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Abstract
The structure of xBaO·(1 − x)  P2O5 (x = 0.30, 0.35, 0.40, 0.45, and 0.50) glasses was studied by Raman spectroscopy and 
thermodynamic model Shakhmatkin and Vedishcheva (SVTDM). The seven system components (defined as stable crystalline 
phases of the BaO–P2O5 binary phase diagram) were considered in the SVTDM: BaO,  P2O5, 4BaO·P2O5 (B4P), 3BaO·P2O5 
(B3P), 2BaO·P2O5 (B2P), BaO·P2O5 (BP), and BaO·2  P2O5 (BP2). Only the equilibrium molar abundances of BP and BP2 
were non-negligible in all studied glass compositions. Therefore, in the next step, multivariate curve analysis (MCR) of the 
baseline—subtracted, thermally—corrected experimental Raman spectra, was performed for two components (BP2 and 
BP). MCR resulted in the Raman spectra (loadings) and relative abundances (scores) of each considered component. The 
MCR method reproduced 98.93% of the spectral data variance. Then, the decomposition of Malfait was used. The perfect fit 
between the MCR loadings and the partial Raman spectra of BP2 and BP, obtained by Malfait’s decomposition, was found, 
confirming the validity of thermodynamic model.
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Introduction

In comparison with silicate or borate glasses, phosphate 
glasses possess interesting functional properties, mainly the 
higher refractive indexes, the lower melting temperature, and 
thermal expansion coefficients, and high transparency in the 
ultraviolet range [1, 2]. On the other hand, phosphate glasses 
have poor chemical durability. The chemical durability and 
additional properties of phosphate glasses can be improved 
by the addition of various metal ions into the phosphate 
network [3, 4]. Due to this compositional variability, phos-
phate glasses can be used for metal sealing applications, 

photonics, radioactive waste vitrification, medical applica-
tions, etc. [5–7].

The SVTDM enables the interpretation of the relation-
ships between the composition, structure, and properties 
[8–15]. The validity of the model has to be confirmed by 
the comparison of its results with the available structural 
data [13–16]. In our previous work [16–19], we showed that 
the statistical analysis of the compositional and temperature 
series of Raman spectra validated the SVTDM thermody-
namic model for the  Na2O–B2O3, CaO–P2O5, and ZnO–P2O5 
binary glass systems. The main aim of this work is to pro-
duce a thermodynamic model to describe the structure for 
the BaO–P2O5 binary glasses.

Method

Thermodynamic model of Shakhmatkin 
and Vedishcheva

SVTDM was successfully applied to the study of silicate 
glasses [8–16]. This model uses the assumption that glasses 
and melts are ideal solutions formed from products of equi-
librium chemical reactions between the simple chemical 
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entities (oxides, halogenides, etc.) and from the original 
un-reacted entities. The model only uses the molar Gibbs 
energies of pure crystalline compounds and the analytical 
composition of the system that is being considered. The 
equilibrium molar amount of each of the systems species 
is obtained by minimization of the system’s Gibbs energy 
constrained by the overall system composition [20]. SVTDM 
can be applied to most multicomponent glasses using crys-
talline state data. The contemporary databases of thermody-
namic properties (e.g., FACT database [21, 22]) enable the 
routine construction of the SVTDM for various multicom-
ponent systems.

Malfait’s decomposition of Raman spectra

The basic assumption of Malfait’s method [23–25] is that the 
Raman spectra can be expressed as the sum of partial Raman 
spectra (PRS) of individual system components multiplied 
by its equilibrium amount. The linear vector space with the 
dimensionality given by the number of species with different 
PRS that independently vary their abundance is spanned by 
the Raman spectra obtained for series of glasses with differ-
ent compositions. Arbitrary scaling is used when recording 
each experimental spectrum. The number of independent 
components can be determined by principal component 
analysis (PCA) of the set of experimental Raman spectra 
[26, 27]. It is worth noting that the field of thermal analysis 
finds the PCA to be very advantageous [28].

Multivariate curve resolution

The set of experimental Raman spectra can be decomposed 
by the multivariate curve resolution (MCR) method [29, 
30] on the spectra of quasi-pure components (loadings) and 
relative abundances of these components (scores). The com-
parison of MCR with PRS of Malfait’s decomposition based 
on the SVTDM can be used for confirmation/validation of 
SVTDM.

