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Abstract Morphological segmentation has recognised advantages for video 
compression, especially al lower bit rates. A two stage approach has 
traditionally been employeo! to encode the interfame data produced by this 
algorithm: contour coding of the regions selected f o r  transmission, followed by 
coding of the data within the regions. In this paper, an  effective single stage 
conditional arithmetic coder is demonstrated to  successfully accomplish this 
task. 

1 INTRODUCTION 

Morphological segmentation has recently been proposed as an alternative method for coding 
interframe data in video sequences [I]  and is being actively investigated in MPEG4. Poor correlation 
properties of the displaced frame difference data (DFD) often lead to ringing artefacts in the 
reconstruction if standard motion-compensated discrete cosine transform (DCT) coders are used. 
Morphological segmentation is a non-‘linear algorithm, which enables the selection or removal of 
frame-to-frame differences based on a shapehize criterion. Being a spatial approach, it offers a lack 
of ringing and edge preservation properties. 

4 3  

Figure 1. Original frame, DFD (absolute value) and update signals created by the morphological segmentation 
algorithm (black denotes inactive and white active areas). Top: ‘Akiyo’, bottom: ‘Foreman’. 
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Morphological segmentation is applied to the DFD data, yielding an ‘update’ signal, which 
typically contains a few motion model failure areas (active areas), surrounded by zero valued pixels. 
These active areas are quantised and selected for transmission (figure 1.). The signal is usually coded 
losslessly by means of a sophisticated two stage algorithm: boundaries of the active areas are coded 
using chain codes [ 1][2], and then pixel values within the contours are encoded. The complexity of 
this approach results from its two-stage nature, and is augmented by the necessity of dealing with 
nested model failure areas. In this paper a simple yet effective algorithm is proposed for the entropy 
coding of the morphologically segmented DFD data. 

2 ENTROPY CODER 

The two-stage approach, discussed above, is replaced with a single stage coder. Although this implies 
that the non-active areas (typically more than 90% of the DFD pixels) must be coded along with the 
active ones, it will be shown that they can be coded using relatively few bits. This is accomplished by 
means of a two state conditional model, depending on the state S of the encoder: 

SI if V,E(X, Y ,  Z}, V=OFF 
S2 if 3, E(X, Y ,  Z}, V = O N  

s = {  

where X, Y,  Z are causal half-plane neighbours of the encoded pixel. An arithmetic coder has been 
employed [3], since it deals well with low entropy signals, facilitates adaptivity and offers a clear 
separation between the modelling and coding. The ‘Silent Voice’, ‘Claire’ and ‘Trevor’ sequences 
have been used for model initialisation rather than a uniform distribution. In addition, in the case of 
the adaptive coder, the rate at which symbols update the model has been empirically optimised. 
Experiments were performed with three types of adaptive approach: 

scheme AI: where the model is reset to the initial distribution at the beginning of every frame; 

scheme A2: where the model is built throughout the whole coding process, such that frame n is 
coded based on the statistics of n-1 previously coded frames; 

scheme A3: in arithmetic coding, a representation of symbol probabilities is stored by coder’s 
model: e.g. in state S, symbols {k ,  , k, , . . . , k,, . . . , kN } are assigned probabilities, corresponding to 

histogram values {hx,, h,, , . . . , h,, , . . . , h ,  } . For efficient coding, the model should be able to trace 
the statistics of the source as closely as possible. This is accomplished by updating the model as 
symbols are coded, i.e. after coding the symbol k, , in state S, , the corresponding symbol 
histogram is set to {hx,,hx2 ,..., h,, + U  ,..., h f l } ,  where U is an arbitrary update term. Due to 

implementation constraints, the sum C h ,  must not exceed some maximum value, Hmx . To 

prevent this from happening, histogram entries h,; are halved whenever their sum approaches Hmx 
. In schemes A1 and A2, coder models corresponding to states SI and S2 were updated at an 
identical rate. Note, however, that due to the nature of the coded signal, the majority of pixels are 
encoded in state SI and only a few (typically 1-5%) in state S2. Intuitively, the statistics of the 
state that occurs less frequently should be updated faster. In order to achieve higher efficiency, the 
following approach was adopted: firstly, the value of the update rate U I  , corresponding to the state 
SI, was fixed and the update rate u2 , corresponding to the state S2 was empirically optimised. The 
procedure was repeated, by varying with u2 fixed. The optimisation is then complete, due to the 
independence of the states, i.e. the fact that if the coder is in state SI then it can not be in S2 and 
vice versa. As with coder Al ,  the model is set to the initial distribution at the beginning of each 
frame. 

