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ABSTRACT

Extreme magnifications of distant objects by factors of several thousand have recently become a reality. Small, very luminous compact
objects, such as supernovae (SNe), giant stars at z = 1-2, Pop III stars at z > 7, and even gravitational waves (GWs) from merging
binary black holes near caustics of gravitational lenses can be magnified many thousands or even tens of thousands of times thanks
to their small size. We explore the probability of such extreme magnifications in a cosmological context and include the effect of
microlenses near critical curves. We show how the presence of microlenses near the critical curve sets a limit on the maximum
magnification. We use a combination of state of the art halo mass functions, high-resolution analytical models for the density profiles,
and inverse ray tracing to estimate the probability of magnification near caustics. We estimate the rate of highly magnified events in
the case of SNe, GWs, and very luminous stars including Pop III stars. Our findings reveal that future observations will increase the
number of events at extreme magnifications, and will open the door not only to studying individual sources at cosmic distances, but

also to constraining compact dark matter candidates.
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1. Introduction

When observing distant objects with a given instrument, the lim-
iting magnitude set by the experimental configuration defines a
natural limit to the maximum distance, Dy,.x, at which an object
with a given luminosity can be observed. If some of these objects
are magnified by a factor y, it is possible to observe a similar
object farther away up to a distance Dy(z) = uDnax (ignoring
k-corrections). For sufficiently large values of y, relatively faint
objects can be observed at cosmological distances. It is interest-
ing to answer the question of what the limit on this relation is
and how far we can see relatively faint objects that otherwise
(i.e., without magnification) could not be observed. A similar
question has been studied extensively in the context of lensed
galaxies and to a lesser extent quasars (QSOs), but they are not
the focus of this work. Instead, we focus on bright and very
small objects that can be amplified by extreme magnification
factors (u > 1000). The probability of having an event mag-
nified by a large factor y is well known to scale as u~> (see e.g.,
Lee & Paczynski 1990; Rauch 1991). In general, the probabil-
ity of seeing a strongly lensed event depends on several factors:
(i) the volumetric density of objects as a function of redshift,
(ii) the volume element that depends on the redshift, and (iii) the
probability of intersecting a gravitational lens. The maximum
magnification at which an object can be observed depends on the
redshifts of the lens and background source, the mass and con-
centration of the lens, and the size of the background sources.
Maximum magnification is obtained when a background source
is touching a caustic (i.e., when a source or radius R is at a dis-
tance R from the caustic). The smaller the source, the closer it
can get to the caustic, so smaller sources can be magnified by
larger factors. Stars, for instance, could in principle be magni-
fied by factors of several million when touching a galaxy clus-
ter caustic (Miralda-Escude 1991). Diego et al. (2018) discuss
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how this maximum magnification gets reduced in the presence of
microlenses (see also Kayser et al. 1986). The combined effect
of macro- and microlensing can result in large magnification
factors even relatively far away from the critical curve of the
macromodel (Diego et al. 2018). However, even with extreme
magnifications of several million, a normal star like the Sun at
redshift z > 1 would still fall below the detection limit of the
most powerful current telescopes. The background source needs
to be small, and also very bright.

In Kelly et al. (2018), one such very bright object at z > 1
was found to lie very close to a powerful caustic. This star,
nicknamed Icarus, holds the record for the most distant star
and most extreme magnification ever observed thanks to gravita-
tional lensing. Kelly et al. (2018) describes Icarus as a z = 1.49
giant star that is being magnified by the combined effect of a
powerful lens (the galaxy cluster MACS J1149) and a microlens.
Both the caustic of the microlens and the background star hap-
pen to be aligned near the caustic of the cluster resulting in a
very high magnification of a few thousand times. This type of
observation is the first of its kind and raises the question of how
likely this kind of alignment may be. Additional events may
have been observed in Rodney et al. (2018) and more recently
in Chen et al. (2019). In Diego et al. (2018), the authors discuss
the interesting possibility of using observations like this one to
constrain the amount of dark matter in the form of compact
microlenses (see also Oguri et al. 2018, where an actual con-
straint is derived based on Icarus). The mass range that can
be constrained this way fills the gap of low to intermediate
masses for primordial black holes (PBHs). PBHs have been pro-
posed as one of the candidates for dark matter (or at least to
account for a fraction of it). PBHs have been proposed also to
explain the observation of the relatively abundant low-frequency
Laser Interferometer Gravitational-Wave Observatory (LIGO)
events. In this work we estimate the probability of observing
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luminous stars at z > 1, and also discuss other very compact
but intrinsically energetic phenomena such as supernovae (SNe)
or gravitational waves (GWs).

In order to observe distant gravitationally lensed objects,
large magnification factors that compensate for the increase in
luminosity distance are needed. The lower probability of lens-
ing is partially compensated by the larger volume, which grows
approximately as (1 + z)? between z ~ 0.3 and z ~ 1.3 (and
more slowly at higher redshifts). More precisely, the volume per
redshift interval peaks at z ~ 2.5 (with about 55 Gpc® in a red-
shift interval of thickness Az = 0.1). Regarding the probability
of lensing, background objects at high redshifts have a higher
probability of intersecting a gravitational lens along the line of
sight. This probability is described by the optical depth. It is well
known that the optical depth grows rapidly between z = 0 and
z = 1. Between z = 1 and z = 3 it continues to grow although
at a much slower pace. Beyond z = 3-5, the optical depth is
still growing, but much more slowly, and beyond z = 5 it only
grows by values ~1%, especially if we consider large magnifica-
tion factors where the presence of caustics is required; however,
these caustics are expected to be rare for lenses beyond z ~ 3.
For sources (or events) that trace the star formation history, and
at redshifts of the background source between 1 and 3, the low
probability of magnification factors can be compensated by the
larger volume element and increased volumetric density. In this
redshift interval, the probability of seeing extremely magnified
events is highest.

An example of extreme magnification is the above-
mentioned Icarus event (Kelly et al. 2018) with a magnification
factor exceeding 2000. The previous record holder (to the best of
our knowledge) was OGLE-2008-BLG-279, for which Yee et al.
(2009) infers a magnification of ~1600. However, this event took
place within the boundaries of our Galaxy, not at cosmological
distances. Zackrisson et al. (2015) studies high magnifications
in the context of compact globular clusters at high redshift as
background objects, and uses N-body simulations to estimate the
probability of lensing for a given magnification. They find that a
survey with a limiting magnitude of 28 (in the AB system) could
find approximately one primordial globular cluster per 100 deg?
at z > 7 magnified by a factor ¢ > 300. No observations of
globular clusters at cosmological distances lensed by factors of
hundreds have been reported yet.

Earlier work considered the probability of observing
distant very luminous and compact objects, like SNe or
QSOs, through gravitational lensing (Martel & Premadi 2008;
Oguri & Marshall 2010) at high (but moderate in the context of
this paper) magnifications (i.e., 4 < 100). In Broadhurst et al.
(2018), the authors argue that the low-frequency GW events
observed by LIGO could be interpreted as gravitationally lensed
events originating at z > 1 instead of the implied low-redshift
events. In order for lensing to work in this case, the intrinsic rate
of coalescence events at high redshift needs to be over an order
of magnitude higher than previously assumed (however this rate
is largely unknown), and the magnifications involved need to be
of order 107 or 10%.

At redshifts z > 3 the probability of observing strongly
lensed objects declines, unless the intrinsic volumetric den-
sity of background objects or their luminosity compensates for
the reduction in lensing probability of the larger factor u. In
Windhorst et al. (2018), the authors propose using the James
Webb Space Telescope (JWST) to observe the first Pop III stars
at z > 8 through caustic crossing events and with magnifications
greater than several thousand times. Pop III stars can be very
luminous (millions of times the luminosity of the Sun) and are
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expected to be relatively abundant at z > 10. Windhorst et al.
(2018) proposes monitoring massive gravitational lenses at z =
0.4-0.8 and estimates that, in the most optimistic scenario, one
caustic crossing by a Pop III star could be observed every 3 years
after targeting very massive galaxy clusters. Observing Pop III
stars through caustic crossing would be very exciting since it
would allow us to individually study some of the first stars.
However, the question of how likely is it to observe this type of
event in any surveyed random portion of the sky (not necessarily
including a massive cluster) is still without an answer. We would
need to take into account not only the most massive clusters, but
all gravitational lenses that are capable of producing caustics at
high redshift.

On cosmological scales, earlier work has looked at the prob-
ability of lensing at moderate magnifications (¢ =~ 3-10),
either using analytical models (Turner et al. 1984; Fukugita et al.
1992; Kochanek 1996) or N-body simulations (Hilbert et al.
2007; Takahashi et al. 2011). Based on N-body simulations,
Hilbert et al. (2007) compute the probability of lensing for mag-
nifications between 3 and 10, and find that for a source at z = 4
the probability of being magnified by a factor larger than 10
is 3 x 1073 (in a subsequent work this probability was revised
toward higher values after including the effect of a smooth distri-
bution of baryons but not microlenses; see Hilbert et al. 2008).
Takahashi et al. (2011) extends the calculation up to 4 = 100
and finds that for a source at z = 5 the probability of being
magnified by a factor larger than 10 is ~5 X 107>, in agreement
with the result of Hilbert et al. (2007). At 4 = 100 and for a
source at z = 5, the probability (per logarithmic interval) drops
by an additional two orders of magnitude. These early studies
ignore, however, the role of microlenses near critical curves that
can be important, as discussed in Diego et al. (2018; but see also
Venumadhav et al. 2017; Oguri et al. 2018).

In this work we compute the probability of magnification
for bright and compact objects at z > 1, taking into account
the role of microlenses. We rely on an accurate mass func-
tion to compute the number density of lenses and an ana-
lytical model to map the distribution of mass in individual
halos. The analytical model allows us to reach spatial res-
olutions not available with N-body simulations, and explore
the regime of high magnification near the caustics. We focus
on very luminous stars (including Pop III stars) and SNe; all
of them are powerful sources with relatively small radii and
they are abundant enough. Their abundance results in non-
negligible probabilities for one of them being very close to a
caustic.

We also discuss briefly gravitational waves, although this
particular case was explored in Broadhurst et al. (2018). Here
we present in greater detail the lensing probability calculation of
Broadhurst et al. (2018), and extend the discussion for the situa-
tion where microlenses are present.

We do not discuss the case of QSO lensing since magnifica-
tions in this case are not as extreme as in the case of stars, SNe,
or GW. The magnifications involved in QSO lensing is normally
modest reaching values of a few hundred u at most (Walsh et al.
1979; Weymann et al. 1980; Wang et al. 2017). This limitation
in the magnification follows from the much larger size of accre-
tion disks, which are orders of magnitude larger than stars or SNe
(except when QSOs are observed at X-ray wavelegths, in which
case the size of the X-ray emitting region can be considerably
smaller, and comparable to the size of a SNe; Mosquera et al.
2013). However, microlensing in QSO plays an important role
and the abundant literature on this subject makes fundamental
contributions to understanding the role of microlenses on the flux
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variations of multiply imaged QSOs (see e.g., Wambsganss et al.
1990). The smaller size of stars or SNe compared with the size of
QSO accretion disks makes microlensing even more relevant as
the flux fluctuations can be considerably larger than in the case
of QSO microlensing.

The paper is organized as follows. In Sect. 2 we give a brief
description of the well-known lensing formalism that is relevant
for the discussion in this work. In Sect. 3 we lay the ground-
work for the computation of the lensing probability of a single
halo. Section 4 extends the calculation to a cosmological context
where all halos and redshifts are taken into account to compute
the lensing optical depth with an emphasis on the optical depth
at extreme magnification. In Sect. 5 we discuss the impact of
microlenses on the lensing probability. In Sect. 6 we estimate
the rates of events for super-luminous stars, Pop III stars, SNe,
and GW. In Sect. 7 we discuss the results, and we conclude in
Sect. 8. We adopt a flat cosmological model with Q,, = 0.3,
A = 0.7, and h = 0.7. Using a model with slightly different
cosmological values (like the cosmological model inferred by
the Planck mission) has no impact on our conclusions since we
present order of magnitude estimations of the expected rate of
extremely magnified events.