Experimental

The compositional series of binary barium phosphate glasses 
containing 30, 35, 40, 45, and 50 mol% of BaO, abbreviated 
as 70P30B, 65P35B, 60P40B, 55P45B, and 50P50B were 
studied. The glass batches were prepared from analytical 
grade ammonium dihydrogen phosphate  (NH4H2PO4) and 
barium carbonate  (BaCO3). Stoichiometric quantities of 
 BaCO3 and  NH4H2PO4 were placed into an alumina crucible 
after being mixed in an agate mortar. In order to remove the 
water, ammonia, and carbon dioxide, the sample was slowly 
heated to 700 °C in an electrical furnace. Subsequently, the 
calcination products were melted at the temperature range 
of 1100–1200 °C, depending on their chemical composition. 
The resulting melt was poured onto a preheated (300 °C) 
brass mold and annealed for 2 h at the temperature that was 
approximately 5 °C below the glass transition temperature 
(Tg). The values of the glass transition temperature and the 
thermal expansion coefficient of glass, αg, taken from the 
work of Lee and Taylor [31] are summarized in Table 1.

Raman spectra were recorded using RENISHAW inVia 
Reflex Raman spectrometer with Leica DM2500 micro-
scope. The semiconductor laser (532 nm, 28.5 mW) was 
used as the excitation source with the spot of about 1 mm 
diameter. After the baseline subtraction, the spectra were 
corrected by the Böse–Einstein population factor [32]:

where Iexp and Icor are observed and corrected Raman inten-
sities, ν and ν0 are the Raman shift and the wavenumber of 
the excitation laser, and h, k, c, and T represent Planck’s 
constant, Boltzmann’s constant, the speed of light, and ther-
modynamic temperature. Furthermore, all spectra were nor-
malized to the height of the highest peak [33].

Results and discussion

The set of five baseline subtracted and thermally corrected 
Raman spectra of xBaO·(1 − x)  P2O5 (x = 0.30, 0.35, 0.40, 
0.45, and 0.50) glasses was analyzed (Fig. 1). The spectra 

(1)Icor = Iexp��
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0

1 − exp
[

−hc�∕kT
]

(

�0 − �

)4

Table 1  Glass transition 
temperature Tg [31], thermal 
expansion coefficient of 
glass αg [31], and results of 
SVTDM with corresponding 
Q-distribution for studied 
glasses

xg(BaO) Tg/°C 107·αg/°C−1 n(P)/mol n(BP2)/mol n(BP)/mol n(Q3)/mol n(Q2)/mol

0.30 421 124 0.10 0.30 0.00 0.80 0.60
0.35 437 128 0.00 0.30 0.05 0.60 0.70
0.40 452 131 0.00 0.20 0.20 0.40 0.80
0.45 458 134 0.00 0.10 0.35 0.20 0.90
0.50 478 137 0.00 0.00 0.50 0.00 1.00
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were recorded with a wavenumber step of 2 cm−1 in the 
range (150–1500) cm−1.

MATLAB software was used for the principal compo-
nent analysis [27]. The real error of 2.6% approaches the 
experimental error for two components. The PCA analysis 
resulted in two independent components. This is because 
the indicator function [26, 27] had a minimum (Fig. 2), and 
the Malinowski significance fell to 8%, when using two 
components.

The SVTDM was evaluated well above Tg at a tempera-
ture of 1000 K (Fig. 3). The seven following system compo-
nents, which are defined as stable crystalline phases of the 
BaO–P2O5 binary phase diagram, were considered: BaO, 
 P2O5, 4BaO·P2O5 (B4P), 3BaO·P2O5 (B3P), 2BaO·P2O5 

(B2P), BaO·P2O5 (BP), and BaO·2  P2O5 (BP2). The FACT 
database was used to gather the molar Gibbs energies of the 
components listed above [21]. The thermodynamic model 
behaves like a quasi-binary system at temperatures above 
Tg (i.e., maximum two system components can be found 
with nonzero abundance). Therefore, the mass conservation 
law can be used to evaluate the equilibrium molar quantities 
of system components for all studied glass compositions at 
their Tg. For example, when applied to the xBaO·(1 − x)  P2O5 
glass composition we obtain the following relation: 

– for 0 ≤ x ≤ 1/3, only P and BP2 are present with a non-
negligible equilibrium molar content, ni.

