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Abstract 18 

Ubiquitous RarA AAA+ ATPases play crucial roles in the cellular response to blocked replication 19 

forks in pro- and eukaryotes. Here, we provide evidence that RarA regulates the activity of the 20 

central player in homologous recombination (HR), RecA, in response to DNA damage. During 21 

unperturbed growth, absence of RarA reduced the viability of DrecA, DrecO and recF15 cells, and 22 

during repair of H2O2- or MMS-induced DNA damage, rarA was epistatic to recA, recO and recF. 23 

Conversely, the inactivation of rarA partially suppressed the HR defect of mutants lacking end-24 

resection (DaddAB, DrecJ, DrecQ, DrecS) or branch migration (DruvAB, DrecG, DradA) activity. 25 

RarA contributes to RecA thread formation, that are thought to be the active forms of RecA during 26 

homology search. The absence of RarA reduced RecA accumulation, and the formation of visible 27 

RecA threads in vivo upon DNA damage. When DrarA was combined with mutations in genuine 28 

RecA accessory genes, RecA accumulation was further reduced in DrarA DrecU and DrarA DrecX 29 

double mutant cells, and was blocked in DrarA recF15 cells. These results suggest that RarA 30 

contributes to the assembly of RecA nucleoprotein filaments onto single-stranded DNA (ssDNA), 31 

in concert with RecF, and possibly antagonizes RecA filament disassembly by RecX or RecU. 32 

  33 
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Introduction 34 

During DNA replication, the forks encounter obstacles that can block their progression, and 35 

replication impairment is recognized as an important source of genetic instability (1-3). Maintenance 36 

of genome stability is one of the crucial functions in life. As a consequence, numerous and diverse 37 

mechanisms have evolved to minimize the frequency or impact of replicative stress (1, 2, 4, 5). 38 

Eukaryotic Mgs1/WRNIP1 and prokaryotic RarA, which are evolutionarily conserved AAA+ 39 

ATPases associated with a variety of cellular activities, play important but poorly understood roles 40 

in cellular responses to stalled or collapsed replication forks (6-17). 41 

Previous assays have indicated a poorly understood role for bacterial RarA in homologous 42 

recombination (HR). Inactivation of Bacillus subtilis rarA renders cells very sensitive to H2O2, but 43 

not to methyl methane sulfonate (MMS) or the UV radiation-mimetic compound 4-nitroquinoline-44 

1-oxide (17). Similarly, an Escherichia coli null rarA (DrarA) mutant strain remains as capable of 45 

repairing UV-induced DNA damage as wild-type (wt or rec+) cells (6, 9). In both bacteria E. coli 46 

and B. subtilis the viability under unperturbed conditions of E. coli and B. subtilis DrarA DrecA cells 47 

is significantly lower than that of the DrecA control (9, 17). Since the recA gene is not epistatic with 48 

functions involved in base or nucleotide excision repair, but the E. coli or B. subtilis rarA gene is 49 

epistatic to recA in response to DNA damage (9, 17), we assume that RarA is a genuine repair-by-50 

recombination protein. Unless otherwise stated, the indicated genes and products are of B. subtilis 51 

origin. 52 

Bacterial RarA shares sequence homology with DnaX, a subunit of the clamp loader complex, 53 

and with RuvB, a subunit of the RuvAB branch migration translocase (6), but B. subtilis RarA could 54 

not substitute for DnaX in the cognate reconstituted in vitro DNA replication system (15). Rather, 55 

these assays showed that RarA inhibited initiation of PriA-dependent DNA replication, but not chain 56 
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elongation, suggesting that RarA might impede the assembly of the replicative helicase and prevent 57 

that recombination intermediates contribute to pathological DNA replication restart (15). RarA 58 

exerts its action through its interaction with the essential SsbA (counterpart of E. coli SSB [SSBEco]) 59 

and with PriA proteins (15). In addition to RarA, SsbA protein interacts with various recombination 60 

(RecQ, RecS, RecJ, RecG, RecO, RecD2, SbcC and SbcE) and replication (PriA, DnaG and DnaE) 61 

proteins, of which RecS, RecD2, SbcE and DnaE are absent in E. coli cells (18). These data suggest 62 

a role of RarA in recombination-dependent DNA replication, although RarA might follow different 63 

avenues in distantly related bacteria (14-17). For example, when DNA replication is blocked, upon 64 

dNTPs depletion by hydroxyurea, RarAEco foci disassemble from the replication fork and disappear 65 

(19). However, in vitro studies suggested that RarAEco may contribute to replication fork rescue by 66 

creating a flap on the lagging strand, so that the replicative helicase and its associated replisome 67 

could continue chain elongation without the need for replisome disassembly and replication restart 68 

(14). In B. subtilis cells, inhibition of the replicative DNA polymerase PolC, by the specific inhibitor 69 

p-hydroxyphenylazo-uracil (HPUra), confines the RarA molecules towards the collapsed replication 70 

forks (17). In this bacterium it was shown that B. subtilis RarA-mVenus transiently colocalizes with 71 

the DnaX-CFP protein, and it alternates between static and dynamic states. RarA is confined to the 72 

replication forks when the preprimosomal DnaB protein is non-functional, but the opposite occurs 73 

upon inactivation of the replicative DNA helicase (DnaC) (16, 17), revealing an intricate function 74 

related to DNA replication restart. 75 

RarA forms mobile foci, usually one per cell containing many molecules, that move in a time 76 

scale of minutes in ~50% of total cells, mostly close to replication forks, in which RarA is likely 77 

DNA-bound. On a time scale of milliseconds, ~50% of RarA molecules move very slowly or are 78 

static, likely within the slowly moving foci, while the remaining fraction was highly dynamic, 79 

diffusing throughout the cells (16, 20). DNA damages changed the ratio of static (DNA-bound) and 80 
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freely diffusive RarA, e.g. H2O2 decreased the static subpopulation of RarA at the replication forks, 81 

and instead, RarA was recruited to areas located away from the replication forks. Exposure to H2O2 82 

increased the fraction of dynamic molecules, but not treatment with MMS, and this was exacerbated 83 

by the absence of end resection or Holliday junction (HJ) processing proteins (16). The number of 84 

cells containing slowly moving RarA foci was also affected by several proteins acting in 85 

homologous recombination (HR) (16), indicating that the number of molecules acting within the 86 

foci, and the positioning of the foci, is affected by interactions with HR proteins. 87 

To analyze the role of RarA in repair-by-recombination at the genetic level, the DrarA deletion 88 

was moved into rec-deficient strains impaired in DNA end resection (addAB, recQ, recS, recJ), 89 