2. Formalism

The basic equation in lensing is the lens equation that relates the
real position in the sky of a background source 3, the apparent
position of the observed image 6, and the deflection angle pro-
duced by the lens at that position a(6, Z),

B=0-a.2), ey

where X(0) is the surface mass density of the lens at the position
6. The vector deflection angle is obtained from the derivatives of
the scalar lensing potential,
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where D), Dy, and Dj are the angular diameter distances to the
lens, to the source, and from the lens to the source, respectively.
Given the surface mass density X, we can compute the lensing
potential and its derivatives to obtain the deflection field. Once
the deflection field is known, the magnification in the image
plane can be derived as a combination of derivatives of the
deflection field, and through the lens equation. The magnifica-
tion in the source plane can be computed using the inverse ray
shooting technique. In the image plane, regions where the mag-
nification diverge are known as critical curves. The correspond-
ing mapping of these curves into the source plane (through the
lens equation) produce a different set of curves known as caus-
tics. Near a critical curve we can perform a Taylor expansion on
the lens equation, and after retaining only the first orders find
that
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where ® is a constant (usually expressed in arcseconds) that
depends on the lens model and redshifts of the lens and source,
B, is the position of the caustic, and 6, is the corresponding posi-
tion of the critical curve. As a consequence, near a critical curve
the magnification falls as the inverse of the distance to the critical
curve,
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where y, (usually expressed in arcseconds) is a constant that
depends on the slope of the lens potential at the position of the
critical curve (shallower potentials result in larger values of y,).
Later in the paper we refer to the tangential magnification g
and radial magnification u, with the total magnification being
the product of the two: u = yu;. In the source plane, the magni-
fication then decreases as
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Finally, the probability of having magnification higher than a
certain value u is equal to the probability of being at a dis-
tance to the caustic less than the corresponding AS = |8 — .|,
ie., P(>u) o AB o pu~2. The differential probability is then
dP(u)/du o u3. From expression (5), the normalization fac-
tor i,/ VO can range between ~1 for small halos to 20—40 for
the most massive clusters. For intermediate lenses with normal-
ization u,/ VO ~ 10, a source at a distance of 1 milliarcsec (typ-
ically a few parsecs at z > 1) would have a total magnification of
~300.

3. Single lens

The above discussion is for regions that are close to a caustic.
Here we explore the magnification properties of a single lens, but
for all possible distances and magnifications. Even though most
of the results in this section are widely known, it will be instruc-
tive for the remainder of the paper, in particular to understand
the shape of the probability of lensing at intermediate magnifi-
cations and the difference between computing the magnification
in the source plane with the inverse ray shooting method or the
deprojection method.

We assume a cored elliptical Navarro, Frenk, and White
(NFW) profile (Navarro et al. 1997) with ellipticity e = 0.2,

where a NFW profile symmetric in r = +/x% + y? is modified

after substituting r with 7 = y/x2/(1 — e) + y2(1 + ¢). In the cen-
tral part of the NFW halo, we assume the profile to be (r + r.)~!
(and not the usual 1), where the core radius scales with mass as
re = 20(M,i;/10'%) kpc. The core radius avoids unphysical diver-
gences at r = 0, but also reproduces the profile of many massive
lenses where the BCG usually exhibits a core, or flattened Ser-
sic profile (i.e., with Sersic index n = 1). Adopting a standard
NFW profile with no core should have minimal impact on our
calculations, especially at high magnifications where most of the
contribution to the lensing probability comes from regions near
the tangential critical curves, that is, far from the core region.
We should note that for small halos, the presence of the core can
reduce their contribution to the optical depth since the central
region of some of these halos may be subcritical when a core is
present. The contribution of the small halos to the optical depth
is discussed in more detail in the following section. For the virial
radius, we adopt the scaling Ry;; = 1.5 * (My;;/10'%)!/3 Mpc, and
concentration C given by the model in Prada et al. (2012):

Mvir -0.074
1012) '

We note that in the previous equation, we ignore the evolution
with redshift. Since most of the lenses concentrate around red-
shift 0.5, we expect this to be a small effect, especially for mas-
sive halos for which the dependency of the concentration with
redshift is weaker (see e.g., Fig. 12 in Prada et al. 2012). The
ellipticity e = 0.2 is typical of halos. Different ellipticities have

C= 7.28( (6)
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Fig. 1. Magnification pattern for a halo at z; = 0.4 with mass 2 x 10> M, and for a source at redshift z; = 4. Left panel: logarithm of the
magnification and critical curves in the image plane (field of view is 2.71 arcmin across). Right panel: logarithm of the magnification and caustics
in the source plane (field of view is 1.355 arcmin across) obtained by inverse ray shooting.

little impact on the derived probability of lensing (provided the
concentration remains constant). The concentration, on the other
hand, plays a more significant role. Halos that are more con-
centrated increase the probability of lensing, especially of high
magnifications. Our results should be considered conservative as
we are ignoring projection effects (and the effect of baryons) that
could increase the concentration of a halo (and consequently the
probability of lensing) if it is aligned in the line of sight or if
two small halos fall in the same line of sight. We simulate halos
within a region extending up to 2.3 times the virial radius (a suf-
ficiently large area is needed in order to minimize edge effects).
This is sufficient to contain the entire halo when the ellipticity is
e = 0.2. The simulated halos have typical spatial resolutions of
0.6 kpc per pixel for a lens at z ~ 0.6 and mass of 2x 105 M,
and about 50 pc for a halo of 10'> M, at the same redshift. This
resolution is significantly higher than can be obtained with cos-
mological N-body simulations. This is important to reproduce
high magnifications with accuracy. For the halo profiles, we con-
sider a NFW model. Earlier work focusing on smaller galax-
ies have used different profiles; the isothermal model is one of
the most popular. However, to explore in detail the regime of
extreme magnifications, intermediate-mass halos are the most
relevant and for these types of halos, the NFW profile gives a
good description of the total mass (dark matter plus baryons),
especially for high-mass halos. We note that we explicitly ignore
the role of baryons in the central galaxy in the halo (other than by
assuming a core radius in the NFW profile, as described above).
Baryons are expected to increase the convergence in the central
part of halos (although they can also decrease it due to feed-
back). This has a non-negligible impact on small halos that may
be subcritical without the help of the baryonic component (large
halos are already supercritical (i.e., their surface mass density is
above the critical surface mass density in parts of the halo) and
adding the baryons has little effect on the probability of magni-
fication. The effect of ignoring the baryon effect is discussed in
more detail in Sect. 4.
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The magnification is computed based on the inverse ray
shooting method (see e.g., Kayser et al. 1986). This method is
appropriate for computing the total magnification including all
possible counterimages. The total flux needs to be accounted for
when considering extreme magnifications, since counterimages
may appear separated by a small fraction of an arcsec, and hence
be unresolved or barely resolved (or a macroimage may break
into multiple microimages separated by a few milliarcseconds or
less). In Fig. 1 we show the magnification for a halo at z; = 0.4
with mass 2 x 10'5 M, and for a source at redshift z; = 4. The
left panel shows the central portion of the halo with the magni-
fication computed in the image plane (assuming a point source
in the background). The critical curves where the magnification
diverges are clearly visible. The color scale indicates the mag-
nification in logarithmic units. The right panel shows the mag-
nification in the source plane as derived from the inverse ray
shooting technique. The field of view in this case is half the size
of that in the left panel. The caustics are also clearly visible with
the diamond shape caustic mapping into the tangential critical
curve, and the elliptical caustic mapping into the radial critical
curve. In the context of this paper, the most striking aspect that
is of interest to this work is the clear discontinuity in the magni-
fication at the caustics. Contrary to what happens with the mag-
nification in the image plane, where the magnification appears
to be continuous across the image, the source plane shows a
sharp discontinuity at the caustics. This has interesting impli-
cations for the probability of high magnification. To compute
the probability of magnification, two different approaches are
commonly used in the literature. The fast deprojection method
is used normally when computing lensing probabilities for large
lenses, like galaxy clusters. This is an inexpensive method that
simply deprojects the image plane (using the lens equation) into
the source plane. Since the magnification, y, is defined as the
ratio of areas between the observed images and the sources, the
area of a pixel with magnification u in the image plane is reas-
signed to an area in the source plane that is u times smaller.
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Fig. 2. Area above a given magnification for a single halo at z; = 0.4
with mass 2 x 10'> M, and for a source at redshift z;, = 4. The area
computed in the image plane does not follow the p~2 law at low and
moderate magnifications (u < 40). At very high magnifications (u >
150), resolution effects break the =2 law, but the area can be safely
extrapolated to high values of the magnification above u =~ 50.

This method is very fast, but it does not give the right proba-
bility for the total magnification by ignoring the multiplicity of
images. When multiple images are produced, several regions in
the image plane (with different magnifications) project back into
the same area in the source plane.

Instead, an inverse ray shooting method, where pixels that
originate in the image plane and land in the source plane are
counted for every pixel in the source plane, is the appropri-
ate method for computing the total magnification. In this work
we are interested only in the total magnification since we assume
that counterimages of a small background source with extreme
magnification form very close to the critical curve and the mul-
tiple images (carrying the total magnification) may appear as a
single unresolved image. Figure 2 shows the difference between
the two methods for the cluster shown in Fig. 1. The dashed line
corresponds to the case where the area is computed in the image
plane and later divided by u (deprojection method). This method
overestimates the area at low and intermediate magnifications
and underestimates it at high magnifications. The inverse ray
tracing method is shown as a solid line in Fig. 2. The inverse ray
shooting method suffers from resolution limitations at very high
magnifications. In this regime, the width of the region around
the caustic that has such high magnification is smaller than the
pixel size used to do the mapping between the image and source
planes. As a consequence, the probability of lensing does not
follow the =2 law at the highest magnification. This can be seen
in the solid line at magnifications higher than u ~ 150.

The remedy for this problem is to simply extrapolate the =2
law from this point. The plateau observed at intermediate magni-
fications (10 < u < 40) corresponds to the gap in magnification
in the source plane between the regions inside the caustics and
the regions outside the caustics. Generally, the larger the caustic
region, the larger this gap and the more pronounced the plateau.
Above a certain value of the magnification (u = 40), the area fol-
lows the standard law u~2 expected for fold caustics. This value
of the magnification (u =~ 40) corresponds approximately to the
local minimum of the magnification at the center of the diamond
shaped caustic. Halos that are subcritical (i.e., their surface mass
density is lower than the critical surface mass density) do not
have a plateau and fall faster than the x~2 law without reaching
high magnifications. As a halo approaches the critical point, its

probability of lensing starts approaching the u~2 law. To better
show the relationship between the two methods, in Fig. 2 we
show the connection between the two in the regime of high mag-
nification, where both curves fall like y‘z. If we take a point with
magnification ¢ = 50 on the dashed line and divide the area by
two moving downward in the vertical direction, and later move
in the horizontal direction up to the point where the magnifica-
tion is 2u = 100, we end up in the solid curve. In other words, the
deprojection method counts the area twice, but it only accounts
for the magnification of one of the counterimages. This is easy
to understand: at high magnification most of the flux is divided
into two counterimages, each one carrying approximately half
the total magnification. At lower magnifications, there may be
three or more dominant counterimages making the relationship
between the two methods less clear.

4. Lensing probability for a cosmological volume

The probability of having an event with magnification higher
than certain value is a key ingredient when computing the rates
of lensed events. The number of observed events from the red-
shift interval z; + Az/2 that are lensed with magnification higher
than y by a population of lenses between redshift O and redshift
Zs 1S given by

dN(>u, z5)
dz

where dV(zs)Az is the volume element at zg contained in the
spherical shell with thickness Az, R is the intrinsic rate of events
or number of events per unit volume and unit time at the redshift
Zs, and P(>p, z5) is the probability of having a magnified event
at z¢ that is being amplified with magnification higher than u.
When R represents a rate of events (transients), it needs to be
divided by the factor (1 + z5) in order to account for the time
stretch between the observed rate and the intrinsic rate.