  

  
– for 1/3 ≤ x ≤ 0.5, only BP2 is present with non-negligible 

equilibrium molar content ni. The mass conservation law 
gives us:

  

  

The resulting equilibrium molar amounts and the cor-
responding Q-distributions are summarized in Table 1. It 
is shown that only two Q-units are present in the studied 
glass compositions. Only two system components (i.e., 
BP2 and BP) are present in nonzero equilibrium molar 
amounts for all studied glasses, with the exception of the 

(2)n(BP2) = x

(3)n(P) = 1 − 3x

(4)n(BP2) = 1 − 2x

(5)n(BP) = 3x − 1

200 400 600 800 1000 1200 1400

Ba30exp

Ba35exp

Ba40exp

Ba50exp

N
or

m
al

iz
ed

 in
te

ns
ity

Raman shift/cm–1

Ba45exp

Fig. 1  Normalized and thermally corrected Raman spectra
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Fig. 2  PCA—indicator function—reaches minimum for two compo-
nents
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Fig. 3  Thermodynamic model of Shakhmatkin and Vedishcheva 
(SVTDM)—equilibrium molar amounts of system components at 
temperature T = 1000 K
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xg(BaO) = 0.3 glass, where a small amount of  P2O5 was 
found. This result is in agreement with the result PCA 
analysis of the experimental Raman spectra. The compo-
sitional dependence of Q2 equilibrium molar amount is 
similar to the compositional dependence of glass transi-
tion temperature and coefficient of thermal expansion αg 

(Tg and αg values were taken from the work of Lee and 
Taylor [31]). That is, with increase in content of BaO the 
Q2 equilibrium molar amount as well as Tg and αg values 
increases (Fig. 2).

Therefore, in the next step, Malfait’s spectral decompo-
sition was performed with our own FORTRAN program 
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Fig. 4  Comparison of experimental and Malfait’s method calculated Raman spectra
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JaneDove, by using the BP2 and BP equilibrium molar 
amounts. Such way, two PRS were obtained—the first one 
corresponding to BP2 with small admixture of P and the 
second one corresponding to BP. The calculated spectra 
reproduced the experimental spectra with high accuracy 
(Fig. 4). The obtained partial Raman spectra of BP2 and 
BP are plotted in Fig. 5 where they are compared with the 
corresponding MCR loadings.

MCR [29, 30] performed for two independent compo-
nents resulted in the Raman spectra (loadings) and relative 
abundances (scores) of both components (Figs. 4, 5). 98.93% 
of the spectral data variance was reproduced using the MCR 
method. Based on the high positive correlation between 
equilibrium molar amounts and scores, the particular load-
ings were attributed to the particular system components. In 

this way, Loading 1 was attributed to BP2, and Loading 2 to 
BP. It can be seen that normalized MCR loadings are very 
similar to the normalized PRS (Fig. 5). The MCR results are 
not unique. All experimental spectra and loadings (i.e., the 
spectra of “pure” component) can be scaled by multiplying 
or dividing them by an arbitrary positive constant. Such scal-
ing of the experimental spectra and loadings is shown in the 
corresponding change of the scores. In this way, scores can 
be adjusted to reproduce the equilibrium molar amounts of 
system components. Adjustment of the scores is based on 
the minimization of the sum of the squares of the differences 
between scores and their corresponding equilibrium molar 
amounts. A good agreement between the adjusted scores and 
equilibrium molar amounts of BP2 and BP system compo-
nents is illustrated in Fig. 6.

Conclusions

PRS calculated from the SVTDM by the Malfait’s method 
coincide with the loadings calculated by the MCR method. 
MCR and Malfait’s results are based on the results of 
SVTDM and reproduced the experimental spectra with 
high accuracy. Such way, the obtained results confirm the 
SVTDM.
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adaptation, distribution and reproduction in any medium or format, 
as long as you give appropriate credit to the original author(s) and the 
source, provide a link to the Creative Commons licence, and indicate 
if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless 
indicated otherwise in a credit line to the material. If material is not 
included in the article’s Creative Commons licence and your intended 
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