RecA mediators (recO) and/or modulators (recF, recX, recU), or HJ processing and 90 

cleavage/dissolution (recG, ruvAB, radA, recU, recQ, recS). Also, the relation to the DNA repair 91 

defect of the poorly characterized recD2 mutation (21) was investigated. In this study, we show that 92 

lack of RarA reduced cell viability in the DrecO and DrecA and in less extent of the recF15 context, 93 

but these mutant strains were equally sensitive to H2O2- or MMS-induced non-bulky DNA lesions 94 

of oxidative nature (epistasis). The absence of RarA partially suppressed the DNA repair defect of 95 

cells impaired in DNA end resection (addAB, recQ, recS, recJ), or HJ processing and 96 

cleavage/dissolution (recG, ruvAB, radA, recU, recQ, recS), as well as the DNA repair defect of the 97 

recD2 mutation. Lack of RarA might reduce the accumulation of the signal (RecA filament 98 

formation) that is considered to facilitate LexA self-cleavage as judged by the drop of RecA levels 99 

upon exposure to increasing mitomycin C (MMC) concentrations and the reduced number of RecA 100 

threads in DrarA cells. Together, these data suggest that RarA controls RecA filament growth and 101 

might counteract negative mediators RecX and/or RecU. 102 

 103 
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Materials and Methods 104 

Bacterial strains 105 

B. subtilis BG214 and its isogenic derivatives are listed in Table 1. The null rarA (DrarA) mutation 106 

was transferred into the other genetic backgrounds by SPP1-mediated chromosomal transduction. 107 

The recF15 point mutation and a null mutation in recF (DrecF) are equally deficient in DNA repair, 108 

but the latter showed a reduced cell fitness, because it compromises expression of the downstream 109 

essential gyrB and gyrA genes, thus we worked with the inactive recF15 strain (22). In RecF15 the 110 

highly conserved negatively charged residue E255 is replaced by a positively charged one K255, 111 

RecF E255K (22). The accuracy of the double mutations was analyzed by PCR amplification and 112 

nucleotide sequence analyses. 113 

Survival studies 114 

H2O2, MMS and MMC were obtained from Sigma Aldrich (Germany). The sensitivity of cells to 115 

acute exposure to MMS or H2O2 was determined by growing rec+ and its isogenic derivative strains 116 

(see Table 1) in NB to an OD560 = 0.4 at 37 ºC with agitation. Then, cells were incubated with 117 

increasing concentrations of MMS or H2O2 for 15 min. Treated cells were diluted and plated on NB 118 

agar plates, incubated overnight (ON) at 37 ºC, and the colonies forming units/ml (CFUs/ml) were 119 

counted. The large majority of cells were one and two non-separated with an average of ~1.6 120 

cells/CFU, thus we have assumed an acceptable correlation of OD560 with CFUs. 121 

Cell staining 122 

The LIVE/DEAD BacLight bacterial viability kit was purchased from Fisher Scientific was used. 123 

Cells were exponentially grown in NB to an OD560 = 0.4 at 37 ºC with agitation for 30 min. 124 

Appropriate dilutions were stained with membrane-permeant SYTO 9, which labels living bacteria 125 

with green fluorescence, and then with membrane-impermeant propidium iodide (PI), which stains 126 
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cells with a membrane compromised defect with red fluorescence, and subjected to conventional 127 

direct count of total cells using a fluorescence microscope and appropriate filters (470 ± 20 nm 128 

excitation filter and 515 ± 20 nm emission filter for both SYTO 9 and PI), as reported (21). When 129 

cells are permeant to PI, its counterstaining activity competes with SYTO 9 for binding to DNA, 130 

and SYTO 9 staining signal is not detected. In each experiment >1000 CFUs were counted. 131 

RecA protein quantification 132 

For quantification of RecA induction of the recA gene expressed from its native locus and promoter, 133 

cells were grown in NB to an OD560 = 0.4 at 37 ºC with agitation and treated with increasing MMC 134 

concentrations (0.07 to 1.5 µM) for 30 min. Cells (2 ml) were centrifuged, resuspended in 100 µl of 135 

buffer A (50 mM Tris HCl, pH 7.5, 1 mM DTT, 5% glycerol) containing 300 mM NaCl and lysed 136 

by sonication. Extracts from each experimental condition, containing similar concentrations of total 137 

and housekeeping proteins, were separated on 10% sodium dodecyl sulfate (SDS)-polyacrylamide 138 

gel electrophoresis (PAGE) alongside the purified RecA protein standard (10 to 500 ng) as reported 139 

(23). Gels were transferred, and Western blots were developed with rabbit polyclonal anti-RecA 140 

antibodies (23). This antibody showed no signal in the absence of RecA, suggesting that no cross-141 

reactive signal interferred in our studies.  142 

RecA protein bands on developed immunoblots were quantified with a scanning densitometer 143 

(ImageLab software, BioRad). Purified RecA protein standard yielded a linear relationship between 144 

antibody signal and the RecA protein concentration. The amount of RecA protein in each induced 145 

sample was interpolated from the standard curve performed with known amounts of purified protein, 146 

as described previously (23). The in vivo concentration of RecA was estimated considering the cell 147 

volume of 1.2 femtoliters, and the amounts of cells loaded in the gel, based on the total number of 148 

CFUs. 149 

 150 
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Fluorescence microscopy and data analysis 151 

A C-terminal fusion of the fluorescent protein mVenus to RecA was generated by cloning the 3′-152 

end 500-bp of recA (excluding the stop codon) into plasmid pSG1164 mVenus (24), which was 153 

integrated into the recA gene locus on the B. subtilis chromosome by single crossover 154 

recombination. Epifluorescence microscopy was used to monitor filament formation and dynamics 155 

of RecA before and after stress conditions at 30 °C (OD600 = ~ 0.3). Cells were treated with 0.5 mM 156 

H2O2 (obtained from Sigma Aldrich) or were not treated. For fluorescence microscopy, B. subtilis 157 

cells were grown in S750 minimal medium at 30 °C under shaking conditions until exponential 158 

growth, using a Zeiss Observer Z1 (Carl Zeiss) with an oil immersion objective (100× magnification, 159 

NA 1.45 alpha Plan-FLUAR) and a CCD camera (CoolSNAP EZ, Photometrics). Electronic data 160 

were processed using Metamorph 7.5.5.0 software (Molecular Devices, Sunnyvale, CA, USA), 161 

which also allows the calibration of the fluorescence intensity and pixel size to determine the cell 162 

length and BacStalk (25), time-lapse epifluorescence microscopy of RecA-mV were collected every 163 

5 min. 164 

  165 
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Results and Discussion 166 

∆rarA reduces viability in ∆recO and ∆recA  167 

To better understand the role of RarA in repair-by-recombination, a rarA deletion (∆rarA) was 168 

combined with rec-mutations in DNA end resection (addAB, recQ, recS, recJ), RecA mediators 169 

