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4.3 Competition among LQD̄-driven contributions 21

4.4 Competition between flavor violation in the R-parity conserving and R-

parity violating sectors 23

5 Conclusions 26

A Notations 27

A.1 Mixing matrices 27

A.2 Feynman rules 27

A.3 Loop-functions 34

B Tree level contributions 34

C di − dj self-energy contributions 34

C.1 Scalar/fermion loop 36

C.2 Vector/fermion loop 36

C.3 Counterterm 36

D Sneutrino-Higgs self-energies 37

D.1 Scalar A0-loop 37

D.2 Vector A0-loop 37

D.3 Scalar B-loop 37

D.4 Fermion B-loop 38

D.5 Vector B-loop 38

D.6 Ghost B-loop 38

D.7 Scalar/vector B-loop 38

D.8 Counterterms 38

– i –



J
H
E
P
0
2
(
2
0
1
9
)
0
6
6

E Vertex corrections 39

E.1 Scalar/fermion loop with cubic scalar coupling 39

E.2 Scalar/fermion loop without cubic scalar coupling 39

E.3 Vector/fermion loop with scalar-vector coupling 40

E.4 Vector/fermion loop with scalar-fermion coupling 40

E.5 Vector/Scalar/fermion loops 40

E.6 Counterterms 40

F Box diagrams 41

F.1 Vector/fermion/vector/fermion “straight” box 41

F.2 Scalar/fermion/scalar/fermion “straight” box 41

F.3 Scalar/fermion/scalar/fermion “scalar-cross” box 43

F.4 Scalar/fermion/scalar/fermion “fermion-cross” box 45

F.5 Vector/fermion/scalar/fermion “straight” box 46

F.6 Vector/fermion/scalar/fermion “cross” boxes 47

F.7 Vector/fermion/scalar/fermion “fermion-cross” box 47

1 Introduction

Several years of operation of the LHC have (as yet) failed to reveal any conclusive evi-

dence for physics beyond the Standard Model (SM) [1]. On the contrary, experimental

searches keep placing ever stronger limits on hypothesized strongly [2–5] and even weakly-

interacting [6] particles in the electroweak-TeV range. While this situation tends to leave

the simpler models in an uncomfortable position, for the so-called “CMSSM” see for exam-

ple ref. [7], it also advocates for a deeper study of more complicated scenarios, satisfying the

central motivations of the original paradigm but also requiring more elaborate experimental

investigations for testing.

Softly-broken supersymmetric (SUSY) extensions of the SM [8, 9] have long been

regarded as a leading class of candidates for the resolution of the hierarchy problem [10],

as well as a possible framework in view of understanding the nature of dark matter or the

unification of gauge-couplings. The simplest of such models, the Minimal Supersymmetric

Standard Model (MSSM), has thus been the focus of numerous studies in the past decades.

An implicit ingredient of the usual MSSM is R-parity (Rp) [11], a discrete symmetry related

to baryon and lepton number. In addition to the preservation of these quantum numbers,

Rp is also invoked in order to justify the stability of the lightest SUSY particle, leaving it

in a position of a dark-matter candidate [12].

Despite its attractive features, Rp conservation is not essential to the phenomenological

viability of a SUSY model. Rp violation (RpV) — see [13, 14] for reviews — is viable as

well; simply a different discrete (or gauge) symmetry is required [15–18]. It also leads to a

distinctive phenomenology which is relevant to LHC searches [19, 20].
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With experimental constraints now coming from both low-energy physics and the high-

energy frontier, it seems justified to give the RpV-phenomenology a closer look, beyond the

tree-level or single-coupling approximations that are frequently employed in the literature.

In this paper, we consider the most general RpV-model with minimal superfield con-

tent. The superpotential of the Rp-conserving MSSM is thus extended by the following

terms [21]:

W 6Rp = µiHu · Li +
1

2
λijkLi · LjĒk + λ′ijkLi ·QjD̄k +

1

2
λ′′ijkεabcŪ

a
i D̄

b
jD̄

c
k, (1.1)

where Q, Ū , D̄, L, Ē denote the usual quark and lepton superfields, · is the SU(2)L
invariant product and εabc is the 3-dimensional Levi-Civita symbol. The indices i, j, k

refer to the three generations of flavor, while a, b, c correspond to the color index. We note

that symmetry-conditions may be imposed on the parameters λijk and λ′′ijk without loss

of generality: λijk = −λjik, λ′′ijk = −λ′′ikj . The first three sets of terms of eq. (1.1) violate

lepton-number and the last set of terms violates baryon-number.

The superpotential of eq. (1.1) contains several sources of flavor-violation, in both

the lepton and the quark sectors. Such effects are steadily searched for in experiments,

placing severe bounds on the parameter space of the model. The impact of lepton-flavor

violating observables on the RpV-MSSM has been discussed extensively in the literature,

see e.g. [22–46]. In the quark sector, observables such as leptonic B-decays or radiative

b → s transitions [47–49] have been considered. Here, we wish to focus on neutral-meson

mixing observables, ∆MK , ∆Md, ∆Ms, for K0, B0
d and B0

s mesons, respectively. Such

observables have been discussed in the R-parity conserving [50, 51] as well as in an RpV

context in the past [47, 52–59]. Yet, diagrams beyond the tree-level and box contributions

as well as sfermion or RpV-induced mixings have been routinely ignored. The purpose of

this paper consists in addressing these deficiencies and proposing a full one-loop analysis

of the meson-mixing observables in the RpV-MSSM.

From the experimental perspective, the measurements of B-meson oscillations by the

ALEPH, DELPHI, L3, OPAL, CDF, D0, BABAR, Belle, ARGUS, CLEO and LHCb col-

laborations have been combined by the Heavy-Flavor Averaging Group [60], leading to

the averages:

∆M exp

d = 0.5065± 0.0019 ps−1, (1.2a)

∆M exp
s = 17.757± 0.021 ps−1. (1.2b)

These values are in excellent agreement with the SM computations [61–63], resulting in

tight constraints on new physics contributions. However, we note that the latest SM

evaluation of ∆Ms [64] is in tension with eq. (1.2). This largely appears as a consequence

of the new lattice evaluation of the non-perturbative parameter f2
Bs
BBs by ref. [65], with

reduced uncertainties. While this situation interestingly favors effects beyond the SM, we

prefer to remain conservative as long as the new value of f2
Bs
BBs is not confirmed by other

studies. We thus assume that the uncertainties on the SM prediction are still of the order

of the older computations.

– 2 –
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For the K0 − K̄0 system, the Particle Data Group [66] combines the experimental

measurements as:

∆M exp

K = (0.5293± 0.0009) · 10−2 ps−1. (1.3)

Despite the precision of this result, constraints from K0−K̄0 mixing on high-energy contri-

butions are considerably relaxed by the large theoretical uncertainties due to long-distance

effects. Historically, estimates of the latter have been performed using the techniques of

large N QCD — see e.g. ref. [67] — while lattice QCD collaborations such as [68] are now

considering the possibility of evaluating these effects in realistic kinematical configurations.

Ref. [69] settles for a long-distance contribution at the level of (20 ± 10)% of the experi-

mental value, and we follow this estimate below. Concerning short-distance contributions,

ref. [70] performed a NNLO study of the charm-quark loops, resulting in a SM estimate of

∆MSM, Short Dist.

K = (0.47± 0.18) · 10−2 ps−1.

Beyond the mass differences, CP-violating observables are also available in the meson-

mixing system. Although our study is valid for these as well, we will not discuss them in

the following, since we do not wish to pay much attention to the new-physics phases.

The computation of the meson oscillation parameters is usually performed in a low-

energy effective field theory (EFT), where short-distance effects intervene via the Wilson

coefficients of dimension 6 flavor-changing (∆F = 2) operators [71]. This procedure ensures

a resummation of large logarithms via the application of the renormalization group equa-

tions (RGE) from the matching high-energy (e.g. electroweak) scale down to the low-energy

(meson-mass) scale where hadronic matrix elements should be computed [72]. In this work,

we calculate the contributions to the Wilson coefficients arising in the RpV-MSSM up to

one-loop order. The λ′ couplings of eq. (1.1) already generate a tree-level diagram. Going

beyond this, at one-loop order, diagrams contributing to the meson mixings involve both

R-parity conserving and R-parity violating couplings. These are furthermore intertwined

via RpV-mixing effects stemming for example from the bilinear term µiHu · Li. Our anal-

ysis goes beyond the approximations that are frequently encountered in the literature. We

also find occasional differences with published results, which we point out accordingly.

In the following section, we present the general ingredients of our full one-loop ana-

lytical calculation of the Wilson coefficients of the ∆F = 2 EFT (effective field theory)

in the RpV-MSSM, referring to the appendices where the exact expressions are provided.

In section 3, we discuss our implementation of these results employing the public tools

SPheno [73, 74], SARAH [75–80], FlavorKit [81] and Flavio [82]. Finally, numerical limits

on the RpV-couplings are presented in a few simple scenarios, before a short conclusion.

2 Matching conditions for the ∆F = 2 EFT of the RpV-MSSM

We consider the ∆F = 2 EFT relevant for the mixing of (d̄idj)-(d̄jdi) mesons — di cor-

responds to the down-type quark of ith generation (d, s or b). The EFT Lagrangian is

written as

LEFT =

5∑
i=1

CiOi +

3∑
i=1

C̃iÕi, (2.1)
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where we employ the following basis of dimension 6 operators:

O1 = (d̄jγ
µPLdi)(d̄jγµPLdi), Õ1 = (d̄jγ

µPRdi)(d̄jγµPRdi),

O2 = (d̄jPLdi)(d̄jPLdi), Õ2 = (d̄jPRdi)(d̄jPRdi), (2.2)

O3 = (d̄ajPLd
b
i)(d̄

b
jPLd

a
i ), Õ3 = (d̄ajPRd

b
i)(d̄

b
jPRd

a
i ),

O4 = (d̄jPLdi)(d̄jPRdi), O5 = (d̄ajPLd
b
i)(d̄

b
jPRd

a
i ).

The superscripts (a, b = 1, 2, 3) refer to the color indices when the sum is not trivially

contracted within the fermion product. We have employed the usual four-component spinor

notations above, with PL,R denoting the left- and right-handed projectors.

The Wilson coefficients Ci, C̃i associated with the operators of eq. (2.2) in the La-

grangian of the EFT — eq. (2.1) — are obtained at high-energy by matching the did̄j →
dj d̄i amplitudes in the EFT and in the full RpV-MSSM. We restrict ourselves to the

leading-order coefficients (in a QCD/QED expansion) on the EFT-side. On the side of the

RpV-MSSM, we consider only short-distance effects, i.e. we discard QCD or QED loops.

Indeed, the photon and gluon are active fields in the EFT, so that a proper processing of

the corresponding effects would require a NLO matching procedure. Furthermore, both

tree-level and one-loop contributions are considered in the RpV-MSSM: we stress that this

does not induce a problem in power-counting, as the tree-level contribution is a strict RpV-

effect, so that Rp-conserving (or violating) one-loop amplitudes are not (all) of higher QED

order. Numerically speaking, one possibility is that the tree-level is dominant in the Wilson

coefficients, in which case, the presence of the one-loop corrections does not matter. This

case is essentially excluded if we consider the experimental limits on the meson-oscillation

parameters. If, on the contrary, the tree-level contribution is of comparable (or subdom-

inant) magnitude with the one-loop amplitudes, then the electroweak power-counting is

still satisfied. Yet, one-loop contributions that are aligned with the tree-level always re-

main subdominant.

For our calculations in the RpV-MSSM, we employ the Feynman ‘t Hooft gauge [83]

and dimensional regularization [84, 85]. For reasons of consistency with the tools that

we employ for the numerical implementation, DR-renormalization conditions will be ap-

plied. However, in the results that we collect in the appendix, the counterterms are kept

in a generic form, which allows for other choices of renormalization scheme. We apply

the conventions where the sneutrino fields do not take vacuum expectation values.1 More-

over, the λ′ couplings of eq. (1.1) are defined in the basis of down-type mass-states, i.e. a

CKM matrix appears when the second index of λ′ connects with an up-type field, but not

when it connects to a down-type field [52]. Mixing among fields are considered to their

full extent, including left/right and flavor squark mixings, charged-Higgs/slepton mixing,

neutral-Higgs/sneutrino mixing, chargino/lepton mixing and neutralino/neutrino mixing.

The details of our notation and the Feynman rules employed can be found in appendix A. As

a crosscheck, we performed the calculation using two different approaches for the fermions:

the usual four-component spinor description and the two-component description [88].

1For the general rotation to this basis see ref. [86]. See also ref. [87] for a discussion of this in terms of

physics at the unification scale.
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d̄j

di

d̄i

dj

(a) Tree-level Feynman diagram

(appendix B)

d̄j

di

d̄i

dj

(b) Tree-level Feynman diagram with quark

self-energies (appendix C)

d̄j

di

d̄i

dj

(c) Tree-level Feynman diagram with scalar

self-energies (appendix D)

d̄j

di

d̄i

dj

(d) Tree-level Feynman diagram with

vertex corrections (appendix E)

Figure 1. The tree level diagram and its one-loop corrections.

On the side of the EFT, the operators of eq. (2.2) each contribute four tree-level

Feynman diagrams to the did̄j → dj d̄i amplitude. Half of these contributions are obtained

from the other two by an exchange of the particles in the initial and final states: as

the dimension 6 operators are symmetrical over the simultaneous exchange of both di’s

and both dj ’s, we may simply consider two diagrams and double the amplitude. The

two remaining diagrams correspond to an (s ↔ t)-channel exchange. We exploit these

considerations to reduce the number of diagrams that we consider on the side of the RpV-

MSSM to only one of the s/t-channels.

