
                          Nunez-Yanez, J. L., & Chouliaras, V. A. (2005). A Configurable Statistical
Lossless Compression Core Based on Variable Order Markov Modeling and
Arithmetic Coding. IEEE Transactions on Computers, 54(11), 1345 - 1359.
10.1109/TC.2005.171

Early version, also known as pre-print

Link to published version (if available):
10.1109/TC.2005.171

Link to publication record in Explore Bristol Research
PDF-document

University of Bristol - Explore Bristol Research
General rights

This document is made available in accordance with publisher policies. Please cite only the published
version using the reference above. Full terms of use are available:
http://www.bristol.ac.uk/pure/about/ebr-terms.html

Take down policy

Explore Bristol Research is a digital archive and the intention is that deposited content should not be
removed. However, if you believe that this version of the work breaches copyright law please contact
open-access@bristol.ac.uk and include the following information in your message:

• Your contact details
• Bibliographic details for the item, including a URL
• An outline of the nature of the complaint

On receipt of your message the Open Access Team will immediately investigate your claim, make an
initial judgement of the validity of the claim and, where appropriate, withdraw the item in question
from public view.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Explore Bristol Research

https://core.ac.uk/display/32602508?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1109/TC.2005.171
http://research-information.bristol.ac.uk/en/publications/a-configurable-statistical-lossless-compression-core-based-on-variable-order-markov-modeling-and-arithmetic-coding(1086e4b8-7106-450d-acb4-ff21d707012e).html
http://research-information.bristol.ac.uk/en/publications/a-configurable-statistical-lossless-compression-core-based-on-variable-order-markov-modeling-and-arithmetic-coding(1086e4b8-7106-450d-acb4-ff21d707012e).html


Abstract— This paper presents a practical realisation in hardware of the concepts of 

variable order Markov modelling using multi-symbol alphabets and arithmetic coding 

for lossless compression of universal data.  This type of statistical coding algorithms has 

long been regarded as being able to deliver very high compression ratios close to the 

information content of the source data. However, their high computational complexity 

has limited their practical application in embedded environments such as in mobile 

computing and wireless communications. In this work a hardware amenable algorithm 

named PPMH and based on these principles has been developed and its architecture and 

implementation detailed. This novel lossless compression core offers innovative solutions 

to the computational issues in both stages of modelling and coding and delivers high 

compression efficiency and throughput. The configurability features of the core allow 

efficient use of the embedded SRAM present in modern FPGA technologies where 

memory resources range from a few kilobits to several megabits per device family. The 

core has been targeted to the Altera Stratix FPGA family and performance, coding 

efficiency and complexity measured for different memory configurations.         

Index Terms— Markov modelling, statistical compression, lossless compression, 

arithmetic coding. 

I. INTRODUCTION 

The past 5 years have witnessed an explosion in wireless networking demand and capability 

mainly motivated by the huge success of handheld and mobile devices such as cellular phones 

Jose Luis Nunez-Yanez, Department of Electronic and Electrical Engineering, University of 
Bristol, BS8 1UB, UK, e_ mail:j.l.nunez-yanez@bristol.ac.uk,   

Vassilios Chouliaras, Department of Electronic and Electrical Engineering, University of 
Loughborough, LE11 1TU, UK, e_mail: v.a.chouliaras@lboro.ac.uk 

A Configurable Statistical Lossless Compression Core Based on Variable Order Markov 

Modelling and Arithmetic Coding 



and Personal Digital Assistants (PDA) [1]. Wireless networks deliver the power and freedom 

of mobility at the expense of lower bandwidth and reliability (packet loss) when compared to 

their wired counterparts. Lossy Data compression is already heavily utilized in voice and 

video signals and global standards exist such as MPEG4 [2] for video or G729 [3] for voice. 

These methods, because of their lossy nature, cannot be applied to general data  such as text,  

html content, database information or application data and binaries since exact reconstruction 

of these data types is mandatory after decompression.  Advanced Lossless data compression 

for this application area can reduce bandwidth requirements significantly and simultaneously 

deliver energy savings of great importance in mobile computing. Energy savings can be 

achieved as long as the energy cost of transmitting a block of data are higher than those 

associated with compressing it and transmitting the resulting compressed block.  This paper 

presents a practical realisation of a high-order Markov model and associated arithmetic coder 

in the form of a compression IP core able to deliver high throughputs and compression ratios 

superior to classical dictionary-based algorithms such as GZIP and WinZIP.  

II. BACKGROUND 

Current lossless data compression technology makes a distinction between dictionary-based 

and statistical-based algorithms [4]. Dictionary-based compression has been traditionally 

more popular in software and hardware due to its inherent simplicity. Examples of dictionary-

based compression implementations in software are the popular WinZIP or GZIP algorithms 

commonly used for archiving and distributing large amounts of data in desktop systems. Also, 

the hardware devices available from leading companies such as IBM [5], AHA [6] and HiFn 

[7] microelectronics use dictionary-based compression methods based on the original LZ77 

[8] and LZ78 [9] algorithms.  Statistical compression is not so popular, although it is 

recognised as able to offer superior compression ratios [10]. However, this has been only 

achieved with complex software implementations [11] that consume vast amounts of memory 



and have very low throughputs, in the range of thousands of CPU cycles per byte. This means 

that power-hungry, Pentium 4 class microprocessors running at GHz rates are needed to 

provide the computing power to run these advanced statistical algorithms in real time. This 

combination of complex software and complex microprocessor solution is unsuitable for 

battery-power wireless devices or embedded systems.  Few statistical hardware compressors 

have been reported in the literature. A particularly successful example is the IBM Q-Coder 