(recO) and/or modulators (recF, recX, recU), and HJ processing and cleavage/dissolution (recG, 170 

ruvAB, radA, recU, recQ, recS), as well as the DNA repair defect of the poorly characterized recD2 171 

mutation (Table 1). The recA, recF, recO, recG, recJ, recQ, recR, ruvA, ruvB, radA and rarA genes 172 

have their counterpart in E. coli genes with identical name, the addAB and recU genes have their 173 

counterpart in the recBCDEco and ruvCEco and the recS and recD2 genes are absent in E. coli (26, 174 

27). In contrast, B. subtilis cells lack the RecA modulators dinI and rdgC (28). 175 

If a DNA damage is not removed, DNA replication is not able to continue to completion and 176 

the cell will not survive. It has recently been reported that B. subtilis replisome dissociation occurs 177 

at a frequency of ~5-fold events per replisome, per cell cycle (29). Interestingly, even in the absence 178 

of any external DNA damage the viability of the constructed strains listed in Table 1 was quite 179 

different. The combination of ∆rarA with ∆addAB, ∆recS, ∆recQ or ∆recJ (impaired in alternative 180 

pathways of end-processing), ∆recX (negative modulator), ∆radA (impaired in branch migration 181 

translocase) or with ∆recD2 (yet unclassified) (23, 30-32) yielded similar or only slightly reduced 182 

(<1.4-fold) viability relative to rec+ cells (Figure 1A). Thus, additional deletion of RarA in these 183 

mutant backgrounds having similar viability as wt cells (21, 32, 33) appeared to be associated with 184 

a low fitness cost. 185 

At mid-exponential phase the number of CFUs was reduced 5- to 7-fold in ∆recU, ∆ruvAB or 186 

∆recG (impaired in translocation of branched structures and HJ resolutution) cells, compared to the 187 

rec+ control (21, 33), and the viability of the double (∆recU ∆rarA, ∆recG ∆rarA) or triple (∆ruvAB 188 

∆rarA) mutant strains was marginally affected, as shown in Fig. 1A. These findings suggest that the 189 
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deletion of rarA does not cause an extra fitness cost when compared to the ∆recU, ∆recG or ∆ruvAB 190 

cells. The viability of the ∆radA cells was similar to or slightly reduced (<1.5-fold) relative to rec+ 191 

cells, but  the viability of the ∆rarA ∆radA double mutant strain was reduced ~10-fold compared to 192 

the rec+ strain (Fig. 1A), suggesting that absence of the RarA and so far less well characterized 193 

RadA/Sms functions poses a considerable threat for cell viability. 194 

Previous studies demonstrated that in the absence of any external DNA damage, the ∆recO and 195 

recF15 mutations (impaired in RecA nucleation and filament formation) only slightly affect (<1.4-196 

fold) the number of CFUs at mid-exponential phase (Fig. 1B), but the ∆recA mutation lead to a 197 

strong reduction (~10-fold) (17, 34). Interestingly, the absence of RarA caused a ~15-, ~60- and 198 

~145-fold reduction in the number of CFUs at mid-exponential phase in the ∆rarA recF15, ∆rarA 199 

∆recO or ∆rarA ∆recA backgrounds, respectively, compared to the ∆rarA single mutant strain (Fig. 200 

1B). Thus, there is a strong synthetic defect of combining the ∆rarA deletion with loss-of function 201 

in RecA accessory proteins or most severely with loss of RecA itself. Similarly, the E. coli ∆rarA 202 

∆recA cells have low viability when compared to ∆recA cells (9), revealing a strong parallel in this 203 

aspect. 204 

Moving on with our analyses, we chose the double mutant strains with the lowest viability 205 

(DrecO DrarA and DrecA DrarA). To investigate whether this reduced viability in ∆recO ∆rarA and 206 

∆recA ∆rarA correlates with membrane-compromised cells, two different fluorophores were used 207 

(SYTO 9 and PI). Exponentially grown cells (OD560 = 0.4) were stained with SYTO 9 (in green) 208 

and PI (in red). The proportion of exponentially growing rec+ and ∆rarA cells stained with PI 209 

(membrane compromised/dead) was low (~1% and ~1.8% of total cells, respectively). The 210 

proportion of ∆recO and ∆recA cells stained with PI was 9.8% and 5.6% of total cells, respectively 211 

(Fig. 1C). The absence of RarA increased the proportion of PI stained cells by only ~1.2 fold in 212 

∆recA cells, but the number increased by ~4-fold in the ∆recO background (Fig. 1C). Thus, the 213 
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strong decrease in CFUs in ∆recA ∆rarA cells (~145-fold) does not correlate with the number of 214 

membrane compromised cells (7.1% of total cells), but it partially does in ∆recO ∆rarA cells (~60-215 

fold reduction in CFUs versus 39.2% PI staining cells) (Fig. 1C). These results show that ∆recO 216 

∆rarA and ∆recA ∆rarA double mutant strains show a gross cell proliferation defect (Fig. 1B) and 217 

that RecO is crucial to alleviate the membrane compromise defect (Fig. 1C). 218 

Experimental approach for repair-by-recombination studies 219 

To gain further insight into the involvement of RarA in repair-by-recombination the double (triple 220 

in case of ∆rarA ∆addAB or ∆rarA ∆ruvAB) mutant strains were exposed to DNA damaging agents, 221 

for 15 min, at concentrations that are bacteriostatic to rec+ cells growing in nutrient broth (NB) 222 

medium. MMS and H2O2 were chosen, because both induce modifications in DNA bases, but in the 223 

presence of Fe(II), H2O2 treatment additionally generates DNA nicks (35). MMS- or H2O2-damaged 224 

bases are mainly repaired by direct DNA damage reversal, such as the guanine oxidation 225 

prevention/repair system, base excision repair or mismatch repair (35-37). Unrepaired MMS- or 226 

H2O2-lesions primarily halt elongation by the replicative DNA polymerase, and thereby stall 227 

replication fork progression. Stalled forks can be repaired by different repair-by-recombination or 228 

postreplication repair pathways (36-38). The H2O2 generated nicks collapsed replication forks, and 229 

these intermediates can be repaired by different repair-by-recombination pathways (1, 27, 39). Our 230 

previous work showed that RarA single mutants are very sensitive to H2O2-, but resistant to MMS-231 

induced lesions (17), showing that RarA deals differently with the effect of the two drugs. 232 