The product V(z;) Az R(zs) corresponds to the total number of
events per unit time in the volume being lensed (zs — dzs < z <
Zs + dzg). The probability P(u, zs) is defined as

P(>p1,2,) = f de
0

where dp(>u, z1,25)/dz; is the fraction of the total area (at the
distance of the source) that is being magnified by a factor larger
than u (see e.g., Turner et al. 1984),

dp(>u, z1, z5) _14dV(z) f
dpCpa,%) _ 4 dM
& 7(25) &

= dV(Zs) Az R(Zs) P(>,Ll, Zs), (7)

] dp(>u, 21, zs)

dz ®

dN
dMdz

AN(IJa M? 2l ZS)’
)

where dV(z;)/dz is the volume element at the redshift of the lens
integrated over the entire sky, dV/dMdZ is the halo mass func-
tion, Ay(>u, M, z1, zs) is the area with magnification higher than
u for a lens with mass M at redshift z; lensing a background
source at redshift z;, and Ar(zs) is the area in physical units of
the spherical shell at redshift z. That is,

Ar(zs) = 4Dy (z5)%,

where D,(z) is the angular diameter distance at the redshift of
the source. The definition of P(>p, z) is essentially the same as
the optical depth of lensing by a factor larger than u, so we can
refer to P(>u, z5) as T(>U, zs).

For the mass function, we consider the one from
Watson et al. (2013); it is appropriate for a wide mass range

(10)
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Fig. 3. Left panel: contribution to the optical depth for a source at redshift z; = 2 as a function of the redshift of the lens z; and for all lens masses.
Right panel: contribution to the optical depth for a source at redshift z; = 2 as a function of the mass of the lens M, and for all lens redshifts. In
both cases, the numbers by each curve indicate the magnification that the curve contributes to. For high magnifications, only the most massive

halos contribute to the magnification.

(from small groups to the most massive clusters). Alterna-
tive mass functions, for example the Tinker mass function, are
expected to produce similar results since the main differences
between these mass functions appear at the regime of very mas-
sive clusters, which have a small impact for our study. The
Watson et al. (2013) mass function is more accurate than the
Tinker function in this regime, due to the larger volume of
the JUBILEE simulation (Watson et al. 2014). We impose a
lower cutoff in the mass and compute the integral between the
mass limits My, = 102 Mg and My = 3% 10 M. The
selected mass range is appropriate for computing the probabil-
ity of lensing at high magnification, as we show in Sect. 4. At
low magnifications, the mass range needs to be extended toward
lower masses, since even subcritical halos can contribute in this
regime. However, a lower mass limit of 10'? My, is sufficient for
our purposes since we focus on the high-magnification regime.
To model the quantity Ay(>u, M, 71, zs) we simulate caustics for
different halo masses, halo redshifts, and background sources,
then compute Ay(>u, M, z),zs) for each model through inverse
ray tracing (see Sect. 3). Since inverse ray tracing has limited
resolution in areas of high magnification, we compute the lens-
ing probability P(>u, zi, z5) only up to values of u = 100. At val-
ues of u significantly higher than u = 100, we observe resolution
effects. However, u = 100 is high enough that above this number,
P(>u, 71, z5) scales as the usual ,u‘2 law, typical of fold caustics,
and can be safely extrapolated for each halo toward higher mag-
nifications. Obviously, this extrapolation is performed only for
those halos that exhibit supercritical behavior (i.e., have caus-
tics). For subcritical halos no extrapolation is needed as they
simply do not reach the value p = 100. This computation is
repeated for different halo masses, halo redshift, and source red-
shift. We adopt an adaptive resolution scheme, so the magnifica-
tion around small halos are computed at higher resolution than
larger halos in order to properly resolve the caustic regions. The
global probability of lensing of a source at redshift z5 is com-
puted after integrating the lensing probabilities of all individual
halos in the mass range considered, and up to the redshift of
the source. In this work we assume a maximum redshift for the
lenses of zgnax = 2.0, since most lenses that contribute to the
high magnification are below z = 2. For the sources, we assume
Zmax = 9.0. The increase in probability between redshift z; = 5
and z; = 10 is modest, at the level of 20% (Zackrisson et al.
2015).
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As mentioned earlier, the optical depth (>, z) is given by
Eq. (8). The optical depth defined this way gives the probabil-
ity of magnification with a factor larger than u of a given back-
ground source at zg with infinitesimally small radius.

Figure 3 shows the differential contribution to the optical
depth for a source at z; = 2 as a function of the redshift of
the lens (left panel) and as a function of the mass of the lens
(right panel). The numbers next to each curve show the magni-
fication at which the contribution is computed. In the left panel,
we integrated over the entire mass range. At low magnifications,
contributions from halos come from the entire redshift range
with a peak around z = 0.5. However, as the magnification
increases, the redshift range of the halos that contribute to that
magnification becomes narrower, although it maintains the peak
at z = 0.5. The reason for this decrease is made more evident
in the right panel where now we have integrated over the total
redshift range. High magnifications are produced only by large
lenses. The sharp decline in optical depth for u = 100 at 10"
solar masses marks the transition between subcritical and super-
critical halos. At lower magnifications (u < 10) small halos play
an important role and cannot be neglected.

The right panel of Fig. 3 predicts that the halos that con-
tribute the most to the optical depth at high magnification are in
the range of 10'* M, (at magnification factors of approximately
3, halos ten times smaller are the main contributors). The cal-
culation points out that larger lenses, although less numerous,
can magnify more than one background object, as evidenced by
galaxy clusters that can lens tens of sources each, while smaller
halos typically lens one background object at most.

This appears to be in tension with current observations, and
also some earlier theoretical work that suggest that less mas-
sive halos are the most typical lenses (see however Fig. 5 in
Hilbert et al. 2007, where a similar result is also found). This
is supported in part by results from optical surveys, such as
SDSS, where it is found that most known gravitational lenses
are less massive halos (Inada et al. 2012), not the more mas-
sive halos expected from Fig. 3. Earlier works also predicted
the lensing effect from these early-type galaxies. There are dif-
ferent reasons for this tension that deserve a discussion in this
section. From the theoretical side, most of the previous calcula-
tions found in the literature focus on low magnifications (i ~ 3).
In the regime of low magnifications, the role of low-mass halos is
more relevant, as is shown in the right panel of Fig. 3. At higher
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Fig. 4. Optical depth for different magnifications as a function of redshift.
The numbers by each curve indicate the corresponding magnification.

magnifications more massive halos take a leading role, as shown
by the same figure (see also Keeton et al. 2005, where a similar
trend is observed also for single highly magnified images). In
earlier predictions, it is also customary that the optical depth is
computed in the context of galaxy-galaxy lensing, which explic-
itly ignores the contribution to the optical depth from groups and
clusters. These calculations draw the population of lenses from
the velocity dispersion of early-type galaxies (Fukugita et al.
1992; Collett 2015). The velocity dispersion of galaxies derived
from observations sets a natural limit on the maximum veloc-
ity dispersion, at the maximum radius of the stellar compo-
nent. Also, much of the literature explicitly focuses on Spherical
Isothermal Sphere (SIS) profiles, which are known to increase
the optical depth of low-mass halos compared with the NFW
halos used in our work (see e.g., Figs. 9-11 in Lapi et al. 2012,
Fig. 2 in Porciani & Madau 2000, or Fig. 9 in Perrotta et al. 2002
where the dependency with M is explicitly shown). Regarding
observations, the discrepancy between our calculation and obser-
vations (where most strong lenses are expected to be smaller
halos) occurs because we ignore the cooling role played by
baryons since they can increase the relative contribution of small
halos to the optical depth of lensing. Baryons can promote the
subcritical central region of a small halo to supercritical values.
This is in agreement with observations, where most QSOs and
lensed galaxies have been found so far around early-type galax-
ies in optical surveys, such as SDSS (Inada et al. 2012), and not
in more massive halos as predicted by our calculation. However,
the observed magnifications for these lensed QSO are moderate
(a few tens at most). For extreme magnifications, larger halos
are more relevant and for these massive halos, the role of the
baryonic component or the central galaxy diminishes since these
halos are already supercritical (Meneghetti et al. 2003).

Large halos are better modeled by NFW profiles,
while smaller halos are better represented by SIS profiles.
Kochanek & White (2001) argues that around the galaxies
embedded in halos, the change from NFW to SIS “explains why
many lenses found in groups of galaxies were associated with the
galaxies in the group rather than the group halo, even though the
group halo had to be more massive than its component galaxies.”
It is unclear to what extent many of the elliptical galaxies identi-
fied as lenses in optical surveys, such as SDSS, are not in reality
the central galaxy of more massive halos with virial masses sev-
eral times 10'3 M, (some are clearly identifiable as such). Early-
type galaxies with large velocity dispersion are known to be at
the centers of halos with several times 10'3 M.

A more accurate model would take into account this transi-
tion between the low-mass halos (SIS-like) to the more massive

halos (NFW-like) (see e.g., Keeton 1998; Porciani & Madau
2000). This transition is mostly due to the more important role
that baryons (cooling) play in small halos (Kochanek & White
2001). Porciani & Madau (2000) show that below a halo mass
scale of ~3.5x 10" a SIS model is more appropriate, while for
masses above this value, a NFW profile is a better description.
A hybrid model where small substructures (including the central
galaxy) are modeled as SIS while the main halo follows a NFW-
like profile may be the most suitable models. Such detailed mod-
eling is, however, beyond the scope of this paper. Since this work
focuses on the highest magnifications, for which more massive
halos are more relevant, we consider for simplicity only NFW
profiles, but it should be kept in mind that the contribution from
small halos or substructures (especially at low magnifications) is
underestimated by adoptiong a NFW profile. Our results on the
optical depth should then be considered conservative.

Figure 3 also clearly shows that the integrated optical depth
decreases rapidly with increasing magnification. This is shown
in more detail in Fig. 4, where again the number next to the
curves indicates the magnification. As found in earlier work, the
probability of lensing declines sharply below z; = 1 and changes
much more gently above z; = 2. The relative change between
¢ =3 and u = 10 is much more abrupt than between u = 10 and
u = 30 or between u = 30 and u = 100. This is a direct conse-
quence of the transition between the subcritical and supercritical
regime shown in Fig. 2, where the probability of lensing drops
faster than 2 at low magnification factors. The same pattern is
observed when integrating over cosmological volumes as shown
in Fig. 5. We note that in this plot the = is satisfied at 4 < 100
for all redshifts.

The optical depth is, in general, in agreement with previous
results based on N-body simulations (see Fig. 5 in Hilbert et al.
2007); however, it should be noted that the optical depth in
Hilbert et al. (2008) may still be affected by the limited reso-
lution of the N-body simulation, which would impact smaller
halos to a greater extent. However, since we neglect the effect of
baryons, our result should be considered conservative, as men-
tioned above. As noted in Fig. 4 of Hilbert et al. (2008), when
baryons are added the mass range that contributes the most
to the optical depth shifts from ~8 x 10'> M to ~3 x 10'3 M.
Hilbert et al. (2008) concludes that baryons can increase the
optical depth by up to a factor of 2. As mentioned earlier, at
low magnifications (u < 10), the role of small halos is important
so our estimation of the optical depth may be biased low by a
factor of ~2 in this regime. However, for the high magnifications
we are interested in, the error introduced in the optical depth by
ignoring the effect of baryons is expected to be less than that
factor of 2.

Finally, the baryonic component distorts the magnifica-
tion through microlensing. As discussed in more detail below,
microlensing reduces the maximum magnification of a small
background source that could be attained by a macromdoel. The
reduction in magnifying power is proportional, to the first order,
to the surface mass density of microlenses, i.e., to the baryonic
component. Since around critical curves the stellar component
is, in general, larger for small halos than for massive halos,
extreme magnification of small background objects is possible
only when the stellar component near the critical curves is rela-
tively small, for example in groups and clusters.

5. Role of microlenses

The above results are derived under the assumption that the caus-
tic is not disrupted by substructure and that the u! o« +/|8 — So|
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Fig. 5. Optical depth for different redshifts as a function of magnifica-
tion. The dashed line is the power law u2.

law is maintained everywhere in the vicinity of the caustic in the
source plane, where 3 is the position of the caustic (in the image
plane the corresponding law is u~" oc |§—6y|, where @ is the posi-
tion of the critical curve). The probability density function (or
pdf) of the magnification is simply dN/du o 3. However, as
discussed in Diego et al. (2018), in the presence of substructure,
including microlenses with stellar or even substellar masses, the
caustic can suffer severe distortion and the u~' o +/|8 —B,| is
no longer a valid approximation. The maximum magnification —
which in theory can reach values as high as ~107 for a back-
ground object with a size similar to that of the Sun and for a
powerful lens such as a massive galaxy cluster — can be sig-
nificantly lower when microlenses are present. The maximum

magnification is still proportional to the inverse of VR, where
R is the radius of the background object, but the proportionality
constant is now related to the Einstein radius of the microlenses
rather than the much larger Einstein radius of the macrolens. To
be more precise, at low effective optical depth of microlensing’,
the proportionality constant is related to the Einstein radius of
the microlenses, but magnified by /imacro» Where fimacro 18 the
magnification of the macrolens in the absence of microlenses
(see Diego etal. 2018, for a discussion of this effect). When
microlenses are involved, we distinguish between the total mag-
nification y (from the combined potential of the macromodel
plus microlens) and the magnification of the macromodel tmarco.