[12] device targeted to the compression of black and white fax images. This chip is based on a 

simple high-order (7th) fixed binary model since only two possible symbols are present in the 

input data source. It will therefore offer poor compression if it is used with data of unknown 

nature in an application domain such as wireless networking. The fixed-order model is viable 

with a binary alphabet because no escaping [4] can take place to lower orders since both 

possible symbols (black or white pixel) always have a probability higher than 0. Assigning a 

probability p to one of the symbols automatically assigns the rest 1-p to the other so a single 

count must be stored and manipulated. The binary alphabet considerably simplifies the 

algorithm and hardware design although it cannot efficiently extract the redundancy present in 

general data which is typically of a byte-oriented nature. This device achieves a throughput of 

64 Mbits/second implemented in the CMOS 5S (0.35 um) technology from IBM. The work 

conducted by the Taiwanese team leaded by Professor Jou has also investigated a similar 

concept of combining a fixed high-order binary model with an arithmetic coder [13]. The 

model order is increased from 7th  to 10th order and additional tuning steps are added to 

improve compression efficiency. Efforts at using a byte-based alphabet have been limited to  

0th order context-free models due to their complexity. The results shown by the Spanish team 

led by Prof. Bruguera [14] showed that the compression efficiency of this simple model 

cannot compete with dictionary-based compression. Similar results are presented by other 

researchers in the area [15,16]. Research performed by the New Zewland team led by 



professors Cleary and Witten [17] has shown the power of blending several model-orders 

using multi-symbol alphabets and arithmetic coding in the PPM (Prediction by Partial 

Matching) class of lossless compression algorithms.     

III. ALGORITHM OVERVIEW 

Statistical coding is based on performing predictions on symbol distribution and then coding 

the most probable symbols with fewer bits. Variable order Markov modelling exploits the fact 

that a prediction can be made with much more certainty by observing the symbols that 

preceded the current symbol. The symbols used for the prediction are called context while 

their number is called model order. The proposed compression system identifies three 

different processing stages. The first processing stage is context modelling followed by 

probability estimation and finally arithmetic coding. The first two stages correspond to the 

variable-order Markov Model while the arithmetic coding module obtains a compressed bit 

stream using the probability data provided by the model. Fig. 1 shows a detailed data 

flowchart of the different stages involved in the proposed data compression process that will 

be described over the following sections.  Our novel hardware amenable compression 

algorithm has been named PPMH (Prediction by Partial Matching in Hardware).  

A. Context modelling overview 

The upper section of Fig. 1 shows the main steps associated with context modelling in the 

PPMH algorithm. During context modelling a finite number of symbols (model order) that 

preceded the current symbol and constitute its context are searched in a context tree built 

dynamically as more data is seen. The first symbol to be searched is the symbol that preceded 

the current symbol and corresponds to order 1. Order 0 is located at the root of the context 

tree and no searching is required.  

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Three different outcomes are possible from context searching:  

1. Context symbol found. 

2. Context symbol not found but free context entry found.  

3. Context symbol not found and free context entry not found. 

Outcome 1 means that the search operation was successful and the process is repeated for the 

next higher order until the maximum model order is reached or outcomes 2 or 3 are reached. 

Fig 1. Detailed Flow Chart of Statistical Compression Algorithm 

if more
symbols ?

Read
Symbol

Code Escape
with Model

Order Model
Order--

Model Order = 0
Highest Order = -1

if Model Order <=
Max Order ?

Check
Context

If Context
Found?

Model Order
++

highest Order
++

yes

Model Order =
Highest Order

if Model
Order>0 ?

Code Update
Symbol with
Model Order

if Success ?

Code Update
Escape with
Model Order

Model Order --

Code Update
Symbol with

Order 0

if Success ?

Code Symbol
with Order -1

if Model
Order>=0 ?

Code
Termination
Symbol with

Order -1

End

Start

No

yes

No

yes
No

No

yes

yes

No

yes

No
No

yes

Context
Modelling

Probability
Estimation and

Arithmetic
Coding

Coding
Termination



Outcome 2 means that a new context symbol can be inserted effectively increasing the context 

tree size. Each context tree node contains a pointer to the context area that stores all the 

probability data plus any required control bits. To speed up the context modelling stage the 

maximum number of nodes in the context tree and the number of available context areas are 

not equal. There are 25 % more entries in the context tree than contexts areas physically 

present (memory allocated) in the algorithm. This means that outcome 2 could be reached but 

no context area could be available to be assigned to the context tree node. This event will also 

result in a condition equivalent to outcome 3. Outcome 3 will be reached when the search 

function is unable to reach outcome 1 or outcome 2 in a predetermined number of search 

cycles. The number of search cycles is limited to reduce the cycle cost of context modelling 

and avoid infinite search loops. Once context modelling of a particular symbol completes the 

next phase of probability estimation starts.  

B. Probability estimation overview 

Probability estimation extracts the context area indices from the contexts nodes maintained by 

the context modeller and uses them as pointers to the memory area holding the probability 

information. The probability estimator starts with the highest model order reached during 

context modelling and tries to obtain a valid prediction for the current symbol with that 

context.  Success is achieved as long as the current symbol has a probability value larger than 

0 in that particular context. Otherwise an escape event is coded and the algorithm tries to use 

the next lower order until model order 0 is reached. Model order 0 is also allowed to fail and 

generate an escape if the symbol has not been seen before. In this case order –1 is used where 

all the symbols get a probability larger than 0 and equal to 1/alphabet_size. The probabilities 

in order –1 are fixed and probability estimation can never fail. Immediately after probability 

estimation the algorithm increases the prediction value of the current symbol over all the 

contexts that have been used except for order -1.  The objective of the algorithm is to use 



always the highest possible order where probabilities tend to be more skewed and generate 

higher compression ratios. Lower orders typically accommodate more symbols and distribute 

the available range over all of them.  The probability data obtained during this stage is finally 

forwarded to the arithmetic coder that uses it to generate an optimal compressed bit stream.  

