Nitride tuning of transition metal perovskites

Cite as: APL Mater. **8**, 020903 (2020); https://doi.org/10.1063/1.5140056 Submitted: 25 November 2019 . Accepted: 21 January 2020 . Published Online: 10 February 2020

Amparo Fuertes

COLLECTIONS

Paper published as part of the special topic on New Perspectives on Emerging Advanced Materials for Sustainability

Note: This paper is part of the Special Issue on New Perspectives on Emerging Advanced Materials for Sustainability.

ARTICLES YOU MAY BE INTERESTED IN

Recent progress on the electronic structure, defect, and doping properties of Ga₂O₃ APL Materials **8**, 020906 (2020); https://doi.org/10.1063/1.5142999

Mechanism of Mn emission: Energy transfer vs charge transfer dynamics in Mn-doped quantum dots APL Materials **8**, 020901 (2020); https://doi.org/10.1063/1.5140888

Superlattices of covalently cross-linked 2D materials for the hydrogen evolution reaction APL Materials **8**, 020902 (2020); https://doi.org/10.1063/1.5135340

ORDER PRINT EDITION

AIP Conference Proceedings

The 18th International Conference on Positron Annihilation

APL Mater. 8, 020903 (2020); https://doi.org/10.1063/1.5140056 © 2020 Author(s).

Nitride tuning of transition metal perovskites

Cite as: APL Mater. 8, 020903 (2020); doi: 10.1063/1.5140056 Submitted: 25 November 2019 • Accepted: 21 January 2020 • Published Online: 10 February 2020

Amparo Fuertes^{a)}

AFFILIATIONS

Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, 08193 Bellaterra, Spain

Note: This paper is part of the Special Issue on New Perspectives on Emerging Advanced Materials for Sustainability. ^{a)}Author to whom correspondence should be addressed: amparo.fuertes@icmab.es

ABSTRACT

Transition metal perovskite oxynitrides are emergent materials for applications as visible light-active photocatalysts for water splitting and CO₂ reduction and as thermoelectric, dielectric, and magnetic materials. They have been reported for early transition metals Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, and W in the B sites and alkaline earth or rare earth metals in the A sites. Nitrogen is less electronegative and more polarizable than oxygen, and nitride is more charged than oxide. As a consequence, the introduction of nitride in an oxidic perovskite has important effects on the covalency of bonds, the energy of electronic levels, and the valence states of the cations. This work discusses fundamental and recent developments of perovskite oxynitrides of transition metals of groups 4, 5, and 6 as photocatalytic and electronic materials, focusing on the important aspects of synthetic methodologies, crystal structures, and anion ordering, in connection with the observed physical and chemical properties. Some examples of compounds with late transition metals and complex structures such as layered and double perovskites are also discussed.

© 2020 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/1.5140056

I. INTRODUCTION

Transition metal perovskite oxides are of permanent interest because they show innumerable important properties and applications. Their chemical diversity may be expanded by modifying the anion composition with the introduction of nitride that shows electronic and crystal chemical characteristics close to oxide.1 Nitrogen is less electronegative and more polarizable than oxygen, and nitride is more charged than oxide. These crucial differences between the two anions are the important factors affecting the chemical and physical properties of perovskite oxynitrides $ABO_{3-x}N_x$ (A = alkaline earth or rare earth metal; B = transition metal). They have been investigated for several important applications, more intensively as water splitting photocatalysts active under visible light for hydrogen generation² and as materials with high dielectric constants.³ Perovskite oxynitrides also show remarkable applications as non-toxic pigments⁴ and as thermoelectric,⁵ magnetic,⁶ and ferroelectric materials.7

When substituting oxide in a semiconductor, nitride introduces 2p states at the top of the valence band, decreasing the bandgap and affecting, for instance, the photocatalytic activity that shifts

to the visible light.⁹ The higher charge of N^{3-} increases the ionic polarizability and the dielectric constant. The possibility of formation of permanent electric dipoles⁸ is affected by the order of the two anions,¹⁰⁻¹³ which also has an impact on the bandgap¹⁴ and other relevant properties. To compensate the -3 charge of nitride, the oxidation states of the transition metals have to be high. They should be stable in the reducing conditions under NH₃ or at high temperatures under N₂ flow that are used for the synthesis of oxynitrides. These two requirements have directed the majority of explored compositions of perovskite oxynitrides to early transition metals from groups 4, 5, and 6, which have stable high valence states and show relative low electronegativities.

The most common method for the synthesis of perovskite oxynitrides is ammonolysis of ternary oxide precursors.^{15,16} The direct solid state reaction under NH_3 between individual metal oxides or salts has been used for perovskites containing alkaline earth cations, and also high temperature reactions between nitrides, oxynitrides, and oxides under N_2 have been performed.¹⁷

Research in perovskite oxynitrides was initiated in the 1970s by Marchand and co-workers, who reported the first example of layered Nd₂AlO₃N¹⁸ with K₂NiF₄-type structure and, later, the alkaline earth tantalum and niobium perovskites BaTaO₂N, BaNbO₂N, SrTaO₂N, and CaTaO₂N.^{15,19} The interest in the field was stimulated in 2000 with the publication in *Nature* by Jansen and Letschert⁴ of new non-toxic red-yellow pigments in the solid solution Ca_{1-x}La_xTaO_{2-x}N_{1+x} and, later, with other early reports from different groups of new compounds with additional applications.^{3,20–22} Research during the first decade after these initial reports was reviewed by Ebbinghaus *et al.* in 2010²³ and Fuertes in 2012.²⁴ This perspective aims at giving a present overview of the reported compounds in the three groups of transition metals, identifying new challenges, and focusing on relevant aspects and progress in the synthesis pathways, important structural features such as anion order, and chemical and physical properties.

II. TITANIUM, ZIRCONIUM, AND HAFNIUM COMPOUNDS

A. Titanium

Within the group 4, the titanium compounds are the most investigated because of their photocatalytic activity and dielectric properties. LaTiO₂N and NdTiO₂N were first prepared by Marchand *et al.* by ammonolysis at 900 °C of $Ln_2Ti_2O_7$ (Ln = La, Nd).²⁵ For Ln = La, another method treating this oxide and urea under N₂ has also been suggested.²⁶ The crystal structure of the lanthanum compound was initially reported to be triclinic I-1¹⁷ from the refinement of neutron powder diffraction data. Further investigation on a highly crystalline sample prepared by a flux method indicated the orthorhombic symmetry Imma, using electron diffraction and refinement from synchrotron and neutron powder diffraction data.²⁷ The distribution of nitride and oxide was found totally disordered in the two studies, and more recently as partially ordered²⁸ with occupancies in agreement with a *cis* configuration of nitrides as suggested for SrTaO2N, SrNbO2N, and other perovskite oxynitrides^{11,29,30} (Fig. 1). Recent density functional theory (DFT) calculations have indicated that whereas a N-cis configuration is more stable in bulk LaTiO₂N, a non-polar trans arrangement of nitrides is preferred at the (001) surface of this perovskite.