The tree-level contribution to the did̄j → dj d̄i amplitudes is due to the λ′ couplings of

eq. (1.1). It involves a sneutrino exchange where, however, sneutrino-flavor and sneutrino-

Higgs mixing could occur. The appearance of RpV contributions at tree-level complicates

somewhat a full one-loop analysis: one-loop contributions indeed depend on the renormal-

ization of the did̄j-sneutrino vertex (and of its external legs). In principle, one could define

this vertex ‘on-shell’, i.e. impose that one-loop corrections vanish for on-shell di, dj external

legs — while the counterterm for the sneutrino field is set at momentum p2 = M2
K,B ' 0.

In such a case, one could restrict oneself to calculating the box-diagram contributions

to did̄j → dj d̄i. However, in any other renormalization scheme, self-energy and vertex-

correction diagrams should be considered. Yet, if the λ′ couplings contributing at tree-level

are small, the impact of the vertex and self-energy corrections is expected to be limited,

since these contributions retain a (at least) linear dependence on the tree-level λ′. These

contributions are symbolically depicted in figure 1.

One-loop diagrams contributing to did̄j → dj d̄i include SM-like contributions (box

diagrams with internal u, c, t quarks, W and Goldstone bosons), 2-Higgs-doublet-model-

like contributions (box diagrams with internal u, c, t quarks, charged-Higgs bosons and

possibly W or Goldstone bosons), Rp-conserving SUSY contributions (box diagrams with

chargino/scalar-up, neutralino/sdown or gluino/sdown particles in the loop) and RpV-

contributions (self-energy and vertex corrections, box diagrams with sneutrino/quark, slep-

ton/quark, lepton/squarks, neutrino/squark or quark/squark internal lines). The RpV-

– 5 –
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d̄j

di

d̄i

dj

(a) Vector/fermion/vector/fermion

“straight” box (appendix F.1)

d̄j

di

d̄i

dj

(b) Scalar/fermion/scalar/fermion

“straight” box (appendix F.1)

d̄j

di

d̄i

dj

(c) Scalar/fermion/scalar/fermion

“scalar-cross” box (appendix F.3)

d̄j

di

d̄i

dj

(d) Scalar/fermion/scalar/fermion

“fermion-cross” box (appendix F.4)

d̄j

di

d̄i

dj

(e) Vector/fermion/scalar/fermion

“straight” box (appendix F.1)

d̄j

di

d̄i

dj

(f) Vector/fermion/scalar/fermion

“cross” boxes (appendix F.6)

d̄j

di

d̄i

dj

(g) Vector/fermion/scalar/fermion

“fermion-cross” box (appendix F.4)

Figure 2. The topologies of box diagrams that appear in the neutral mesons mixing with the

RpV-MSSM.

driven mixing further intertwines these contributions, so that the distinction among e.g.

the Rp-conserving chargino/scalar-up and RpV lepton/scalar-up boxes becomes largely su-

perfluous. For all these contributions, with exception of the self-energy diagrams on the

external legs, we neglect the external momentum, as it controls effects of order mdi,j , which

are subdominant when compared to the momentum-independent pieces of order MW or

MSUSY. Yet, when a SM-fermion f appears in the loop, some pieces that are momentum-

independent still come with a suppression of order mf/MW,SUSY. We keep such pieces even

though they could be discarded in view of the previous argument.

The diagrams of figure 1 are calculated in appendix B (tree-level contribution), ap-

pendix C (di-quark self-energies), appendix D (scalar self-energy) and appendix E (vertex

corrections). Figure 2 lists the various relevant topologies involved in box diagrams. The

corresponding contributions are presented in appendix F. The relevant loop functions are

provided in appendix A.3.

While we go beyond the usual assumptions employed to study the ∆F = 2 Wilson

coefficients in the RpV-MSSM, it is possible to compare the outcome of our calculation to

partial results available in the literature. First, in the limit of vanishing RpV-parameters,

we recover the well-known results in the Rp-conserving MSSM, which are summarized in

e.g. the appendix of ref. [50]. Then, RpV-contributions from the tree-level and box-diagram

topologies have been presented in ref. [47] in the no-mixing approximation. Taking this

limit and neglecting further terms that are not considered by this reference, we checked

that our results coincided, with the exception of the coefficient c′λ
′

LR of ref. [47] (a piece of

the contribution to C5). Transcripted to our notations, the result of ref. [47] reads:

c′λ
′

LR = − 1

64π2
λ′∗i1kλ

′
j2kλ

′
im1λ

′∗
jm2D2(m2

Ni ,m
2
Nj ,m

2
dk
,m2

dm)

− 1

64π2
λ′∗i1kλ

′
j2kλ

′
im1λ

′∗
jm2D2(m2

νi ,m
2
νj ,m

2
D̄kR
,m2

D̄mR
), (2.3)
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while we obtain:

c′λ
′

LR =
1

32π2
λ′∗i1kλ

′
j2kλ

′
im1λ

′∗
jm2D2(m2

Ni ,m
2
Nj ,m

2
dk
,m2

dm)

+
1

32π2
λ′∗i1kλ

′
j2kλ

′
im1λ

′∗
jm2D2(m2

νi ,m
2
νj ,m

2
DkR
,m2

DmL
). (2.4)

The mismatch lies in the prefactor and the sfermion chiralities. Another class of λ′ boxes

involving an electroweak charged current has been considered in the no-mixing limit in

ref. [54]. There, we find agreement with our results. As self-energy and vertex corrections

have not been considered before, the opportunities for comparison are more limited. Still,

we checked that the scalar self-energies were consistent with the results of ref. [89]. Finally,

our results can be controlled in another fashion, using the automatically generated results

of public tools: we detail this in the following section.

3 Numerical implementation and tools

In order to determine limits from the meson oscillation measurements on the parameter

space of the RpV-MSSM, we establish a numerical tool implementing the one-loop con-

tributions to the ∆F = 2 Wilson coefficients and deriving the corresponding theoretical

predictions for ∆MK,d,s. To this end, we make use of the Mathematica package SARAH [75–

80] to produce a customized spectrum generator based on SPheno [73, 74, 90]. SPheno

calculates the complete supersymmetric particle spectrum at the one-loop order and in-

cludes all important two-loop corrections to the neutral scalar masses [91].

The routines performing the calculation of flavor observables are generated through the

link to FlavorKit [81]. FlavorKit makes use of FeynArts/FormCalc [92–94] to calculate

the leading diagrams to quark and lepton flavor violating observables. For the meson mass

differences, the tree-level and box diagrams as well as the double-penguin contributions

are included per default. However, as parameters within SPheno are defined in the DR

scheme, it is in principle necessary to implement the self-energy and vertex corrections.

We added the vertex corrections via PreSARAH [81], which enables the implementation of

new operators into FlavorKit within certain limits. As the scalar self-energies cannot be

generated in this fashion, we incorporated these by hand.

The Wilson coefficients computed by FlavorKit and PreSARAH at the electroweak

matching scale are stored in analytical form in the Fortran output of FlavorKit. We

compared these expressions with our results of the previous section; we found explicit

agreement in almost all cases — and adapted the code to match our results in the few

cases where it proved necessary.2

After the Wilson coefficients at the electroweak matching scale are computed, further

steps are necessary in order to relate them to the observables ∆MK,d,s. The FlavorKit

output includes a theoretical prediction for these observables, however the hadronic input

2In rare cases, we identified seemingly minor — but numerically important — differences between our

computation and the FlavorKit code, namely in a few tree-level contributions to C5 (which should be

absent), as well as in C̃2,3 and C2,3 for a few one-loop box diagrams. We fixed those appearances in

the code as well as the relative sign between tree and one-loop contributions after correspondence and

cross-checking with the FlavorKit authors.

– 7 –
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parameters are more up-to-date in the more recently-developed code Flavio [82], which

shares an interface with FlavorKit using the FLHA standards [95]. We hence use Flavio to

process the Wilson coefficients as calculated by FlavorKit. First, the Wilson coefficients

must be run to a low-energy scale using the QCD RGE’s of the EFT [72]. In the case

of the K0 − K̄0 system, the impact of the charm loop is sizable [70]: we upgraded the

NLO coefficient ηcc coded within Flavio to the NNLO value 1.87(76) [70] and ηct =

0.496(47) [96]. For consistency, the charm mass in the loop functions is set to the MS value

mc(mc) ' 1.28 GeV. Then, the hadronic dynamics encoded in the dimension 6 operators

must be interpreted at low-energy in the form of hadronic mixing elements: this step

gives rise to “bag-parameters”, which are evaluated in lattice QCD. Here, Flavio employs

the bag parameters of ref. [97] for the K0 − K̄0 system and of ref. [65] for the B0
d − B̄0

d

and B0
s − B̄0

s systems. In addition, the CKM matrix elements within Flavio are derived

from the four inputs |Vus|, |Vub|, |Vcb| and γ. We set these to the fit-results of ref. [66]:

|Vus| ' 0.22506, |Vub| ' 3.485 · 10−3, |Vcb| ' 4.108 · 10−2 and γ ' 1.236. Moreover, we

changed the B0
d decay constant to a numerical value of 186 MeV [98]. Finally, we added

the observable ∆MK to Flavio (based on pre-included material) and made sure that the

predicted SM short-distance prediction was consistent with the theoretical SM estimate

given by ref. [70].

A quantitative comparison of the predicted ∆MK,d,s with the experimental results

of eqs. (1.2) and (1.3) requires an estimate of the theoretical uncertainties. The Wilson

coefficients have been obtained at leading order, which implies higher-order corrections of

QCD-size. In the case of the SM-contributions, large QCD logarithms are resummed in the

evolution of the RGEs between the matching electroweak scale and the low-energy scale.

However, for the new-physics contributions, further logarithms between the new-physics

and the electroweak scale could intervene — FlavorKit computes the new-physics contri-

butions to the Wilson coefficients at the electroweak scale, hence missing such logarithms.

Therefore, the higher-order uncertainty is larger for contributions beyond the SM and can

be loosely estimated as O
(
αS
π log

µ2NP

µ2EW

)
, where µNP and µEW represent the new-physics

and electroweak scales, respectively. Further sources of uncertainty are the RGE evolution

in the EFT and the evaluation of hadronic matrix elements. For the SM matrix elements,

the uncertainties on ηcc, ηct and ηtt are of order 30% [70], 10% [96] and 1% [99], respec-

tively, leading to a large SM uncertainty in ∆MK and a smaller one in ∆Md,s. For the

K0 − K̄0 system, the bag-parameters are known with a precision of ∼ 3% in the case of

B
(1)
K and ∼ 7% for the other operators [97]. For the B0

d − B̄0
d system, the uncertainty is of

order 10% [65] — and even 20% for B
(3)
Bd

. For the B0
s − B̄0

s , the bag parameters are known

at about 7% accuracy [65] — 14% for B
(3)
Bs

. Finally, CKM matrix elements contribute

to the uncertainty at the level of a few percent. To summarize, we decided to estimate

the theoretical uncertainties of our predictions for the meson oscillation parameters in the

RpV-MSSM as follows:

• 40%×
[
|∆MSM, Short. Dist.

K |+ |∆MRpV-MSSM, Short. Dist.

K −∆MSM, Short. Dist.

K |
]

for the short-

distance contribution to ∆MK . As explained above, we will employ the estimate of

ref. [69] for the long-distance contribution: ∆MSM, Long Dist.

K ' (20± 10)%×∆M exp

K .

• 15%× |∆MSM
d,s |+ 30%× |∆MRpV-MSSM

d,s −∆MSM
d,s | for the evaluation of ∆Md,s.
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These uncertainty estimates restore the magnitude of the SM uncertainties [61–63, 70].

Concerning the new-physics part, we stress that the calculation employs a (QCD/QED)

LO matching and misses running effects between the SUSY and the matching scales, which

motivates conservative estimates.

Finally, we note that our calculation of the Wilson coefficients for the ∆F = 2 transi-

tion also provides access to CP-violating observables such as εK . These would grant com-

plementary constraints on the parameter space, in particular when the RpV-parameters of

eq. (1.1) are considered as complex degrees of freedom. Obviously, in the presence of e.g.

a large RpV tree-level contribution to the did̄j → dj d̄i amplitude, it is always possible to

choose the phases of the λ′-parameters such that, amongst others, εK is in agreement with

the experimental measurement (within uncertainties that are dominated by the theoretical

evaluation [70]). On the other hand, it is less trivial whether such an adjustment would be

possible within the magnitude of the NP contributions that is compatible with ∆M ’s. For

simplicity — keeping in mind that our numerical studies are strictly illustrative in purpose

and do not aim at conveying an exhaustive picture of possible RpV-effects associated to the

meson-oscillation parameters —, we restrict ourselves to real values of the RpV-parameters

and do not consider the CP-violating observables below. In practice, the Rp-conserving

contributions beyond the SM in the scenarios that we consider in the following section

are always subleading to RpV effects, so that any deviation of the CP-violating observ-

ables from the SM predictions (caused by the CKM phase) is proportional to the RpV

parameters and could be compensated via the corresponding RpV phases. Of course, if

one chooses not to exploit this degree of freedom, the scenario with real RpV parameters

itself would be subject to stronger limits when the CP-violating observables are also taken

into account.

4 Numerical results

We are now in a position to study the limits on RpV-parameters that are set by the meson-

oscillation parameters. However, it makes limited sense to scan blindly over the RpV-

MSSM parameter space imposing only constraints from the ∆M ’s. Comparable analyses

of all the relevant observables for which experimental data is available would be necessary.

We will thus restrict ourselves to a discussion of the bounds over a restricted number of

parameters and in a few scenarios. The input parameters that we mention below correspond

to the SPheno input defined at the MZ scale.

We first consider the case where no explicit source of flavor violation appears in the

Rp-conserving parameters. The flavor transition is thus strictly associated to the CKM

matrix or to the RpV-effects. The latter can intervene in several fashions:

• Flavor violation in the λ′ couplings could lead to tree-level contributions to the ∆M ’s.