At high effective optical depth of microlenses even this scal-
ing with yJlmacro breaks down due to overlapping microcaus-
tics, and the maximum magnification becomes a function of the
macromodel surface mass density of microlenses and the dis-
tance to the caustic of the macromodel (Diego et al. 2018). In
this section, we explore the departure of the pdf from the stan-
dard law dP/du o =3, when the caustic of a macromodel is in
the presence of microlenses. We make use of simulations sim-
ilar to those described in Diego et al. (2018), and the reader is
directed to that reference for details on the simulations. Here we
simply summarize the most practical aspects of the simulation.
For the macromodel we chose a synthetic model that mimics
the caustic region of a small galaxy. Adopting a relatively small
galaxy is convenient since the magnification drops more quickly
as we move away from the caustic, which it would do if we
were working with a caustic of a massive cluster. A rapid drop in
the magnification allows us to study a wide range of magnifica-
tions in a relatively small area, and include regions in the source

! This definition was introduced in Diego et al. (2018) to account for

the fact that a microlens in a region with magnification piy,eo and with
mass M behaves as a microlens with an effective mass Mimacro-
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Fig. 6. Mean magnification in the source plane and its variability as a
function of distance to the macrocaustic.

plane (relatively far away from the caustic) where the impact
of microlenses is much less significant. The results derived in
this section can easily be translated to larger lenses. For sim-
plicity, we adopt a model that produces a vertical critical curve
(and vertical caustic) so the magnification from the macromodel
remains constant when moving in the vertical direction and falls
as 1/]x — xo|, where xp is the position of the critical curve. The
values of total « and y are 0.6667 and 0.3333, respectively, at
the position of the critical curve. For simplicity, we fix y and
only modify « on either side of the critical curve with a slope of
1077, which is appropriate for galaxy halos (the slope of x goes
as the inverse of the Einstein radius of the lens in the vicinity of
the critical curve for popular models like the isothermal model).
The simulation covers a region of 0.178" x 0.00093” in the lens
plane with a resolution of 31 nanoarcsec per pixel, resulting in
approximately 1.7 billion pixels. The dimension in the horizon-
tal direction is much larger than in the vertical direction. This
is a consequence of the tangential magnification (1/(1 — kx — 7))
being much higher than the radial magnification (1/(1 — k + y)).
The much wider extension in the horizontal direction is required
in order to capture the change in the properties of the magni-
fication as one moves away from the caustic, but more impor-
tantly because the caustics from microlenses that are relatively
far away from each other can still overlap in the source plane
near the caustic. The deflection field from the microlenses is
computed from the Spera et al. (2015) model, normalized to a
surface mass density of X, = 19 M pc~2. This is similar to the
value used in Diego et al. (2018) and a typical value in the out-
skirts of a galaxy. This surface mass density results in values of
k. ~ 0.008 (or «./x = 0.012), where «, is the convergence due to
the microlenses.

To compute the magnification in the source plane we use an
inverse ray tracing algorithm. In Fig. 6 we show the average
total magnification (black solid line) in the source plane after
binning the source plane in regions of width 3 pas and as a func-
tion of the distance to the macromodel caustic. The red solid
line shows the corresponding magnification of the macromodel,
when microlenses are not included in the simulation. The aver-
age magnification is basically the same, reflecting the conserva-
tion of flux. The dot-dashed green line marks the 68% region of
the magnification variation. These curves lie very close to the
dispersion values suggesting that, to first order, the pdf of the
magnification when microlenses are present and at a fixed dis-
tance to the caustic can be approximated by a Gaussian. The
width of this Gaussian scales with the effective surface mass
density (i.e., the surface mass density corrected by the factor
Mmacro)- The dotted blue and dashed red lines show the average
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Fig. 7. Probability of magnification in the source plane. The black solid
line shows the probability of the total magnification when microlenses
are present. The black dot-dashed line shows the probability computed
in the same area, but when microlenses are not included (i.e., the smooth
model). The black dotted line is the p~3 law expected for smooth caus-
tics. The blue dotted and red dashed curves are the probability of magni-
fication from the regions with positive and negative parity, respectively.

magnification as a function of the distance to the macrocaustic
computed on the sides with positive and negative parity respec-
tively. Each side carries roughly half the total magnification
and behaves very similarly in terms of average magnification
at a fixed distance. However, this similar behavior is not main-
tained for the higher moments of the pdf. As discussed in ear-
lier works (Chang & Refsdal 1979, 1984; Kayser et al. 1986;
Schechter & Wambsganss 2002; Diego et al. 2018), the pdf on
the side with negative parity presents larger fluctuations than
the corresponding pdf on the side with positive parity. The same
result is found in our simulation, but covering a range of magni-
fications not studied in earlier work. Figure 7 shows the pdf of
the total magnification (solid black) and also for the magnifica-
tion on the sides with positive (dotted blue) and negative (dashed
red) parities computed over a region of 370 x 56 pas® and includ-
ing the macrocaustic.

The pdf of the total magnification when microlenses are
included resembles the magnification of the smooth model
except at the highest magnifications where, as discussed in
Diego et al. (2018), the maximum magnification is lower than
the corresponding maximum magnification of the smooth model.
However, at more modest magnifications (u =~ 1000-3000),
the model with microlenses has an increased probability com-
pared with the smooth model. The contrary is found above
> 2000, where the probability of the magnification no longer
follows =3, but falls sharply as a log-normal. Also, as discussed
in Diego et al. (2018), the side with negative parity exhibits a
higher probability of high magnification than the side with pos-
itive parity. This is compensated by a higher probability of low
magnification on the side with negative parity, confirming ear-
lier results that show how fluctuations on the side with nega-
tive parity can be larger than on the side with positive parity
(Schechter & Wambsganss 2002). The departure from the =3
law starts to be evident at u ~ 500 (below this value a pdf eval-
uated over a wider region would show agreement between the
smooth model and the model with microlenses at lower magni-
fications). The value of ¢ =500 above which the pdf deviates
from the x> law can be approximately derived from theoretical
arguments. Following Diego et al. (2018), the optical depth of
microlensing 7 can be approximated by

Y 4GM Dy
=—n
M~ 2 DyD,

1= 42 % 10-42(M®/pc2)“27“",

T

)

where (Mg /pc?) = 19, a; = 1.5, and p, = 0.46” for the model
considered in this work; a, = mu;1 represents the inverse of the
magnification in the direction parallel to the macrocaustic; while
U, defines the strength of the lens and enters in the expression
MU = U,/8, where u is the total magnification and 0 is the dis-
tance to the critical curve of the macromodel. As discussed in
Diego et al. (2018), the above expression for 7 is derived under
the assumption that all microlenses have the same mass. When
compared with actual simulations based on a realistic mass func-
tion for the microlenses, Diego et al. (2018) find that Eq. (11)
overestimates the true optical depth by a factor of ~3. Account-
ing for this factor of 3 to correct the optical depth we find that
7 saturates (i.e., 7 = 1) when 6 = 1.83 mas. At this distance the
total magnification from the macromodel is u = u,/6 = 250
a factor ~2 from the estimated value of u =~ 500, where the
pdf of the total magnification for the model with microlenses
start to deviate from the p~3 law. The value of the magnifica-
tion where this departure from x> is observed is inversely pro-
portional to X(M/pc?). Figure 7 shows one more example cor-
responding to a situation where the Z(M@/pcz) = 6.3, that is,
3 times lower than in the previous case. The pdf of the total
magnification for this case is shown as a red solid line and the
deviation from p~3 takes place clearly at a higher magnification
(u =~ 2000). Interestingly, the departure from w3 is more abrupt,
but the log-normal cutoff seems to be maintained. Lower values
of X(My /pcz) = 6.3 are hence more favorable to observe more
extreme events of many thousands, but they have a lower proba-
bility for intermediate magnifications of u ~ 1000. On the con-
trary, the higher the value of X(M)/pc?, the sooner the pdf of the
total magnification will deviate from p~3 (although compensat-
ing the pdf of u with an increase toward magnification ~1000).

In order to explore in more detail the departure from the
w3 law we compute the magnification at a resolution ten times
higher (i.e., 3.1 nanoarcsec per pixel or ~600 times the diameter
of the Sun at z = 1.5) in a smaller region that zooms in around
the macrocaustic. Since the maximum magnification scales as
the inverse of the square root of the source radius, the results
presented here are valid for sources with a radius 1000 times
the radius of the Sun. A source with a radius R that is 100 times
smaller than this could be amplified by a factor 10 times larger
when it is at a distance R from the caustic. Although the simu-
lated region is smaller, we still account for the contributions from
the microlenses that lie far away from the macro critical curve.
Figure 8 shows the pdf in this smaller region for the smooth
model (black dot-dashed curve) and the model with microlenses
(blue dotted and blue dashed curves). The difference between
the blue-dotted and the blue-dashed is due to the different frac-
tion of the caustic region that is used to compute the pdf. The
blue-dotted curve is derived from a narrow region (width ~5uas)
very close to the macrocaustic, while the blue-dashed curve is
computed from a wider region (width = 25uas). The widths of
these regions, as well as the caustic zone, are shown in Fig. 9,
where for convenience we have rotated the simulated region so
the macrocaustic is oriented in the horizontal direction.

The pdf in the narrower region follows the log-normal distri-
bution originally discussed in Diego et al. (2018), which is typ-
ical of situations where many microcaustics overlap (this is the
saturation regime discussed in Diego et al. 2018). When com-
puting the pdf over a wider region, the pdf starts to resemble
the u=* law at lower magnifications (u ~ 2000). The depar-
ture from this law at lower magnifications is largely due to the
fact that the zoomed region does not include areas farther away
from the macrocaustic that still contribute to these magnifica-
tion bins. The black dot-dashed line shows the pdf of the smooth
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model (i.e., the same zoomed region but without microlenses).
The black solid line shows the u~3 law expected for smooth
caustics. We note how the excess of probability (a factor of ~2)
when microlenses are present is more evident in this plot around
u =~ 2000. On the contrary, at g4 ~ 10000 the probability of
magnification is at least two orders of magnitude lower in the
presence of microlenses, setting a natural limit to the maxi-
mum magnification around this value. If the contribution from
microlenses is smaller, it is possible to increase the maximum
magnification as shown by the red curves in Fig. 8. These curves
are derived from a model where the surface mass density of
microlenses is three times lower than the model in the blue curves.
As shown in Fig. 7, below u =~ 2000 the pdf of the magnification
closely follows the p1~3 law, but beyond u ~ 2000 the pdf devi-
ates from this relation, and at magnifications u ~ 10000 the pdf
is already falling log-normally. Since microlenses are expected
to be ubiquitous up to the boundaries of most macrolenses, it is
expected that observed extreme magnifications higher than a few
tens of thousands will be extremely rare.

If microcaustics are disturbed by microlenses and the maxi-
mum magnification is of order 10* rather than 107 as predicted
for smooth caustics in clusters and small background sources
like luminous stars, this may explain the apparent lack of obser-
vations of caustic crossing events from bright stars at z = 1-2
(with the only exception of the Icarus/lapyx events discussed in
Kelly et al. 2018). To boost the flux of a distant luminous star by
10 magnitudes (so it can be detected) we need high magnifica-
tions (of order ~10*) that, as discussed above, can be two orders
of magnitude less likely when microlenses are present. Since
lower surface mass density of microlenses distorts the caustic
less, the most extreme magnification factors are possible only
with the smallest number of microlenses. This implies increas-
ing the redshift of the background source so the critical curves
move farther away from the central region and the surface mass
density of microlenses gets lower. Alternatively, we can identify
portions of the critical curves at lower redshift, which have rel-
atively small contributions from microlenses. For example, the
critical curves connecting two clusters in the process of merg-
ing produce near pristine critical curves between the two clus-
ters like the ones observed in the G165 cluster (Frye et al. 2019;
Griffiths et al. 2018).