C. Arithmetic Coding 

The final stage of the coding process is arithmetic coding. The arithmetic coder is based on a 

software algorithm known as the Z-coder and developed by AT&T labs [18] as a 

generalization of the  Golomb/Rice coder for lossless coding of bilevel images. Golomb/Rice 

coding is used to code a run of r consecutive occurrences of  a most probable symbol (MPS) 

followed by a single occurrence of a least probable symbol (LPS), using a parameter m to 

control how many MPS symbols fit in one bit of code and also how many bits of code are 

required to code a LPS symbol. The code has two components: the first component is r/m 1’s, 

followed by a single 0, while the second component is r mod m, coded as an ordinary binary 

number with log2(m) bits. Although easy to implement, the limitation of Golomb codes is that 

the chosen parameter m is only good for a single probability distribution but a general 

compression system has to be able to deal with arbitrary sequences of events with different 

probabilities. The Z-coder aims to solve this limitation. Z-coding is the same as Golomb 

coding with the advantage that the parameter m can be changed for each symbol being coded. 

The extra complexity of the algorithm is small and more details can be found in the original 

paper [18]. Our work has focused on maintaining the simplicity of the Z-coding algorithm 

while increasing its suitability for hardware implementation. The resulting MZ-coder balances 

the complexity of coding the MPS and LPS symbols, simplifies the precision of the arithmetic 

and handles special hardware borrow conditions while maintaining coding efficiency and 

achieving high performance. 



IV. CODING TERMINATION 

 A particular case that deserves special attention is how to indicate to the decoder that all the 

symbols have been decoded and the process must stop. A simple solution will be to insert a 

header in the compressed file that will indicate the total number of symbols that must be 

recovered after decompression and let the decoder use this value to control the reconstruction 

process. The problem is that this assumes that the coder either knows how many symbols are 

in the uncompressed data block before compressed data can be output or buffering of the 

whole compressed data block must take place before transmission can start. Both alternatives 

increase latency and hardware complexity.  The solution we propose is the insertion of a 

special bit sequence at the end of the compressed bit stream so that it can be identified as a 

flag signalling the decoder to stop decoding bits. Adding a new symbol to the alphabet for this 

purpose increases complexity and wastes range (degrading compression) since this special 

symbol is used only once per data block. A more efficient solution adopted in this work is to 

use the features of the variable-order Markov model to generate a bit sequence that cannot 

take place during normal coding operations and can be easily detected by the decoder. An 

explanation of the developed mechanism follows. Each time order 0 is used by a particular 

symbol that symbol is chosen as the current virtual termination symbol. This means that the 

termination symbol is not constant but changes as different symbols make use of order 0. The 

probability of the termination symbol in order 0 is guaranteed to be larger than 0 since the 

update sequence increases it after the symbol is coded. Therefore, if the algorithm codes this 

termination symbol using a special sequence that escapes through all the orders including 

order 0 and finally codes it in order –1 an abnormal output is generated. The decoder can 

detect this abnormal output and interpret it as an end of block flag. The reason that this 

mechanism works is that if the termination symbol is being coded as a normal symbol (not to 

indicated end of block) it would have been stopped at least by order 0 and order –1 would 



have never been reached. This mechanism is illustrated in Fig. 1 when the if more symbols 

decision takes the no branch.  

V. CORE OVERVIEW. 

The compression core that implements the PPMH algorithm described in the previous also 

sections consists of 3 main modules: context modelling, probability estimation and arithmetic 

coding. The main characteristic that enables the efficient mapping of all the algorithm features 

into hardware gates is the decomposition of the coding of each symbol into a sequence of 

binary coding events. This means that the core operates logically at the symbol granularity 

level but physically at the bit level. Consequently, the hardware only needs to support 

operations at the bit level although compression is unaffected by maintaining a model 

operating with a multi-symbol alphabet.  The first implementation of the PPMH compression 

algorithm uses a byte-based alphabet (256 different symbols) and has been named Byacom-1 

[25]. The architectural, performance and complexity details of Byacom-1 are described over 

the following sections. 

VI. STATISTICAL MODELLING ARCHITECTURE 

A. Context Modelling 

Fig. 2 shows a simplified diagram of the context modeller.  The context FIFO stores the 

symbols that preceded the current symbol and form its context. The FIFO width is 1 byte to 

match the width of the symbol while its length is configurable and depends on the maximum 

model order (Fig. 2 assumes model order 3 for illustration purposes). The hardware 

implementation of the context modeller is based on a hashing tree that enables fast search 

operations with low complexity.  The tree is stored in standard SRAM memory and maintains 

its logical structure using a pointer mechanism.  

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The hashing shift and the XOR gate in Fig. 2 are used to generate an index to be used to 

address the SRAM memory that stores the context tree. The tree memory is divided into three 

sections. Section 1 stores the context area memory address where the probability data for that 

particular tree node can be found. The other two sections implement the pointer mechanism 

that maintains the logical structure of the tree. Section 2 stores the context area index of the 

tree node parent of the current node in the tree structure. Section 3 stores the context symbol 

stored at the current tree node.  Table 1 illustrates the contents of the 3 sections of the tree 

Fig 2. Context Modeller Architecture 



memory after the sequence “aaacaaaccab” has been processed. The corresponding logical 

tree structure is shown in Fig. 3.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1. Context Tree Memory Organization 

Fig 3. Context Tree Logical Structure 

Memory 
Address/index 

Context Area Prefix Area Symbol Order 

0 1 0 a 1 
1     
2     
3     
4 2 1 a 2 
5     
6 4 0 c 1 
7 3 2 a 3 
8     
9 6 2 c 3 
10 5 1 c 2 
11 10 5 c 3 
12     
13 7 3 c 4 
14 8 4 a 2 
15 9 4 c 2 
16     

 



A match is valid when the context symbol and the prefix area are equal to the current symbol 

and the context area of the previous found context symbol. Successful matches result in the 

output context area FIFOs being populated with context area information and the maximum 

active context model order being incremented. An unsuccessful match results in the process 

being repeated with a new index obtained by adding a small increment to the previous index. 