We classified the different outcomes into “moderately sensitive” when the viability was reduced 233 

less than 102-fold, into “sensitive” when it was reduced less than 103-fold, into “very sensitive” 234 

when viability was reduced from more than 103-fold and up to 105-fold, and when the viability was 235 
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reduced more than 105-fold the mutant strain was considered “extremely sensitive” to the damaging 236 

agent. 237 

RarA is not required for end-resection but affects the outcome of repair events in end-238 

resection mutants 239 

In B. subtilis, there are two alternative DNA end resection pathways: the AddAB complex, and RecJ 240 

single-stranded exonuclease in concert with a RecQ-like DNA helicase (RecQ or RecS) (40). Both 241 

machineries contribute to the processing of 5´-termini at both ends of the break, generating a 3´-242 

tailed duplex intermediate that is the substrate for RecA nucleation and filament growth, and the 243 

latter also resects single strand gaps (27, 41). The lack of AddAB and RecJ renders cells extremely 244 

sensitive to DNA-damaging agents, with a sensitivity similar to that of DrecA cells (40), showing 245 

that HR is no longer operative in their absence. In our experiments, ∆addAB mutations rendered 246 

cells very sensitive and the ∆recS, ∆recQ and ∆recJ mutations cells sensitive to H2O2 or MMS 247 

exposure (Fig. 2A and 3A) (40), suggesting a certain hierarchical order in the processing of the 248 

broken molecules by the AddAB or RecJ-RecQ(RecS) complexes. 249 

The acute lethal H2O2 dose that reduced ∆rarA cells survival by 99% (LD99) was ~0.38 mM 250 

(Table 2). A ∆rarA mutation rendered cells very sensitive to acute exposure to H2O2, with an LD99 251 

>16-fold lower than for the rec+ control (Fig. 2, Table 2) (17). Curiously, the survival rate of ∆addAB 252 

∆rarA cells was increased ~12-fold when compared to the parental ∆rarA or ∆addAB strains (Fig. 253 

2A, Table 2), suggesting that in the absence of both RarA and AddAB the recombinational 254 

intermediates are channelled towards another repair pathway(s). The DNA repair defect of rarA 255 

mutant cells was also partially suppressed when the mutation was combined with recQ or recS, 256 

resulting in an LD99 to H2O2 that was ~5-fold higher than that of ∆rarA cells (Fig. 2A, Table 2). 257 
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Thus, ∆addAB, ∆recQ or ∆recS mutations suppressed the DNA repair defect of the ∆rarA mutation 258 

upon exposure to H2O2.  259 

The connection between rarA and recJ mutations was somewhat different than expected with 260 

regard to the above mentioned mutations. The survival rate of ∆recJ ∆rarA was reduced ~9-fold 261 

compared to ∆recJ, and the LD99 was comparable to that of the ∆rarA control (Fig. 2A, Table 2). 262 

At a higher H2O2 dose a different outcome was observed. At 2 mM H2O2 the survival rate increased 263 

~4-fold, and at 4 mM of H2O2 the survival of the ∆recJ ∆rarA mutant strain increased ~17-fold 264 

compared to the ∆rarA control (Fig. 2A), suggesting that the absence of recJ partially suppressed 265 

the DNA repair defect of ∆rarA cells. The differences observed between the recJ and the other 266 

functions involved in end-pprocessing in combination with ∆rarA could be due to the different 267 

activities. RecJ is involved in base excision repair, methyl-directed mismatch repair and repair-by-268 

recombination (27, 39, 42), whereas no role other than repair-by-recombination has been described 269 

for AddAB, RecQ or RecS (26, 27). In none of the cases of double mutant cells, we observed an 270 

epistatic effect, nor strong synergistic effects. Therefore, we have to assume that RarA is not 271 

required for end resection.  272 

To further evaluate the contribution of RarA to end resection, exponentially growing cells were 273 

acutely exposed to increasing MMS concentrations for 15 min (Fig. 3). The acute LD99 dose for 274 

MMS for rec+ cells (10 mM) was lower than that for ∆rarA cell (>50 mM) (Table 2), confirming 275 

that in the absence of RarA, cells remain recombination proficient, and apparently more capable of 276 

repairing MMS-induced DNA damage than wt cells (17). AddAB cells were very sensitive to MMS, 277 

but the additonal mutation in rarA rescued this phenotype: the LD99 to MMS was increased by ~55-278 

fold in ∆addAB ∆rarA cells relative to the ∆addAB mutant strain (Fig. 3A, Table 2). The survival 279 

rate in ∆recS ∆rarA, ∆recJ ∆rarA or ∆recQ ∆rarA was enhanced ~2-fold when compared to the 280 

single ∆recS, ∆recJ or ∆recQ strains (Fig. 3A, Table 2). These findings suggest that inactivation of 281 
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rarA makes canonical DSB repair deleterious for cell survival, because the absence of functions 282 

involved in long-range 5´®3´ end resection (e.g., AddAB, RecJ, RecQ, RecS) partially suppressed 283 

the DNA repair defect of DrarA cells in response to H2O2 or MMS (Fig. 2A and 3A). This is in 284 

agreement with a previous report showing that WRNIP1 is directly involved in preventing 285 

uncontrolled MRE11-mediated degradation of stalled replication forks (13). The observed genetic 286 

interactions are in line with the observation that exponentially growing ∆addAB, ∆recS, ∆recQ or 287 

∆recJ cells show strongly reduced RarA mobility (16), i.e. the activity of RarA with respect to its 288 

binding to DNA is considerably altered in end-resection mutants. 289 

Branch migration or HJ processing of recombination intermediates activities do not 290 

require RarA, but their loss partially suppress rarA phenotypes 291 

A branch migration translocase binds to HJs, formed as HR intermediates (double-HJ), or when 292 

replication forks stall and reverse (HJ-like structure), and promotes HJ migration (43-45). When its 293 

cognate site becomes available, the RecU resolvase cleaves the double-HJ, in concert with the 294 

RuvAB translocase, to preferentially generate non-crossover products, and rarely crossover products 295 

(postsynaptic step) (27, 42, 44-46). It is unknown whether RecU can cleave the reversed forks 296 

generated by RecG in B. subtilis. In any event, RecU has two activities: to mediate HJ cleavage in 297 

concert with a branch migration translocase (47), and to modulate RecA nucleoprotein filament 298 

formation (48, 49). 299 

In our assays, the ∆recG, ∆ruvAB and ∆recU mutations rendered cells very sensitive and the 300 

∆radA mutation sensitive to H2O2 or MMS exposure (Fig. 2B and 3B) (21, 33, 50, 51). The survival 301 

rate to H2O2 of ∆radA ∆rarA or ∆ruvAB ∆rarA mutant cells was increased compared to the less 302 

sensitive single mutant strain, with an LD99 to H2O2 ~12-fold or ~3-fold higher than the ∆rarA strain, 303 

respectively (Fig. 2B, Table 2). The LD99 to H2O2 of the ∆recG ∆rarA or ∆recU ∆rarA mutant 304 
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strains was similar to the more sensitive single mutant strain (Fig. 2B, Table 2). However, at a H2O2 305 

dose as high as 2 mM, the survival rate of ∆recG ∆rarA or ∆recU ∆rarA mutant strains increased 306 