LaTiO₂N with a bandgap of 2.1 eV and an absorption edge of 600 nm is one of the most studied perovskite oxynitrides since the first report by Domen et al. on its ability to split water under visible light in the presence of sacrificial agents.^{32–34} It showed a low apparent quantum yield that was improved significantly using CoO_x as co-catalyst.^{35,36} The photocatalytic activity improved in samples obtained by treatment of La2Ti2O7 crystals in NH3 using different fluxes.³⁷ LaTiO₂N is also active as photocatalyst under visible light for the reduction of CO₂ into CH₄ in the presence of H₂O.³⁸ As a dielectric material, it has been investigated in the form of ceramics and thin films. The films were grown by radio frequency reactive magnetron sputtering on Pt/Si/SiO₂/Si³ or Nb:SrTiO₃⁴⁰ substrates using LaTiO₂N or La₂Ti₂O₇ targets, respectively. The measured dielectric constant ε_r was 750 for a ceramic sample,²⁸ whereas it was 325 for a thin film deposited on Nb-SrTiO₃.4

FIG. 1. Crystal structure of the perovskite $SrTaO_2N^{29}$ projected along (a) [001] and (b) [010] directions of the superstructure $2a_p \times 2a_p \times 2a_p$ of the perovskite subcell (of parameter a_p) showing N/O occupancies determined by neutron diffraction. Oxygen, nitrogen, strontium, and tantalum atoms are represented as white, black, golden, and blue spheres, respectively. $SrTaO_2N$ has an apparent l4/mcm space group at room temperature because of tilting, but N/O order lowers the tetragonal symmetry to Fmmm. (c) N/O order in ABO_2N perovskite oxynitrides showing disordered *cis* N-M-N zig-zag chains (blue line) confined in planes.¹¹

Highly sintered ceramics of this perovskite cannot be obtained because it decomposes completely at 1100 °C under N₂ into a mixture of LaTiO₃, La₂O₃, and TiN.⁴¹ Using DFT calculations, spontaneous polarization has been predicted in thin films, induced by epitaxial strain on the anion order.⁴²

The compounds $LnTiO_2N$ with Ln = Nd, Ce, Pr,^{43,44} and Eu⁴⁵ have also been also investigated for their photocatalytic and electronic properties. The four oxynitrides show the orthorhombic GdFeO₃-type structure with tilting system $a^+b^-b^-$ and space group Pnma, with a disordered distribution of nitride and oxide.^{22,43} In the Ce and Pr compounds, short range anion order has been suggested from electron diffraction experiments. NdTiO₂N, CeTiO₂N, and PrTiO₂N show bandgaps in the range of 2.0-2.1 eV, close to LaTiO₂N. The photocatalytic activity in water oxidation of NdTiO2N in the presence of a sacrificial agent is similar to that of the lanthanum compound. However, the Pr and Ce compounds show lower activities, which is ascribed to the presence of localized f-orbital states in the bandgap or near the valence band maximum that act as electron-hole recombination centers.⁴⁴ EuTiO₂N can be prepared from the oxyhydride EuTiO_{2.82}H_{0.18} by H⁻/N³⁻ exchange under NH₃.⁴⁵ Magnetic measurements indicate that in this oxynitride europium shows the oxidation state +3, in contrast with perovskites of other early transition metals such as Eu⁺²TaO₂N, Eu⁺²NbO₂N,⁶ and Eu⁺²WON₂.⁴ A similar H⁻/N³⁻ topochemical exchange synthetic approach has been used to introduce nitride in the perovskites BaTiO₃

FIG. 2. (a) Diffuse reflectance spectra, bandgaps determined using the Kubelka–Munk function, and powder photographs of LaHfO₂N, NdHfO₂N, SmHfO₂N, and LaZrO₂N.⁴⁹ (b) Time courses of H₂ or O₂ evolution from aqueous methanol solution or aqueous AgNO₃ solution, respectively, on (a) LaHfO₂N, (b) NdHfO₂N, and (c) LaZrO₂N sample under light irradiation ($\lambda > 300$ nm for LnHfO₂N samples or $\lambda > 400$ nm for LaZrO₂N). (a) and (b) are adapted and reproduced with permission from Black *et al.*, Chem. Commun. **54**, 1525 (2018). Copyright 2018 Royal Society of Chemistry.

and SrTiO₃.⁷ Ferroelectric BaTiO_{2.4}N_{0.4} has been prepared by ammonolysis of BaTiO_{3-x}H_x, and oxy-hydride-nitrides have been obtained as intermediate products starting either with BaTiO_{3-x}H_x or SrTiO_{3-x}H_x.

B. Zirconium and hafnium

LaZrO₂N was prepared for the first time by ammonolysis of amorphous La₂Zr₂O₇ during several weeks at 950 °C.²² The same perovskite has been more recently synthesized in N2 by reaction between La₂O₃, ZrN, and ZrO₂ at 1500 °C during 25 h.⁴⁷ Zirconium perovskites of smaller rare earths such as Pr, Nd, and Sm could not be prepared by similar synthesis methods, but they can be accessed under 2-3 GPa pressure at 1200-1500 °C starting with a mixture of Zr₂N₂O and Ln₂O₃.⁴⁸ All zirconium rare earth perovskites adopt the distorted GdFeO3-type structure, and a total disorder of anions has been reported for LaZrO₂N. The isostructural LnHfO₂N compounds with Ln = La, Pr, and Sm are prepared at room pressure at 1500 °C treating a mixture of Hf₂N₂O and Ln₂O₃ for 3 h.47 As reported for LaZrO₂N, a totally disordered distribution of N and O has been found from Rietveld refinement of neutron powder diffraction data. LaZrO2N, LaHfO2N, PrHfO2N, and SmHfO2N are semiconductors with bandgaps of 2.80 eV, 3.35 eV, 3.40 eV,

and 2.85 eV, respectively, determined from diffuse reflectance spectroscopy [Fig. 2(a)]. ⁴⁹ These are reduced by 2 eV or more with respect to the oxidic perovskites SrHfO₃, BaHfO₃, or BaZrO₃ that show bandgaps of 5.7 eV, 5.8 eV, and 5 eV, respectively, and are larger by 0.7 eV or more as compared to LaTiO₂N. The bandgap increase in $LnBO_2N$ (Ln = lanthanide) perovskites within the 4 group of transition metals from 3d to 5d row is due to the increased potential of the empty d orbitals that mainly contribute to the conduction bands. The Zr and Hf compounds show photocatalytic activity in water oxidation or reduction in the presence of cocatalysts. LaHfO₂N and NdHfO₂N have adequate reduction and oxidation potentials to perform the overall water splitting reaction, and LaZrO₂N has the ability to oxidize water under visible light although it undergoes self-oxidative decomposition evolving N_2^{47} [Fig. 2(b)]. In contrast with LaTiO₂N, the measured dielectric constants of zirconium and hafnium perovskite oxynitrides are relatively low. At room temperature, ϵ_r was 30 for LaZrO_2N and LaHfO₂N, 16 for NdHfO₂N, and 28 for SmHfO₂N (Fig. 3). These values are similar to those for the oxidic perovskites BaHfO₃, SrHfO₃, and CaHfO₃ ($\varepsilon_r = 24.2$, 23.5, and 21.4, respectively) and suggest potential applications of these oxynitrides in memory capacitors.