The number of cycles the process repeats after an unsuccessful matched is limited to 10. This 

number was chosen after extensive simulation.  The count is reset at the start of a new search 

operation. New search operations are generated with different context symbols until the 

maximum model order is reached. However, if the maximum count of 10 is reached or a free 

location is found the process is immediately stopped and the next hardware stage (probability 

estimator) is activated. This means that the search for order m + 1 does not take place if order 

m is not active. Finding a free location is equivalent to reaching a leaf in the tree depicted in 

Fig. 3. The leaf will then be extended with a new child as long as model order is lower than 

the maximum order and there are context areas available. The SRAM area free memory and 

the busy area generator shown in Fig. 2 enable a single-cycle reset state without having to 

reset the table memory with a multi-cycle table walk operation.  A table walk would have had 

a very negative effect on throughput when dealing with small blocks since the number of 

cycles needed to reset the table could typically be larger than the number of cycles needed to 

compress the block. A single valid register,   named line free in Fig. 2, is reset after 

processing each block and this automatically invalidates all the locations in the table memory. 

This register has a similar function to the register holding the valid bits in a direct-mapped 

cache. Each of the register bits is shared by several table locations and in order to distinguish 

which context tree nodes are busy and which context tree nodes are free the area free memory 

contains 1 bit per context tree node signalling a free or busy node. If the valid register bit is 

set to zero all the tree nodes associated with that valid register bit are considered invalid. The 



found context areas are stored in two equivalent buffers. When the first buffer is being filled 

with context areas by the context modeller, the second buffer is being emptied by the 

probability estimator. Once both stages have completed their operation the buffers 

functionality is reversed and the process restarted. This double buffering mechanism increases 

the throughput of the system avoiding idle stages. 

B. Probability Estimator 

The probability estimator uses a balanced binary tree with 256 leafs corresponding to each of 

the symbols in the alphabet.  The context area obtained from the context modeller identifies a 

memory area where the probability data of the symbols seen in that context is stored. An 

additional symbol is the escape symbol used to blend different model orders when no valid 

prediction is possible because the symbol is new in the current context. Fig. 4 illustrates the 

binary tree evolution for an alphabet of only 4 symbols plus the escape.  Initially, all the range 

is assigned to the escape but as new symbols are received the values stored in each of the tree 

nodes change to reflect the new distribution.  The depth of the tree  in this example is 

(log2(alphabet_size) + 1) = 3. A full alphabet of 256 symbols will have a tree depth of 9. The 

important point to notice is that to fully code a symbol using this binary tree is enough with 

coding the binary decisions (left or right) taken place at each level of the tree when the tree is 

transversed from root to leaf. This procedure means that after 9 binary decisions a symbol is 

fully coded. There are two main advantages obtained from using this binary tree. Firstly, the 

arithmetic coding stage does not need to be based on a complex multi-alphabet arithmetic 

coder but a simple and fast binary arithmetic coder would suffice.  Secondly, the maintenance 

of the frequency counts is achieved with a single update operation per node visited [19]. Fig. 

4 shows how the frequency counts stored in each node are updated to reflect the new 

probability distribution each time a new symbol is coded. The associated probability values 

for each symbol are also shown in Fig. 4. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Probability and frequency counts are related with equation (1): 

 (1) 

 

 Where P(symboli) and F(symboli) are the probability and frequency values respectively. 

Traditionally, the frequency counts in a statistical algorithm have to be maintained in 

cumulative form [17] so that each symbol has a corresponding fully-defined range that 

identifies it without any ambiguity. The problem with maintaining frequency counts in 

cumulative form is that updating counts at the bottom of the range affects the counts for all 

the symbols in the alphabet and a multi-cycle update operation is required. Software 

Fig 4. Probability Estimator Tree Evolution 

∑
=

= 255

0

)(

)(
)(

j

j

i
i

symbolF

symbolF
symbolP



implementations typically locate more common symbols at the top of the range so the update 

operation affects a few frequency values in most of the cases. A direct hardware 

implementation of this technique would generate a variable cycle count with a worst case of 

256 cycles to maintain the frequency data. The binary tree has the property that one update 

operation per tree level is sufficient to maintain the range values in the correct range [19].  

Therefore, any possible symbol needs a constant cycle count of 10 to transverse the tree 

generating coding events and updating all the frequency data simultaneously. The escape 

symbol exists at the top of the tree and consequently only 2 cycles are needed to coded it. The 

binary tree architecture enables the high compression ratios possible with multi-symbol 

alphabets (a better match of data granularity) and simultaneously achieves low hardware 

complexity which also helps to achieve a higher clock frequency.  The binary tree is projected 

first right to obtain 9 processing elements and then down to reduce it to a single processing 

element. This single processing element walks through the tree from root to leaf forwarding 

two frequency count values and a binary decision to the binary arithmetic coder. The two 

frequency count values ( cum0  and cum1) divide the range into a left probability and a right 

probability.  The binary arithmetic coder uses this information to perform a series of 

arithmetic operations that modify its internal state and produce a compressed bit stream.  The 

whole process is numerically efficient and using 9 coding events instead of 1 coding event per 

input symbol produces no significant redundancy.  Fig. 5 illustrates the architecture of the 

processing element that implements the binary tree node assuming a context population of 

1024. The total value memory contains the total frequency count for a particular context 

while the probability storage memory contains all the probability data associated with each of 

the nodes in the tree.  The low frequency value for each binary decision is always 0. The 

frequency value stored in each tree node defines the middle value (cum0) while the top value 

(cum1) is obtained from the previous tree level.  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The control logic generates a new top for the next lower tree level with the current middle 

value if the binary decision is left or the current top value minus the middle value if the 

decision is right. This new top is stored in the top register to be used in the next cycle. The top 

value is the total count obtained from the total value memory only when the current tree node 

is the root node. Model adaptation takes place every cycle to increase the probability values of 

the symbols being propagated down the tree. The increment rate depends on the active order. 

In general, higher order models increment faster since they contain fewer different symbols. 

This variable increment rate improves compression. 