~16-fold and ~25-fold relative to the ∆rarA strain (Fig. 2A), suggesting that ∆recG or ∆recU 307 

partially suppressed the DNA repair defect at high H2O2 concentrations. When cells were acutely 308 

exposed to increasing MMS concentrations (Fig. 3B), the sensitivity of ∆recU ∆rarA, ∆recG ∆rarA 309 

and ∆radA ∆rarA cells to MMS was lower than that of the single mutants, with LD99 to MMS of 310 

~2-, ~2- and ~12-fold higher than the ∆radA, ∆recG and ∆recU mutant strains, but the LD99 of the 311 

∆ruvAB ∆rarA cells was similar to that of the ∆ruvAB strains (Fig. 3B). At MMS doses as high as 312 

20 mM, the survival rate of ∆ruvAB ∆rarA mutant strain increased ~3-fold compared to the ∆ruvAB 313 

control (Fig. 2A), suggesting that ∆rarA partially suppressed the DNA repair defect of ∆ruvAB cells 314 

at moderate MMS concentrations.  315 

Taken together, it can be stated that i) the absence of RuvAB, RecG, RadA/Sms or RecU 316 

partially suppressed the acute sensitivity to high H2O2 concentrations of ∆rarA cells (Fig. 2B); ii) 317 

the absence of RarA partially suppressed the repair defect seen in the absence of the branch 318 

migration translocase (RadA/Sms) or of the HJ resolvase (RecU) upon exposure to MMS, but not 319 

of RuvAB or RecG (Fig. 3B). This is consistent with the observation that in the absence of HJ-320 

processing enzymes, the static RarA population decreases in ruvAB, recG and radA cells, meaning 321 

that RarA is less often bound to DNA, but increased in recU cells  (16), i.e. RarA becomes more 322 

engaged with DNA in cells lacking RecU.  323 

RarA is epistatic to RecO and RecF in response to DNA damage 324 

In vitro, B. subtilis RecA cannot nucleate on the SsbA-ssDNA complexes, and AddAB cannot 325 

activate RecA to catalyze DNA strand exchange (52). The two-component mediator SsbA and RecO 326 

(in conjunction with RecR), together with positive (RecF) and negative modulators (RecX, RecU), 327 
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load RecA on a ssDNA gap or a 3´-tailed duplex ssDNA, facilitate RecA filament growth and 328 

activate RecA to catalyze DNA strand exchange in vitro, with SsbA, RecO, RecR, RecF and RecX 329 

collectively acting in vivo (23, 53-55). 330 

As previously shown, recF15 and ∆recO mutations rendered cells very sensitive to H2O2 or MMS 331 

exposure (Fig. 2C and 3C) (22, 56). The double ∆recO ∆rarA or recF15 ∆rarA mutant strains were 332 

equally sensitive to H2O2 or to MMS as the more sensitive single mutant strain, suggesting epistasis 333 

(Fig. 2C, 3C and Table 2). This is consistent with the observation that rarA is epistatic to recA in 334 

response to H2O2- or MMS-induced DNA damage (17). Moreover, the ratio of DNA bound to freely 335 

moving RarA is altered in ∆recO or recF15 cells upon exposure to DNA damaging agents (16), 336 

showing that the genetic interaction is reflected in the presumed activity of RarA. As described for 337 

B. subtilis rarA (Fig. 2C, 3C), eukaryotic WRNIP1 functions in the same pathway as the Rad51 338 

mediator BRCA2 (13). 339 

∆rarA partially suppresses the DNA repair defect of ∆recD2 or ∆recX cells to 340 

treament with H2O2 341 

The negative modulator RecX has been shown to disassemble RecA nucleoprotein filaments (23, 342 

55), and preliminary data from our laboratory has suggested a similar role for RecD2, whose funstion 343 

in HR is poorly understood (32, 57). Investigating the genetic connection between RarA and RecX 344 

or RecD2, we found ∆recX and ∆recD2 mutants to be sensitive to acute H2O2 or MMS exposure 345 

(Fig. 2D and 3D), as described earlier (23, 32). The LD99 to H2O2 of the ∆recD2 ∆rarA or ∆recX 346 

∆rarA double mutant strain was not significantly different that the ∆rarA strain (Fig. 2D, Table 2). 347 

However, at a H2O2 dose as high as 2 mM, the survival rate of ∆recX ∆rarA or ∆recD2 ∆rarA mutant 348 

strain was increased ~4-fold or ~100-fold, respectively, compared to the ∆rarA control (Fig. 2A), 349 

suggesting that ∆recX and ∆recD2 partially suppress the DNA repair defect in the ∆rarA context at 350 
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high H2O2 concentrations. With respect to MMS treatment, the ∆recD2 mutation partially 351 

suppressed the DNA repair defect of ∆recD2 ∆rarA cells (Fig. 3D, Table 2), whereas the ∆recX 352 

∆rarA strain was slightly more sensitive to MMS than the single ∆recX mutant strain (Fig. 3D, Table 353 

2). Thus, while the rarA deletion has a suppressor phenotype to high H2O2 concentrations with 354 

regards to recX and recD2 deletions, ∆recX ∆rarA cells show higher sensitity to MMS treatment 355 

than the ∆recX control (Fig. 3D). Interestingly, RarA dynamics decreased in the ∆recX strain (RarA 356 

was more stronlgy bound to DNA than in wt cells), and the opposite behaviour was observed in the 357 

∆recO or recF15 backgrounds (16). Thus, there is a strong connection between RecX and RarA in 358 

a genetic and cell biological aspect. 359 

The threshold for maximal RecA levels after DNA damage is increased in ∆rarA cells 360 

The previous results suggest that RarA has two roles: it may protect DNA from deleterious action 361 

of recombination proteins, and additionally it may work as a RecA accesory protein. In vitro, B. 362 

subtilis RecA·ATP cannot nucleate onto SsbA coated ssDNA, and cannot catalyze DNA strand 363 

exchange between circular ssDNA and linear duplex in the absence of accessory factors (52, 58, 364 