FIG. 3. Temperature dependence of dielectric permittivities of (a) LaHfO₂N, (b) NdHfO₂N, (c) SmHfO₂N, and (d) LaZrO₂N measured at 100 kHz. Reproduced with permission from Black *et al.*, Chem. Commun. **54**, 1525 (2018). Copyright 2018 Royal Society of Chemistry.

III. VANADIUM, NIOBIUM, AND TANTALUM COMPOUNDS

A. Vanadium

Vanadium oxynitride perovskites have been investigated for their electrical and magnetic properties. LaVO_{3-x}N_x samples (0 < x< 0.9) were first prepared by Marchand *et al.* by treatment of LaVO₄ under NH₃,⁵¹ and perovskites of Pr and Nd were further synthesized using a similar synthetic approach.^{30,52} The nitridation of LnVO₄ compounds proceeds through a first step of reduction to LaVO₃ followed by the incorporation of nitride in this perovskite with concomitant oxidation of V³⁺ to V⁴⁺. LnVO_{3-x}N_x (Ln = La, Pr, Nd) with x up to 1 show the GdFeO₃ type structure at room temperature. $NdVO_2N$ and $PrVO_{2.24}N_{0.76}$ with vanadium in d¹ and d¹/d² configurations, respectively, show partial anion order consistent with *cis*-VN₂ chains similarly to perovskite oxynitrides of d⁰ transition metals, indicating that this distribution is robust to electron doping and to the disorder created by non-stoichiometry. LaVO_{2.09}N_{0.91} and PrVO_{2.24}N_{0.76} show spin freezing transitions at low temperatures, and NdVO₂N is paramagnetic. Epitaxial thin films of LaVO_{3-x}N_x have been grown by plasma-assisted pulsed laser deposition.⁵³ They are highly crystalline and electrically insulating which is suggested to be a consequence of carrier localization induced by anion disorder.

B. Niobium and Tantalum

1. Synthesis

Tantalum and niobium perovskites are extensively investigated for their dielectric properties or their photocatalytic activity in water

splitting among other chemical reactions. Alkaline earth oxynitride perovskites were initially prepared by solid state reaction between the carbonates of calcium, strontium, or barium and Nb₂O₅ or Ta₂O₅ at 950–1000 °C under gaseous ammonia.¹⁵ Alternative synthetic approaches have used precursor oxides such as Ca₂Nb₂O₇. Sr₂Nb₂O₇, or SrNbO₃ for treatment at similar temperatures under NH3⁵⁴ or other nitriding agents such as urea.⁵⁵ Synthesis under N2 gas requires higher temperatures, up to 1500 °C, producing highly crystalline materials and sintered ceramics suitable for electrical measurements. TaON, Ta₃N₅, or TaN have been used as reagents, mixed with the alkaline earth carbonate or oxide, for the synthesis of CaTaO₂N, SrTaO₂N, and BaTaO₂N.^{17,56,57} More recently SrNbO₂N has been prepared in similar conditions, starting with a mixture of NbN and SrCO₃.⁵⁸ Large crystals, with sizes up to 10 μ m, have been obtained for Sr and Ba perovskites by ammonothermal synthesis at 627 °C, starting from Nb or Ta and Sr or Ba metals and using NaN₃ and NaOH as mineralizers.⁵⁹ For BaNbO₂N, a self propagating high temperature synthesis method has been recently used, starting with Ba(OH)₂, NbCl₅, and NaNH₂. The reaction took place heating at 225 °C,⁶⁰ and the thermodynamical driving force was the formation of NaCl together with BaNbO₂N. A similar reaction was previously reported for BaTaO₂N at 223 °C although it was not described as explosive.⁶¹ These are the lowest temperatures reported up to now for the synthesis of perovskite oxynitrides.

Rare earth perovskite oxynitrides LnBON₂ with Ln = La, Ce, Pr, Nd, Sm and Gd or EuBO₂N (B = Nb, Ta) are generally prepared by treating the scheelites LnBO₄ under NH₃ at 950 °C.^{6,12,25} Ammonothermal synthesis has also been used, by reacting the metals or their alloys with NaN₃ or NaNH₂ and NaOH at pressures of 100–300 MPa.^{62–65} This method produces crystals with sizes up to 15 μ m.

2. Crystal symmetries and anion order

Some tantalum and niobium oxynitride perovskites look cubic from laboratory x-ray diffraction data, but they show distortions from synchrotron x-ray diffraction, electron diffraction, or neutron diffraction data. BaTaO₂N and BaNbO₂N have only been reported in the ideal cubic structure Pm-3m.⁶⁶ Neutron diffraction data of SrTaO₂N and SrNbO₂N are refined using the space group I4/mcm in the superstructure $\sqrt{2} a_p \times \sqrt{2} a_p \times 2 a_p$ due to ordered rotations of the octahedra,^{17,67,68} and electron diffraction showed symmetry lowering to Fmmm induced by anion order^{11,29} (Fig. 1). The observed anion distribution in both compounds is consistent with a cis configuration of nitrides stabilized by covalency and the formation of disordered zig-zag N-M-N chains as suggested for other perovskite oxynitrides including cubic BaTaO₂N.⁶⁹⁻⁷¹ In the Ba_{1-x}Sr_xTaO₂N series, a sharp crossover from two-dimensional to three-dimensional distribution of cis-TaN chains occurs for x near 0.2 (Fig. 4).