Fig 5. Probability Estimator Tree Node Architecture 



1) Scaling and Resetting 

The frequency counts stored in the probability estimator memories need to be initialised to a 

known value before each data block is processed. This is similar to the case of the context 

modeller memories discussed in previous sections. In principle, this could mean that all the 

frequency memory locations need to be accessed in order to reset them to a known value. 

This, however, will degrade performance considerably specially when compressing small 

blocks of a few hundred bytes. As there are 256 nodes per context tree and a typical 

implementation could contain 1024 contexts a total of 262,144 locations would need to be 

reset.  To enable single cycle resetting we use the  busy/free bits from the context modeller 

stage and propagate them down the tree simultaneously to the coding of the symbol itself. 

This means that each tree node needs to store not only its frequency count value but also two 

additional control bits indicating if the left sub-tree or the right sub-tree have a reset operation 

pending. A similar strategy can be used to scale the probability data. Scaling is used when the 

total count value exceeds a maximum count and can potentially overflow the allocated storage 

space. In the Byacom-1 implementation 10 bits are used to store each of the tree frequency 

counts so the count cannot exceed the value of 1024 at any time. It is possible to simply 

freeze model adaptation once the maximum count value is reached but this deteriorates 

compression efficiency. Scaling could be achieved simply by resetting the model to its initial 

state but this will affect compression since the context will loose all the history information 

after the scale operation.  A better solution is to scale by dividing all the counts by 2 and this 

can be readily accomplished in hardware by a simple shift operation. The problem is that if a 

scale event is required the model must be stopped and a state machine activated to visit and 

scale all the nodes in the context tree affected. This solution degrades throughput and 

decreases the performance of the core. The preferred solution uses the same approach as 

resetting and adds two control bits to each of the tree nodes to indicate if a scale operation is 



pending on the left or right sub-trees. The scale operation propagates down and updates the 

frequency count value present in the tree node before any other operation is performed. These 

two solutions increase the storage requirements from 10 bits to 14 bits per node location but 

they guarantee high performance and limit worst-case latency to a small value independent of 

block size and scale frequency.   

2) Coding speculation 

Due to the nature of the binary tree, coding events take place speculatively, prior to success of 

the coding operation. A coding operation will fail when the symbol probability in the active 

context is 0, in which case an escape symbol must be coded and the next lower order used. 

The escape symbol always has a probability larger than 0 and the final order (order –1) 

always assigns a probability value larger than 0 to all the possible input symbols, so that the 

coding operation can never fail. The decomposition of the coding operation into a sequence of 

9 binary coding events means that a few of these binary coding operations could be completed 

successfully before one of them fails because one of the sub-tree paths that the symbol needs 

to follow (left or right) has a probability of 0. The arithmetic coder would have coded a 

sequence of binary decisions that needs to be undone before the escape symbol can be coded 

and the next lower order activated. In order to achieve this, all the register state in the 

arithmetic coder has an equivalent shadow copy that only gets updated once the symbol has 

completed the whole coding sequence successfully. If the coding sequence fails the values 

stored in the shadow registers are used to update the visible registers and the state of the 

arithmetic coder recovers to a known correct state. Finally, it is possible that due to coding 

speculation a few bits have been output by the arithmetic coder to the output buffers that need 

to be removed from the coded bit stream. The output buffer uses a double counting 

mechanism that keeps track of this situation so a similar update/commit mechanism can be 

used to remove coded bits from the output buffer. This process decreases latency and 



buffering requirements compared to waiting for a probability estimation operation to be 

successful before committing the frequency values   to the arithmetic coder.  

VII. MODELLING PERFORMANCE ANALYSIS 

This section analyses the effects of maximum model order and context area population. These 

are 2 key configuration parameters in the Byacom-1 core and they have a major effect on 

compression, complexity and throughput so a good understanding on how they relate to each 

other will help in the selection of the right parameters for a particular implementation. . The 

data set selected to perform this experiments is the standard Canterbury Corpus [20]. The Y 

axis shows compression ratio as a ratio of output to input bits so the lower the figure the better 

the quality of results. The block size in the X axis defines the amount of data in bytes that is 

compressed independently of other data present in the file or channel. Block-based 

compression is useful in communication channels where packets with a few hundred bytes are 

compressed independently to avoid propagating errors between packets. Shorter blocks tend 

to compress worse since less data is available to build an accurate model so it is important to 

evaluate the effects of block size in compression ratios. Figs. 6 to 9 show the compression 

gain achieved over model order 0 by model orders 1, 2, 3 and 4 varying the context 

population. The smallest configuration uses a total of 64 contexts and the largest uses 8192 

contexts. Model order 2 is the best option if fewer than 1024 contexts are available while 

model order 3 is preferred if  1024 contexts or more are available. The performance of context 

configurations 1024, 4096 and 8192 is very similar when the block size is in the range of 4 

Kbytes or smaller and the larger configurations only have a positive impact when larger 

blocks in the order of hundred of Kilobytes are compressed.  Model order 3 is the best 

performer with up to 90% better compression over model order 0 for file-based compression.  

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 6. Model Order 1 Compression Analysis 

Fig 8. Model Order 3 Compression Analysis 

Fig 7. Model Order 2 Compression Analysis 



 

 

 

 

 

 

 

 

 

 

Model order 4 does not improve compression for this particular data mix. We have observed a 

compression gain using order 4 when files larger than 1 Megabyte are compressed as a single 

block. The average file size in the Canterbury corpus is around 256 Kbytes and this could 

explain why larger model orders do not improve compression. The best compression ratio 

achieved for the Canterbury corpus is 0.285 (model order 3, file-based compression and 

context population of 8192) that means that 100 Megabytes of original data would be 

compressed to 28.5 Megabytes.    

VIII. ARITHMETIC CODING 

Fig. 10 shows the internal organization of the multiplication-free arithmetic coding module. A 

total of 6 pipeline stages are identified to improve the clock ratio of the design. The lack of a 

renormalization loop in the MZ algorithm means that one decision bit is processed per clock 

cycle. The functionality of each of the pipeline stages is briefly described over the following 

sections due to space limitations. More details on the AC engine can be obtained in [21]. 