59). Thus, RecA activity is regulated by accessory proteins (28). Accessory factors can be divided 365 

into two general groups: mediators that act before and the modulators that act during homology 366 

search and the DNA strand exchange reaction (presynaptic step) (27, 28). Mediators and modulators 367 

can be further divided into two classes, acting positively or negatively on RecA nucleation and/or 368 

filament growth (60). The mediators and modulators are partially conserved between B. subtilis and 369 

the genetically distant E. coli. For example, DinI, which antagonizes the role of RecX, and RdgC, 370 

which inhibits RecA-dependent LexA autocleavage, are missing in B. subtilis cells. Also different 371 

from E. coli, none of the B. subtilis mediators and modulators are part of the SOS response (27, 61). 372 
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Damages in the DNA template block DNA replication in a concentration dependent manner, 373 

leading to extended ssDNA regions coated by SsbA. B. subtilis RecA·ATP acts as a sensor of 374 

excessive ssDNA, and with the help of mediators, it assembles onto the SsbA-coated ssDNA to 375 

generate RecA* (a right-handed RecA·ATP nucleoprotein filament) that conducts all the catalytic 376 

steps of HR (23, 53, 54)), with the help of the RecF, RecX and RecU modulators (23, 53, 54). Then, 377 

different dynamic RecA* filaments chaperone the LexA transcriptional repressor, and facilitate its 378 

auto-cleavage (62), thereby de-repressing ~33 genes (recA among them) (61), and activating the 379 

SOS response (63). A more general RecA-dependent DNA damage response is triggered following 380 

MMC-induced replication arrest, with ~140 genes showing altered expression, including LexA-381 

dependent (e.g., ruvA gene) and LexA-independent (e.g., recN gene) genes (64, 65). 382 

Exponentially growing cells were estimated to contain ~4,800 RecA monomers/CFU as judged 383 

by Western blot (Fig. 4A) and by integrated mass spectrometry and 2-D gel-based proteomics 384 

analyses (66). This is good agreement with the literature (23, 65). In rec+ cells, RecA reached its 385 

maximal level of expression at ~0.6 µM MMC, and its maximal induction caused a ~5-fold increase 386 

to 26,000 ± 1,000 RecA/CFU (Fig. 4A), similar to what was shown before (26,000 ± 1,000) in the 387 

wt as well as in the ∆lexA background (23, 65), suggesting that this MMC concentration provides 388 

the DNA damage threshold necessary to fully de-repress RecA expression. Under similar 389 

experimental conditions, recA promoter utilization increased 6- to 10-fold (67). For comparison, 390 

undamaged E. coli cells have 7,000 - 15,000 RecA monomers/cell and these levels increase to 391 

~100,000 RecA/cell upon DNA damage (68). When MMC was replaced H2O2, similar RecA 392 

expression levels were observed, but here the correlation between RecA accumulation and H2O2 393 

concentrations were less pronounced (65). 394 

Two different outcomes can be envisioned upon addition of increasing MMC concentrations in 395 

the absence of a RecA mediator or modulator. First, in the absence of a mediator or a positive 396 
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modulator, a negative RecA modulator will promote a net RecA filament disassembly, with 397 

subsequent reduction in the probability of LexA repressor autocleavage. Thus, a higher MMC dose 398 

should be required to reach maximal RecA expression levels. Secondly, in the absence of negative 399 

modulators, the positive mediators and/or modulators will facilitate RecA filament assembly, so that 400 

the probabilities of RecA filament increase as well as the interaction with LexA. Thus, a lower dose 401 

of DNA damage should be sufficient for RecA to stimulate LexA auto-cleavage, so maximal RecA 402 

levels are obtained at lower MMC doses in the absence of negative regulators. For example, in the 403 

absence of the positive modulator RecF, an MMC dose higher than the one needed in the rec+ control 404 

was required to maximal RecA expression levels, but in the absence of negative modulator RecX, a 405 

lower MMC dose was sufficient (Fig. 4A) (23, 55). 406 

We then tested whether RarA contributes to RecA nucleoprotein filament formation and 407 

compared its RecA levels with that in the absence of RecO (positive mediator) or RecF (positive 408 

modulator). In uninduced DrarA, DrecF15 or DrecO cells, RecA levels were maintained at a similar 409 

basal level estimated to be 4,600 ± 1,200 RecA monomers/CFU during mid-log phase of cell growth 410 

(Fig. 4A). The absence of RarA reduced maximal RecA levelsn (from ~26,000 to 16,000 ± 900 411 

RecA/CFU) that were reached at ~0.75 µM MMC, and did not barely change at  1.5 µM MMC (Fig. 412 

4A). Similarly, a higher MMC dose is necessary to facilitate maximal RecA expression in cells 413 

impaired in the RecF modulator, but no increase is observed in cells lacking RecO (Fig. 4A) (23). 414 

Because RarA and RecO both interacts with SsbA rather than with RecA (18), it is unlike that RarA 415 

binds to the RecA filament and competes with LexA binding, preventing its autocleavage. Thus, we 416 

can exclude this alternative explanation for a higher MMC dose required for maximal RecA 417 

expression levels, suggesting that RarA is a true mediator or modulator of RecA, and that it faciliates 418 

and/or stabilises RecA filaments onto ssDNA. 419 
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RarA is required for efficient RecA filament formation in vivo 420 

To analyse whether RarA participates in RecA nucleation or facilitates RecA filament growth, we 421 

used a functional RecA-mVenus (mVenus is a variant of fluorescent protein YFP), for the 422 

visualization of RecA filaments (termed “threads”) in live cells. The C-terminal fusion was 423 

integrated at the original gene locus, such that the fusion is the sole source of RecA expresed in 424 

cells, under the control of the original promoter. The RecA-mVenus fusion is repair proficient, as 425 

the RecA-mVenus strain was as viable as wild type cells after induction of DNA damage, in contrast 426 

to the highly sensitive recA deletion strain. RecA-mVenus changed from a localization pattern 427 

throughout the cells (“diffuse”) or at discrete spots to form striking filemantous structures upon 428 

induction of DNA damage (Fig. 5). These filamantous structures have been described before (69) 429 

and were termed “threads”, because it is still unclear if these structures correspond to RecA-ssDNA 430 

observed in vitro. Although evidence for this notion has been described (70), we will maintain the 431 

term “threads” to describe the structures observed by epifluorescence microscopy. Formation of 432 

RecA threads was maximal 40 min after induction of DNA damage, and thereafter, threads 433 

dissipated in favour of the diffuse or spot-lioke localization seen in the absence of DNA damage 434 

(Fig. 5). Strikingly, even at 40 min after addition of H2O2, DrarA mutant cells only showed the RecA 435 

patch- or spot-like structures that occasionally had short filamentous extensions (Fig. 6A). The 436 

failure to form discrete RecA threads can be most conveniently seen in the demographs (Fig. 6B), 437 

which do not reflect different levels of RecA-mVenus, but visualize the presence or absence of 438 

sharply contrasted fluorescent structures, i.e. RecA threads. In order to follow the dynamics of 439 

formation of RecA threads, we scored the number of cells containing diffusely localized RecA, 440 

RecA spots or RecA threads, during exponential growth (no damage) or in 10 min intervals 441 

following damage induction. Fig. 6C shows that while less than 10% of exponentially growing cells 442 
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contained visible RecA threads or spots (no damage), ~65% of cells contained RecA threads and 443 