The relevant combinations — in the absence of sneutrino mixing — are of the form

λ′fIJλ
′∗
fJI , where (I, J) are the indices of the valence quarks of the considered meson

— i.e. (1, 2), (1, 3) and (2, 3) for ∆MK , ∆Md and ∆Ms respectively — and f is the

flavor of the sneutrino mediator.
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Scenario MA/TeV µ/TeV tanβ mq̃/TeV M1,2/TeV M3/TeV

SM-like 3.5 2 10 2 2 2

2HDM 0.8 2 10 2 2 2

SUSY-RpV(a) 1.2 0.6 10 ' 2 0.5 2

SUSY-RpV(b) 1.2 0.3 10 ' 2&1t̃,b̃ 0.5 2

Table 1. Input parameters for various scenarios under consideration. With 2&1t̃,b̃ we imply

mq̃1,2 = 2 TeV while keeping a lighter third generation, mq̃3 = 1 TeV.

• Flavor violation in the λ′ couplings could also intervene at the loop-level only. This

happens when, for instance, one product of the form λ′mnIλ
′∗
mnJ or λ′mInλ

′∗
mJn is non-

zero — again, (I, J) corresponds to the valence quarks of the meson; m and n are

internal to the loop.

• Finally, the flavor transition can be conveyed by the λ′′ couplings, in which case it

appears only at the loop level in the ∆M ’s. Possible coupling combinations include

λ′′m12λ
′′
m23, λ′′m12λ

′′
m13 or λ′′m13λ

′′
m23.

Below, we first consider these three cases separately, before we investigate possible inter-

ferences between tree- and loop-level generated diagrams for several non-zero λ′ couplings.

However, we avoid considering simultaneously non-zero LQD̄ and ŪD̄D̄ couplings: then,

discrete symmetries no longer protect the proton from decay, so that the phenomenology

would rapidly come into conflict with associated bounds. Still, we note that some diagrams

contributing to the meson mixing parameters would combine both types of couplings: these

are also provided in the appendix.

Then, flavor transitions can also be mediated by Rp-conserving effects. In this case,

flavor violation could originate either in the CKM matrix, as in the Minimal Flavor Vi-

olation scenario [100], or in new-physics parameters, such as the soft squark bilinear and

trilinear terms. We briefly discuss possible interferences with RpV-contributions.

For simplicity, we consider only the case of real λ′(′) and disregard the bilinear R-parity

violating terms (though they are included in our analytical results in the appendix).

4.1 Bounds on a pair of simultaneously non-zero LQD̄ couplings

4.1.1 Tree level contributions

Let us begin with the case where only two LQD̄ couplings are simultaneously non-vanishing

and contribute to the ∆M ’s at tree-level. For doing so, we choose a spectrum of the form of

an effective SM at low mass, where we have fixed the squark, higgsino and gaugino masses

to 2 TeV, while varying all the slepton masses simultaneously in the range 0.2 − 2 TeV.

The important parameter values are listed in the first line of table 1. In addition, the stop

trilinear coupling At, of order 3 TeV (without endangering (meta)stability of the potential

however3), is adjusted so that the lighter Higgs mass satisfies mh ≈ 125 GeV (within

3The stability of the electroweak minimum was tested for individual points. To this end, we generated

a model file allowing for non-vanishing squark VEVs with SARAH and tested it through the numerical

code Vevacious [101], interfaced with CosmoTransitions [102]. A parameter point is deemed unstable on

cosmological time-scales, and therefore ruled out, if the mean tunnelling time is smaller than 21.7% of the

age of the Universe.
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Figure 3. Constraints from the ∆M ’s on scenarios with RpV-mediated flavor violation contributing

at tree-level, as a function of the sneutrino mass. The plots on the left correspond to the upper

limit on positive λ′ · λ′; those on the right to lower limits on negative λ′ · λ′ combinations. The

green, orange, red and purple colors represent regions within [0, 1σ], [1σ, 2σ], [2σ, 3σ] and > 3σ

bounds, respectively. The experimental central value is exactly recovered on the black lines. For

these plots, the parameter set of the scenario SM-like of table 1 has been employed.
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3 GeV). We also considered several other scenarios, listed in table 1, e.g. involving lighter

charged Higgs or lighter squarks of the third generation, but the general properties of the

constraints remained qualitatively unchanged. In fact, the predicted values of ∆M ’s in the

Rp-conserving limit only differ at the percent level (a barely noticeable variation in view of

the uncertainties) between these four scenarios, which can be placed into the perspective

of the systematic suppression of the SUSY Rp-conserving loops due to the high squark

masses. As the Rp-conserving contributions do not depend on the parameters that we vary

in this subsection, the nσ-boundaries (n = 0, · · · , 3) are only shifted by an imperceptible

amount in parameter space when comparing the various scenarios of table 1. Therefore,

we only present the results in the SM-like scenario here. All the input is defined at the

electroweak scale, so that we can discuss the various classes of RpV-contributions to the

∆M ’s without the blurring effect due to the propagation of flavor-violation via RGE’s

between a high-energy scale and the electroweak scale.

In figure 3, we present the limits set by ∆Md, ∆Ms and ∆MK on the tree-level flavor

violating contributions. The plots in the first column are obtained for a positive product

λ′ ·λ′, while those in the second column correspond to negative λ′ ·λ′. For each observable,

the most relevant λ′ ·λ′ combination, leading to a tree-level contribution, was selected. The

individual sub-figures depict the extension of the 0, 1, 2, 3σ regions in the plane defined by

the corresponding flavor-violating λ′ · λ′ product and the slepton mass. The colors in

figure 3 are chosen such that purple regions are excluded at three standard deviations or

more; red regions are excluded at ≥ 2σ — which is the limit that we apply later on, in

order to decide whether a point in parameter space is excluded or allowed experimentally;

the orange regions correspond to a prediction of the ∆M within 1 and 2 σ; finally, the

green areas are consistent with the experimental measurement within 1 σ, while the black

curves reproduce the central values exactly. Experimental and theoretical uncertainties

are added in quadrature to define the total uncertainty Utot =
√
U2

theo + U2
exp. In the case

of ∆MK , the theoretical uncertainties from long-distance and short-distance contributions

are also combined quadratically. Since experimentally one cannot tell apart the two mass

eigenstates of B0
d/s, we simply consider the absolute value of ∆Md/s in our evaluation.

When we plot ∆Md,s, this feature may result in a doubling of the solutions for the central

value or of the 1 σ-allowed regions, such as in the upper-left and middle-left plots of figure 3.

For K0, instead, the mass ordering, and hence the sign of ∆MK is known.

The limits that we obtain on the λ′ couplings contributing at tree-level are relatively

tight. In the scenarios of figure 3, the 2σ bounds read approximately:
λ′i13λ

′
i31 . 1.6× 10−6

(
mν̃i

1 TeV

)2
, −λ′i13λ

′
i31 . 4× 10−7

(
mν̃i

1 TeV

)2
,

λ′i23λ
′
i32 . 3.6× 10−5

(
mν̃i

1 TeV

)2
, −λ′i23λ

′
i32 . 8× 10−6

(
mν̃i

1 TeV

)2
,

|λ′i12λ
′
i21| . 2.2× 10−8

(
mν̃i

1 TeV

)2
,

(4.1)

where we assume that only one lepton flavor, namely i, has non-vanishing RpV-couplings

— therefore the bounds only depend on the mass of the corresponding sneutrino ν̃i. Al-

ternatively, with degenerate sneutrinos, we could sum over the index i on the left-hand
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side of eq. (4.1). Limits on these products of couplings have been presented in ref. [103]

for a SUSY mass of 100 GeV and in [59] for a mass of 500 GeV — as explained above, our

limits can be confronted to the bounds applying on
∑

i λ
′
i13λ

′
i31, etc., in these references.

In comparison, the bounds that we obtain in figure 3 are somewhat stronger, at least by

a factor ∼ 3. This result should be put mainly in the perspective of the reduction of the

experimental uncertainty in the recent years.

4.1.2 1-loop contributions to flavor transition

Next, we turn to the case where a pair of LQD̄ couplings mediate the flavor transition

only at the loop-level and we focus on coupling combinations of the form λ′mnIλ
′∗
mnJ or

λ′mInλ
′∗
mJn (with I, J the valence quarks of the meson). In principle we could consider

other combinations, such as λ′mnIλ
′∗
m̃nJ , λ′mnIλ

′∗
mñJ , λ′mInλ

′∗
m̃Jn or λ′mInλ

′
mJñ (with m 6= m̃,

n 6= ñ). However, either the associated contributions are CKM suppressed or they would

require several λ′ · λ′ products to be simultaneously non-zero or non-degenerate scalar /

pseudoscalar sneutrino fields. We thus restrict ourselves to the two types mentioned above.

For these, we note that the limits are independent of the flavor m of the slepton field. In

this context, RpV-effects in ∆M ’s are dominated by diagrams involving the comparatively

light (charged or neutral) sleptons. We thus concentrate on these below. We can distinguish

two types of contributions:

• If one of the pair of non-vanishing LQD̄ couplings is one of those involved for the

tree-level exchange diagram — i.e. if it contains the two flavor indices of the valence

quarks of the meson — we find that quark self-energy corrections on the tree-level

diagram can be comparable to or even dominant over box contributions.

• If neither of the non-vanishing LQD̄ couplings participates in the tree-level diagrams,

box diagrams are the main contributions.

This difference impacts both the magnitude of the resulting bounds and their dependence

on the slepton mass, as we shall see below.

The spectrum that we focus on in this subsection (and later on) is described in the third

row of table 1. The choice of the scenario SUSY-RpV(a) instead of SM-like is motivated by

the wish not to systematically suppress the loop diagrams associated with charginos/neu-

tralinos. We will also comment on the mild differences that we obtain in the other scenarios

of table 1.

In figure 4, we consider non-vanishing λ′121λ
′
123, λ′112λ

′
113 and, finally, λ′113λ

′
123. In

these cases, the box diagrams dominate over the fermionic self-energy corrections. For

each scenario, the limits from the ∆M ’s essentially originate in one of the three observables

∆Md, ∆Ms or ∆MK . The corresponding limits approximately read:
|λ′i21λ

′
i23| . 3.4× 10−2

( ml̃i
1 TeV

)
,

|λ′i12λ
′
i13| . 1.6× 10−1

( ml̃i
1 TeV

)
,

|λ′i13λ
′
i23| . 6.3× 10−2

( ml̃i
1 TeV

)
,

(4.2)
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Figure 4. Constraints from the ∆M ’s on scenarios with RpV-mediated flavor violation of LQD̄-

type, where the RpV-violating contribution is dominated by a box diagram. The limits are plotted

against the slepton mass and follow the same color-code as figure 3. For these plots, the parameter

set of the scenario SUSY-RpV(a) of table 1 has been employed.
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where ml̃i
denotes the mass of the degenerate sneutrinos and charged sleptons. Here, we

note that the mass dependence of the form (λ′ · λ′)2 < c ·m2
˜̀ differs from that appearing

when the RpV-contribution intervenes at tree-level. It is characteristic of the leading RpV-

diagrams in the considered setup, corresponding to the box formed out of two charged

sleptons and two up-type quarks in the internal lines and to the box consisting of two

sneutrinos and two down-type quarks: these diagrams roughly scale as (λ′ · λ′)2/m2
˜̀. As

a consequence, the limits for positive and negative λ′ · λ′ products are comparable. In

addition, the bounds on λ′ · λ′ now scale about linearly with the sparticle mass.

Expectedly, the limits are much weaker in these box-dominated scenarios than in

the case where the flavor transition appears at tree-level. Refs. [54, 55, 59] presented

limits on the corresponding coupling-combinations for a sfermion mass of 100 or 500 GeV.

The bounds that we derive are of the same order. Similarly to the case where the RpV-

contribution to the flavor transition is mediated at tree-level, the investigation of the various

scenarios of table 1 results in very little variations.

Finally, we turn to the case where one of the non-vanishing λ′ involves both flavors of

the valence quarks of the K0, B0
d,s meson while the other is flavor-diagonal (and contains

only one of the valence flavors). Then, the dominant diagrams are of the form of figure 1b:

one ∆F = 1 transition is mediated by the non-vanishing λ′ with both valence-flavor indices,

while the second ∆F = 1 transition appears at the loop level — typically through a SM

loop (W/up-type quark), i.e. in association with the CKM matrix. We stress that such

contributions were dismissed in previous analyses and are considered here for the first time.

Corresponding scenarios are displayed in figure 5, where ∆MBd , ∆MBs and ∆MK are

plotted against λ′131 · λ′133, λ′132 · λ′133 and λ′121 · λ′122, respectively. The bounds have a

comparable scaling to that appearing in the scenario with tree-level sneutrino exchange,

but the constraints are far weaker. At 2 σ:
λ′i31λ

′
i33 . 6× 10−4

(
mν̃i

1 TeV

)2
, −λ′i31λ

′
i33 . 2.7× 10−3

(
mν̃i

1 TeV

)2
,

λ′i32λ
′
i33 . 1.4× 10−2

(
mν̃i

1 TeV

)2
, −λ′i32λ

′
i33 . 3× 10−3

(
mν̃i

1 TeV

)2
,

|λ′i21λ
′
i22| . 1.5× 10−3

(
mν̃i

1 TeV

)2
,

(4.3)

where −λ′i31λ
′
i33,−λ′i32λ

′
i33 > 0. Due to the inclusion of the missing and obviously rele-

vant self-energy diagrams, the bounds that we report are accordingly tighter than in the

literature [54, 55, 59]. If we compare the various scenarios of table 1, we again observe

little change at the qualitative level. However, the exact position of the nσ (n = 0, · · · , 3)

boundaries is shifted by a numerical prefactor of order unity, homogeneous in the whole

range of scanned parameters of figure 5. This prefactor is characteristic of the magnitude

Rp-conserving loop entering the off-diagonal quark self-energy. For example, the upper-

bounds on λ′131λ
′
133 are stronger by a factor ∼ 2 in the SM-like scenario, as compared to

the scenario SUSY-RPV(a) (shown in the plots), by a factor ∼ 1.3 in the scenario 2HDM

and by a factor ∼ 1.6 in the scenario SUSY-RPV(b). Other numbers (of the same order)

intervene for the two other considered sets of λ′ · λ′.
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Figure 5. Constraints from the ∆M ’s on scenarios with RpV-mediated flavor violation of LQD̄-

type, where the dominant RpV-diagram involves a one-loop quark self-energy. The limits are plotted

against the sneutrino mass and follow the color code of figure 3. For these plots, the parameter set

of the scenario SUSY-RpV(a) of table 1 has been employed.