CaTaO₂N with the GdFeO₃ type structure shows N/O distribution similar to SrTaO₂N and SrNbO₂N compounds.⁶⁷ Divalent europium compounds EuTaO₂N and EuNbO₂N show structural distortions similar to SrTaO₂N and SrNbO₂N,⁶ in contrast to the remaining rare earth compounds that show more distorted structures, with different tilting systems and space groups I2/m or Immma for LaTaON₂^{12,29,67} and Pnma for LaNbON₂,⁷²

FIG. 4. Plot of oxygen occupancies from room temperature neutron refinements against x in the $Ba_{1-x}Sr_xTaO_2N$ series for the c-axis anion site. Values for the x = 0–0.2 cubic Pm3m refinements are fixed at 0.67 which averages over the 3D *cis*-TaN chains. Occupancies for the x = 0.4–1 samples are refined against the tetragonal P4/mmm model which averages the 2D *cis*-TaN chains model. Reproduced with permission from Johnston *et al.*, Chem. Commun. **54**, 5245 (2018). Copyright 2018 Royal Society of Chemistry.

CeTaON₂, and PrTaON₂.¹² The anion distributions reported for LaTaON₂ and LaNbON₂ are similar to those found in SrTaO₂N, SrNbO₂N, LaTiO₂N and in vanadium oxynitride perovskites, consistent with a *cis* configuration of nitrides (Fig. 1). Recent DFT studies have shown that anion order has an important effect on the bandgaps and band edge positions of CaTaO₂N and SrTaO₂N, affecting the photocatalytic activity and other properties.^{14,73} Epitaxial strain in thin films of Ca_{1-x}Sr_xTaO₂N has been found to affect the anion order in a recent study performed by a linearly polarized x-ray absorption near-edge structure (XANES) and electron microscopy.⁷⁴

Ruddlesden–Popper^{75,76} perovskite oxynitrides $(AX)(ABX_3)_n$ (X = N, O) have been reported for tantalum and niobium. n = 1 Sr₂TaO₃N⁷⁷ and Sr₂NbO₃N, and n = 2 Sr₃Nb₂O₅N₂²¹ crystallize in space group I4/mmm. For A = rare earth, the only reported examples are n = 2 Eu₃Ta₂N₄O₃, which has been recently prepared by ammonothermal synthesis,⁷⁸ and the related compound Li₂LaTa₂O₆N, that shows lithium with tetrahedral co-ordination in the AX layers.⁷⁹ For n = 1 compounds, neutron diffraction studies show that anions order partially so nitrogen and oxygen occupy the 4c equatorial sites with 50% occupancies, and oxygen prefers the 4e axial positions.^{80,81} This order can be rationalized by Pauling's second crystal rule^{10,82} because the equatorial sites show larger bond strength sums than the axial ones, and it is also consistent with the local *cis* order of nitrides suggested for pseudocubic perovskites.

3. Photocatalytic properties

Extensive investigation on the photocatalytic activity of tantalum and niobium perovskite oxynitrides in water oxidation and reduction has been developed by Domen's group.^{2,34,83} The alkaline earth compounds of Ca, Sr, and Ba show bandgaps between 1.7 eV

(BaNbO₂N) and 2.4 eV (CaTaO₂N), with corresponding absorption edges between 730 nm and 510 nm, respectively.84-Some of these perovskites have adequate potentials for photocatalytic water oxidation and reduction;^{87,88} however, except for CaTaO₂N,⁸⁷ they cannot achieve the overall water splitting. Recent progress has been made in lanthanum based compounds. The complex oxynitride LaMg_{1/3}Ta_{2/3}O₂N, with a cation disordered double perovskite structure, was first reported by Kim and Woodward.⁹⁰ It has been reported as the first example of a overall water splitting photocatalyst active under visible light up to 600 nm^{91,92} and the most promising material with respect to its wide range of usable wavelengths. LaTaON₂ shows a bandgap of 1.9 eV (absorption edge of 640 nm) and can evolve H₂ and O₂ from aqueous solution.⁹³ The H₂ evolution activity is weak, but it can be enhanced in core-shell structures obtained by ammonolysis of LaKNaTaO₅.94

4. Electronic properties

The dielectric properties of tantalum perovskites SrTaO₂N and BaTaO₂N were initially investigated by Marchand *et al.*⁹⁵ and further by Kim *et al.* that reported relative permittivities at room temperatures of 4900 and 2900, respectively.³ Further measurements performed on dense ceramics led lower values of 450 for SrTaO₂N⁹⁶ and 320–620 for BaTaO₂N.⁹⁷ Ferroelectricity in SrTaO₂N has been reported for epitaxial thin films⁹⁸ and in the surface of sintered ceramics post-annealed in NH₃.⁸ Both compounds are centrosymmetric, and the origin of their high dielectric constants or ferroelectricity is under discussion although it is generally ascribed to the presence of local electrical dipoles induced by the anion order in the TaO₄N₂ octahedra.^{69,99}

Analogous divalent europium compounds $EuTaO_2N$ and $EuNbO_2N$ are electrically insulating and show ferromagnetism induced by coupling of europium 7/2 spins.⁶ The niobium compound may show slight nitrogen deficiency which induces giant magnetoresistance as a consequence of coupling between the Eu^{2+} spins and the Nb⁴⁺ carriers.

IV. CHROMIUM, MOLYBDENUM, TUNGSTEN, AND LATER TRANSITION METAL COMPOUNDS

Perovskite oxynitrides of group 6 have been less investigated than for other early transition metals. All of them show nitrogen non-stoichiometry and form solid solutions ABO3-xNx where the transition metal shows mixed valence states of +3/+4 for Cr, +4/+5or +5/+6 for Mo, and +5/+6 for W. Chromium compounds have only been reported for $LnCrO_{3-x}N_x$ with Ln = La, Pr, and Nd and nitrogen contents up to x = 0.59, that have been investigated for their magnetic properties.¹⁰⁰ They are prepared by nitriding LnCrO₄ precursors under NH₃ for long treatment times and high flow rates. The ammonolysis reaction proceeds similarly to that observed for LnVO_{3-x}N_x perovskites, with a first reduction step of LnCrO₄ to poorly nitride LnCrO_{3-x}N_x compounds with chromium mainly in +3 state, followed by increased incorporation of nitride with concomitant oxidation of Cr³⁺ to Cr⁴⁺. LnCrO₃ perovskites crystallize in the GdFeO3 type structure and show antiferromagnetic order of Cr³⁺ spins which varies with the size and 4fⁿ moments of the Ln^{3+} cations.¹⁰¹ The hole doping trough O^{2-}/N^{3-} anion substitution decreases the Néel temperature but less drastically than for cation substitutions of Ln³⁺ by rare earth cations. The larger covalency of

FIG. 5. Cr spin ordering temperatures corrected for lattice effects for doped LnCrO₃ materials [LnCrO_{3-x}N_x (Ln = La, Pr, Nd), La_{1-x}Sr_xCrO₃, and La_{1-x}Ca_xCrO₃] as a function of Cr⁴⁺. Reproduced with permission from Black *et al.*, Chem. Commun. **52**, 4317 (2016). Copyright 2016 Royal Society of Chemistry.

metal-nitride bonds compared to metal-oxide bonds increases the antiferromagnetic interaction between Cr atoms, compensating for the reduction of $T_{\rm C}$ induced by hole doping (Fig. 5).