N 

i=l 
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c 

update rates coder no. of states symbols/state If,,,,,, 
s 1  s 2  

fixed 2 42 32767 0 0 
A1 2 42 32767 110 110 
A2 2 42 32767 50 50 
A3 2 42 32767 25 900 

3 CODING RESULTS 

The coding algorithm employed consists of a wavelet intrafraime mode (Le Gall’s odd filters [4]) and 
a segmentation based interframe mode. In order to reduce the effect of artificial edges, occurring at 
boundaries of the transmitted update regions, a localised smoothing algorithm was applied as 
described in [5][6].  Table 1. shows arithmetic coder parameters. The results obtained using the 
‘Akiyo’ (24Ox352x8bpp) and ‘Foreman’ (288~352~8bpp)  sequences are summarised in tables 2 and 
3. 

Firstly, a fixed conditional codex was applied. The packing capabilities of this approach alone 
are superior than those of a simple 1’‘ oirder coder. It is clear from tables 2 and 3 that schemes A1 and 
A2 outperform the fixed scheme. Also, A2 outperforms A1 in the case of the ‘Akiyo’ sequence and is 
outperformed by A1 in the case of ‘Foreman’. The percentage difference, however, is minor, due to 
the relatively large frame size, which allows model adaptation within a single frame. In presence of 
channel errors, method A2 is likely to suffer from infinite error propagation. Thus, any advantage 
gained by using A2 will diminish as the bit error rate increases. Restarting the model at the beginning 
of every frame will limit error propagation, as long as the start of the frame can be correctly 
determined at the decoder. Therefore, scheme A1 is deemed a more attractive solution. 

Of all the coders tested, A3 yiellds the best performance. Comparing A3 to Al ,  it is clear that 
bit rate savings have been achieved when coding the active regions. Indeed, the number of bits 
required to code the black areas is slightly higher in the case of A3 than in the case of Al .  This 
merely means that not all the inactive pixels are encoded in state S1 and not all active pixels are 
coded in state S2, and does not imply that the update rates used are not optimal. 

Table 1. Coder parameters. 

4 CONCLUSIONS 

A candidate algorithm for entropy coding the update signal in segmentation-based video coders has 
been proposed. As can be verified, the cost of coding the inactive regions is between 20 and 30% of 
the total bit rate. The algorithm comprises a single entropy coding stage only and avoids the overhead 
of boundary coding. It thus offers an aidvantage of implementation simplicity and possible bit rate 
reduction. Work is ongoing to compare this approach with region coding (exact and approximate) in 
terms of performance and computationall complexity. 

One obvious disadvantage of the proposed method is the need to encode all-black frames, 
such as frames 1-4 of ‘Akiyo’. This car1 be simply remedied by introducing a special ‘empty frame’ 
symbol. 

Outstanding issues include: how fast should a model be updated and whether optimum update 
rates for an adaptive coder can be determined a priori. Intuitively, optimum update rates will depend 
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on the predictability of the signal coded and the proportion of symbols coded in different states. Note 
that the ratio U, /uz  (coder A3) is roughly equal to that of the number of pixels coded in state S2 to 
the number of pixels coded in state S1 

frame 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 

c 
W , w )  

[%I 

- 

- 
- 
- 

First 
order 
model 

0 
0 
0 
0 

2828 
3095 
1708 
1865 
1137 
1648 
3167 
2623 
690 

3122 
3228 
3862 
2095 
1026 
7347 
3838 
6969 
4320 
3512 
425 

2466 
2056 
2698 
7020 
7571 
4533 
3161 

88010 
88010 

- 
- 

187.3 - 

fi - 
i 

370 
370 
370 
370 
49 2 
522 
454 
47 1 
41 7 
447 
579 
485 
407 
550 
583 
61 1 
473 
433 
893 
626 
900 
692 
616 
400 
548 
503 
569 
865 
886 
659 
561 

17122 

- 

- 

d - 
a 
L 

0 
0 
0 
0 

1000 
959 
480 
598 
368 
516 

1031 
853 
244 
950 

1092 
1234 
572 
321 

2619 
1233 
2634 
1428 
1134 

111 
823 
629 
883 

2592 
2895 
1568 
1105 

29872 
34 

- - 
- 

100 

Conditio] 
adapti 

i 
21 1 
21 1 
21 1 
21 1 
380 
419 
318 
337 
273 
309 
46 1 
363 
258 
432 
463 
520 
343 
286 
845 
508 
835 
589 
510 
246 
419 
37 1 
435 
794 
84 1 
567 
444 

13410 

- 

- 
- 

4; 

: (Al) 