6. Expected rates for compact bright sources

In this section we present rough estimates of the expected rates
for different types of compact background sources. In particular
we focus on the expected rate of extreme magnification events
(with g > 100-1000) for SNe, luminous stars at redshifts 1—
2, Pop III stars at z > 6, and gravitational waves from binary
black holes (BBH). Rates of QSOs are not be considered in this
work as they have been studied in detail elsewhere (including
the impact of microlenses). Also, since the accretion disk of a
QSO is orders of magnitude larger, about 10 light-days (with 1
light-day ~ 170 AU), the maximum magnification for a QSO is ~
100 times lower (see also Blackburne et al. 2011; Guerras et al.
2013, who show that the size of the light emitting region can be
significantly larger than this).

Supernovae can also reach relatively large sizes (although
not as large as QSOs). More interestingly, the expanding pho-
tosphere from a SN explosion that is intersecting a caus-
tic will exhibit very distinctive changes in the light curve
as a consequence of the varying magnification (see e.g., the
recent work of Dobler & Keeton 2006; Goldstein et al. 2018;
Foxley-Marrable et al. 2018, and references therein).
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Fig. 8. Pdf of the magnification computed in a smaller region around
the macrocaustic at ten times the resolution. The black solid line shows
the expected > for smooth caustics. The black dot-dashed line shows
the pdf of the smooth model computed through the inverse ray shooting
method. The dotted lines are the pdf of the model with microlenses
computed over the narrow region in Fig. 9, while the dashed lines
are for the pdf computed over the wide region. Blue lines are for
the model with £ = 19 My pc™2 and red lines are for a model with
¥ = 6.33 M, pc>.

During the early phases of the SNe (including the progeni-
tor or pre-explosion phase), if the progenitor is at a fraction of
1 AU away from a caustic, the fainter but much more compact
photosphere can be magnified by extreme factors owing to the
relatively small size of the growing photosphere. After the initial
explosion, the SN expands at rates of ~10* kms~' for several
days (or even weeks) resulting in sizes for the photosphere of
~6 AU one day after the explosion and 30 AU after 5 days (and
reaching ~3 x 10~* pc at the time of maximum brightness). If the
SN is located at a few tens of AU from a caustic (or microcaus-
tic), its maximum magnification will peak when the photosphere
touches the caustic. As the photosphere expands, the total mag-
nification will start to decline leaving a distinctive signature in
the light curve.

The probability of observing extremely magnified events at
redshift z depends on the product of the volume element at z,
the volumetric density of objects (or events) at the same redshift
and the probability of observing an event above a magnification
u. Figure 10 shows the combined effect of the volume element,
the evolution of the rates and the lensing probability. The dashed
line shows the number of objects (or event rates) per redshift
interval that trace the star formation rate (SFR) as a function of
redshift. For this particular example, we use the intrinsic rate of
SNe explosions (of all types). The solid line shows the number
of these events that would be magnified by a factor 4 > 100.
The dotted line shows the more realistic case where the observa-
tions are flux limited. We define the flux limit as the maximum
distance at which an object would be observed without lensing,
D,. In particular, for this curve we adopt D, as the luminosity
distance at z = 0.3. Since the received flux scales as D;(z)~2, any
event beyond z = 0.3 brighter than the flux limit must have a
magnification greater than u = Dy(z)?/D? (the same law applies
for gravitational waves, where the signal-to-noise ratios of the
lensed objects scale as +/u/D)(z)).

The location where the dotted and solid lines cross corre-
spond to ¢ = 100, magnifications are higher than 100 to the right
of this point and lower than 100 to the left of this point. At low
magnifications (u < 50) the images may be resolved, and the
total magnification may not be the best approach to describe the
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Fig. 9. Magnification in the caustic region in the presence of microlenses with £ = 19 M, pc2. The original simulated region has been compressed
by a factor ~20 in the horizontal direction in order to show a larger region. The two vertical lines indicate the extension over which the pdf
in Fig. 8 is computed for the narrow and wide regions. If microlenses were not present, the caustic from the macromodel would be a single

straight horizontal line with a region of zero magnification above it, and magnification decreasing as 1/ Vd below it, where d is the distance to the

caustic.

observations. Instead, the magnification carried by each image
should be considered, which is ~1/2 the total magnification for
p-factors larger than a few tens. Consequently, the dotted line at
z = | (where the total magnification is ~20) would be overesti-
mated by a factor ~4.

6.1. SNe at z=1-3
The volume in a shell of fixed thickness 8z is maximum at

z = 2.5. The star formation rate density (SFRD) reaches its max-
imum value at z ~ 2 (Madau & Dickinson 2014). Hence, the
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Fig. 10. Rate of events (all sky and in the source frame) for a model that
traces the star formation rate and normalized to 8 X 107> events per year
per Mpc? (dashed line). The SNe rate has been re-scaled by a factor 10°
for presentation purposes. Also shown are the product of the rate times
the optical depth for u > 100 (solid line) and the rate of lensed events
with the same apparent magnitude as a similar unlensed event at z = 0.3
(dotted line).

volumetric rate of any event that traces the SFR will be max-
imum at around z =~ 2, as shown in Fig. 10. The combined
effect of maximum volume and maximum rate at z ~ 2 makes
this an ideal redshift interval to search for events at extreme
magnification. Despite the numerous detections of SNe, so far
only three SNe have been gravitationally lensed with relatively
large factors (in the range of a few tens at most; Quimby et al.
2014; Kelly et al. 2015; Goobar et al. 2017). Here, we consider
the case of SNe (of all types) at high redshifts (z # 1-3) that are
being lensed by extreme factors. As detailed below, during the
much fainter phase of the first moments of the explosion, the SN
is still small enough that magnifications of ¢ ~ 1000 or higher
can take place if the SN occurs close enough to a caustic.

After a SN explosion, there is typically an intense and short
burst of flux lasting from a few seconds to a few hours. This
phase is known as the shock breakout. The breakout takes place
~1.5h after the explosion (Garnavich et al. 2016; Bersten et al.
2018). After ~1 day the photosphere has grown by ~1000 solar
radii assuming an expansion rate of 10* kms~! (Pejcha & Prieto
2015). We focus on this period of 1 day after the explosion (or
2-3 days in the observed frame for SNe at z = 1-2), where
the size of the SN is smaller than 1000 R, and the maximum
magnification can reach factors u > 1000. During this first day,
the spectrum is concentrated mostly in the UV band. At z =
1-2, a significant portion of this emission would be redshifted
into the visible band making the SN visible in the more sensitive
optical bands. For a supernova like SN 2016gkg with absolute
magnitude —17 at its maximum, the estimated magnitude before
the shock breakout was My ~ —12 and reached My ~ —15 at the
maximum of the shock breakout (Bersten et al. 2018). If such
SNe can be observed without the help of gravitational lensing
magnification at z = 1 during its maximum, i.e., with apparent
magnitude m =~ 27 attainable for instance in the deep-drilling
fields planned for the Large Synoptic Survey Telescope (LSST),
the same SNe, when observed amplified by a factor u ~ 1000
may reveal not only a much brighter main peak, but also the
shock breakout (m ~ 25) and even the last phase of the precursor
(m =~ 26.5 ignoring k-corrections).

To estimate the rate SNe at z = 1-3 we adopt a model
that traces the SFR (Madau & Dickinson 2014). A model fol-
lowing the SFR is clearly motivated given the relatively short
delay time of ~1 Gyr (for type Ia) between the star formation
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and the SN explosion (Ruiter et al. 2009). We normalize the
model to a rate of 0.8 x 10~* Mpc =3 yr! for all types of SNe
at z = 0 (Barbary et al. 2012). For this model, the volumet-
ric rate for any type of SNe at z = 1is 4.6x 10~ Mpc3 yr!,
and 7x10™#Mpc=3yr~! at z = 2 (both rates given in the
source frame, i.e., not corrected by time dilation). For type Ia
SNe the corresponding rate would be about 3—4 times lower
(Barbary et al. 2012). Hence, the number of type Ia SNe explo-
sion per year and redshift interval is estimated to be ~107/2 at
z ~ 1 rising to ~2x 107/3 at z ~ 2 (see Fig. 10), where the
dividing factors 2 and 3 account for the time dilation factor. For
magnification higher than ¢ = 1000, the number of events per
year is very small (0.1 event per year in the interval between
z = 1 and z = 3). For more modest magnification factors, at
z = 1, we expect ~0.5 SN per year with magnification higher
than u = 100. At z = 2 due to the increase in the intrinsic rate,
volume element and optical depth, we expect ~3 SNe per year
(where we have divided the intrinsic rate by a factor 1 + z = 3).
The increase in optical depth at higher redshifts partially com-
pensates the decline in intrinsic rates beyond z = 2, so the num-
ber density of lensed SNe with ¢ > 100 remains more or less
constant between z = 2 and z = 3. Above z = 3, the modest
increase in optical depth is not enough to compensate the declin-
ing intrinsic rate and volume element per redshift interval. At
magnifications ¢ = 100, the flux is boosted by 5 magnitudes,
enough to see a sufficiently bright pre-shock phase with absolute
magnitude My = —12 at z = 1 with a telescopes like JWST. The
shear number of events at z ~ 2 maximizes the probability that
one of these events takes place very close to a caustic.

Surveys covering a large region of the sky with good cadence
should be able to identify these SNe as exceptionally luminous
ones. One such survey is LSST which will monitor approxi-
mately 20 000 deg? down to magnitude 24.5 (50 in r band) with
a cadence of a few days (Ivezic et al. 2019; Abell 2009). Hence,
LSST should see =2 strongly lensed SNe (¢ ~ 100 or more)
per year between z = 1 and z = 3. The observed time delay
between the multiple images can be used to independently deter-
mine the Hubble constant (Vega-Ferrero et al. 2018). Over the
life time of LSST, there is a 50% chance that at least one SNe
has magnification higher than 1000; this means that the SNe is
very close to a critical where the rapidly expanding photosphere
will probe the structure of the overlapping microcaustics (see
e.g., Schneider & Weiss 1986).

6.2. SNe atz = 6-12

Supernovae can be extremely luminous, and thus can be
observed from large distances. Type Ia SNe have bolometric
luminosities on the order of 10" ergs™ (see e.g., Sukhbold
2019), which is about 10! more luminous than the Sun. Their
corresponding absolute bolometric magnitudes is then =~-20.
The first type Ia SNe may have emerged after the formation of
the first generation of white dwarfs. Since white dwarfs form
from stars with a maximum mass of %10 M, the minimum time
to form a white dwarf is the lifetime of a star with ~10 M, that is
only about 30 million years (see e.g., Table 1 of Windhorst et al.
2018). The delay time between the formation of the star and the
SNe can be also relatively small and less than 1 Gyr as shown,
for instance, by Maoz et al. (2010). Hence, SNe Ia can appear
very early on in the Universe, although it is not known at what
redshift the first SNe Ia may take place (after the formation of
the white dwarf, the binary system needs to form).

In this section we consider the case of type Ia SN at z = 6-12
that can potentially be observed by JWST during the phase of
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maximum brightness and are relevant for cosmology (at least to
test for possible changes in the equation of state of dark energy.
It should be kept in mind, however, that the rates assumed in this
section are somewhat speculative, given the uncertainties in the
formation rate of type Ia SNe at high-z and the unknown delay
time between the formation of the star and the SNe which may
significantly lower the rate at the highest redshift if the delay
time is greater than 0.5 Gyr. Nevertheless, detection of such dis-
tant events through lensing could be used to infer the intrinsic
rate (and delay times). Due to the larger size of the SNe during
its maximum (~10* Ry,), for a SNe sufficiently close to a caustic,
the maximum magnification for a SNe can be about an order of
magnitude lower than the magnification during the early phases
of the explosion.

For SNe at redshift z > 6, JWST’s Near-Infrared Camera
(NIRCam) is arguably the instrument best suited to study these
events. We consider the two wide filters F322W?2 (covering the
range ~2.5-4 um) and F444W (~3.8—4.8 um). F322W2 is more
sensitive than F444W, and it is ideal for SNe Ia at z < 10, while
F444W is better suited for SNe la exploding at z > 10. Atz > 12,
the peak emission in the redshifted spectra of the SNe moves to
longer wavelengths than those covered by the F444W. At z < 8§,
a SN explosion can be observed by JWST in the F322W2 filter
even without the help of lensing.