Molybdenum and tungsten perovskite oxynitrides have been explored for their magnetic and thermoelectric properties and more recently as photocatalysts in several chemical reactions. Molybdenum compounds have only been reported for strontium in the A sites. The treatment in NH₃ at 750–900 °C of SrMoO₄ scheelites produces cubic Pm-3m SrMoO_{3-x}N_x (0.40 $\le x \le 1.27$)^{5,20,102,103} perovskites that have been investigated as thermoelectric materials. Tungsten compounds were first reported by Marchand *et al.*, that prepared tetragonal LnWO_{3-x}N_x perovskites (Ln = La, Nd; x = 2.2, 2.3, 2.4)¹⁰⁴ by treatment of Ln₂W₂O₉ in ammonia at temperatures between 700 °C and 900 °C. These compounds have been recently prepared as thin films¹⁰⁵ by radiofrequency reactive sputtering, using elemental La and W targets and Si substrates. SrWO₂N¹⁰⁶ can be prepared in similar conditions to SrMoO_{3-x}N_x. It shows high stability as photocatalyst in oxygen evolution under visible light, in contrast to the lanthanide perovskites $LnWO_{3-x}N_x$ (Ln = La, Pr, Nd, Eu) that evolve N₂.¹⁰⁷ Highly porous $LaWO_{3-x}N_x$ has been recently reported as a photoelectrocatalyst for water splitting under infrared light, at wavelengths above 780 nm.¹⁰⁸ Pseudocubic $EuWO_{1+x}N_{2-x}$ compounds are prepared by ammonolysis of $Eu_2W_2O_9$ with N contents tuned by the ammonia flow rate and temperature.⁴⁶ They may show europium in +2/+3 oxidation states and tungsten in +5/+6 oxidation states, which leads to different electrical and magnetic properties as a function of the N/O ratio. They order ferromagnetically at 12 K, and colossal magnetoresistances at low temperatures are observed for the least doped sample (x = -0.04).

Double perovskite oxynitrides of tungsten or molybdenum and iron are prepared by topochemical nitridation of the corresponding cation ordered oxides. The ammonolysis of Sr₂FeWO₆ at temperatures between 600 °C and 660 °C produces new antiferromagnetic $\mathrm{Sr}_2\mathrm{FeWO}_{6-x}N_x$ compounds that keep the cation order of the precursor oxide, with $0 < x \le 1$, and Néel temperatures between 37 K and 13 K.¹⁰⁹ A similar synthetic route has been used to investigate the effect of nitride on Sr₂FeMoO₆, an important material that shows metallic conductivity, ferromagnetism, and magnetoresistance at room temperature. The topochemical nitridation of this oxide leads the cation ordered double perovskite oxynitride $Sr_2FeMoO_{4.9}N_{1.1}$ that is ferromagnetic with $T_c\approx 100\ K$ and also shows negative magnetoresistance.¹¹⁰ The two oxynitrides Sr₂FeWO₅N and Sr₂FeMoO_{4.9}N_{1.1} show superstructures of the perovskite subcell with parameters $\sqrt{2} a_p \times \sqrt{2} a_p \times 2 a_p$ and 2 $a_p \times 2$ $a_p \times 2$ $a_p,$ respectively. The tolerance factor increases with nitriding as a consequence of the oxidation of the B cations (Fe^{2+} to Fe^{3+} and Fe^{4+} , and Mo^{5+} to Mo^{6+}), inducing symmetry increasing, from P21/n for Sr2FeWO6 to I4/m for Sr2FeWO5N and from I4/m for Sr₂FeMoO₆ to Fm-3m for Sr₂FeMoO_{4.9}N_{1.1}. The introduction of nitride in Sr₂FeMoO₆ produces changes in the magnetic structure related to the lowering of the Fermi level associated with the oxidation of iron and to carrier localization induced by anion disorder (Fig. 6).

FIG. 6. [(a) and (b)] Schematic band filing of Sr₂FeMoO₆ and [(c) and (d)] Sr₂FeMoO_{4.9}N_{1.1}. In (d), localized states are formed around defect-related potential wells (e.g., nitride sites, Jahn-Teller Fe⁴⁺ ions) that trap electrons, hindering carrier mobility, weakening double exchange ferromagnetic interactions, and canceling long range ordering. Reproduced with permission from Ceravola *et al.*, Chem. Commun. **55**, 3105 (2019). Copyright 2019 Royal Society of Chemistry.

APL Mater. 8, 020903 (2020); doi: 10.1063/1.5140056 © Author(s) 2020

V. CONCLUSIONS AND PROSPECTS

Research on transition metal perovskite oxynitrides has progressed substantially in the last years, triggered by important applications that promoted the search of new compounds and the development of synthetic methods. Intensive explorative work of new photocatalysts in water splitting has been performed, leading to the recent discovery of notable materials such as $LaMg_{1/3}Ta_{2/3}O_2N$, a double perovskite oxynitride with low cation order that shows a wide range of usable wavelengths. New hybrid photocatalysts of perovskite oxynitrides active under visible light have been developed for other important chemical reactions such as CO2 reduction.¹¹¹ In the field of electronic materials, ferroelectricity has recently been observed, induced by N/O order, and efforts to produce sintered ceramics have led to improved processing strategies.¹¹² These include a high pressure/high temperature treatment performed under N2 to obtain dense ceramics, followed by a simple ammonolysis step for recovering the nitrogen loss that happens at high temperatures and is inherent to some oxynitrides. New strategies for producing dense single crystal thin films with control of anion order have been developed⁷⁴ with direct evaluation of N/O distribution through STEM-EELS.

Reported layered perovskite oxynitrides are scarce; however, they show potential tunability of bandgaps and electronic states of the transition metals and are candidates for searching new materials. Oxidic double perovskites $A_2B'B''O_6^{-113}$ show a large diversity of properties as a result of the combination of two different transition metals. Double perovskite oxynitrides $A_2B'B''O_{6-x}N_x$ have been reported for few transition metals and represent another source of new materials. Late transition metals such as iron have been stabilized in perovskite oxynitrides by using adequate precursors for ammonolysis reactions at lower temperatures. Efforts in the development of synthetic strategies should lead to the discovery of important materials in these and other unexplored groups of compounds.