1)LPS table 512x7. The Least-Probable-Symbol table transforms the 2 frequency count values 

obtained from the probability estimator module into a single truncated probability that  

Fig 9. Model Order 4 Compression Analysis 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

approximates the results of dividing both frequency values. This table can be implemented 

using a standard ROM memory but since many of its values are set to 0 and others are 

repeated across table entries logic synthesis of the table results in a combinatorial logic block 

with a small gate count more efficient that a full ROM memory with 512x7 bits.  

2) MZ coder arithmetic. The MZ arithmetic uses the range and subend coder state values and 

the LPS value to generate the codewords. The renormalization is done in parallel for both 

range and subend and in the same pipeline cycle as the rest of the MZ arithmetic.  

Fig 10. Arithmetic Coder Architecture 



3) Code buffer. The code buffer stage is required to control possible borrow bits originating in 

the previous stage that could affect the value of the bits contained in the code buffer.  

4) Code generator. The code generator takes the bits produced by the code buffer ranging 

from 0 up to 7 and the zero run count to build a code of up to 14 bits. The zero run register 

counts the number of consecutive 0 bits in the input. These bits are the equivalent of the bits 

to follow variable used by software arithmetic coders. 

5) Code packer. The variable number of bits produced by the code generator are finally 

pipelined to the code packer. The functionality of the code packer is to pack the variable 

length codewords into fixed-length 8-bit codewords ready to be output.   

IX. PERFORMANCE COMPARISON 

This section analyses the performance of the core in terms of compression ratio and 

throughput and compares it with other state of the art universal data compression algorithms 

implemented in both hardware and software.  

A. Compression. The core can be configured at compile time with different values of context 

population trading complexity for compression efficiency. Approximately, 3.6 Kbits of 

memory are required per context including the memory used in the context modeller and the 

probability estimator. The maximum model order is a parameter that can be configured at run-

time to a value ranging from order 0 (empty context) to order 4 (4 symbols are used to 

perform a prediction). This parameter basically defines the maximum depth that the context 

modeller tree is allowed to reach. The results shown in Figs. 11 and 12 are based on a 

configuration with 8192 contexts and model order 3 that were determined to be the best 

values for the PPMH algorithm as discussed in section 7.  Fig. 11 compares the compression 

efficiency of the PPMH algorithm with the well known software-based algorithms.  We have 

selected the popular open source Lempel-Ziv implementation known as GZIP and equivalent 



to other commercial algorithms such as PKZIP and WinZIP as a fast and efficient dictionary-

based algorithm.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

Two statistical compressors have also been selected for this work: the PPMZ [11] and PPMC 

[17] algorithms. The PPMZ algorithm is a very sophisticated implementation that uses local 

order estimation to select the best possible model order from a maximum of 8. PPMC uses a 

similar modelling strategy to PPMH although there are major differences on model 

implementation and in the arithmetic coding algorithm itself (range coder [22] for PPMC and 

MZ coder for PPMH). Nevertheless, the performance of PPMC and PPMH is very similar 

Fig 11. Software Compression Performance Comparison 

Fig 12. Hardware Compression Performance Comparison 
 



with an slightly advantage for the PPMH algorithm mainly due to a more sophisticated 

arithmetic coding algorithm and some implementation details such as the adjustable 

increment mechanism so model orders adapt at different speeds. PPMZ does not perform 

particularly well for small blocks of fewer than 1024  bytes since its complex data structures 

need more data to operate effectively. Once blocks larger than 1024 bytes are used PPMZ 

outperforms the rest of the algorithms.  PPMH has the best compression ratios for small 

blocks of around 256 bytes and is the second best performer after PPMZ for the rest of the 

block sizes. Fig. 12 compares PPMH with other hardware-based lossless compression 

algorithms. The three algorithms selected are popular dictionary-based algorithms used in 

commercial applications  such as routers and tape drives. LZS and ALDC are both based on 

the LZ-77 [8] algorithm while DCLZ is based on the LZ-78 [9] algorithm. PPMH compresses 

better than these algorithms for all block sizes with the difference being more noticeable for 

large block sizes where more data is available to improve the accuracy of the predictions done 

by PPMH.  

B. Throughput. One of the main features of PPMH is the decomposition of the prediction and 

coding of a symbol (byte) into a sequence of binary decisions that take place as the symbol 

moves a long a binary tree with all the symbols plus the escape symbol occupying the leafs of 

such tree.  This architecture enables an efficient circuit with a reduced gate count and 

consequently high clock frequencies. The disadvantage is that throughput is limited in the best 

scenario (no overheads) to 1 bit per clock cycle unless multiple cores are used to process 

multiple symbols in parallel. This kind of parallelism typically involves duplicating the data 

path while the storage area and consequently the probability distributions are shared among 

each of the functional units. This paper focuses on the single data path implementation 

leaving multiprocessing capable architectures for future research. Fig. 13 shows the 



throughput of the Byacom-1 implementation of the PPMH algorithm in terms of clock cycles 

per bit for different block sizes.   

 

 

 

 

 

 

 

Throughput improves  with block size since the escaping mechanism is used less often as the 

high orders start making a higher proportion of valid predictions. The small blocks do not 

provide enough data for the higher order models to make a valid prediction so multiple tree 

transversing is needed for each byte of input data.  Effects on compression efficiency are 

limited by the fact that a context just created will automatically assign all the range to the 

escape symbol producing no redundant output bits when coding a symbol. On the other hand 

throughput will be affected since the minimal condition of 10 cycles per bit (9 memory 

accesses to synchronous RAM are needed) will increase to at least 22 cycles (2 cycles to code 

the escape plus extra 10 cycles to code the symbol in the next lower order). If the symbol will 

again fail to be coded more cycles will be used.  An implementation with 1024 contexts and 

model order 3 delivers an average  throughput of 1.4 cycles per bit compressing the whole file 

as a single block. We have analysed the performance that the software algorithms PPMZ, 

PPMC and GZIP could achieved on a typical single-issue in-order embedded processor. This 

Fig 13. Byacom-1 Throughput Analysis 



work is based on the cycle accurate SimpleScalar [23] processor simulation toolset that 

models a MIPS-like microprocessor. We have configured the simulator with two 16-Kbyte 4-

way set-associative level-1 cache for instructions and data and no level 2 caches. After 

compiling the software using the SimpleScalar GCC compiler with optimisations enabled  we 

have written a script to automatically process all the data present in the  Canterbury corpus 

and collect results including dynamic instruction count, cycle count and memory allocated. 