We assume an absolute magnitude of My = —19 during max-
imum for type Ia SNe (Phillips 1993; Brown et al. 2010). The
apparent magnitude is given by My + DM(z) + k(z) where DM
is the distance modulus and k(z) is the k-correction. The distance
modulus ranges from 48.85 at z = 6 to 50.58 at z = 12.

For the k-correction we estimate k(z) = —1.88 for F322W2 at
z = 8 and k(z) = —2.04 for F444W at z = 122. Without any lens-
ing, a SN at z = 6 would have AB magnitude of 28 in F322W2
that could be detected with moderately deep observations. At
z = 12 a type Ia SN would have AB magnitude of 29.5, so in
order to see it with reasonable integration times in the less sen-
sitive F444W would require lensing factors of 10 or more.

To estimate the rate of SNe at high redshift, we adopt a
model that traces the SFR (Madau & Dickinson 2014), but nor-
malized to a rate of 1.25x 107 Mpc=2 yr~! for type la at z = 1
(Barbary et al. 2012). For this model, the volumetric rate of SNe
laatz = 6is 3x 10 Mpc3yr™! and 5x 107 Mpc3 yr ! at
z = 12. At the low end of the redshift interval, between z = 6
and z = 7 there are 365 x 10° Mpc>. The total number of SNe
explosions in this redshift interval is ~1.7 million per year (after
applying the time dilation factor), of which only ~1 per year
is expected to be lensed with total magnification u > 100. At
lower magnifications, *20 SNe are expected to be lensed with
a total magnification higher than 10, and with apparent magni-
tudes brighter than m = 25.5 mag. Even though it is extremely
unlikely that JWST will find one of these SNe, a wide survey
like LSST can potentially detect some of these lensed type la
SNe (see Rydberg et al. 2018) that could be later followed up by
JWST.

At the high end of the redshift interval between z = 11 and
z = 12, there are ~225x 10° Mpc>. The total number of SNe
explosions in this redshift interval is ~85 000 per year, of which
~1 per 10 year is expected to be lensed by a factor larger than
100 (i.e., apparent magnitude AB ~ 24 mag and hence detectable
by LSST). The probabilities of detecting one of these SNe is
low, but not negligible. A follow-up with JWST would provide
valuable information about these first SNe.

2 Patrick Kelly (priv. comm.).

As mentioned at the beginning of this subsection, it is not
well known what is the abundance of type Ia SNe at high red-
shift. However, what is known is that other SNe types, such as
core collapse, should be more abundant at z > 6, and some of
them could equally be observed through extreme magnifications.

6.3. Luminous stars at z~ 1.5-2.5

The low probability of observing high-z lensed SNe is partially
a consequence of the relatively low number density of objects at
high redshift. In order to compensate for the low probability of
having a high magnification, there needs to be a large number
of background objects in order to have a higher probability of
one of them being close enough to a caustic. Bright stars (with
absolute magnitude My ~ -9 or brighter) at z =~ 1.5-2.5 (i.e,,
with distance modulus in the range ~45-47) could be observed
with apparent magnitudes ~27-29 if they are magnified by fac-
tors of a few thousand, hence within reach of future telescopes
like JWST. As shown in Fig. 10, the optimal range for detect-
ing events or objects that trace the SFR is between z = 1.5 and
z=25.

The mass-luminosity relation is well established for main
sequence stars,

-l
— =A|l—),
Lo Mo
where A =~ 1 and @ = 3-4. For massive stars, the slope « is
shallower (~2.7 for stars with 10 < My < 50 Vitrichenko et al.
2007) and for the most massive and luminous stars the luminos-
ity can reach the Eddington limit, i.e., L o« M (see Eq. (3) and
Sect. 3 in Windhorst et al. 2018). Owing to the high value of
the exponent «, massive stars can be extremely luminous, reach-
ing luminosities several million times that of the Sun. However,
at cosmic distances (z > 1) and without the help of gravita-
tional lensing magnification, their apparent magnitudes would
be very faint (AB > 36) and well beyond the reach of current
telescopes. With magnification factors of 1000 or more, some
of these stars may get enough boost in their flux to be observ-
able in deep observations. Small stars are more common and
can be magnified by higher factors. The maximum magnification
occurs when the star is at one radius distance from the caustic,
HMmax < 1/ VR, where R is the star radius. Since the luminosity of
a star, L, scales as L o< R%, a lensed star has a maximum luminos-
ity scaling as Ly o« R%03. Since a > 1, larger stars will always
be more luminous at maximum magnification than smaller stars,
and hence they are more likely to be observed during caustic
crossing events even though they are more rare.

The recent observation of the Icarus star at z = 1.49 by
Kelly et al. (2018) represents the first example of a redshift
z > 1 star magnified by factors of several thousand. Kelly et al.
(2018) estimates an absolute magnitude for Icarus of My =
-9 + 0.75 mag. At the redshift of Icarus (z = 1.49) the distance
modulus is 45.21 and the k-correction is estimated to be —1.1
magnitudes (in F125W) resulting in an apparent magnitude of
m = 35.11 + 0.75 mag (without magnification). The magnifica-
tion for the Icarus event was estimated to be u =~ 2000-4000,
giving a boost of 8.25-9 magnitudes, so that the event could be
observed with m = 26.11-26.86(+0.75)°.

In this section we address the question of how common
these events may be. In order to do this, we perform a series

(12)

3 As this manuscript was being finalized, Icarus experienced a new
microlensing event in early June 2018 with similar peak brightness to
that of the original event in 2016.
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of approximations adopting a conservative approach in those
assumptions that are more uncertain. The number of bright stars
at a given redshift can be estimated as a constant fraction of the
number of stars in a galaxy times the number of galaxies,
N.(L.,2) = deN*(L*,L) * Wea (L, 2) * FsF, 13)
where W, (L,z) is the luminosity function of galaxies and
N.(L,, L) is the fraction of stars with luminosity L, in the galaxy
with luminosity L. The factor Fsg accounts for the fact that mas-
sive stars have short lives, so they will be predominantly found
in galaxies where star formation is taking place. Elliptical galax-
ies for instance have low SFRs, so the fraction of very lumi-
nous stars is expected to be much smaller. We set this fraction
to Fsg = 0.5 in the redshift interval considered. Observations
show that the more numerous small galaxies (M, < 10'0 M)
at z = 1-2 are mostly star forming galaxies (Ilbert et al. 2013,
2015; Muzzin et al. 2013).

For the luminosity function we adopt the best-fit Schechter
parameters to the UV luminosity function in Reddy & Steidel
(2009) at z = 2. After integrating the Schechter function between
absolute magnitudes —23 and —16 we find a number density of
~0.08 galaxies per Mpc® (and a factor ~2 times less if the inte-
gral is carried out down to absolute magnitude —17). Assuming
to the first order no evolution in the luminosity function between
z = 1.5 and z = 2.5, the total number of galaxies in this redshift
interval is ~4 x 1010,

To estimate the number of bright stars that may experience
magnifications higher than 1000 (through temporary microlens-
ing episodes), first we compute the number of galaxies that are
intersecting a caustic. We assume that a galaxy is intersecting a
caustic if its center is at a distance from the caustic such that the
magnification of its nucleus is £100. This means that the galaxy
will produce multiple images (usually three or more), with two
of the counterimages carrying most of the magnification (i.e.,
two images, each with magnification of ~50 when distance from
the caustic is approximately the radius of the galaxy). This is
a conservative assumption since in most cases galaxies inter-
secting caustics are observed with average magnification =30—
50 (e.g., the galaxy of Icarus). Since the average of the optical
depth for u > 100 between z = 1.5 and z = 2.5 is ~1077, we
expect ~4000 galaxies intersecting caustics between z = 1.5 and
z = 2.5. For each one, a portion of the galaxy at any time will
be crossing a caustic. If a star is at a distance of a few parsecs
from the caustic (i.e., at separations of 1 mas or less) where the
magnification from the macromodel can reach factors of several
hundred (see Sect. 2) and microlensing may become important,
temporarily boosting the magnification to factors of a few thou-
sand. At these magnifications, a very luminous star at z =
1.5-2.5 could be elevated to magnitudes brighter than 28. If a
galaxy of radius R,y is intersecting a caustic, the probability that
a given star in that galaxy is within a distance d (typically a few
parsecs) of the caustic is d/Rg,1, which is ~1073 for a galaxy of a
few kpc in radius. Hence, approximately one in a thousand stars
in the galaxy has a chance of intersecting a microcaustic over the
lifetime of JWST. If that galaxy has a number of super-luminous
stars (with luminosities exceeding 106 L) similar to our Galaxy
(i.e., ~100), this means that for every ten galaxies intersecting
a caustic, one of them would have a super-luminous star close
enough to the caustic to be observable. This puts the number of
potentially observable background stars at #400. This is a very
rough estimate and ignores many subtleties.

An alternative and perhaps more precise estimation can be
obtained as follows. We assume that the number of bright stars
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in a given galaxy correlates with its luminosity. We assume that
there are n, bright stars in a faint galaxy with absolute magnitude
—16 (the number 7, will be estimated later). The number of stars
in a galaxy with absolute magnitude M will then be

N,(L,,L) = n,10"M*10/2:5 (14)

where we have used the relation between magnitude and lumi-
nosity, M — M, = —2.5log(L/L,) with M, = —16 and L, the
corresponding luminosity of a galaxy hosting n, bright stars.
The number of very luminous stars in our Galaxy and surround-
ings (LMC and SMC) with luminosities above 10° Ly or bolo-
metric absolute magnitudes exceeding —10 mag is of the order
of 100 (see e.g., Humphreys & Davidson 1979; Hamann et al.
2006; Crowther et al. 2010, 2016; Hainich et al. 2014). The total
number is probably a factor of a few higher, but we adopt
the conservative number of 100 for a galaxy like the Milky
Way (plus its satellites). By requiring Eq. (14) to reproduce
the number of bright stars in our Galaxy (M = -21mag,
z = 0, N. = 100 bright stars), we find that n. = 2.5.
This is well motivated since the specific SFR of the Milky
Way falls within the typical values for galaxies at z =
0 (Pérez-Gonzdlez et al. 2008; Licquia & Newman 2015). We
should note, however, that this simple recipe fails in cases
like the Large and Small Magellanic Clouds (LMC/SMC),
where a significantly smaller number of bright stars would
be expected, while the number of observed extremely bright
stars are as numerous in the LMC/SMC as in our own
Galaxy. This may be consequence of interactions between the
LMC/SMC and our Galaxy, which may trigger star forma-
tion episodes at the perigalactic passages of the LMC/SMC
with our Galaxy (Harris & Zaritsky 2004). The expres-
sion above ignores such temporary episodes or interactions,
and hence should be considered a conservative approximation.
After integrating over the galaxies brighter than magnitude M =
—16, we find ~1 bright star per Mpc?, or ~5 x 10'! bright stars
between z = 1.5 and z = 2.5, of which ~50 000 will be in areas
where the magnification is higher than 100 and can momentarily
undergo microlensing events by massive stars or BHs that boost
the total magnification to ¢ > 1000, hence potentially observ-
able by current telescopes. At macro-magnifications higher than
1000, the number drops by a factor of 100, so we expect =500
stars at macromodel magnification g > 1000 between z = 1.5
and z = 2.5. In the context of the Icarus star with a macromodel
magnification ~500 there are four times the number of bright
stars (brighter than absolute bolometric magnitude —10mag)
moving in areas with macromodel magnification higher than
500; in other words, ~2000 over the entire sky or ~1 star per
20 square degrees. These stars would appear very faint, but
within reach of deep observations at AB ~ 28-29 magnitudes.
Occasionally, these stars may experience microlensing events
where their flux may increase between 1 and 3 magnitudes. The
duration of these microlensing events depends on the cluster
microlens, the macromodel magnification, the relative velocity
between the bright star and the caustic, and the angle between
the star motion and the caustic orientation. For typical configu-
rations, this timescale is on the order of days to weeks.

The assumptions made above regarding the number of bright
stars is quite uncertain®, but we should expect a reasonable num-
ber of stars that could be followed up. Icarus represents the first
entry in a list of background stars at cosmic distances grazing

4 Many of these extremely luminous stars can be also variable, which
adds another element of uncertainty since a star may be super-luminous
only during a short period of time.
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in a field of microcaustics at high magnification. This list will
grow quickly in the near future. Having a census of background
stars that are moving near macrocaustics is of great interest since
it opens the door to the statistical study of the composition of
the microlenses. Whether these microlenses are simply stars and
remnants or more exotic microlenses like primordial black holes
is something that could be determined with sufficient statistical
information about the fluctuations in flux of the background stars
(assuming time variability and microlensing features in the light
curves can be distinguished).