ACKNOWLEDGMENTS

This work was supported by the Spanish Ministerio de Ciencia, Universidades e Investigación, Spain (Project No. MAT2017-86616-R), and from Generalitat de Catalunya (Grant No. 2017SGR581). ICMAB acknowledges financial support from MINECO through the Severo Ochoa Program (Grant No. SEV-2015-0496).

REFERENCES

- ¹A. Fuertes, Dalton Trans. **39**, 5942 (2010).
- ²T. Takata and K. Domen, ACS Energy Lett. 4, 542 (2019).
- ³Y. Kim, P. M. Woodward, K. Z. Baba-Kishi, and C. W. Tai, Chem. Mater. 16, 1267 (2004).
- ⁴M. Jansen and H. P. Letschert, Nature **404**, 980 (2000).
- ⁵D. Logvinovich, R. Aguiar, R. Robert, M. Trottmann, S. G. Ebbinghaus, A. Reller, and A. Weidenkaff, J. Solid State Chem. **180**, 2649 (2007).
- ⁶A. B. Jorge, J. Oró-Sole, A. M. Bea, N. Mufti, T. T. M. Palstra, J. A. Rodgers, J. P. Attfield, and A. Fuertes, J. Am. Chem. Soc. **130**, 12572 (2008).
- ⁷T. Yajima, F. Takeiri, K. Aidzu, H. Akamatsu, K. Fujita, W. Yoshimune, M. Ohkura, S. Lei, V. Gopalan, K. Tanaka, C. M. Brown, M. A. Green,
- T. Yamamoto, Y. Kobayashi, and H. Kageyama, Nat. Chem. 7, 1017 (2015).
- ⁸S. Kikkawa, S. Sun, Y. Masubuchi, Y. Nagamine, and T. Shibahara, Chem. Matter 28, 1312 (2016).

- ⁹ R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, and Y. Taga, Science 293, 269 (2001).
 ¹⁰ A. Fuertes, Inorg. Chem. 45, 9640 (2006).
- ¹¹ M. Yang, J. Oró-Solé, J. A. Rodgers, A. B. Jorge, A. Fuertes, and J. P. Attfield, Nat. Chem. **3**, 47 (2011).

¹²S. H. Porter, Z. Huang, and P. M. Woodward, Cryst. Growth Des. 14, 117 (2014).

¹³J. P. Attfield, Cryst. Growth Des. **13**, 4623 (2013).

¹⁴A. Ziani, C. Le Paven, L. Le Gendre, F. Marlec, R. Benzerga, F. Tessier, F. Cheviré, M. N. Hedhili, A. T. Garcia-Esparza, S. Melissen, P. Sautet, T. Le Bahers, and K. Takanabe, Chem. Matter **29**, 3989 (2017).

¹⁵R. Marchand, F. Pors, and Y. Laurent, Rev. Int. Hautes Temp. Refract. **23**, 11 (1986).

¹⁶A. Fuertes, Prog. Solid State Chem. **51**, 63 (2018).

¹⁷S. J. Clarke, K. A. Hardstone, C. W. Michie, and M. J. Rosseinsky, Chem. Mater. 14, 2664 (2002).

¹⁸R. Marchand, C. R. Acad. Sci. Paris 282, 329 (1976).

¹⁹R. Marchand and Y. Laurent, Patent CNRS-ANVAR 84-17274 (13 November 1984).

²⁰G. Liu, X. Zhao, and H. A. Eick, J. Alloys Compd. 187, 145 (1992).

²¹G. Tobías, J. Oró-Solé, D. Beltrán-Porter, and A. Fuertes, Inorg. Chem. 40, 6867 (2001).

²²S. J. Clarke, B. P. Guinot, C. W. Michie, M. J. C. Calmont, and M. J. Rosseinsky, Chem. Mater. 14, 288 (2002).

²³S. G. Ebbinghaus, H.-P. Abicht, R. Dronskowski, T. Müller, A. Reller, and A. Weidenkaff, Prog. Solid State Chem. 37, 173 (2009).

²⁴ A. Fuertes, J. Mater. Chem. 22, 3293 (2012).

²⁵ R. Marchand, F. Pors, and Y. Laurent, Ann. Chim. 16, 553 (1991).

²⁶R. Okada, K. Katagiri, Y. Masubuchi, and K. Inumaru, Eur. J. Inorg. Chem. 2019, 1257.

²⁷ M. Yashima, M. Saito, H. Nakano, T. Takata, K. Ogisu, and K. Domen, Chem. Commun. 46, 4704 (2010).

²⁸D. Habu, Y. Masubuchi, S. Torii, T. Kamiyama, and S. Kikkawa, J. Solid State Chem. 237, 254 (2016).

²⁹L. Clark, J. Oró-Solé, K. S. Knight, A. Fuertes, and J. P. Attfield, Chem. Mater. 25, 5004 (2013).

³⁰ J. Oró-Solé, L. Clark, W. Bonin, J. P. Attfield, and A. Fuertes, Chem. Commun. 49, 2430 (2013).

- ³¹S. Ninova and U. Aschauer, J. Mater. Chem. A 7, 2129 (2019).
- ³²A. Kasahara, K. Nukumizu, G. Hitoki, T. Takata, J. N. Kondo, M. Hara, H. Kobayashi, and K. Domen, J. Phys. Chem. A **106**, 6750 (2002).

³³C. Le Paven-Thivet, A. Ishikawa, A. Ziani, L. Le Gendre, M. Yoshida, J. Kubota, F. Tessier, and K. Domen, J. Phys. Chem. C 113, 6156 (2009).

³⁴C. M. Leroy, A. E. Maegli, K. Sivula, T. Hisatomi, N. Xanthopoulos, E. H. Otal, S. Yoon, A. Weidenkaff, R. Sanjines, and M. Grätzel, Chem. Commun. 48, 820 (2012).

³⁵F. Zhang, A. Yamakata, K. Maeda, Y. Moriya, T. Takata, J. Kubota, K. Teshima, S. Oishi, and K. Domen, J. Am. Chem. Soc. 134, 8348 (2012).

³⁶T. Hisatomi and K. Domen, Nat. Catal. 2, 387 (2019).

³⁷M. Hojamberdiev, A. Yamaguchi, K. Yubuta, S. Oishi, and K. Teshima, Inorg. Chem. 54, 3237 (2015).

³⁸L. Lu, B. Wang, S. Wang, Z. Shi, S. Yan, and Z. Zou, Adv. Funct. Mater. **27**, 1702447 (2017).

³⁹D. Fasquelle, A. Ziani, C. Le Paven-Thivet, L. Le Gendre, and J. C. Carru, Matter Lett. 65, 3102 (2011).