0 
0 
0 
0 

910 
864 
458 
564 
352 
49 2 

1048 
782 
25 1 
947 

1098 
1225 
567 
322 

2654 
1247 
2696 
1493 
1 I80 
117 
812 
657 
924 

2510 
2812 
1500 
1089 

2957 1 
81 

- 
a - 

- - 
- 

9 i .46 

1 models 
adapti 

i 
21 1 
210 
210 
210 
374 
420 
323 
34 1 
272 
310 
476 
357 
26 1 
43 8 
475 
51 1 
335 
288 
850 
500 
83 1 
586 
493 
244 
407 
358 
427 
779 
844 
563 
440 

13344 

- 

P - 
4; 

- (A21 
a - 

0 
0 
0 
0 

920 
858 
480 
562 
340 
472 

1017 
775 
230 
93 1 

1073 
1234 
573 
312 

2612 
1233 
2659 
1489 
1183 

1 20 
810 
655 
917 

2501 
2761 
1473 
1064 

29254 
38 

- - 
90.65 

adapti 
i 

212 
212 
212 
212 
388 
43 5 
327 
341 
275 
317 
462 
384 
26 1 
439 
460 
510 
351 
285 
845 
51 1 
835 
592 
502 
246 
416 
368 
43 3 
803 
854 
574 
446 

13508 

- 

P - 
4: 

: (A3) 
a 

0 
0 
0 
0 

849 
778 
456 
556 
313 
447 

1023 
710 
245 
934 

1124 
1222 
566 
328 

2588 
1233 
2698 
1430 
1184 
114 
815 
668 
930 

249 1 
2766 
1446 
1108 

29022 
30 

- - 

- - 
90.50 

Table 2. Coding results for ‘Akiyo’ at 48 kbps, mean PSNR=35.85. i and a denote the number of bits required to 
encode the inactive and active areas respectively. 
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frame 

- 
I 
2 
3 
4 
5 
6 
7 
8 
9 

10 
I 1  
12 
13 
14 
15 
I6 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 

c. 
- - 

10987 
13734 
20423 
14788 
I2357 
12173 
12055 
17241 
19727 
19149 
10735 
21380 
2971 1 
17181 
18846 
16043 
10127 
9668 

11392 
5204 

17661 
I2298 
14177 
6889 
9078 
5105 
2574 
4083 
3087 

980 3449 
1099 4721 
1372 7908 
1246 4996 
1149 4248 
1064 4058 
1028 4038 
1215 7225 
1518 8125 
1580 7926 
1041 405 1 
1614 9162 
2077 12288 
1416 7338 
1718 8001 
1464 6825 
954 4070 

1006 3460 
1086 4837 
695 1903 

1348 8103 
1164 5589 
1183 6058 
804 2643 
965 3550 
709 1532 
578 762 
648 1266 
614 8 64 

I064 
1256 
1780 
1444 
1255 
1161 
1136 
1481 
1839 
1877 
1091 
I997 
2802 
1659 
1944 
1624 
963 

1008 
1115 
616 

1574 
1185 
1333 
745 
916 
606 
432 
537 
475 

7150 794 2919 I 714 

388042 34712 152676- 
388042 I 187388 I 16! 

? (Al) - 
a 
646 

2999 
4144 
6246 
4418 
3716 
3603 
3126 
5745 
6858 
6755 
3582 
7641 

10341 
6355 
7294 
5969 
3619 
3174 
4378 
1754 
6511 
4435 
5038 
2360 
31 15 
1446 
763 

1056 
87 1 

2564 

130522 

- 

- - 

207.1 I 100 I 89.97 

, adapti 
i 
425 

1053 
1274 
1795 
1457 
1274 
1160 
1179 
1490 
1905 
1915 
1063 
1969 
2822 
1671 
1941 
1627 
972 

1049 
1124 
647 

1585 
1208 
1332 
752 
940 
607 
440 
536 
484 
719 

38415 

.- 

-- -- 
- 

3 (A2) - 
a 
694 

3102 
4273 
6290 
4462 
3733 
3718 
3171 
5874 
6970 
6762 
3648 
781 1 

10450 
6392 
7328 
5982 
3632 
3145 
4362 
1701 
655 1 
448 1 
5083 
2367 
3073 
1427 
777 

1089 
875 

2573 

131796 

- 

- - 

90.83 

adaptive (A3) 
i a 
455 517 

1097 2693 
1251 363 1 
1764 5701 
1412 4068 
1265 3450 
1184 3296 
1165 2789 
1469 5235 
1834 6583 
1825 6579 
1085 3447 
1991 7156 
2807 9872 
1653 6068 
1962 6893 
1630 5834 
977 3328 

1016 2931 
1138 4237 
627 1655 

1574 6232 
1187 4252 
1266 4745 
750 2239 
922 3003 
608 1350 
439 716 
548 945 
477 830 

160777 
85.80 

Table 3. Coding results for ‘Foreman’ at I92 kbps, mean PSNR=3O.I7. 
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