The planned Deep Drilling Fields of LSST (Ivezic et al.
2019; Abell 2009) will cover 38.4 deg? in four separate fields to
a much greater depth (although how deep is still undecided) and
also better cadence. These fields are expected to reach magni-
tude 28 mag in r in the coadded data (and single night depths of
~26 mag). At such depths, these fields should contain approx-
imately two stars similar to Icarus. These stars will exhibit
changes in their flux due to microlensing on timescales of days
to weeks. They can also be followed later by JWST during one
of the microlensing peaks to study their spectrum in detail.

Although not discussed in this work, observations of caus-
tic crossings by Pop III stars will also be possible with future
large telescopes like the ELT (in construction and expected to be
operative in the mid-2020s) or the proposed LUVOIR (~2035).

6.4. Pop Il stars

At even higher redshifts, Pop III stars can be used as pow-
erful and very small background sources (Bromm et al. 2001;
Windhorst et al. 2018). These stars are supposed to be extremely
luminous owing to their high masses (Bromm etal. 2001;
Susa et al. 2014), although recent work suggests that they may
be less massive than previously thought (Ishigaki et al. 2018).
The higher redshift has the advantage of having maximum opti-
cal depth, and the critical curves that form farther away from
the centers of the lenses. At these separations, the impact of
microlenses is smaller, thus allowing for higher magnification
(at the expense of having fewer short episodes of microlensing).
Despite luminosities that can reach tens of millions L, the large
distance makes their detection extremely challenging. Even deep
observations made with powerful telescopes like the JWST may
not reach the depth required to see them (Rydberg et al. 2013).
However, thanks to gravitational lensing, some of these stars
may get a boost of several magnitudes that could make them
detectable. As discussed in Windhorst et al. (2018), JWST’s
NIRCam will be able to look for highly magnified Pop III stars
as caustic crossing events. JWST is expected to routinely reach
AB = 28.5-29 in medium-deep observations. In this section
we present an order of magnitude estimation of the probability
of observing these events. The number density of faint galax-
ies observed in deep observations (e.g., in the GOODS and
HUDF fields) is approximately between ~1 and a few galaxies
per arcmin? in the redshift interval z = 8—12 (Finkelstein et al.
2015). Similar results are derived when observing faint galax-
ies through powerful gravitational lenses like the Hubble
Frontier Fields clusters (Ishigaki et al. 2015). The number of
galaxies in the entire sky above z = 8 (and within our horizon)
can then be several hundred million galaxies and perhaps up to
several billion. With such large numbers, even a low probability
of intersecting a caustic results in a significantly large number of
galaxies.

From the previous section, microlenses negate the possibil-
ity of observing these stars at magnifications higher than 10°
(assuming that the observations are made in regions where the

contribution form microlenses is small). For critical curves at
high redshift (z; > 7), we expect the role of microlenses to be
smaller than for sources at z; & 1-2. How high the maximum
magnification is depends on how small the role of microlenses
is at the position of critical curves for sources at high redshift.
To estimate the surface mass density of microlenses at the posi-
tion of a high-redshift critical curve, we compute the critical sur-
face mass density for a lens at z = 0.4 and a source at z = 10,
Tair = 1.8%x10° M, pc‘z, and assume that at the position of
the critical curve the convergence typically adopt values close
to k ~ 0.5, that is T = kX Zgi ~ 900 Mg pc2. Adopting
a mass-to-light ratio of 200 (see e.g., Girardi et al. 2002), we
obtain that the surface mass density of stars is £ ~ 4.5 M pc~2,
close to the low-X model adopted earlier with X ~ 6.33 M, pc™2.
Hence, if the surface mass density of microlenses at the position
of high-redshift critical curves is in the range of a few Mg pc=,
we should expect maximum magnifications not exceeding a few
tens of thousands. We adopt the value g, = 5 % 10* as a reason-
able limit (for a star with a radius several tens of times the radius
of the Sun; see the typical radii for these stars in Tables 2—4
in Windhorst et al. (2018). If we set the detection limit to m =
28.5mag, (a reasonable limit for medium-deep observations
with NIRCam in JWST), this implies that only sources brighter
than m = 40.25 mag can be observed through caustic crossing
events. Following Windhorst et al. (2018) Sect. 4.4, we find the
minimum mass that can be observed at this maximum magni-
fication. These are are 70 My, 190 M, and 250 My, at z; = 7,
zs = 12, and zg = 17, respectively (these masses become 27,
36, and 42 in the much shorter but brighter phase of the asymp-
totic giant branch). Any mass below these limits would require a
magnification higher than ftp,x.

Visbal et al. (2018) estimates that at z < 20, the SFRD is
already ~104=1073 M, Mpc~> yr~!. A similar value is obtained
by Sarmento et al. (2018), but in the redshift range z = 8—12. At
these high redshifts, the SFR is expected to be dominated by the
production of Pop III stars (see e.g., Sarmento et al. 2018). We
make the simplifying assumption that most Pop III stars being
produced at these redshifts are at a characteristic mass scale of
100 M,,. This is close to the peak of the mass function found by
Susa et al. (2014) for the first stars (see also Hirano et al. 2014).
This leads to ~107°~107> stars Mpc ™ yr~! or 2-20 Mpc ™ dur-
ing the typical lifetime of a massive Pop III star (fpean = 2
Myr or dz = 0.05 at z = 10). This volumetric density trans-
lates into a surface density of =0.05—0.5 stars with 100 M, per
mag arcsec? between z = 10 and z = 10.05. This estimate is rel-
atively uncertain, but is consistent with the observational limit
in the near-IR of m > 31mag arcsec™2 (see Windhorst et al.
2018). Adopting the upper value (i.e., 0.5 stars per arcsec’ in
dz = 0.05 or 10 stars per arcsec® and redshift interval dz = 1),
the surface brightness from such a density and redshift interval
would be m ~ 41 mag arcsec™2. After integrating over a redshift
interval between z = 7 and 20 we estimate the surface bright-
ness would be AB ~ 36 mag arcsec™2, comfortably below the
limit m ~ 31 mag arcsec™2. The number density of stars can be
increased by a factor 100 and still not exceed this limit. Hence,
as an upper limit we estimate a maximum number of stars of
1000 arcsec™? and per redshift interval at z = 10. This estimate is
in good agreement with the value estimated by Windhorst et al.
(2018), who estimate the surface density of bright (L > 10° L)
Pop III stars at z > 7 and brighter than AB ~ 38.5 mag to be in
the range 1-1000 per arcsec?

5 Near critical curves, arcs typically have small radial magnification
(I1 =« + y| = 1) and high tangential magnification (|1 — x — y| = 0).
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Adopting the compromise value of 10 stars per arcsec® or
~35 x 10'? stars in the observable sky, the number of stars with
i > 100 would then be ~5 x 10° or ~100 per square degree. At
@ > 1000, the number of lensed stars would be 1 per square
degree. As a consequence, a surveyed area of 1 square degree
should contain at least one Pop III star at z > 7 that is lensed
by a factor ¢ > 1000 with m < 31 mag, and within reach of the
JWST. The number density of extremely lensed Pop III stars can
be increased by targeting known lenses at intermediate redshifts.
Windhorst et al. (2018) estimates that the rate of extreme lensing
events can be as high as 1 yr™! and per 3 massive lenses surveyed.
As discussed in Windhorst et al. (2018), Pop III stars are short-
lived but their remnants are expected to host bright accretion disk
that could be equally lensed. These accretion disks are expected
to live much longer than the Pop III stars, so their number density
(and rate of lensed events) may be correspondingly higher.

6.5. Gravitational waves

Broadhurst et al. (2018) suggest that the low-frequency events
observed by LIGO can be reinterpreted as gravitational waves
(GWs) originating at z > 1 that are magnified by factors u > 100.
Broadhurst et al. (2018) relies on the same lensing probability
presented in this work, so we do not repeat the calculations pre-
sented in that work. Here, we briefly discuss their result and
the impact of microlenses near critical curves in the context of
GWs, which was not explored in Broadhurst et al. (2018). As
proposed by Broadhurst et al. (2018), the low-frequency GWs
observed by LIGO would be produced by binary black holes
(BBHs) with intrinsic chirp masses of about 30 solar masses
(which is a factor =2 times lower than the values inferred by
the LIGO collaboration) and that they would be redshifted so
the observed chirp mass (derived from the observed GW fre-
quency and its derivative) appears a factor of 2 higher. In order
for the strongly lensed GW interpretation to work in the context
of the LIGO observations, the intrinsic rate of BBH coalescence
needs to be ~3 x 10* events per year and per Gpc® and between
z = 1.5 and z = 2.5. At this rate, the number of events in this
redshift interval is ~1.5x 107 per year, of which ~4 events per
year will be magnified by factors above = 100, and hence are
within reach of the LIGO detectors. Whether the low-frequency
events detected by LIGO are gravitationally lensed, as proposed
by Broadhurst et al. (2018), is something that can be tested with
future data; at these high magnifications we would expect to see
multiple images of the same source with similar magnifications.
Broadhurst et al. (2018) suggests that many of these multiple
images are not observed since they fall within the detection limit
of LIGO (due to the time delay between images and Earth’s rota-
tion). At the high magnifications considered in Broadhurst et al.
(2018) (¢ > 100), the effects of microlensing are expected to
be important for small sources. However, given the long wave-
length of gravitational waves we need to consider wave optics
and microlenses with masses below 30 M, to produce negligi-
ble magnification of the GW. The maximum magnification of
a GW by a lens of mass M is gymax = x/(1 — e7), where x =
(4/m) x 10°(M/Mg)(v/Ghz) (Schneider et al. 1999). For a typi-
cal GW detected by LIGO (v ~ 250 Hz) and a microlens of mass
<10 Mg, the maximum magnification is g,y =~ 1. At masses
above 100 M, and frequencies of 250 Hz, the maximum magni-
fication of GW scales as u(M > 100 Mg)max = 3 X M/100 M.
At higher frequencies or much higher masses, the exponential
part tends to zero and pum,x =~ x. Even though the magnifi-
cation can be modest or negligible, there can be interference
effects that can leave observable signatures even if the microlens
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mass is relatively low (see e.g., Lai et al. 2018). As discussed
in Diego et al. (2018), a microlens with mass M near a caustic
where the macromodel tangential magnification is y behaves as
a microlens with effective mass y,M. This means that at mag-
nification factors of several hundred, a microlens with a mass
of a few solar masses behaves as a microlens with an effective
mass of several hundred solar masses. Hence, interference pat-
terns (and some extra magnification) in the GW may occur if
the GW is strongly magnified near a caustic, which is disturbed
by microlenses. Figure 11 shows examples of time delays for a
massive microlens of mass 400 M, (small panels on the left) and
for a smaller microlens of mass 10 M, (large panel on the right).
In both cases, time delays between 1 and 100 millisecond can
be produced. Since the inverse of the frequency is also of order 1
millisecond, interference can take place in both cases. Moreover,
if the lens plane is populated by many microlenses (as expected),
Diego et al. (2018) shows how there can be a greater number of
multiple images, and also the time delay between them result-
ing in complex interference patterns. From the figures in the left
panel, a trend is observed between the time delay and the mag-
nification of the macromodel. For a fixed source position (with
respect to the center of the microcaustic), the time delay grows
as /Umacro- This means that relatively small microlenses suffi-
ciently close to a critical curve can result in time delays that are
large enough for interference to take place. On the other hand,
as shown by Oguri et al. (2018), the size of the microcaustics
shows a weaker dependency with pyacro, SO in order for these
effects to be important with small microlenses, the separations
between the source and the microcaustic must be small (almost
independently of the macromodel magnification). These smaller
separations are required to produce situations like the one shown
on the right side of Fig. 11, where the probability of intersect-
ing the smaller microlens is lower than in the panels on the
left side (with a higher mass and hence larger microcaustics).
Hence, even though measurable interference patterns can be pro-
duced by stars of a few solar masses, their associated caustics are
smaller. On the other hand, their larger number (compared with
400 M, stars) compensates for the smaller size of their caus-
tics, thus increasing the probability of intersecting a small caus-
tic. The superposition of multiple caustics also helps to increase
the time delay, so microlenses near macromodel critical curves
are expected to produce a rich phenomenology in terms of time
delay and interference patterns. This regime is studied in more
detail in Diego et al. (2019).