⁴⁰Y. Lu, C. Le Paven, H. V. Nguyen, R. Benzerga, L. Le Gendre, S. Rioual, F. Tessier, F. Cheviré, A. Sharaiha, C. Delaveaud, and X. Castel, Cryst. Growth Des. 13, 4852 (2013).

⁴¹D. Chen, D. Habu, Y. Masubuchi, S. Torii, and T. Kamiyama, Solid State Sci. 54, 2 (2016).

⁴²N. Vonrüti and U. Aschauer, Phys. Rev. Lett. **120**, 046001 (2018).

⁴³S. H. Porter, Z. Huang, Z. Heng, M. Avdeev, Z. Chen, S. Dou, and P. M. Woodward, J. Solid State Chem. 226, 279 (2015).

⁴⁴S. H. Porter, Z. Huang, S. Dou, S. Brown-Xu, A. T. M. G. Sarwar, R. C. Myers, and P. M. Woodward, Chem. Matter 27, 2414 (2015).

- ⁴⁵ R. Mikita, T. Aharen, T. Yamamoto, F. Takeiri, T. Ya, W. Yoshimune, K. Fujita, S. Yoshida, K. Tanaka, D. Batuk, A. M. Abakumov, C. M. Brown, Y. Kobayashi, and H. Kageyama, J. Am. Chem. Soc. **138**, 3211 (2016).
- ⁴⁶M. Yang, J. Oró-Solé, A. Kusmartseva, A. Fuertes, and J. P. Attfield, J. Am. Chem. Soc. 132, 4822 (2010).
- ⁴⁷A. P. Black, H. Suzuki, M. Higashi, C. Frontera, C. Ritter, C. De, A. Sundaresan, R. Abe, and A. Fuertes, Chem. Commun. 54, 1525 (2018).
- ⁴⁸M. Yang, J. A. Rodgers, L. C. Middler, J. Oró-Solé, A. B. Jorge, A. Fuertes, and J. P. Attfield, Inorg. Chem. 48, 11498 (2009).
- ⁴⁹A. P. Black, Ph.D. thesis, Autonomous University of Barcelona, 2017.
- ⁵⁰ A. Feteira, D. C. Sinclair, K. Z. Rajab, and M. T. Lanagan, J. Am. Ceram. Soc. **91**, 893 (2008).
- ⁵¹ P. Antoine, R. Assaba, P. L'Haridon, R. Marchand, Y. Laurent, C. Michel, and B. Raveau, Mater. Sci. Eng.: B 5, 43 (1989).
- ⁵²J. Oró-Solé, L. Clark, N. Kumar, W. Bonin, A. Sundaresan, J. P. Attfield, C. N. Rao, and A. Fuertes, J. Mater. Chem. C 2, 2212 (2014).
- ⁵³ M. Sano, Y. Hirose, S. Nakao, and T. Hasegawa, J. Mater. Chem. C 5, 1798 (2017).
- ⁵⁴ M. Kodera, Y. Moriya, M. Katayama, T. Hisatomi, T. Minegishi, and K. Domen, Sci. Rep. 8, 15849 (2018).
- ⁵⁵A. Gomathi, S. Reshma, and C. N. R. Rao, J. Solid State Chem. 182, 72 (2009).
- ⁵⁶S.-K. Sun, T. Motohashi, Y. Masubuchi, and S. Kikkawa, J. Eur. Ceram. Soc. 34, 4451 (2014).
- ⁵⁷S.-K. Sun, Y. Masubuchi, T. Motohashi, and S. Kikkawa, J. Eur. Ceram. Soc. 35, 3289 (2015).
- ⁵⁸W.-B. Niu, S.-K. Sun, W.-M. Guo, S.-L. Chen, M. Lv, H.-T. Lin, and C.-Y. Wang, Ceram. Int. **44**, 23324 (2018).
- ⁵⁹N. Cordes, T. Bräuniger, and W. Schnick, Eur. J. Inorg. Chem. **2018**, 5019.
- ⁶⁰J. Odahara, A. Miura, N. C. Rosero-Navarro, and K. Tadanaga, <u>Inorg. Chem.</u> 57, 24 (2018).
- ⁶¹Y. Setsuda, Y. Maruyama, C. Izawa, and T. Watanabe, Chem. Lett. 46, 987 (2017).
- ⁶²T. Watanabe, K. Tajima, J. W. Li, N. Matsushita, and M. Yoshimura, <u>Chem. Lett.</u> 40, 1101 (2011).
- ⁶³C. Izawa, T. Kobayashi, K. Kishida, and T. Watanabe, Adv. Mat. Sci. Eng. 2014, 465720.
- ⁶⁴N. Cordes and W. Schnick, Chem. Eur. J. 23, 11410 (2017).
- ⁶⁵J. Häusler and W. Schnick, Chem. Eur. J. **24**, 11864 (2018).
- ⁶⁶F. Pors, R. Marchand, and Y. Laurent, Mater. Res. Bull. 23, 1447 (1988).
- ⁶⁷E. Gunther, R. Hagenmayer, and M. Jansen, Z. Anorg. Allg. Chem. 626, 1519 (2000).
- ⁶⁸S. G. Ebbinghaus, A. Weidenkaff, A. Rachel, and A. Reller, Acta Crystallogr., Sect. C: Cryst. Struct. Commun. **60**, i91 (2004).
- ⁶⁹K. Page, M. W. Stoltzfus, Y.-I. Kim, T. Proffen, P. M. Woodward, A. K. Cheetham, and R. Seshadri, Chem. Mater. **19**, 4037 (2007).
- ⁷⁰H. Wolff and R. Dronskowski, J. Comput. Chem. **29**, 2260 (2008).
- ⁷¹ H. Johnston, A. P. Black, P. Kayser, J. Oró-Solé, D. A. Keen, A. Fuertes, and J. P. Attfield, Chem. Commun. 54, 5245 (2018).
- ⁷²D. Logvinovich, S. G. Ebbinghauss, A. Reller, I. Marozau, D. Ferri, and A. Weidenkaff, Z. Anorg. Allg. Chem. **636**, 905 (2010).
- 73 A. Kubo, G. Giorgi, and K. Yamashita, Chem. Mater. 29, 539 (2017).
- ⁷⁴D. Oka, Y. Hirose, F. Matsui, H. Kamisaka, T. Oguchi, N. Maejima, H. Nishikawa, T. Muro, K. Hayashi, and T. Hasegawa, ACS Nano 11, 3860 (2017).
- ⁷⁵S. N. Ruddlesden and P. Popper, Acta Crystallogr. 10, 538 (1957).
- ⁷⁶S. N. Ruddlesden and P. Popper, Acta Crystallogr. 11, 54 (1958).
- 77 F. Pors, R. Marchand, and Y. Laurent, Ann. Chim. 16, 547 (1991).