~15% RecA spots as early as 20 min after addition of H2O2, which declined thereafter back towards 444 

the pattern seen in untreated cells. In stark contrast, only a maximum of ~15% of DrarA cells 445 

contained RecA threads, but ~60% RecA spots only. Assuming that the accumulation of RecA into 446 

spots represents RecA loading events onto ssDNA, and the formation of threads extended filament 447 

formation, we can propose that RarA plays an important role in the formation of RecA threads by 448 

promoting the extension of filaments, stabilizing the RecA nucleprptein filament or by 449 

downregulating the activity of negative modulators. Thus, RarA plays a dual role during HR, in 450 

addition to its activity in replication re-initiation (15), it also strongly affects the formation of RecA 451 

threads, which have been shown to be the active form of RecA during HR (69). 452 

RarA counteracts the action of RecU and RecX modulators 453 

Previously, it has been shown that inactivation of recX reversed the effect of the recF15 mutation 454 

with regard to the level of RecA, with RecA levels comparable to rec+ cells (23). We favour the 455 

view that RarA acts as an antagonizer of RecX and/or of RecU. In the absence of MMC, RecA levels 456 

were estimated to be 4,600 ± 1,200 RecA monomers/CFU in DrecU cells (Fig. 4A). As expected for 457 

a negative modulator, a significant net RecA accumulation was observed upon exposure to low 458 

MMC concentrations in DrecU cells. As low as 0.07 µM MMC already increased RecA levels, and 459 

the maximal level of RecA accumulation was reached at ~0.3 µM MMC (26,000 ± 1,100 460 

RecA/CFU) (Fig. 4A). Similar results were observed in the absence of the negative modulator RecX 461 

(Fig. 4A) (23, 55). To test whether RarA may antagonize the action of RecX or RecU, the expression 462 

levels of RecA were measured in DrecX DrarA or DrecU DrarA cells. The basal level of RecA in 463 

the DrecU DrarA and DrecX DrarA strains was slightly lower than in the rec+ cells (~4,100 RecA 464 
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monomers/CFU) (Fig. 4B). In the presence of increasing MMC, RecA expression in DrecU DrarA 465 

or DrecX DrarA cells was similar to rec+ cells up to 0.15 µM MMC, but no further increase was 466 

observed at higher MMC concentrations (Fig. 4B). These results show that the absence of RarA 467 

partially counteracted the effect of the absence of RecU or RecX, and it reduced the maximal rate 468 

of RecA accumulation in DrecU DrarA (10,000 ± 1,200 RecA /CFU) or DrecX DrarA (8,400 ± 900 469 

RecA /CFU) cells (Fig. 4A-B), suggesting that the absence of RarA counteracts the inactivation of 470 

recU or recX. This is consistent with the observation that RarA focus formation and its dymanic 471 

interaction with RecO and RecF differs from those with RecX; foci formation observed in the latter 472 

was decreased while in the other two mutant strains it was enhanced compared to wt cells, and 473 

additionally, it occurred earlier with regard to damage induction. This may be related to the 474 

formation of RecA-ssDNA nucleoprotein filaments, which is facilitated by RecF (16). 475 

RarA acts as a positive contributor to RecA filament formation 476 

To test whether RarA works as a positive modulator of RecA, its expression levels were measured 477 

upon exposing recF15 DrarA cells to increasing MMC concentrations (Fig. 4B). The RecA basal 478 

level of recF15 DrarA cells was slightly lower than in the rec+ cells (~4,100 ± 900 RecA 479 

monomers/CFU) (Fig. 4B). In the double mutant background increasing concentration of MMC 480 

failed to stimulate RecA expression (~3,900 RecA/CFU) above the RecA basal levels (Fig. 4B), 481 

suggesting that RecF and RarA might work as a alternative positive modulators. In the absence of 482 

both RarA and RecF modulators, RecA can nucleate onto SsbA-coated ssDNA by the action of 483 

RecO, but these short filaments are likely destabilized by RecX and/or RecU. 484 
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The estimation of the RecA basal level in the DrecO DrarA strain generated uncertainties (~3200 485 

± 1900 RecA/estimated cell) due to the low viability of the DrecO DrarA strain (see Fig. 1B). The 486 

strain was not further analyzed. 487 

Conclusions 488 

Genetic analyses reveal that RarA acts in the context of arrested replication forks in conjunction 489 

with a network of proteins that affect the activity of the RecA recombinase. Our work indicate that 490 

RarA prevents uncontrolled DNA end resection and processing of stalled replication forks, with 491 

subsequent fork reversion by the action of branch migration translocases (Fig. 2A-B and 3A-B). 492 

Most importantly, we show that RarA positively regulates RecA filament extension, and 493 

apparently counteracts the role of the negative RecA modulators. The rarA gene is epistatic to recO 494 

or recF in response to DNA damage. There is a genetic interaction between rarA and recX and recU 495 

because inactivation of recU or recX partially suppresses the defect of DrarA gene in response to 496 

H2O2-induced DNA damage, but rarA is not epistatic to recX in response to MMS-induced DNA 497 

damage (Fig 2B and D and 3B and D). These data are consistent with single molecule tracking 498 

suggesting that one of the RarA functions is related to RecA and its accessory proteins (16). It has 499 

been proposed that dynamic interactions of RarA with RecO and RecF differ from those with RecX 500 

and RecU (16). When DNA is damaged, the RecA threads persist for a longer time in the DrecX 501 

cells (23), but there is a reduced number of RecA threads persistent in the DrarA cells (Fig. 5C). We 502 

propose that RarA contributes to RecA filament extension in concert with the positive RecF 503 

modulator, and both might counteract the role of the negative modulators RecX and RecU that 504 

promote RecA filament disassembly, in order to protect stalled forks and prevent their degradation. 505 

Our data are consitent with the observation that downregulation of FBH1, which is responsible for 506 

the removal of RAD51 from chromatin, can compensate for loss of WRNIP1 activity, reinforcing 507 
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the hypothesis of a possible function of WRNIP1 in stabilizing RAD51 upon a direct protein-protein 508 

interaction (13). Like eukaryotic WRNIP1 whose absence leads to extensive degradation of nascent 509 

DNA strands (13), inactivation of rarA renders cells very sensitive to to H2O2-induced lesion, but 510 

deletion of DNA end resection pathways partially suppresses the DNA repair defect (Fig. 2A and 511 

3A). Our data thus show that there are strong parallels between eu- and prokaryotic RarA-type 512 

proteins, and increase knowledge on the function of bacterial RarA at a molecular level. It will be 513 

interesting to analyse if RarA directly interacts with RecA, or via a RecO-SsbA-RarA interaction 514 