– 16 –



J
H
E
P
0
2
(
2
0
1
9
)
0
6
6

∆mB0
d

∆mB0
s

∆mK0

|λ′ijk · λ′imn| 2σ bound |λ′ijk · λ′imn| 2σ bound |λ′ijk · λ′imn| 2σ bound

(i31)(i13)(T) 1.6× 10−6 (i32)(i23)(T) 3.6× 10−5 (i12)(i21)(T) 2.2× 10−8

(i11)(i13)(S) 1.8× 10−3 (i22)(i23)(S) 9.5× 10−3 (i12)(i11)(S) 1.5× 10−3

(i21)(i13)(S) [2.8× 10−4] (i12)(i23)(S) [4.2× 10−2] (i22)(i21)(S) 1.5× 10−3

(i31)(i23)(S) 0.15 (i32)(i13)(S) 0.33 (i12)(i31)(S) 9× 10−6

(i31)(i33)(S) 2.7× 10−3 (i32)(i33)(S) 1.4× 10−2 (i32)(i21)(S) 4.2× 10−5

(i21)(i23)(B) 3.4× 10−2 (i12)(i13)(B) 0.16 (i32)(i11)(B) 0.64

(i21)(i33)(B) 0.64 (i22)(i33)(B) 0.74 (i22)(i31)(B) 0.24

(i11)(i33)(B) 0.64 (i12)(i33)(B) 4 (i22)(i11)(B) 4

(i11)(i23)(B) N/A (i22)(i13)(B) N/A (i32)(i31)(B) 0.01

(i12)(i31)(S) [0.012] (i23)(i31)(S) N/A (i21)(i11)(S) 5× 10−3

(i13)(i32)(S) [0.73] (i22)(i32)(S) 0.23 (i22)(i12)(S) 5.8× 10−3

(i13)(i33)(B) 0.05 (i23)(i33)(S) 0.24 (i23)(i12)(S) 2.2× 10−2

(i11)(i31)(B) 0.07 (i21)(i32)(S) [2.25] (i21)(i13)(S) 2.3× 10−4

(i12)(i32)(B) 0.05 (i21)(i31)(B) 0.21 (i23)(i13)(B) 6.3× 10−2

Table 2. Compilation of the latest bounds on relevant couplings of LQD̄ operators, coming from

the considered meson oscillation observables. These limits were established with the spectrum

defined in the row SUSY-RpV(a) of table 1, with slepton and sneutrino masses of 1 TeV. The

precise 2σ boundary obviously depends on the sign of the non-vanishing λ′ · λ′ product: we always

apply the most conservative (weakest) limit. In the list of couplings, the comment “(T)/(S)/(B)”

indicates that the coupling product is dominated by a tree-level/quark self-energy/box contribution.

“N/A” means that we did not identify upper-limits on the couplings below 4π (a rough limit from

perturbativity considerations). Above the horizontal line, the non-vanishing coupling combinations

select right-handed external quarks. Below this line, the external quarks are left-handed. The

scaling with the sneutrino/slepton mass is roughly quadratic for all λ′ · λ′ products that contain

both valence flavors in (at least) one of the non-vanishing λ′, linear otherwise: see more precise

explanation in the main body of the text. Some combinations contribute to two observables, such

as λ′i13λ
′
i32, relevant for both ∆Md and ∆Ms. In such a case, the square brackets identify the

weaker limit.

In table 2, we compile the 2 σ bounds on λ′ · λ′ products that we derive for 1 TeV

sleptons in the scenario SUSY-RpV(a) of table 1 (the limits depend only weakly on the

chosen scenario). In this list, the pairs λ′ · λ′ are taken non-zero only one at a time and,

in particular, for a unique (s)lepton flavor i. As explained above, the scaling with the

slepton/sneutrino mass depends on the choice of non-vanishing λ′: essentially quadratic if

at least one of the non-vanishing λ′ contains both valence-flavors of the decaying meson,

linear otherwise. One of the ∆M ’s is usually more sensitive to a specific λ′ · λ′ product

than the other two. etc.

4.2 Bounds on a pair of simultaneously non-zero ŪD̄D̄ couplings

We proceed with our analysis and now consider baryonic RpV, i.e. non-zero ŪD̄D̄ couplings.

The corresponding RpV-effects appear only at the radiative level and are dominated by

box diagrams. Contrarily to existing analyses [47], we always consider heavy gluinos (as
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Figure 6. Limits on Ū3D̄iD̄j couplings from the meson oscillation parameters. Internal (s)top

lines are allowed by such couplings. The color code is similar to that of the previous plots. For

these plots, the parameter set of the scenario SUSY-RpV(a) of table 1 has been employed except

for the squark masses that are scanned over.
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indicated by the current status of LHC searches), so that the associated diagrams generally

remain subdominant. In this setup, three classes of diagrams compete: (1) boxes including

two squarks and two quarks in internal lines, which scale like (λ′′ ·λ′′)2, (2) boxes including

two quarks, one squark and a W -boson, which scale like λ′′ · λ′′ but involve a CKM-

suppression and a quark-chirality flip, and (3) similarly boxes with two squarks, one quark

and a chargino, which scale like λ′′ · λ′′. The matter of the chirality flip can be easily

understood as only right-handed quarks couple via λ′′ but only left-handed quarks couple

to a W . Therefore, such diagrams with an internal W line are mostly relevant when the

internal quark line involves a top-quark. As to the boxes with an internal chargino line, we

also find that such contributions are mainly relevant for an internal stop line: indeed, the

higgsino contribution scales with the Yukawa coupling, hence is suppressed for squarks of

first or second generation. In addition, the gaugino contribution relies on left-right squark

mixing, which we keep negligible for squarks of the first and second generation — making

the assumption that the trilinear soft terms are proportional to the Yukawa couplings [8].

From now on, all the parameters are set to the values of the scenario SUSY-RpV(a)

of table 1, except for those that are explicitly scanned over (e.g. the squark masses). In

figure 6, we present the 1, 2 and 3σ limits on coupling combinations allowing for internal

(s)top lines. The relevant right-handed squarks are assumed to be mass-degenerate. The

regime with small λ′′ couplings is dominated by the box diagrams involving W bosons and

top quarks in the internal lines. We find that, for low mass values, this contribution scales

with the squark mass in an intermediate fashion between linear and quadratic, because of

the finite top mass effects. These effects largely vanish for squark masses above O(1 TeV)

and we then recover the scaling with λ′′·λ′′
m2
q̃

. The supersymmetrized version of the W boxes,

i.e. boxes with internal charginos, are also contributing with a scaling of λ′′·λ′′
m2
q̃

. However

their impact w.r.t. the W boxes is always reduced. At large values of the couplings and for

light squarks, the purely ŪD̄D̄-mediated diagrams appear to be the most relevant, scaling

with (λ′′·λ′′)2
m2
q̃

— in analogy to the slepton box-diagrams with non-vanishing LQD̄ coupling

— so that the bounds on λ′′ · λ′′ show a roughly linear dependence with the squark mass.

Then, for both large |λ′′·λ′′| and heavier quarks, the W -mediated diagrams and these purely

ŪD̄D̄ boxes can be of comparable magnitude, hence lead to interference structures. This

interplay between various contributions brings about a non-trivial mass dependence of the

bounds on the λ′′ couplings, with both constructive as well as destructive effects between

the individual amplitudes. The plots for negative λ′′ · λ′′ couplings perfectly illustrate this

fact, in particular in the case of ∆Ms. Beyond this interference regime, at sufficiently large

squark masses, the contribution from the UDD box with an internal W-line eventually

supersedes the pure UDD amplitude.

Since the bounds on the individual coupling combinations do not scale with a simple

power law in mq̃R , we refrain from showing approximate expressions as we did in the

scenarios with flavor-violation of LQD̄-type.

In figure 7, by contrast, the choice of non-vanishing λ′′ couplings does not allow for

internal (s)top lines. Thus the RpV-diagrams with mixed W/squark or chargino/quark

internal lines are suppressed, and the scaling of the limits from meson-oscillation parameters
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Figure 7. Limits on Ū1D̄iD̄j couplings from the meson oscillation parameters. In this case,

amplitudes with internal top lines vanish. The color code is similar to that of the previous plots.

For these plots, the parameter set of the scenario SUSY-RpV(a) of table 1 has been employed except

for the squark masses that are scanned over.
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is closer to linear. In addition, the 2 σ bounds are somewhat milder than in the previous

case and roughly symmetrical for positive and negative λ′′ ·λ′′ products. Thus, in this case,

we extract the approximate bounds on Ū1D̄iD̄j coupling pairs:
|λ′′112λ

′′
123| . 2.8× 10−2

(
ms̃R,ũR
1 TeV

)
,

|λ′′112λ
′′
113| . 1.2× 10−1

(md̃R,ũR
1 TeV

)
,

|λ′′113λ
′′
123| . 3.6× 10−2

(mb̃R,ũR
1 TeV

)
,

(4.4)

Given that the scaling of the bounds on λ′′ ·λ′′ pairs decidedly depends on the specific

choice of couplings, we refrain from showing a compilation table as table 2 for the LQD̄

couplings, since it would only be representative of a specific SUSY spectrum.

4.3 Competition among LQD̄-driven contributions

Bounds on individual RpV-coupling products may be misleading, in the sense that several

RpV-effects could cancel one another. In fact, the decomposition along the line of the low-

energy flavors provides likely-undue attention to these specific directions of RpV, while

the latter have no deep specificity from the high-energy perspective. In particular, RGE’s

are expected to mix the various flavor-directions of non-vanishing RpV-couplings, while the

boundary condition at, say, the GUT scale, has no particular reason for alignment with the

low-energy flavor directions [87, 104]. Obviously however, the relevant directions in flavor

space are highly model-dependent and we have no particular suggestion to make from the

low-energy perspective of this work. Instead, we simply wish to illustrate the possibility of

allowed directions with large RpV-couplings. To this end, we allow for two non-vanishing

λ′ · λ′ coupling products and investigate the limits originating in the ∆M measurements.

If we consider figures 3 and 5, the tree-level diagram for λ′i31 · λ′i13 = O(10−6) and the

RpV-box for λ′i31 · λ′i33 = O(10−4) — implying a hierarchy λ′i13/λ
′
i33 = O(10−2) — naively

contribute to ∆Md by amplitudes of comparable magnitude. Whether these contributions

can interfere destructively clearly depends on the form of the amplitudes but also on the

sign of the non-vanishing couplings. In figure 8, we complete the results from figures 3 and 5

by now allowing for three non-vanishing couplings. In practice, we set the slepton/sneutrino

mass to 1 TeV and keep one LQD̄ coupling to a constant value: λ′131 = 0.01, λ′132 = 0.1, or

λ′121 = 0.1. Then, we vary two independent λ′, our choice depending again on the valence

quarks of the considered ∆M . However, we stress that this procedure in fact opens three

non-trivial λ′ ·λ′ directions, so that the game is somewhat more complex than just playing

one contribution versus the other.

As expected, in the plots of figure 8, the interplay of various RpV-contributions opens

funnel-shaped allowed regions for comparatively large values of the LQD̄ couplings, high-

lighting the possibility of destructive interferences. We note that, considering that the

tree-level and radiative contributions do not necessarily have the same scaling with respect

to the slepton/sneutrino mass, the ‘allowed angle’ depends on the sfermion spectrum. Of

course, the choice of parameters falling within the allowed funnels appears to be fine-tuned

from the perspective of this work, but might be justified from a high-energy approach. On
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Figure 8. Limits from the meson-oscillation parameters on two RpV-directions of LQD̄-type. The

parameters are set to the values in the third row of table 1, with slepton/sneutrinos of 1 TeV. As

in the previous plots, the color code reflects the level of tension between our predictions and the

experimental measurements.
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the other hand, constructive interferences lead to the ‘rounded edges’ observed in some of

the plots.

As mentioned earlier, we will not consider the interplay of LQD̄- and ŪD̄D̄-couplings,

since such scenarios are of limited relevance without a quantitative analysis of the proton

decay rate. On the other hand, our discussion in this subsection points to the relevance

of considering a full evaluation of the ∆M ’s (and other observables), when considering

RpV-scenarios beyond the simplistic one-coupling-dominance approach.

4.4 Competition between flavor violation in the R-parity conserving and R-

parity violating sectors

RpV-couplings are not the only new sources of flavor violation in SUSY-inspired mod-

els. In fact, the large number of possible flavor-violating parameters of the Rp-conserving

soft-SUSY-breaking Lagrangian is often perceived as a weakness for this class of model,

known as the SUSY Flavor Problem. In particular, the soft quadratic mass-terms in the

squark sector m2
Q,Ū,D̄

and the trilinear soft terms AU,D are matrices in flavor-space that

are not necessarily aligned with the flavor-structure of the Yukawa/CKM matrices. In

this case, flavor-violation is generated in L − L, R − R (for m̃2) or L − R (for A) squark

mixing. Correspondingly, flavor-changing-neutral gluinos or neutralinos, as well as new

flavor-changing chargino couplings, could contribute to ∆MK,d,s in e.g. diagrams of the

form of figure 2, (b–d) — see e.g. ref. [55]. Here, we wish to illustrate the potential inter-

play of Rp-conserving and RpV flavor violation. In particular, we note that the presence of

flavor-violating effects in RpV-couplings would likely mediate flavor-violation in the squark

sector via the RGE’s [104].