Finally, GW from binary neutron stars (BNS) mergers or
binary neutron star and black hole (BNSBH) mergers can be
equally magnified. In the case of BNS mergers, their larger
number increases the probability of being lensed, but the lower
masses limits the maximum distance at which BNS can be
observed without lensing. Since the minimum magnification
needed to detect a lensed GW effect scales as (Dy(z)/D,)? (the
strain on a lensed GW scales as it/ Di(z)), to see an event sim-
ilar to GW170817 (which is at a distance of 40 Mpc) but at a
distance of 1000 Mpc (z ~ 0.2) would require a magnification
of u =~ 600. The optical depth at z, = 0.2 for ¢ ~ 600 is
extremely small (<107%). At higher redshifts, the increase in vol-
ume and intrinsic rate of BNS mergers is not enough to compen-
sate the rapid increase of magnification needed to promote the
event above the detection threshold, so the prospects of seeing
a lensed BNS are very dim (except for modest magnifications
between u = 1 and p = 2, where there may actually be a chance
of seeing such events). In the case of BNSBH mergers, we expect
a similar scenario; even though the mass of the BH component
may be high, the intrinsic chirp mass remains low making the
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H=1 (1x1)

At=15 ms At=32 ms

H=3 (2x1.5)

At=21 ms

1=10 (5x2)

At=34 ms At=107 ms

Fig. 11. Time delay between the brightest counterimages (GW) produced by microlensing. The group of nine figures on the left is for a microlens
of mass 400 M, at z = 0.5 and a source at z = 1.5. Magnification in the lens plane is shown in blue/black. The critical curve can be seen as
the bright blue contour. The multiply lensed images are shown in white. Each row corresponds to a different magnification. The numbers in
parentheses next to the magnification indicate the tangential and radial magnifications respectively (i.e., y X i;). The microlens is isolated in the
top row (1 = 1) and embedded in a potential from a macrolens with magnification u = 3 (middle row) and u = 10 (bottom row). Each column
represents a different source position (marked with a small yellow dot). The red contours are isochrones. The time difference between isochrones
is given in the bottom right corner of each panel. The right figure shows one example of a much lighter microlens (with mass 10 M), but much
closer to the macrolens critical curve. In particular, the macro-magnification at this position is 200 (100 in the tangential direction and 2 in the
radial direction). The redshifts are the same as in the left panels. For this configuration, the time delay between microimages is on the order of 1
millisecond. The source is much closer to the center of the caustic, hence the smaller time delay. Since the microcaustic is smaller, at separations

from the center of the microcaustic similar to those on the left side, no multiple images are produced.

detectability of strongly lensed GW from BNSBH very unlikely.
However, as noted by Diego et al. (2019), the lower chirp mass
produces strains with higher frequencies, and it is at these fre-
quencies where the effects of interference from stellar mass
microlenses can be appreciated best.

Similarly, GWs from SNe explosions are expected to be
detectable only within our local neighborhood (tens of kpc), so
the probability of them being lensed is even more remote.

7. Discussion

Massive stars are usually born after fragmentation of large
clouds (Tan et al. 2014). This means that massive stars tend to
form groups or small clusters (Susa et al. 2014). If one of these
minihalos is close to a lens caustic, the probability that one of
the stars in the group will cross a caustic grows compared with
the case where luminous stars are isolated. A good example is
the R136 group in the heart of the Tarantula Nebula (in the
LMC) which contains several of the most luminous stars known.
If one of these groups, with typical sizes of a few parsecs, is
moving across a field of micro-caustics, each bright star in the
group can undergo multiple microlensing episodes over a period
of time greatly increasing the rate of events. This may create
problems when interpreting the data since the number density
of bright stars would degenerate with the number density of
microcaustics. In the starburst region of the Tarantula Nebula,
Schneider et al. (2018) finds a flattening in the slope of the IMF
at the high-mass end suggesting that very massive (and hence
luminous) stars may be relatively more abundant than would be
inferred from standard IMF. Hence, the number of stars between

z = 1.5-3 with macromodel magnification higher than 500 could
be more than our estimated number of 2000 based on standard
IMF functions.

We have also considered a different type of luminous source,
SNe explosions. In particular, type Ia SNe are of great interest
for cosmology since they can be used as standard candles to
constrain the evolution of the equation of state of dark energy.
Even though the explosions from SNe can release tremendous
amounts of energy (Woosley et al. 2002), detecting them at red-
shifts higher than z = 1-2 is challenging for current survey
telescopes (typically with modest apertures) without the aid of
lensing. In a recent work, Rydbergetal. (2018) consider
strongly lensed distant SNe that could be observed by LSST.
In their work, they also discuss the possibility of detecting Pop
IIT SNe at z < 7. In particular, they estimate that LSST may
detect 1-2 Pop III between z = 5 and z = 7 in the deep sur-
vey (magnitude AB ~ 28.5 in 10deg?) although with a much
more modest magnification factor than considered in this work
(see also Oguri & Marshall 2010, for an estimate at lower red-
shifts). Studying in detail the light curves of strongly lensed SNe
can be used to infer the underlying population of underlying
microlenses (Rauch 1991)

At redshifts z > 7, the first stars could be observed through
caustic crossing events with telescopes like JWST, as proposed
by Windhorst et al. (2018). It is believed that at the end of their
life, Pop III stars with masses in the range 15-40 M, explode as
core-collapse supernovae (CC SNe) and with masses in the range
140-260 explode as very energetic pair-instability (PI) SNe, with
luminosities up to 100 times higher than Type Ia or Type II SNe
(Heger & Woosley 2002) and leaving no remnant. At masses
between 40 and 140 M, and above =260 M, the star collapses
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into a proto-neutron star or BH without producing a SN. Since
SNe explosions from Pop III stars are considerably brighter than
regular SNe, they can be detected by JWST (Wise & Abel 2005;
Whalen 2013; Whalen et al. 2013). Both JWST and WFIRST
should be able to detect SNe explosions from the first stars up
to z ~ 20 (Whalen et al. 2013). At lower redshifts (5-7), tele-
scopes like LSST could also see lensed SNe from late Pop III
(Rydberg et al. 2018).

As pointed out by Diego et al. (2018), microlenses disrupt
the caustics from macromodels and reduce the maximum mag-
nification attainable by a small background source. The most
favorable scenario for observing faint background sources is in
regions around the lens where the contribution from microlenses
is small. If the background source is at high redshift, the mag-
nification required to compensate the increase in luminosity dis-
tance will be higher, but the contribution from microlenses will
also be smaller since the critical curves move outward. Also,
microlenses on the side of the critical curve with negative parity
can magnify by larger factors at the expense of having longer
periods of low magnification, where the background source
apparently vanishes from the data. Due to microlenses, radial
curves are less likely to produce extreme magnification, since the
optical depth of microlensing is larger, although they are more
likely to produce fluctuations with more modest magnification
factors i of a few tens or few hundreds. We can in principle esti-
mate the maximum magnification expected at a given observed
lensing arc based on an estimate of the surface mass density and
alens model. Similarly, if a given arc known to intersect a caustic
is monitored for some time, we can infer the surface mass density
of microlenses including nonluminous ones such as remnants or
primordial black holes (PBH). The most favorable situation is
for arcs intersecting caustics at high redshift. If one of these arcs
is known to contain a sufficiently high number of bright sources,
for instance Pop III stars, and no extreme events are observed,
we can directly use the lack of fluctuations to impose tight con-
straints on the abundance of PBH (assuming we are observ-
ing far enough from the center of the lens so the contribution
from the stars and remnants is small, and a population of PBH
would dominate the surface mass density of microlenses). Bright
background sources at high redshift are more likely to undergo
extreme magnification than the similar sources at low redshift
since the corresponding critical curves are observed in regions
of the lens that are significantly less influenced by microlenses.
Bright Pop III stars at high redshift are hence ideal targets for
extreme magnification (Windhorst et al. 2018).

Although not explored in detail in this paper, the role of
microlenses can be important in the case of strongly lensed GW.
If the volumetric rate of BBH mergers is on the order of 10* per
year and Gpc®, we have shown how we should expect approx-
imately 1 GW per year magnified by large factors of 100 or
more. At these magnifications, the amplification takes place near
a critical curve where microlenses play an important role. We
discussed how microlenses have a minor impact on the over-
all magnification of the GW, but for the right mass range, time
delays of order 1 millisecond can produce interference patterns
that could be observed both in the spectrum of the GW, but
also as a different signal in the detectors since they are prob-
ing different portions of the caustic region (although this second
effect is expected to be much smaller than the first). We showed
how in the case of a single microlens of a few solar masses
near a critical curve, where the magnification can be more than
100, time delays of order 1 millisecond are possible. In a more
realistic scenario, where the lens plane is populated by many
microlenses, their corresponding microcaustics can overlap in
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the source plane resulting in larger time delays and complex
interference patterns.

8. Conclusions

Giant arcs lurk around critical curves of massive galaxies, galaxy
groups, and clusters. These arcs can contain very luminous stars
or SNe, and normally intersect the critical curves. If a super-
luminous star, Pop III star, or SNe happens to lie at a few pc
from the caustic, it can be magnified by factors of hundreds.
At these magnifications, microlenses can distort significantly
the pdf of the magnification (compared with the case without
microlenses) producing temporary episodes of extreme magnifi-
cation with u > 1000. The length of these events depend on the
relative velocity between the source and the caustic. The pres-
ence of microlenses also disrupts the caustic of clusters, pre-
venting a caustic crossing event from reaching magnifications
of millions. Instead, when microlenses are present, the maxi-
mum magnification of the caustic crossing event is in the range
of tens of thousands. We computed the probability of extreme
magnification with a state of the art mass function and ana-
lytical models for the individual lenses, which allowed us to
reach high spatial resolution. The magnification was computed
with inverse ray tracing, the appropriate algorithm to account for
the total flux of extremely magnified, unresolved images. Our
results are conservative since we ignored projection effects that
increase the optical depth of lensing. We also ignored the role
of baryons that can increase the optical depth, especially from
smaller halos, by up to a factor 2. When microlenses are present,
a trade off in the magnification between the macromodel caus-
tic and the microcaustics results in an increase in the probability
of magnifications around a few thousand, which can be a fac-
tor ~ 2, although the exact number depends on the macromodel
and microlensing configurations. We find that the probability of
having extreme magnification higher than 1000 for a source at
z=21is ~3x 1077, A source or event population with a volumet-
ric density of 1073 Mpc~3 yr~! (comparable to the rate of SNe of
all types) would then produce approximately one event per year
with u > 1000 at z = 2. When accounting for microlensing near
critical curves, this number can be increased by a factor of =2.
Among the most promising targets are Pop III stars for which we
predict that as many as 1 star per square degree could have mag-
nification higher than 1000. In combination with sporadic boosts
from microlensing, these stars can be found with JWST in deep
fields reaching AB ~ 30. Extremely magnified super-luminous
stars at z = 1.5—3 should be also relatively abundant. We predict
that there should be ~2000 stars in the entire sky and in the red-
shift interval z = 1.5-3 with macromodel magnifications similar
to that of Icarus. The counterimages of these stars will be nor-
mally unresolved and affected by microlensing events. At typical
relative velocities and microlensing surface mass densities, these
events should take place every few years and with magnifications
of a few thousand over periods of days to weeks (Diego et al.
2018), sufficient to be observed by future telescopes.

Surveys like LSST will cover about half the sky with a
cadence of a few days, sufficient to see strongly lensed SNe
above z = 1. We estimate that about 5 strongly lensed SNe
(u > 100) per year above z = 1 should be discovered by LSST.
On the Deep Drilling Fields, we estimate LSST should detect
approximately 2 stars, similar to Icarus. These stars can be later
followed up by JWST to get their spectrum and identify small
fluctuations in the flux due to microlensing.

If the rate of GWs at z > 1 is approximately one
order of magnitude higher than the inferred rate from naively



J. M. Diego: The Universe at extreme magnification

extrapolating the local rate, experiments like LIGO, which are
instantaneously sensitive to the entire sky (neglecting the geo-
metric factor), should routinely detect strongly lensed GWs with
magnification factors of 100 or more. At these magnifications,
small microlenses of a few solar masses can trigger interference
patterns in the GW that could be detected in their spectrum.
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