⁷⁸N. Cordes, M. Nentwig, L. Eisenburger, O. Oeckler, and W. Schnick, Eur. J. Inorg. Chem. **2019**, 2304.

⁷⁹M. Kaga, H. Kurachi, T. Asaka, B. Yue, J. Ye, and K. Fukuda, Powder Diffr. 26, 4 (2011).

- ⁸⁰N. Diot, R. Marchand, J. Haines, J. M. Léger, P. Macaudière, and S. Hull, J. Solid State Chem. **146**, 390 (1999).
- ⁸¹G. Tobías, D. Beltrán-Porter, O. Lebedev, G. Van Tendeloo, J. Oró-Solé, J. Rodríguez-Carvajal, and A. Fuertes, Inorg. Chem. 43, 8010 (2004).
- ⁸²L. Pauling, J. Am. Chem. Soc. **51**, 1010 (1929).
- ⁸³T. Takata, C. Pan, and K. Domen, ChemElectroChem 3, 31 (2016).
- ⁸⁴I. E. Castelli, T. Olsen, S. Datta, D. D. Landis, S. Dahl, K. S. Thyegesen, and K. W. Jacobsen, Energy Environ. Sci. 5, 5814 (2012).
- ⁸⁵Y. Wu, P. Lazic, G. Hautier, K. Persson, and G. Ceder, <u>Energy Environ. Sci. 6</u>, 157 (2013).
- ⁸⁶S. Balaz, S. H. Porter, P. M. Woodward, and L. J. Brillson, Chem. Mater. 25, 3337 (2013).
- ⁸⁷K. Maeda, D. Lu, and K. Domen, Angew. Chem., Int. Ed. 52, 6488 (2013).
- ⁸⁸J. Seo, T. Hisatomi, M. Nakabayashi, N. Shibata, T. Minegishi, M. Katayama, and K. Domen, Adv. Energy Mater. 8, 1800094 (2018).
- ⁸⁹J. Xu, C. Pan, T. Takata, and K. Domen, Chem. Commun. **51**, 7191 (2015).
- ⁹⁰Y.-I. Kim and P. M. Woodward, J. Solid State Chem. 180, 3224 (2007).
- ⁹¹C. Pan, T. Takata, M. Nakabayashi, T. Matsumoto, N. Shibata, Y. Ikuhara, and K. Domen, Angew. Chem., Int. Ed. **54**, 2955 (2015).
- 92 C. Pan, T. Takata, and K. Domen, Chem. Eur. J. 22, 1854 (2016).
- ⁹³L. Zhang, Y. Song, J. Feng, T. Fang, Y. Zhong, Z. Li, and Z. Zou, Int. J. Hydrogen Energy **39**, 7697 (2014).
- ⁹⁴X. Wang, T. Hisatomi, Z. Wang, J. Song, J. Qu, T. Takata, and K. Domen, Angew. Chem., Int. Ed. 58, 10666 (2019).
- ⁹⁵ R. Marchand, F. Pors, Y. Laurent, O. Regreny, J. Lostec, and J. M. Haussone, J. Phys. 47(C1), 901 (1986).
- ⁹⁶S.-K. Sun, Y.-R. Zhang, Y. Masubuchi, T. Motohashi, and S. Kikkawa, J. Am. Ceram. Soc. 97, 1023 (2014).
- 97 A. Hosono, S.-K. Sun, Y. Masubuchi, and S. Kikkawa, J. Eur. Ceram. Soc. 36, 3341 (2016).
- ⁹⁸D. Oka, Y. Hirose, H. Kamisaka, T. Fukumura, K. Sasa, S. Ishii, H. Matsuzaki, Y. Sato, Y. Ikuhara, and T. Hasegawa, Sci. Rep. 4, 4987 (2014).
- ⁹⁹R. L. Withers, Y. Liu, P. Woodward, and Y.-I. Kim, Appl. Phys. Lett. **92**, 102907 (2008).
- ¹⁰⁰A. P. Black, H. E. Johnston, J. Oró-Solé, B. Bozzo, C. Ritter, C. Frontera, J. P. Attfield, and A. Fuertes, Chem. Commun. **52**, 4317 (2016).
- ¹⁰¹R. M. Hornreich, J. Magn. Magn. Mater. 7, 280 (1978).
- ¹⁰²D. Logvinovich, J. Hejtmánek, K. Knižek, M. Maryško, N. Homazava, P. Toměs, R. Aguiar, S. G. Ebbinghaus, A. Reller, and A. Weidenkaff, J. Appl. Phys. 105, 023522 (2009).
- ¹⁰³W. Li, D. Li, X. Gao, A. Gurlo, S. Zander, P. Jones, A. Navrotsky, Z. Shen, R. Riedel, and E. Ionescu, Dalton Trans. 44, 8238 (2015).
- ¹⁰⁴P. Antoine, R. Marchand, Y. Laurent, C. Michel, and B. Raveau, Mater. Res. Bull. 23, 953 (1988).
- ¹⁰⁵K. R. Talley, J. Magnum, C. L. Perkins, R. Woods-Robinson, A. Mehta, B. P. Gormn, G. L. Brennecka, and A. Zakutayev, Adv. Electron. Mater. 5, 1900214 (2019).
- ¹⁰⁶I. D. Fawcett, K. V. Ramanujachary, and M. Greenblatt, Mater. Res. Bull. 32, 1565 (1997).
- ¹⁰⁷K. Kawashima, M. Hojamberdiev, H. Wagata, E. Zahedi, K. Yubuta, K. Domen, and K. Teshima, J. Catal. **344**, 29 (2016).
- ¹⁰⁸K. Kawasima, Y. Liu, J.-H. Kim, B. R. Wygat, I. Cheng, H. Celio, O. Mabayoje, J. Lin, and C. B. Mullins, ACS Appl. Energy Mater. 2, 913 (2019).
- ¹⁰⁹R. Ceravola, J. Oró-Solé, A. P. Black, C. Ritter, I. Puente Orench, I. Mata, E. Molins, C. Frontera, and A. Fuertes, Dalton Trans. 46, 5128 (2017).
- ¹¹⁰R. Ceravola, C. Frontera, J. Oró-Solé, A. P. Black, C. Ritter, I. Mata, E. Molins, J. Fontcuberta, and A. Fuertes, Chem. Commun. 55, 3105 (2019).
- ¹¹¹K. Maeda, Prog. Solid State Chem. 51, 52 (2018).
- ¹¹²Y. Masubuchi, S.-K. Sun, and S. Kikkawa, Dalton Trans. 44, 10570 (2015).
- ¹¹³S. Vasala and M. Karppinen, Prog. Solid State Chem. 43, 1 (2015).