(see Introduction). 515 

  516 
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Figures 723 

Figure 1. Growth defects of the ∆rarA ∆recO and ∆rarA ∆recA strains. (A and B) Cells were grown 724 

in NB to reach exponential phase (OD560=0.4) serially diluted, plated on NB agar, incubated ON 725 

and counted as CFU. (C) Cells were grown in NB to reach exponential phase (OD560=0.4). The cells 726 

were stained with SYTO 9 (green bar) and PI (red bar) to count the number of live and dead cells 727 

respectively. Percentage of SYTO 9- and PI-stained cells are indicated. 100% corresponds to the 728 

sum of green and red cells. The results are the average of at least three independent experiments and 729 

standard errors of the mean are indicated. 730 

 731 

Figure 2. Acute viability assays of ∆rarA double mutant strains upon exposure to H2O2. Lack of 732 

RarA in cells impaired in end resection (A), in processing of recombination intermediates (B), in 733 

RecA accessory proteins (C-D) or in ∆recA context (D). Cells were grown to reach exponential 734 

phase (OD560=0.4), exposed to different concentrations of H2O2 for 15 min prior to serial dilutions. 735 

Cells were counted as CFU after ON growth, and results are plotted dividing these CFUs by the 736 

CFU obtained in untreated cells. The results are the average of at least three independent experiments 737 

and standard errors of the mean are indicated. 738 

 739 

Figure 3. Acute viability assays of ∆rarA double mutant strains upon exposed to MMS. Lack of 740 

RarA in cells impaired in end resection (A), processing of recombination intermediates (B), in RecA 741 

accessory proteins (C-D) or lack RecA (D). Cells were grown to reach exponential phase 742 

(OD560=0.4), exposed to different concentrations of MMS for 15 min prior to serial dilutions. Cells 743 

were counted as CFU after ON growth, and results are plotted dividing these CFUs by the CFU 744 
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obtained in untreated cells. The results are the average of at least three independent experiments and 745 

standard errors of the mean are indicated 746 

 747 

Figure 4. RecA protein accumulation upon SOS induction in different genetic backgrounds. 748 

Exponential grown wt (rec+), DrecX, DrecU, recF15, DrecO and DrarA cells (A) or wt, DrecX DrarA, 749 

DrecU DrarA and recF15 DrarA cells (B) were exposed to the indicated concentrations of MMC for 750 

30 min. Then cells were collected, lysed and equivalent protein amounts subjected to 10% SDS-751 

PAGE, followed by immunoblot transfer. The number of RecA molecules/CFU are derived from a 752 

standard curve of known RecA concentrations and are the average of at least three independent 753 

experiments and standard errors of the mean are indicated. 754 

 755 

Figure. 5. Time course of RecA assembly into discrete spot and extended filamentous structures 756 

called “threads” after 0.5 mM H2O2 addition. Subcellular localization of RecA-mV after 10 min 757 

intervals after H2O2 treatment in wt cells. Scale bars 5 µm. 758 

 759 

Figure. 6. Epifluorescence microscopy showing that RecA assembly into threads is dependent on 760 

RarA. (A) Subcellular localization of RecA-mV 40 min after treatment with 0.5 mM H2O2, in wt 761 

(rec+) and in DrarA mutant cells. Scale bars 5 µm. (B) Demographs of B. subtillis cells, 762 

demonstrating the localization of RecA-mV to the middle regions. Cells were aligned and ordered 763 

according to size. The fluorescence profiles represent the mean fluorescence values along the medial 764 

axis after background subtraction and normalization such that the maximum fluorescence of each 765 

cell is equal. C) Quantitative analysis of RecA thread formation in wt or rarA mutant cells. 766 
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Tables 768 

Table 1. Bacillus subtilis strains used 769 

Strains Relevant 

genotypea 

Source Strains Relevant 

genotypea 

Source 

BG214    rec+ Lab. strain BG1067 + DrarA (16) 

BG190 + ∆recA (71) BG1555 + ∆recA DrarA (16) 

BG439 + ∆recO (56) BG1433 + ∆recO DrarA (16) 

BG129 + recF15 (22) BG1055 + recF15 DrarA (16) 

BG1455 + DrecD2 (32) BG1421 + DrecD2 DrarA (16) 

BG1065 + ∆recX (23) BG1371 + ∆recX DrarA (16) 

BG1337 + ∆addAB (40) BG1107 + ∆addAB DrarA (16) 

BG675 + ∆recJ (40) BG1059 + ∆recJ DrarA (16) 

BG705 + ∆recQ (40) BG1575 + ∆recQ DrarA (16) 

BG425 + ∆recS (40) BG1563 + ∆recS DrarA (16) 

BG855 + ∆recU (72) BG1083 + ∆recU DrarA (16) 

BG1131 + ∆recG (21) BG1103 + ∆recG DrarA (16) 

BG703 + ∆ruvAB (33) BG1351 + ∆ruvAB DrarA (16) 

BG1245 + ∆radA (31) BG1373 + ∆radA DrarA (16) 

PG5142 + recA-yfpb This work PG5143 + recA-yfp DrarA This work 

aAll strains are derivatives of B. subtilis BG214 (trpCE metA5 amyE1 ytsJ1 rsbV37 xre1 xkdA1 770 

attSPß attICEBs1). bRecA-mVenus is a variant of the monomeric RecA-Yfp protein. 771 
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Table 2. LD99 to H2O2 and MMS of different Bacillus subtilis mutant strains 773 

Relevant 

genotype 

LD99 to H2O2a 

in mM 

LD99 to MMSa 

in mM 

Relevant 

genotype 

LD99 to H2O2a 

in mM 

LD99 to MMSa 

in mM 

rec+ >6.0 41.2 DrarA   0.38 >50 

∆addAB   0.46    0.8 ∆addAB DrarA 4.5 44.0 

∆recJ 4.3    2.2 ∆recJ DrarA   0.47   4.6 

∆recQ 2.4    2.4 ∆recQ DrarA 1.9   4.7 

∆recS 4.4   2.3 ∆recS,DrarA 2.0   4.8 

∆recU   0.45   1.7 ∆recU DrarA   0.47 21.3 

∆recG   0.44   2.2 ∆recG DrarA   0.53  4.8 

∆ruvAB   0.64   4.0 ∆ruvAB DrarA 1.0  5.0 

∆radA 2.0 17.1 ∆radA DrarA 4.7 36.8 

∆recO   0.37   0.6 ∆recO DrarA   0.37   0.9 

recF15   0.37   0.7 recF15 DrarA   0.37   0.8 

DrecD2 1.9 36.6 DrecD2, DrarA   0.52 43.0 

∆recX 0.8 10.6 ∆recX DrarA   0.40   7.6 

aThe acute lethal dose to H2O2 or MMS that reduced cells survival by 99% (LD99) upon 15 min exposure. 774 
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