Fig. 14  shows the results obtained for the three software algorithms using a logarithmic scale 

in the Y axis to measure average counts.  

 

 

 

 

 

 

The logarithmic scale enables the highly different counts to be represented in a single graph. 

The fastest algorithm is the GZIP with an average cycle count of 450 cycles per byte. PPMC 

increases this value to 2,600 cycles per byte. The computational complexity of PPMZ with 

more than 48,000 cycles per byte is overwhelming and clearly out of the reach in an 

embedded application. It is also apparent that better compression ratios imply an exponential 

increase on computational complexity with relatively small gains in terms of compression. 

Similar conclusions can be reached in the case of memory requirements which range between 

466 Kbytes for the GZIP algorithm to 17,580 Kbytes for the PPMZ algorithm. It is also 

Fig 14. Software Throughput Analysis 



important to notice that these results have been obtained compressing each of the files in the 

Canterbury Corpus as a whole and then averaging by the number of files.  They correspond to 

the right point of the X axis of Fig. 13. If the files were blocked as in the rest of the X axis 

points of Fig. 13 the cycle count per compressed byte will increase due to the overheads of 

algorithm initialisation that would be needed once for each of the individual blocks. 

Comparing the value of 11.2 cycles per byte (1.4 cycles per bit) in the Byacom-1 hardware 

implementation the complexity reduction is considerable specially when compared with the 

sophisticated PPMC and PPMZ statistical coders. Although, it is expected that more 

sophisticated embedded processors exploiting microarchitectural features such as out-of-order 

execution and superscalar execution will deliver a performance increase, compression is 

fundamentally a sequential task (bytes are compressed sequentially so each byte can use the 

previous bytes as history information) where advanced microprocessor features such as SIMD 

computing or multithreading have a limited, if any, role to play.  The throughput of the 

dictionary-based hardware implementations of Fig. 12 is clearly higher since they processed 1 

byte per cycle with the help of CAM dictionaries that enable single cycle search operations.  

They deliver however  significantly inferior compression performance and also CAM 

dictionaries tend to consume a lot of energy which is a disadvantage for battery-powered 

wireless devices that constitute the primary focus of this work.   

X. IMPLEMENTATION 

The compression core that includes the context modelling, probability estimator and 

arithmetic coder modules has been implemented in an state-of-the-art Altera 0.13 µm Stratix 

FPGA technology. Stratix devices are particularly well suited for this memory intensive 

algorithm thanks to their Trimatrix [24] memory architecture where embedded memory is 

available in three different sizes (512 bits, 4 Kbits and 512 Kbits). The larger 512 Kbits 

memory blocks are very useful to store the probability data associated with each of the 



contexts in the PPMH model. The core has been configured with 64, 128, 256, 512 and 1024 

contexts. The complexity in terms of FPGA logic cells and memory requirements are given in 

Figs. 15 and 16 respectively. The X axis shows that the main components of the coder data 

path including the input and output buffers and register file used to write commands. The 

component that consumes most logic resources is the arithmetic coding engine with 1,400 

cells. The overall figure is around 3,000 logic cells for the compression data path. This figure 

increases slightly with the increase in memory cells but remains overall largely invariant. 

Most of the complexity concentrates in the memory blocks needed to store the data associated 

with the hashing tree in the context modeller and the probability data in the probability 

estimator. Fig. 16 uses a logarithmic scale along the Y axis to measure the memory in bits 

used by each of the configurations. The requirements vary from 237,760 bits for the 64 

context configuration to 3,723,424 bits for the 1024 context configuration increasing linearly 

with the context count.  

 

 

 

 

 

 

 

 

 

 

 

 

Fig 15. Byacom-1 Memory Requirements 



 

 

 

 

 

 

 

 

 

 

 

 

The device used in this work is the EP1S80F1020C5 with total memory resources of 7 Mbits 

so the larger configuration uses around 50% of the memory available. The clock rate for all 

the configurations remains almost constant at 70 MHz (69.7 MHz for the largest configuration 

to 71 MHz for the smallest configuration). This clock rate is remarkably constant despite the 

increase in used memory blocks that could complicate routing and degrade performance. We 

have observed that the Trimatrix memory is an enabling microarchitectural feature for this 

memory intensive core. The large memory blocks enable the packing of the logic and memory 

in a reduced area. Experiments conducted using another state-of-the-art FPGA family that 

only includes a single type of embedded memory block of 18 Kbits showed a significant 

performance degradation as context population increases. The reason is that the memory 

blocks are spread over the silicon die and long wires are needed to route logic and memory 

reducing the achievable clock frequency. 