We will focus on Rp-conserving flavor-violation in the quadratic squark mass parame-

ters m2
ij , where we assume the diagonal terms to be degenerate for squarks of left-handed

and right-handed type (for simplicity): m2
D̄

= m2
Q ≡ m2. Flavor-violation in the trilinear

soft terms would lead to comparable effects at the level of the meson-oscillation parame-

ters. However, large A-terms easily produce new (e.g. color- and charge-violating) minima

in the scalar potential, that lead to instability of the usual vacuum, with possibly short-

time tunnelling. In fact, we find that such stability considerations typically constrain the

A-terms much more efficiently than the ∆M ’s.

In figure 9, we allow for non-vanishing m2
13, m2

23 or m2
12, simultaneously with non-zero

λ′113λ
′
131, λ′123λ

′
132 and λ′112λ

′
121. The former induce contributions to ∆Md, ∆Ms and ∆MK

through Rp-conserving squark mixing, while the latter provide RpV tree-level contributions

to the same ∆M ’s. The parameters are set to the scenario SUSY-RpV(a) of table 1, with

the slepton/sneutrino mass at 1.5 TeV. In analogy with the results of section 4.3, we observe

that Rp-conserving and RpV contributions may interfere destructively or constructively.

Thus, allowed funnels with comparatively large values of the RpV-couplings open. In

particular, we note that a tiny m2
12 is sufficient for relaxing limits from ∆MK , while the

typical values of m2
13 and m2

23 affecting ∆Md and ∆Ms are significantly larger.

A similar analysis can be performed with RpV of the ŪD̄D̄-type. This is shown in

figure 10.
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Figure 9. Constraints from the meson-oscillation parameters in the presence of both flavor-

violating LQD̄-couplings and (Rp-conserving) flavor-violating mixing in the squark sector. The

spectrum is set to the scenario SUSY-RpV(a) of table 1, with the slepton/sneutrino mass at 1.5 TeV.

The flavor-violating quadratic soft mass parameters in the squark sector, m2
ij , are chosen to be

degenerate for left-handed and right-handed squarks. The color code follows the same conventions

as before.
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Figure 10. Constraints from the meson-oscillation parameters in the presence of both flavor-

violating ŪD̄D̄-couplings and flavor-violating squark mixing. The parameters are set to the scenario

SUSY-RpV(a) from table 1. The color code is unchanged compared to previous plots.
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In this subsection, we have stressed that the limits originating from meson-oscillation

parameters are quite sensitive to the possible existence of flavor-violating sources beyond

that of the RpV-couplings. A full analysis of these effects thus appears necessary when

testing a complete model.

5 Conclusions

In this paper, we have analyzed the meson-mixing parameters ∆Md,s and ∆MK at the full

one-loop order in the RpV-MSSM. In particular, we have completed earlier calculations in

the literature, in which only tree-level and box diagrams were usually considered. We also

performed a numerical study based on our results and employing recent experimental and

lattice data. The tighter limits that we derive — as compared to older works — illustrate

the improvement of the precision in experimental measurements, but also the relevance of

some of the new contributions that we consider. In particular, the interplay of SM-like and

LQD̄-type flavor-violation modifies the scaling of the bounds with the sneutrino/slepton

mass for a whole class of couplings. Finally, we have emphasized the possibility of interfer-

ence effects amongst new sources of flavor violation, either exclusively in the RpV-sector or

in association with Rp-conserving squark mixing. While the appearance of allowed direc-

tions with comparatively large couplings largely intervenes as a fine-tuned curiosity in the

low-energy perspective of our work, it also stresses the relevance of a detailed analysis of

the observables when considering a complete high-energy model, since accidental relations

among parameters could affect the picture of low-energy limits.
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A Notations

A.1 Mixing matrices

• The squark mass matrices mix left- and right-handed components. We define the

mass-eigenstates in terms of a unitary rotation of the gauge/flavor-eigenstates:Uα = XUL
αf U

f
L +XUR

αf Ū
f ∗
R

Dα = XDL
αf D

f
L +XDR

αf D̄f ∗
R

(A.1)

Here, Uα (resp. Dα) represents the scalar-up (resp. sdown) mass state with mass mUα

(resp. mDα). Summation over the generation index f is implicit.

• R-parity violation leads to a mixing of charged-Higgs and slepton fields. We define

the mass-eigenstates H±α with mass mHα as:

H−α = XC
αuH

−
u +XC

αdH
−
d +XC

αEfL
EfL +XC

αEfR
Ēf ∗R . (A.2)

• Similarly, the neutral Higgs mass-states involve both the doublet-Higgs, H0
u = vu +

h0u+ı a0u√
2

and H0
d = vd +

h0d+ı a0d√
2

, and the sneutrino fields, Nf
L =

h0Nf
+ı a0Nf√

2
; in the

CP-violating case, CP-even and CP-odd components mix as well.

Sα = XR
αu h

0
u +XR

αd h
0
d +XR

αNf
h0
Nf

+XI
αu a

0
u +XI

αd a
0
d +XI

αNf
a0
Nf
. (A.3)

Sα denotes the mass-eigenstate associated with the mass mSα .

• The charged winos w̃+, w̃−, higgsinos h̃+
u , h̃−d and lepton fields efL, ēfR define the

chargino sector. For the mass mχ±k
, the associated eignstate is given by:χ

+
k = Vkw w̃

+ + Vku h̃
+
u + Vkef ē

f
R ,

χ−k = Ukw w̃
− + Ukd h̃

−
d + Ukef e

f
L .

(A.4)

• The violation of R-parity also mixes neutrino and neutralino states. The eigenstate

with mass mχ0
k

reads:

χ0
k = Nkb b̃

0 +Nkw w̃
0 +Nku h̃

0
u +Nkd h̃

0
d +Nkνf ν

f
L . (A.5)

A.2 Feynman rules

Here, we list the various couplings that are relevant in our calculation. The combinatorial

factors appearing in the lagrangian density in the case of identical coupling particles have

been explicitly factored out, e.g. L 3 − gSαZZ

2 SαZZ.

• Neutral-Higgs-sneutrinos / Down quarks:

gSαdkdiL = − 1√
2

[
Y i
d δki(X

R
αd + ıXI

αd) + λ′fik(X
R
αNf

L

+ ıXI
αNf

L

)
]

= (gSαdidkR )∗ (A.6)
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• Charged-Higgs-sleptons / Quarks:

gHαukdiL = −Y k
u V

CKM
ki XC

αu ; gHαukdiR = −Y i
dV

CKM
ki XC

αd − λ′∗fliV CKM
kl XC

αEfL
(A.7)

• Sdowns / Neutralino-neutrinos / Down quarks:

gDαχkdiL = − 1√
2

(
g′

3
N∗
kb̃
− gN∗kw̃

)
XDL
αi − Y i

dN
∗
kdX

DR
αi − λ′fiβN∗kνfX

DR
αβ

gDαχkdiR = −
√

2

3
g′Nkb̃X

DR
αi − Y i

dNkdX
DL
αi − λ′∗fβiNkνfX

DL
αβ (A.8)

• Sdowns / Gluinos / Down quarks (TA are the colour Gell-Mann matrices):

g
Daαg̃

Adbi
L = −

√
2gse

−ıφM3
/2XDL

αi T
A
ab ; g

Daαg̃
Adbi

R =
√

2gse
ıφM3

/2XDR
αi T

A
ab (A.9)

• Scalar-ups / Chargino-leptons / Down quarks:

gUαχkdiL = V CKM
βi

[
Y β
u V
∗
kuX

UR
αβ − gV ∗kw̃X

UL
αβ

]
gUαχkdiR = V CKM

βf

[
Y i
d δifUkdX

UL
αβ + λ′∗lfiUkelX

UL
αβ

]
(A.10)

• Scalar-ups / Down quarks (a, b, c: colour-indices):

g
Uaαd

b
kd
c
i

L = 0 ; g
Uaαd

b
kd
c
i

R = εabcλ
′′∗
fkiX

UR
αf (A.11)

• Sdowns / Up / Down quarks (a, b, c: colour-indices):

g
Daαu

b
kd
c
i

L = 0 ; g
Daαu

b
kd
c
i

R = εbacλ
′′∗
kfiX

DR
αf (A.12)

• W / Up / Down quarks:

gWukdi
L =

g√
2
V CKM
ki ; gWukdi

R = 0 (A.13)

• Z / Down quarks:

gZdkdiL =

√
g′2 + g2

2

(
−1 +

2

3
s2
W

)
δik ; gZdkdiR =

√
g′2 + g2

3
s2
W δik (A.14)

• Neutral-Higgs-sneutrinos / Up quarks:

g
Sαujuk
L = − Y

j
u√
2
δjk
(
XR
αu + ıXI

αu

)
=
(
g
Sαukuj
R

)∗
(A.15)
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• Neutral-Higgs-sneutrinos / Charginos-leptons:

g
Sαχ

+
j χ
−
k

L = − 1√
2

{
Y f
e

[(
XR
αd + ıXI

αd

)
V ∗jefU

∗
kef
−
(
XR
αÑf

+ ıXI
αÑf

)
V ∗jefU

∗
kd

]
+ g
[ (
XR
αu − ıXI

αu

)
V ∗juU

∗
kw +

(
XR
αd − ıXI

αd

)
V ∗jwU

∗
kd

+
(
XR
αÑf
− ıXI

αÑf

)
V ∗jwU

∗
kef

]
+λfmn

(
XR
αÑf

+ ıXI
αÑf

)
V ∗jenU

∗
kem

}
=

(
g
Sαχ

+
k χ
−
j

R

)∗
(A.16)

• Neutral-Higgs-sneutrinos / Neutrino-neutralinos:

g
Sαχ0

jχ
0
k

L = − g′

2

[ (
XR
αu − ıXI

αu

)
(N∗juN

∗
kb +N∗jbN

∗
ku)

−
(
XR
αd − ıXI

αd

)
(N∗jdN

∗
kb +N∗kdN

∗
jb)

−
(
XR
αÑf
− ıXI

αÑf

)
(N∗jνfN

∗
kb +N∗kνfN

∗
jb)
]

+
g

2

[ (
XR
αu − ıXI

αu

)
(N∗juN

∗
kw +N∗jwN

∗
ku)

−
(
XR
αd − ıXI

αd

)
(N∗jdN

∗
kw +N∗kdN

∗
jw)

−
(
XR
αÑf
− ıXI

αÑf

)
(N∗jνfN

∗
kw +N∗kνfN

∗
jw)
]

=

(
g
Sαχ0

kχ
0
j

R

)∗
(A.17)

• Neutral-Higgs-sneutrinos / W’s:

gSαWW =
g2

√
2

(
vuX

R
αu + vdX

R
αd

)
(A.18)

• Neutral-Higgs-sneutrinos / Z’s:

gSαZZ =
g′2 + g2

√
2

(
vuX

R
αu + vdX

R
αd

)
(A.19)

• Neutral-Higgs-sneutrinos / W-ghosts g±W ’s:

gSαgW gW = − g2

2
√

2

[
vu(XR

αu + ıXI
αu) + vd(X

R
αd − ıXI

αd)
]

(A.20)

• Neutral-Higgs-sneutrinos / Z-ghosts gZ ’s:

gSαgZgZ = −g
′2 + g2

2
√

2

[
vuX

R
αu + vdX

R
αd

]
(A.21)
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• Neutral-Higgs-sneutrinos / W / Charged-Higgs-sleptons:

gSαWHk =
g

2

[
(XR

αd − ıXI
αd)X

C ∗
kd − (XR

αu + ıXI
αu)XC ∗

ku + (XR
αÑf
− ıXI

αÑf
)XC ∗

kẼfL

]
(A.22)

• Neutral-Higgs-sneutrinos / Z / Neutral-Higgs-sneutrinos:

gSαZSk = ı

√
g′2 + g2

2

[
XR
αdX

I
kd −XI

αdX
R
kd −XR

αuX
I
ku +XI

αuX
R
ku

+XR
αÑf

XI
kÑf
−XI

αÑf
XR
kÑf

]
(A.23)

• Neutral-Higgs-sneutrinos / Scalar-ups:

gŨkŨlSα = −
√

2

[
Y f 2
u vuX

R
αu +

1

4

(
g′2

3
− g2

)
(vuX

R
αu − vdXR

αd)

]
X
Ũf
kLX

Ũf ∗
lL

−
√

2

[
Y f 2
u vuX

R
αu −

g′2

3
(vuX

R
αu − vdXR

αd)

]
X
Ũf
kRX

Ũf ∗
lR

− 1√
2

[
Aff

′
u (XR

αu + ıXI
αu)− µ∗Y f

u δff ′(X
R
αd − ıXI

αd)
]
X
Ũf ′
kR X

Ũf ∗
lL

− 1√
2

[
Aff

′ ∗
u (XR

αu − ıXI
αu)− µY f

u δff ′(X
R
αd + ıXI

αd)
]
X
Ũf
kLX

Ũf ′ ∗
lR (A.24)

• Neutral-Higgs-sneutrinos / Sdowns:

gD̃kD̃lSα = −
√

2

[
Y f 2
d vdX

R
αd +

1

4

(
g′2

3
+ g2

)
(vuX

R
αu − vdXR

αd)

]
X
D̃f
kLX

D̃f ∗
lL

− vd√
2

[
Y f
d λ
′∗
ghf (XR

αÑg
− ıXI

αÑg
) + Y h

d λ
′
gfh(XR

αÑg
+ ıXI

αÑg
)
]
XD̃h
kL X

D̃f ∗
lL

−
√

2

[
Y f 2
d vdX

R
αd +

g′2

6
(vuX

R
αu − vdXR

αd)

]
X
D̃f
kRX

D̃f ∗
lR

− vd√
2

[
Y f
d λ
′∗
gfh(XR

αÑg
− ıXI

αÑg
) + Y h

d λ
′
ghf (XR

αÑg
+ ıXI

αÑg
)
]
X
D̃f
kRX

D̃h ∗
lR

− 1√
2

[
Aff

′

d (XR
αd + ıXI

αd)− µ∗Y f
d δff ′(X

R
αu − ıXI

αu)

