (B.4) 

Under a linearly increasing tip displacement, the load (P) increases until the point where GI 

= GIC and the crack begins to propagate. The subsequent load-displacement relationship for 

each increment of crack extension is found by combining equations (B.2) and (B.4) with GI 

set equal to GIC.    

 (b) 3 Point ENF 

The same principles apply for the 3 point ENF (see figure 6(b)), in which the displacement 

and mode II strain energy release rate before initial crack propagation are given by [29]: 
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(N.B. The second moment of area, I, in equations (B.5) and (B.6) remains equal to that 

calculated for the DCB specimen, using half the specimen depth and the length, L, is as 

defined in figure 6(b).)  

(c) FRMM 

For the FRMM specimen (see figure 6(c)), the upper cantilever tip displacement and 

separate mode I and mode II strain energy release rate components are given by [30]: 
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where F and N’ are correction factors for large displacements and the length, L, is as 

defined in figure 6(c). Due to the small displacement of approximately 3mm at the point of 

initial crack propagation, F and N’ have been assumed equal to unity for the FRMM 

specimen used in this study. Under a linearly increasing upper cantilever tip displacement, 

the analytical load, P, at which initial crack propagation occurs was calculated using the 

power law failure criterion given by equation (5), with α = 1.  
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Figure 1: Interface element analysis of delamination in a Double Cantilever Beam 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Bi-linear traction-displacement response 
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Figure 3: Development of the numerical cohesive zone 
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Figure 4: Bilinear mixed mode softening law 

 

 

 

 

 

 

 

 

 

Figure 5: Baseline Specimen Geometry 
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(a) Mode I DCB 

  
 

 

 

 

 

 

 

 

 

 

(b) Mode II 3ENF 

 

 

 

 

 

 

 

 

 

(c) FRMM 

 

Figure 6: Finite element models for the benchmark load cases  
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Figure 7: Cohesive Zone Stress Distribution for DCB model at point of first element failure 
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(a) Minimum of two interface elements within cohesive zone at point of first element failure 

 

 

 

 

 

 

 

 

 

 

(b) Less than 2 elements within cohesive zone at point of first element failure 

 

Figure 8: DCB Load-Displacement Curves in relation to the number of interface elements within the 
numerical cohesive zone  
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Figure 9: Cohesive Zone Stress Distribution for 3ENF model at point of first element failure 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10: 3ENF Load-Displacement Curves for a range of element lengths 
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Figure 11: Cohesive Zone Stress Distribution for FRMM model at point of first element failure 

 

 

 

 

 

 

 

 

 

Figure 12: FRMM Load-Displacement Curves for a range of element lengths 
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Figure 13: Effect of material properties and depth on mode I cohesive zone length for the HTA6376/C 
benchmark DCB model 
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Figure 14: Effect of material properties and depth on mode II cohesive zone length for the HTA/6376C 
benchmark 3ENF model 
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Figure 15: Effect of material properties and depth on mode I cohesive zone length for a T300/977-2 
DCB model 
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(a) Fine mesh (0.125mm element length)  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(b) Coarse mesh (1mm element length)  

 

Figure 16: Effect of numerical interfacial strength variation on mode I DCB model (HTA/6376C) 
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(a) Fine mesh (0.25mm element length)  

 

 

 

 

 

 

 

 

 

 

 

 (b) Coarse mesh (2mm element length)  

 

Figure 17: Effect of numerical interfacial strength variation on mode II 3ENF model (HTA/6376C)  
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(a) Fine mesh (0.125mm element length)  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(b): Coarse mesh (1mm element length)  

 

Figure 18: Effect of numerical interfacial strength variation on FRMM model (HTA/6376C) 
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Table 1: Material Properties for HTA6376/C 

Laminate Properties Interfacial Properties 

E11 (MPa) 120,000 GIC (N/mm) 0.26 

E22  = E33 (MPa) 10,500 GIIC (N/mm) 1.002 

G12  = G13 (MPa) 5,250 σI,max  (MPa) 30 

G23 (GPa) 3,480 σII,max (MPa) 60 

ν12 = ν13 0.3 KI  (N/mm3) 1×105 

ν23 0.51 KII (N/mm3) 1×105 

 

Table 2: Material and geometric properties for T300/977-2 DCB model  

Laminate Properties Interfacial Properties  

E11 (MPa) 150,000 GIC (N/mm) 0.352 

E22  = E33 (MPa) 11,000 σI,max  (MPa) 60 

G12  = G13 (MPa) 6,000 GIIC (N/mm) 1.002 

G23 (MPa) 3,700 σII,max  (MPa) 60 

ν12 = ν13 0.3 KI  (N/mm3) 1×105 

ν23 0.51 KII (N/mm3) 1×105 

Geometric Properties 

X (mm) 150 h (mm) 1.98 

a0 (mm) 55 B (mm) 20 

 

( N.B. The poisson ratios (ν12,ν13,ν23), mode II interfacial properties (GIIC, σII,max, KII) and 

mode I interfacial stiffness (KI) shown in table 2 are identical to those applied for the 

HTA/6376C specimen. All other properties are consistent with those shown in reference 

[14] for a T300/977-2 mode I DCB specimen.) 