Fig 16. Byacom-1 Logic Cell Requirements 



XI. CONCLUSIONS 

This paper has presented the hardware-amenable PPMH statistical algorithm for lossless 

compression of general data. The hardware architecture and implementation of the 

compression data path have also been developed. The decompression data path is currently 

under development and will be presented in future work. The IP core has been targeted to a 

high-density FPGA family where a clock ratio of 70 MHz has been achieved resulting in a 

throughput of 50 Mbits/second. An analysis of the compression performance has shown to be 

competitive with the best software-based statistical algorithms and superior to current 

dictionary-based methods. Throughput is 2 orders of magnitude higher than software-based 

statistical algorithms running on a typical embedded microprocessor. The core is implemented 

using a low logic cell count but it is memory intensive with several megabits of memory 

needed for optimal performance on large block sizes. This technology could be very 

beneficial in a reconfigurable system where memory can be shared between different 

processing functions. The main memory blocks used by the probability estimator are standard 

single-port SRAM memories and modern SoCs can routinely accommodate several megabits 

of them. The selected FPGA technology offers enough embedded memory for a reasonably 

large 1024 context implementation. Future FPGAs will enable larger context population 

configurations. The IP has been designed parametrically so configurations can be generated at 

compile-time by changing some constants in the RTL description. Future work includes 

research into multiprocessing variants and the extension of the parametric model to be able to 

target efficiently 2-dimensional data such as that presented in medical or space imagery. 

Future work will also look into adding preprocessing stages based on predictive coding for 

image data. We will also like to investigate the configuration of different alphabet sizes 

extending the current byte-based alphabets to multiple-bit alphabets for lossless compression 



of scientific data obtained from high-resolution analogue-to-digital converters. Executables 

and information can be obtained at www.byacom.co.uk. 

1. G. Lawton, ‘New Technologies Place Video in Your Hand’, IEEE Computer, Vol. 34, No. 

4, pp. 14-17, 2001. 

2. S.Vassiliadis, G. Kuzmanov, S. Wong, ‘MPEG-4 and the New Multimedia Architectural 

Challenges’, Proc. 15th International Conference on Systems for Automation of 

Engieering and Research (SAER-2001), pp. 24-31, Bulgaria, 2001. 

3. R. V. Cox, P. Kroon, ‘Low Bit Rate Speech Coders for Multimedia Communications’, 

IEEE Communications Magazine, Vol. 34, No. 12, pp. 34-41, 1996. 

4. M. Nelson, J. Gailly, ‘The Data Compression Book’, 2nd edition, M&T Books, New 

York, NY 1995. 

5. J.M.Cheng, L.M.Duyanovich, ‘Fast and Highly Reliable IBMLZ1 Compression Chip and 

Algorithm for Storage’,Hot Chips VII Symposium, August 14-15, pp. 155-165, 1995. 

6. ‘AHA3521 40 Mbytes/s ALDC Data Compression Coprocessor IC’, Product Brief, 

Advanced Hardware Architectures Inc, 2635 Hopkins Court, Pullman, WA, 1997. 

7. ‘9600 Data Compression Processor’, Data Sheet, Hi/fn Inc, 750 University Avenue, Los 

Gatos, CA, 1999. 

8. J.Ziv,  A.Lempel, ‘ A Universal Algorithm  for Sequential Data Compression’ IEEE 

Trans. Inf. Theory, Vol. IT-23, pp. 337-343, 1977. 

9. J. Ziv, A. Lempel, ‘Compression of Individual Sequences Via Variable Rate Coding’, 

IEEE Transactions on Information Theory, Vol. IT-24, pp. 530-536, 1976. 

10. A.Moffat, N.Sharman, I.Witten, T.Bell, ‘An Empirical Evaluation of Coding Methods for 

Multi-symbol Alphabets’, Information Processing & Management, Vol. 30, No. 6, pp. 

791-804, 1994. 

11. C. Bloom, ‘Solving the Problems of Context Modelling’,  

http://www.cbloom.com/papers/index.html, 1998. 

12. M. J. Slattery, J. L. Mitchell, ‘The Qx-Coder’, IBM Journal of Research and 

Development, Vol. 42, No. 6, pp. 767-784, 1998. 

13. S..Kuang, J. Jou, Y. Chen, ‘Dynamic pipeline design of an adaptive binary arithmetic 

coder’, IEEE Trans. on Circuits and Systems-II: Analog and Digital Signal Processing, 

Vol. 48, No. 6, pp. 813 –825, Sep 2001. 



14. M. Boo, J.D. Bruguera and T. Lang, ‘A VLSI Architecture for Arithmetic Coding of 

Multilevel Images’, IEEE Transactions on Circuits and Systems-II: Analog and Digital 

Signal Processing, Vol. 45, No. 1, pp. 163-168, January 1998. 

15. J. Jiang, ‘Novel design of Arithmetic Coding for Data Compression’, IEE Proc.-Comput. 

Digit. Tech., Vol. 142, No. 6, pp. 419-424, November 1995. 

16. M. Hsieh, C. Wei, ‘An adaptative Multialphabet Arithmetic Coding for Video 

Compression’, IEEE Transactions on Circuits and Systems for Video Technology’, Vol. 8, 

No. 2, pp. 130-137,  April 1998. 

17. J. Cleary, I. Witten, ‘Data Compression Using Adaptive Coding and Partial String 

Matching’, IEEE Transactions on Communications, Vol. 32, No. 4, pp. 396-402, 1984. 

18. L. Bottou, P. G. Howard,  Y. Bengio, ‘The Z-coder adaptive binary coder’, In Proceedings 

of the Data Compression Conference, pp. 13-22, March 1998. 

19. R. Stefo, J.L Núñez, C. Feregrino, S. Mahapatra, S. Jones, ‘FPGA-based modelling unit 

for high speed lossless arithmetic coding’, 11th    International Conference on Field 

Programmable Logic and Applications FPL'2001, Belfast, Northern Ireland, UK, pp. 643-

647, August 27-29, 2001. 

20. R. Arnold, T.Bell, ‘A Corpus for the Evaluation of Lossless Compression Algorithms’, 

Data Compression Conference, pp. 201-210, 1997. 

21. J. Nunez, V.A Chouliaras, ‘High-Throughput Arithmetic Coding Hardware for the H264 

Advanced Video Compressor’, submitted to IEEE Transactions on Circuits and Systems 

for Video Technology, March 2004 

22. Information available at http://www.compressconsult.com/rangecoder/ 

23. Information available at  www.simplescalar.com 

24. Information available at www.altera.com

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 