+A′gff ′(X
R
αÑg

+ ıXI
αÑg

)
]
X
D̃f ′
kR X

D̃f ∗
lL

− 1√
2

[
Aff

′ ∗
d (XR

αd − ıXI
αd)− µY f

d δff ′(X
R
αu + ıXI

αu)

+A′∗gff ′(X
R
αÑg
− ıXI

αÑg
)
]
X
D̃f
kLX

D̃f ′ ∗
lR (A.25)

• Neutral-Higgs-sneutrinos / Charged Higgs-sleptons

gHkHlSα = −
√

2

{[
Y f 2
e vdX

R
αd +

1

4

(
−g′2 + g2

)
(vuX

R
αu − vdXR

αd)

]
δff ′

− vd
2

[
Y f ′
e λ∗fgf ′(X

R
αÑg
− ıXI

αÑg
)

+ Y f
e λf ′gf (XR

αÑg
+ ıXI

αÑg
)
]}
XC
kẼfL

XC ∗
lẼf
′
L

– 30 –



J
H
E
P
0
2
(
2
0
1
9
)
0
6
6

−
√

2

{[
Y f 2
e vdX

R
αd +

g′2

2
(vuX

R
αu − vdXR

αd)

]
δff ′

− vd
2

[
Y f
e λ
∗
fgf ′(X

R
αÑg
− ıXI

αÑg
)

+ Y f ′
e λf ′gf (XR

αÑg
+ ıXI

αÑg
)
]}
XC
kẼfR

XC ∗
lẼf
′
R

− 1√
2

[
Af
′f
e (XR

αd + ıXI
αd)− µ∗Y f

e δff ′(X
R
αu − ıXI

αu)

+Agf ′f (XR
αÑg

+ ıXI
αÑg

)
]
XC
kẼfR

XC ∗
lẼf
′
L

− 1√
2

[
Aff

′ ∗
e (XR

αd − ıXI
αd)− µY f

e δff ′(X
R
αu + ıXI

αu)

+A∗gff ′(X
R
αÑg
− ıXI

αÑg
)
]
XC
kẼfL

XC ∗
lẼf
′
R

− 1

2
√

2

[
g′2(vuX

R
αu − vdXR

αd) + g2(vuX
R
αu + vdX

R
αd)
]
XC
kuX

C ∗
lu

− 1

2
√

2

[
g′2(vdX

R
αd − vuXR

αu) + g2(vuX
R
αu + vdX

R
αd)
]
XC
kdX

C ∗
ld

− g2

2
√

2

[
vu(XR

αd − ıXI
αd) + vd(X

R
αu − ıXI

αu)
]
XC
kuX

C ∗
ld

− g2

2
√

2

[
vu(XR

αd + ıXI
αd) + vd(X

R
αu + ıXI

αu)
]
XC
kdX

C ∗
lu

+
1√
2

[
Aff

′
e (XR

αÑf
+ ıXI

αÑf
)XC

kẼf
′
R

XC ∗
ld

+Aff
′ ∗

e (XR
αÑf
− ıXI

αÑf
)XC

kdX
C ∗
lẼf
′
R

]
+
Y f 2
e vd√

2

[
(XR

αÑf
− ıXI

αÑf
)XC

kdX
C ∗
lẼfL

+ (XR
αÑf

+ ıXI
αÑf

)XC
kẼfL

XC ∗
ld

]
+
Y f
e√
2

[
µ∗(XR

αÑf
+ ıXI

αÑf
)XC

kẼfR
XC ∗
lu + µ(XR

αÑf
− ıXI

αÑf
)XC

kuX
C ∗
lẼfR

]
− g2

2
√

2

[
(XR

αÑf
+ ıXI

αÑf
)XC

kẼfL
(vuX

C ∗
lu + vdX

C ∗
ld )

+ (XR
αÑf
− ıXI

αÑf
)(vuX

C
ku + vdX

C
kd)X

C ∗
lẼfL

]
(A.26)

• Cubic Neutral-Higgs-sneutrinos:

gSαSβSγ =
g′2 + g2

4
√

2

[
vu

(
ΠS uuu
αβγ +ΠAuuu

αβγ −ΠS udd
αβγ −ΠAudd

αβγ −Π
S uÑf Ñf
αβγ −Π

AuÑf Ñf
αβγ

)
+vd

(
ΠS ddd
αβγ +ΠAddd

αβγ −ΠS duu
αβγ −ΠAduu

αβγ −Π
S dÑf Ñf
αβγ −Π

AdÑf Ñf
αβγ

)]
(A.27)

where:

ΠS abc
αβγ = XR

αaX
R
βbX

R
γc +XR

αbX
R
βcX

R
γa +XR

αcX
R
βaX

R
γb

+XR
αaX

R
βcX

R
γb +XR

αcX
R
βbX

R
γa +XR

αbX
R
βaX

R
γc
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ΠAabc
αβγ = XR

αa

(
XI
βbX

I
γc +XI

βcX
I
γb

)
+XR

βa

(
XI
αbX

I
γc +XI

αcX
I
γb

)
+XR

γa

(
XI
αbX

I
βc +XI

αcX
I
βb

)
• Neutral-Higgs-sneutrinos / W quartic:

gWWSαSβ =
g2

2

[
XR
αuX

R
βu +XI

αuX
I
βu +XR

αdX
R
βd

+XI
αdX

I
βd +XR

αÑf
XR
βÑf

+XI
αÑf

XI
βÑf

]
(A.28)

• Neutral-Higgs-sneutrinos / Z quartic:

gZZSαSβ =
g′2 + g2

2

[
XR
αuX

R
βu +XI

αuX
I
βu +XR

αdX
R
βd

+XI
αdX

I
βd +XR

αÑf
XR
βÑf

+XI
αÑf

XI
βÑf

]
(A.29)

• Neutral-Higgs-sneutrinos / Scalar-ups quartic:

gŨkŨlSαSβ = − Y f 2
u

(
XR
αuX

R
βu +XI

αuX
I
βu

) (
X
Ũf
kLX

Ũf ∗
lL +X

Ũf
kRX

Ũf ∗
lR

)
−
[

1

4

(
g′2

3
− g2

)
X
Ũf
kLX

Ũf ∗
lL − g′2

3
X
Ũf
kRX

Ũf ∗
lR

]
×
(
XR
αuX

R
βu +XI

αuX
I
βu −XR

αdX
R
βd −XI

αdX
I
βd

−XR
αÑf ′

XR
βÑf ′

−XI
αÑf ′

XI
βÑf ′

)
(A.30)

• Neutral-Higgs-sneutrinos / Sdowns quartic:

gD̃kD̃lSαSβ = − Y f 2
d

(
XR
αdX

R
βd +XI

αdX
I
βd

) (
X
D̃f
kLX

D̃f ∗
lL +X

D̃f
kRX

D̃f ∗
lR

)
(A.31)

−
[

1

4

(
g′2

3
+ g2

)
X
D̃f
kLX

D̃f ∗
lL +

g′2

6
X
D̃f
kRX

D̃f ∗
lR

]
×
(
XR
αuX

R
βu +XI

αuX
I
βu −XR

αdX
R
βd

−XI
αdX

I
βdX

R
αÑf ′

XR
βÑf ′

−XI
αÑf ′

XI
βÑf ′

)
− Y f

d

2

(
λ′∗ghfX

D̃h
kL X

D̃f ∗
lL + λ′∗gfhX

D̃f
kRX

D̃h ∗
lR

)
×
[
(XR

αd + ıXI
αd)(X

R
βÑg
− ıXI

βÑg
) + (α↔ β)

]
− Y f

d

2

(
λ′ghfX

D̃f
kLX

D̃h ∗
lL + λ′gfhX

D̃h
kRX

D̃f ∗
lR

)
×
[
(XR

αd − ıXI
αd)(X

R
βÑg

+ ıXI
βÑg

) + (α↔ β)
]

− 1

2

(
λ′ghfλ

′∗
mnfX

D̃n
kL X

D̃h ∗
lL + λ′gfhλ

′∗
mfnX

D̃h
kRX

D̃n ∗
lR

)
×
[
(XR

αÑg
+ ıXI

αÑg
)(XR

βÑm
− ıXI

βÑm
) + (α↔ β)

]
(A.32)
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• Neutral-Higgs-sneutrinos / Charged Higgs-sleptons quartic:

L 3 − Y f 2
e

[
|H0

d |2
(
|EfL|2+|Ec fR |2

)
+|Nf

L|2H+
d H

−
d −H0

dN
f ∗
L H+

d E
f
L−H0∗

d N
f
LE

f ∗
L H−d

]
−λjkiλ∗mniN j

LN
m ∗
L En ∗L EkL−λijkλ∗imnN j

LN
m ∗
L Ec kR Ec n ∗R −Y f

e Y
f ′
e Nf

LN
f ′ ∗
L Ec fR Ec f

′ ∗
R

+ Y f
e

[
λ∗fijH

0
dN

i ∗
L E

c f
R Ec j ∗R + λ∗ijfH

0
dN

j ∗
L Ei ∗L E

f
L + λ∗ijfN

f
LN

i ∗
L E

j ∗
L H−d + cc

]
− g′2

4

[
|H0

u|2 − |H0
d |2 − |Nf

L|2
] [
H+
u H

−
u −H+

d H
−
d − |E

f ′

L |2 + 2|Ec f ′R |2
]

− g2

4

[(
|H0

u|2 + |H0
d |2 + |Nf

L|2
)
H+
u H

−
u +

(
|H0

d |2 + |H0
u|2 − |Nf

L|2
)
H+
d H

−
d

+ 2Nf
LN

f ′ ∗
L Ef ∗L Ef

′

L +
(
|H0

u|2 − |H0
d |2 − |Nf

L|2
)
|EfL|2 + 2H0 ∗

u H0 ∗
d H+

u H
−
d

+ 2H0
uH

0
dH

+
d H

−
u + 2Nf ∗

L H0 ∗
u H+

u E
f
L + 2Nf

LH
0
uE

f ∗
L H−u

+ 2Nf ∗
L H0

dH
+
d E

f
L + 2Nf

LH
0 ∗
d Ef ∗L H−d

]
(A.33)

The coupling gHkHlSαSβ is obtained through the replacements H+
u → XC

ku, H+
d →

XC
kd, E

f ∗
L → XC

kẼfL
, Ec fR → XC

kẼfR
, H−u → XC ∗

lu , H−d → XC ∗
ld , EfL → XC ∗

lẼfL
, Ec f ∗R →

XC ∗
lẼfR

, H0
u → XR

.u + ıXI
.u, H0

d → XR
.d + ıXI

.d, and Nf
L → XR

.Ñf
+ ıXI

.Ñf
(. = α, β

indifferently, such that the coupling is symmetric over the exchange α↔ β in the end).

• Neutral-Higgs-sneutrinos quartic:

gSαSβSγSδ =
g′2 + g2

32

[
ΠS uuuu
αβγδ + ΠS dddd

αβγδ − 2ΠS uudd
αβγδ − 2Π

S uuÑf Ñf
αβγδ + 2Π

S ddÑf Ñf
αβγδ

+ Π
S Ñf Ñf Ñf ′Ñf ′
αβγδ + ΠP uuuu

αβγδ + ΠP dddd
αβγδ − 2ΠP uudd

αβγδ

− 2Π
P uuÑf Ñf
αβγδ + 2Π

P ddÑf Ñf
αβγδ + Π

P Ñf Ñf Ñf ′Ñf ′
αβγδ + 2ΠS uuP uu

αβγδ

+ 2ΠS ddP dd
αβγδ − 2ΠS uuP dd

αβγδ − 2ΠS ddP uu
αβγδ − 2Π

S uuP Ñf Ñf
αβγδ

− 2Π
S Ñf Ñf P uu
αβγδ + 2Π

S ddP Ñf Ñf
αβγδ + 2Π

S Ñf Ñf P dd
αβγδ

+ 2Π
S Ñf Ñf P Ñf ′Ñf ′
αβγδ

]
(A.34)

where:

ΠS abcd
ijkl =

∑
σ∈S4

XR
σ(i)aX

R
σ(j)bX

R
σ(k)cX

R
σ(l)d ;

ΠP abcd
ijkl =

∑
σ∈S4

XI
σ(i)aX

I
σ(j)bX

I
σ(k)cX

I
σ(l)d

ΠS abP cd
ijkl =

∑
σ∈S4

XR
σ(i)aX

R
σ(j)bX

I
σ(k)cX

I
σ(l)d
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A.3 Loop-functions

The loop functions relevant for our computations are

• A0(m) = −16π2ı
∫

dDk
(2π)D

1
k2−m2 .

• B0(p,m1,m2) = −16π2ı
∫

dDk
(2π)D

1
[k2−m2

1][(k+p)2−m2
2]

.

• pµB1(p,m1,m2) = −16π2ı
∫

dDk
(2π)D

kµ

[k2−m2
1][(k+p)2−m2

2]
.

• [gµνB22 + pµpνB21] (p,m1,m2) = −16π2ı
∫

dDk
(2π)D

kµkν

[k2−m2
1][(k+p)2−m2

2]
.

• C0(p1, p2,m1,m2,m3) = −16π2ı
∫

dDk
(2π)D

1
[k2−m2

1][(k+p1)2−m2
2][(k+p1+p2)2−m2

3]
.

• [pµ1C11 + pµ2C12] (p1, p2,m1,m2,m3)

= −16π2ı
∫

dDk
(2π)D

kµ

[k2−m2
1][(k+p1)2−m2

2][(k+p1+p2)2−m2
3]

.

• [gµνC24 + pµ1p
ν
1C21 + pµ2p

ν
2C22 + (pµ1p

ν
2 + pµ2p

ν
1)C23] (p1, p2,m1,m2,m3)

= −16π2ı
∫

dDk
(2π)D

kµkν

[k2−m2
1][(k+p1)2−m2

2][(k+p1+p2)2−m2
3]

.

• D0(m1,m2,m3,m4) = −16π2ı
∫

dDk
(2π)D

1
[k2−m2

1][k2−m2
2][k2−m2

3][k2−m2
4]

.

• D2(m1,m2,m3,m4) = −16π2ı
∫

dDk
(2π)D

k2

[k2−m2
1][k2−m2

2][k2−m2
3][k2−m2

4]
.

Explicit expressions for these functions in the limit of vanishing external momenta can e.g.

be found in ref. [105].

B Tree level contributions

The tree-level contribution to the did̄j → dj d̄i amplitudes corresponds to the topology of

figure 1a and is mediated by a sneutrino internal line. It generates the following terms in

the EFT:

LEFT 3
1

2m2
Sα

[(
g
Sαdjdi
L

)2
O2 +

(
g
Sαdjdi
R

)2
Õ2 + 2g

Sαdjdi
L g

Sαdjdi
R O4

]
(B.1)

where the couplings g
Sαdjdi
L,R are defined in eq. (A.6). The sum over sneutrino/neutral-

Higgs mixed states Sα with mass mSα is implicit. The operators O2, Õ2, etc, are defined

in eq. (2.2).

C di − dj self-energy contributions

Loop corrections on the external d-fermion legs are determined by the LSZ reduction.

Defining the matrix of renormalized di−dj self energies as: Σ̂ij(p/) = Σ̂ij
L (p/)PL+Σ̂ij

R(p/)PR =
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PLΣ̃ij
L (p/) + PRΣ̃ij

R(p/), we derive the contribution to the EFT:

LEFT 3
1

2m2
Sα

gSαdjdiL

1

2
g
Sαdjdi
L

 dΣ̂jj
L

dp/

∣∣∣∣∣
p/dj

+
dΣ̂jj

L

dp/

∣∣∣∣∣
p/′dj

+
dΣ̃ii

L

dp/

∣∣∣∣∣
p/di

+
dΣ̃ii

L

dp/

∣∣∣∣∣
p/′di


+
∑
k 6=j

gSαdkdiL

mdkΣ̂jk
L + p/dj Σ̂

jk
R

m2
dj
−m2

dk

∣∣∣∣∣
p/dj

+
mdkΣ̂jk

L + p/′dj Σ̂
jk
R

m2
dj
−m2

dk

∣∣∣∣∣
p/′dj


+
∑
k 6=i

g
Sαdjdk
L

mdkΣ̃ki
L + p/diΣ̃

ki
R

m2
di
−m2

dk

∣∣∣∣∣
p/di

+
mdkΣ̃ki

L + p/′diΣ̃
ki
R

m2
di
−m2

dk

∣∣∣∣∣
p/′di

O2

+ g
Sαdjdi
R

1

2
g
Sαdjdi
R

 dΣ̂jj
R

dp/

∣∣∣∣∣
p/dj

+
dΣ̂jj

R

dp/

∣∣∣∣∣
p/′dj

+
dΣ̃ii

R

dp/

∣∣∣∣∣
p/di

+
dΣ̃ii

R

dp/

∣∣∣∣∣
p/′di


+
∑
k 6=j

gSαdkdiR

mdkΣ̂jk
R + p/dj Σ̂

jk
L

m2
dj
−m2

dk

∣∣∣∣∣
p/dj

+
mdkΣ̂jk

R + p/′dj Σ̂
jk
L

m2
dj
−m2

dk

∣∣∣∣∣
p/′dj


+
∑
k 6=i

g
Sαdjdk
R

mdkΣ̃ki
R + p/diΣ̃

ki
L

m2
di
−m2

dk

∣∣∣∣∣
p/di

+
mdkΣ̃ki

R + p/′diΣ̃
ki
L

m2
di
−m2

dk

∣∣∣∣∣
p/′di

 Õ2

+

gSαdjdiL

1

2
g
Sαdjdi
R

 dΣ̂jj
R

dp/

∣∣∣∣∣
p/dj

+
dΣ̂jj

R

dp/

∣∣∣∣∣
p/′dj

+
dΣ̃ii

R

dp/

∣∣∣∣∣
p/di

+
dΣ̃ii

R

dp/

∣∣∣∣∣
p/′di


+
∑
k 6=j

gSαdkdiR

mdkΣ̂jk
R + p/dj Σ̂

jk
L

m2
dj
−m2

dk

∣∣∣∣∣
p/dj

+
mdkΣ̂jk

R + p/′dj Σ̂
jk
L

m2
dj
−m2

dk

∣∣∣∣∣
p/′dj


+
∑
k 6=i

g
Sαdjdk
R

mdkΣ̃ki
R + p/diΣ̃

ki
L

m2
di
−m2

dk

∣∣∣∣∣
p/di

+
mdkΣ̃ki

R + p/′diΣ̃
ki
L

m2
di
−m2

dk

∣∣∣∣∣
p/′di


+ g

Sαdjdi
R

1

2
g
Sαdjdi
L

 dΣ̂jj
L

dp/

∣∣∣∣∣
p/dj

+
dΣ̂jj

L

dp/

∣∣∣∣∣
p/′dj

+
dΣ̃ii

L

dp/

∣∣∣∣∣
p/di

+
dΣ̃ii

L

dp/

∣∣∣∣∣
p/′di


+
∑
k 6=j

gSαdkdiL

mdkΣ̂jk
L + p/dj Σ̂

jk
R

m2
dj
−m2

dk

∣∣∣∣∣
p/dj

+
mdkΣ̂jk

L + p/′dj Σ̂
jk
R

m2
dj
−m2

dk

∣∣∣∣∣
p/′dj


+
∑
k 6=i

g
Sαdjdk
L

mdkΣ̃ki
L + p/diΣ̃

ki
R

m2
di
−m2

dk

∣∣∣∣∣
p/di

+
mdkΣ̃ki

L + p/′diΣ̃
ki
R

m2
di
−m2

dk

∣∣∣∣∣
p/′di

O4

 ,

(C.1)

where the momenta p/dj , p/
′
dj

, p/di and p/′di are evaluated at the values mdj , −mdj , mdi and

−mdi . We list below the contributions to the self-energies.
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C.1 Scalar/fermion loop

−ıΣS/f
djdi

(p/) =
ı

16π2

{
− p/

[
g
Sfdj ∗
L gSfdiL PL + g

Sfdj ∗
R gSfdiR PR

]
B1

+mf

[
g
Sfdj ∗
R gSfdiL PL + g

Sfdj ∗
L gSfdiR PR

]
B0

}
(−p,mf ,mS) (C.2)

The scalar/fermion pair (S/f) is summed over the following list of particles:

• Higgs-sneutrino/down: couplings from eq. (A.6).

• Charged Higgs-slepton/up: couplings from eq. (A.7).

• sdown/neutralino-neutrino: couplings from eq. (A.8).

• sdown/gluino: couplings from eq. (A.9); color-factor C2(3) = 4/3.

• sup/chargino-lepton: couplings from eq. (A.10).

• sup/down: couplings from eq. (A.11); color factor: εabcεabd = 2δcd.

• sdown/up: couplings from eq. (A.12); color factor: εabcεabd = 2δcd.

C.2 Vector/fermion loop

−ıΣV/f
djdi

(p) = − ı

16π2

{
(D − 2)p/

[
g
V fdj ∗
L gV fdiL PL + g

V fdj ∗
R gV fdiR PR

]
B1

+Dmf

[
g
V fdj ∗
R gV fdiL PL + g

V fdj ∗
L gV fdiR PR

]
B0

}
(−p,mf ,mV )

(C.3)

The vector/fermion pair (S/f) is summed over the following list of particles:

• W/up: eq. (A.13).

• Z/down: eq. (A.14).

C.3 Counterterm

Defining the generic d-mass counterterm δmd ji = δmL
d jiPL+δmR

d jiPR as well as the d-wave-

function counterterm δZd ji = δZLd jiPL + δZRd jiPR, we arrive at the following contribution:

−ıΣCT
djdi

(p) = ı
p/

2

[(
δZLd ji + δZL ∗d ij

)
PL +

(
δZRd ji + δZR ∗d ij

)
PR
]

− ı
[(

δmL
d ji +

1

2

(
mdiδZ

R ∗
d ij +mdjδZ

L
d ji

))
PL

+

(
δmR

d ji +
1

2

(
mdiδZ

L ∗
d ij +mdjδZ

R
d ji

))
PR

]
(C.4)

In principle, δmL
d ji =

(
δmR

d ij

)∗
= δY L

d jivd + Y i
d δijδvd.
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D Sneutrino-Higgs self-energies

We assume that the tadpoles (Higgs, gauge bosons) vanish, which supposes certain relations

at the loop-level between vevs and tree-level parameters. Then, defining the renormalized

neutral-scalar self-energy matrix Σ̂S
αβ , we derive the following contribution to the EFT:

LEFT 3
−1

2m2
Sα
m2
Sβ

[
g
Sαdjdi
L Σ̂S

αβg
Sβdjdi
L O2+g

Sαdjdi
R Σ̂S

αβg
Sβdjdi
R Õ2+2g

Sαdjdi
L Σ̂S

αβg
Sβdjdi
R O4

]
.

(D.1)

The various contributions to the neutral-scalar self-energies are listed below.

D.1 Scalar A0-loop

− ıΣS AS
αβ = − ı

16π2
gS̃S̃SαSβA0(mS̃) . (D.2)

This contribution is summed over the scalar S̃, taking value in the following list of particles:

• scalar-ups: couplings from eq. (A.30). 3 colors contributing.

• sdowns: couplings from eq. (A.31). 3 colors contributing.

• Charged Higgs-sleptons: couplings from eq. (A.33).

• Higgs-sneutrinos: couplings from eq. (A.34); symmetry-factor 1/2.

D.2 Vector A0-loop

− ıΣS AV
αβ =

ı

16π2
gV V SαSβDA0(mV ) (D.3)

The vector V belongs to the following list of particles:

• W’s: couplings from eq. (A.28).

• Z’s: couplings from eq. (A.29); symmetry-factor 1/2.

D.3 Scalar B-loop

− ıΣS BS
αβ ==

ı

16π2
gSδSγSαgSγSδSβB0(mSγ ,mSδ) (D.4)

The scalar pair (Sγ , Sδ) is summed over the particles:

• scalar-ups: couplings from eq. (A.24). 3 colors contributing.

• sdowns: couplings from eq. (A.25). 3 colors contributing.

• Charged Higgs-sleptons: couplings from eq. (A.26).

• Higgs-sneutrinos: couplings from eq. (A.27).
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D.4 Fermion B-loop

−ıΣS Bf
αβ =

−2ı

16π2

{[
gSαf̃fL g

Sβ f̃f ∗
L + gSαf̃fR g

Sβ f̃f ∗
R

]
DB22

+

[
gSαf̃fL g

Sβ f̃f ∗
R + gSαf̃fR g

Sβ f̃f ∗
L

]
mfmf̃B0

}
(mf ,mf̃ ) (D.5)

List of particles for the fermion pair (f, f̃):

• ups: couplings of eq. (A.15). 3 colors contributing.

• downs: couplings of eq. (A.6). 3 colors contributing.

• charginos-leptons: couplings of eq. (A.16).

• neutrino-neutralinos: couplings of eq. (A.17); symmetry-factor 1/2.

D.5 Vector B-loop

− ıΣS BV
αβ =

ı

16π2
gSαV V gSβV VDB0(mV ,mV ) (D.6)

The vector V is summed over:

• W’s: couplings of eq. (A.18).

• Z’s: couplings of eq. (A.19); symmetry-factor 1/2

D.6 Ghost B-loop

− ıΣS Bg
αβ = − ı

16π2
gSαgggSβggB0(mg,mg) (D.7)

The contribution is summed over the ghost fields g:

• gW ’s: couplings of eq. (A.20).

• gZ : couplings of eq. (A.21).

D.7 Scalar/vector B-loop

− ıΣS BSV
αβ =

ı

16π2
gSαV S ∗gSβV SDB22(mV ,mS) (D.8)

List of particles for the scalar/vector pair (S/V ):

• Charged Higgs-slepton / W : couplings of eq. (A.22).

• Higgs - sneutrino / Z: couplings of eq. (A.23).

D.8 Counterterms

Defining the neutral scalar mass and wave-function counterterms δm2
αβ and δZSαβ :

− ıΣS CT
αβ = −ı

[
δm2

αβ +
1

2
δZSαβ

(
m2
Sα +m2

Sβ

)]
(D.9)
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E Vertex corrections

The vertex corrections to the EFT are obtained as:

LEFT 3
1

2m2
Sα

[
g
Sαdjdi
L V̂

Sαdjdi
L O2 + g

Sαdjdi
R V̂

Sαdjdi
R Õ2

+
(
g
Sαdjdi
R V̂

Sαdjdi
L + g

Sαdjdi
L V̂

Sαdjdi
R

)
O4

]
(E.1)

where the d̄jdi-neutral-Higgs renormalized vertex function V̂ Sαdjdi = V̂
Sαdjdi
L PL +

V̂
Sαdjdi
L PR receives the contributions listed below.

E.1 Scalar/fermion loop with cubic scalar coupling

−ıV̂ Sαdjdi [Sff, S3] = − ı

16π2
gSαSkSl

×
[
g
Slfdj ∗
R gSkfdiL PL + g

Slfdj ∗
L gSkfdiR PR

]
mfC0(mf ,mSk ,mSl) (E.2)

List of particles for the scalar/fermion triplet (Sk, Sl/f):

• Higgs-sneutrino/down: couplings from eqs. (A.6), (A.27).

• Charged Higgs-slepton/up: couplings from eqs. (A.7), (A.26).

• sdown/neutralino-neutrino: couplings from eqs. (A.8), (A.25).

• sdown/gluino: couplings from eqs. (A.9), (A.25); color-factor C2(3) = 4/3.

• sup/chargino-lepton: couplings from eqs. (A.10), (A.24).

• sup/down: couplings from eqs. (A.11), (A.24).

• sdown/up: couplings from eqs. (A.12), (A.25).

E.2 Scalar/fermion loop without cubic scalar coupling

−ıV̂ Sαdjdi [Sff ] = − ı

16π2

{[
g
Sfldj ∗
R gSαflfkR gSfkdiL PL + g

Sfldj ∗
L gSαflfkL gSfkdiR PR

]
DC24

+
[
g
Sfldj ∗
R gSαflfkL gSfkdiL PL+g

Sfldj ∗
L gSαflfkR gSfkdiR PR

]
mfkmflC0

}
× (mS ,mfk ,mfl) (E.3)

List of particles for the scalar/fermion triplet (S/fk, fl):

• Higgs-sneutrino/down: couplings from eq. (A.6).

• Charged Higgs-slepton/up: couplings from eqs. (A.7), (A.15).

• sdown/neutralino-neutrino: couplings from eqs. (A.8), (A.17).

• sup/chargino-lepton: couplings from eqs. (A.10), (A.16).

• sup/down: couplings from eqs. (A.11), (A.6).

• sdown/up: couplings from eqs. (A.12), (A.15).
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E.3 Vector/fermion loop with scalar-vector coupling

−ıV̂ Sαdjdi [SV V, V ff ] = − ı

16π2
gSαVkVl

[
g
Vlfdj ∗
R gVkfdiL PL + g

Vlfdj ∗
L gVkfdiR PR

]
×Dmf C0(mf ,mVk ,mVl) (E.4)

The vector/fermion triplet (Vk, Vl/f) takes the following values:

• W/up: couplings from eqs. (A.13), (A.18).

• Z/down: couplings from eqs. (A.14), (A.19).

E.4 Vector/fermion loop with scalar-fermion coupling

− ıV̂ Sαdjdi [SV V, Sff ]

=
ı

16π2

{[
g
V fldj ∗
R gSαflfkL gV fkdiL PL + g

V fldj ∗
L gSαflfkR gV fkdiR PR

]
D2C24

+
[
g
V fldj ∗
R gSαflfkR gV fkdiL PL + g

V fldj ∗
L gSαflfkL gV fkdiR PR

]
DmfkmflC0

}
× (mV ,mfk ,mfl) (E.5)

The vector/fermion triplet (V/fk, fl) takes the following values:

• W/up: couplings from eqs. (A.13), (A.15).

• Z/down: couplings from eqs. (A.14), (A.6).

E.5 Vector/Scalar/fermion loops

−ıV̂ Sαdjdi [V Sf ] = − ı

16π2

{
gV SSα

[
g
Sfdj ∗
R gV fdiL PL + g

Sfdj ∗
L gV fdiR PR

]
+ gSV Sα

[
g
V fdj ∗
R gSfdiL PL + g

V fdj ∗
L gSfdiR PR

]}
×DC24(mf ,mS ,mV ) (E.6)

List of particles for the scalar/vector/fermion triplet (S/V/f):

• charged-Higgs-slepton/W/up: couplings from eqs. (A.13), (A.7), (A.22).

• neutral-Higgs-sneutrino/Z/down: couplings from eqs. (A.14), (A.6), (A.23).

E.6 Counterterms

The counterterm contribution −ıV̂ Sαdjdi [CT ] reads:

ı

{
− 1√

2

[
δY L

d ji(X
R
kd + ıXI

kd) + δλ′Lfij(X
R
kÑf

+ ıXI
kÑf

)
]

+
1

2

[
δZR ∗d jlg

Sαdldi
L + δZLd ilg

Sαdjdl
L + δZSkαg

Sαdjdi
L

]}
PL

+ ı

{
− 1√

2

[
δY R

d ji(X
R
kd − ıXI

kd) + δλ′Rfji(X
R
kÑf
− ıXI

kÑf
)
]

+
1

2

[
δZL ∗d jlg

Sαdldi
R + δZRd ilg

Sαdjdl
R + δZSkαg

Sαdjdi
R

]}
PR (E.7)
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where δY R
d ji =

(
δY L

d ij

)∗
is the counterterm to the Yukawa coupling and δλ′Rfji =

(
δλ′Lfji

)∗
is the counterterm to the λ′ coupling.

F Box diagrams

Here, we collect the box-diagram contributions to the did̄j → dj d̄i amplitude. The results

are listed according to the topologies of figure 2.

F.1 Vector/fermion/vector/fermion “straight” box

Case Vα,β colour-singlets:

LEFT 3
1

32π2

{
g
Vαfkdj ∗
L g

Vβfkdi
L g

Vβfldj ∗
L gVαfldiL D2O1 + g

Vαfkdj ∗
R g

Vβfkdi
R g

Vβfldj ∗
R gVαfldiR D2 Õ1

+ 16g
Vαfkdj ∗
R g

Vβfkdi
L g

Vβfldj ∗
R gVαfldiL mfkmflD0O2

+ 16g
Vαfkdj ∗
L g

Vβfkdi
R g

Vβfldj ∗
L gVαfldiR mfkmflD0 Õ2

+16
[
g
Vαfkdj ∗
R g

Vβfkdi
L g

Vβfldj ∗
L gVαfldiR +g

Vαfkdj ∗
L g

Vβfkdi
R g

Vβfldj ∗
R gVαfldiL

]
mfkmflD0O4

−2
[
g
Vαfkdj ∗
L g

Vβfkdi
L g

Vβfldj ∗
R gVαfldiR + g

Vαfkdj ∗
R g

Vβfkdi
R g

Vβfldj ∗
L gVαfldiL

]
D2O5

}
× (mSα ,mfk ,mSβ ,mfl) (F.1)

List of particles:

• W / up: couplings from eq. (A.13).

F.2 Scalar/fermion/scalar/fermion “straight” box

Case 1: Sα,β colour-singlets:

LEFT 3
1

32π2

{
g
Sαfkdj ∗
L g

Sβfkdi
L g

Sβfldj ∗
L gSαfldiL

D2

4
O1

+ g
Sαfkdj ∗
R g

Sβfkdi
R g

Sβfldj ∗
R gSαfldiR

D2

4
Õ1

+ g
Sαfkdj ∗
R g

Sβfkdi
L g

Sβfldj ∗
R gSαfldiL mfkmflD0O2

+ g
Sαfkdj ∗
L g

Sβfkdi
R g

Sβfldj ∗
L gSαfldiR mfkmflD0 Õ2

+
[
g
Sαfkdj ∗
R g

Sβfkdi
L g

Sβfldj ∗
L gSαfldiR +g

Sαfkdj ∗
L g

Sβfkdi
R g

Sβfldj ∗
R gSαfldiL

]
mfkmflD0O4

−
[
g
Sαfkdj ∗
L g

Sβfkdi
L g

Sβfldj ∗
R gSαfldiR + g

Sαfkdj ∗
R g

Sβfkdi
R g

Sβfldj ∗
L gSαfldiL

] D2

2
O5

}
× (mSα ,mfk ,mSβ ,mfl) (F.2)

List of particles:

• Higgs-sneutrino / down: couplings from eq. (A.6).

• Charged Higgs-slepton / up: couplings from eq. (A.7).
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Case 2: fk,l colour-singlets:

LEFT 3
1

32π2

{
g
Sαfkdj ∗
L g

Sβfkdi
L g

Sβfldj ∗
L gSαfldiL

D2

4
O1+g

Sαfkdj ∗
R g

Sβfkdi
R g

Sβfldj ∗
R gSαfldiR

D2

4
Õ1

+ g
Sαfkdj ∗
R g

Sβfkdi
L g

Sβfldj ∗
R gSαfldiL mfkmflD0O3

+ g
Sαfkdj ∗
L g

Sβfkdi
R g

Sβfldj ∗
L gSαfldiR mfkmflD0 Õ3

−
[
g
Sαfkdj ∗
L g

Sβfkdi
L g

Sβfldj ∗
R gSαfldiR + g

Sαfkdj ∗
R g

Sβfkdi
R g

Sβfldj ∗
L gSαfldiL

] D2

2
O4

+
[
g
Sαfkdj ∗
R g

Sβfkdi
L g

Sβfldj ∗
L gSαfldiR +g

Sαfkdj ∗
L g

Sβfkdi
R g

Sβfldj ∗
R gSαfldiL

]
mfkmflD0O5

}
× (mSα ,mfk ,mSβ ,mfl) (F.3)

List of particles:

• sdown / neutrino-neutralino: couplings from eq. (A.8).

• sup / chargino-lepton: couplings from eq. (A.10).

Case 3: all fields colour-triplets:

LEFT 3
1

32π2

{
g
Sαfkdj ∗
L g

Sβfkdi
L g

Sβfldj ∗
L gSαfldiL

D2

2
O1+g

Sαfkdj ∗
R g

Sβfkdi
R g

Sβfldj ∗
R gSαfldiR

D2

2
Õ1

+ g
Sαfkdj ∗
R g

Sβfkdi
L g

Sβfldj ∗
R gSαfldiL mfkmflD0(O2 +O3)

+ g
Sαfkdj ∗
L g

Sβfkdi
R g

Sβfldj ∗
L gSαfldiR mfkmflD0(Õ2 + Õ3)

+ (O4 +O5)

([
g
Sαfkdj ∗
R g

Sβfkdi
L g

Sβfldj ∗
L gSαfldiR

+ g
Sαfkdj ∗
L g

Sβfkdi
R g

Sβfldj ∗
R gSαfldiL

]
mfkmflD0

−
[
g
Sαfkdj ∗
L g

Sβfkdi
L g

Sβfldj ∗
R gSαfldiR + g

Sαfkdj ∗
R g

Sβfkdi
R g

Sβfldj ∗
L gSαfldiL

] D2

2

)}
× (mSα ,mfk ,mSβ ,mfl) (F.4)

List of particles:

• sdown / up: couplings from eq. (A.12).

• sup / down: couplings from eq. (A.11).

Case 4: fk,l colour-octets:

LEFT 3
1

32π2

{
11

18
g
Sαfkdj ∗
L g

Sβfkdi
L g

Sβfldj ∗
L gSαfldiL

D2

4
O1

+
11

18
g
Sαfkdj ∗
R g

Sβfkdi
R g

Sβfldj ∗
R gSαfldiR

D2

4
Õ1

+ g
Sαfkdj ∗
R g

Sβfkdi
L g

Sβfldj ∗
R gSαfldiL mfkmflD0

(
7

12
O2 +

1

36
O3

)
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+ g
Sαfkdj ∗
L g

Sβfkdi
R g

Sβfldj ∗
L gSαfldiR mfkmflD0

(
7

12
Õ2 +

1

36
Õ3

)
+
[
g
Sαfkdj ∗
R g

Sβfkdi
L g

Sβfldj ∗
L gSαfldiR

+ g
Sαfkdj ∗
L g

Sβfkdi
R g

Sβfldj ∗
R gSαfldiL

]
mfkmflD0

(
7

12
O4 +

1

36
O5

)
−
[
g
Sαfkdj ∗
L g

Sβfkdi
L g

Sβfldj ∗
R gSαfldiR

+ g
Sαfkdj ∗
R g

Sβfkdi
R g

Sβfldj ∗
L gSαfldiL

]D2

4

(
1

18
O4 +

7

6
O5

)}
× (mSα ,mfk ,mSβ ,mfl) (F.5)

List of particles:

• sdown / gluino: couplings from eq. (A.9) (stripped from Gell-Mann matrix element).

Case 5: fk,l colour-octet+singlet:

LEFT 3
1

32π2

{
1

3
g
Sαfkdj ∗
L g

Sβfkdi
L g

Sβfldj ∗
L gSαfldiL

D2

4
O1

+
1

3
g
Sαfkdj ∗
R g

Sβfkdi
R g

Sβfldj ∗
R gSαfldiR

D2

4
Õ1

+ g
Sαfkdj ∗
R g

Sβfkdi
L g

Sβfldj ∗
R gSαfldiL mfkmflD0

1

2

(
O2 −

1

3
O3

)
+ g

Sαfkdj ∗
L g

Sβfkdi
R g

Sβfldj ∗
L gSαfldiR mfkmflD0

1

2

(
Õ2 −

1

3
Õ3

)
+
[
g
Sαfkdj ∗
R g

Sβfkdi
L g

Sβfldj ∗
L gSαfldiR

+ g
Sαfkdj ∗
L g

Sβfkdi
R g

Sβfldj ∗
R gSαfldiL

]
mfkmflD0

(
O4 −

1

3
O5

)
+
[
g
Sαfkdj ∗
L g

Sβfkdi
L g

Sβfldj ∗
R gSαfldiR

+ g
Sαfkdj ∗
R g

Sβfkdi
R g

Sβfldj ∗
L gSαfldiL

]D2

4

(
1

3
O4 −O5

)}
× (mSα ,mfk ,mSβ ,mfl) (F.6)

List of particles:

• sdown / gluino / sdown / neutralino-neutrino: couplings from eqs. (A.8), (A.9)

(stripped from Gell-Mann matrix element); ×2 (π-rotated diagram).

F.3 Scalar/fermion/scalar/fermion “scalar-cross” box

Case 1: Sα,β colour-singlets:

LEFT 3
1

32π2

{
− gSαfkdj ∗L g

Sβfkdi
L g

Sαfldj ∗
L g

Sβfldi
L

D2

4
O1

− gSαfkdj ∗R g
Sβfkdi
R g

Sαfldj ∗
R g

Sβfldi
R

D2

4
Õ1

+ g
Sαfkdj ∗
R g

Sβfkdi
L g

Sαfldj ∗
R g

Sβfldi
L mfkmflD0O2
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+ g
Sαfkdj ∗
L g

Sβfkdi
R g

Sαfldj ∗
L g

Sβfldi
R mfkmflD0 Õ2

+
[
g
Sαfkdj ∗
R g

Sβfkdi
L g

Sαfldj ∗
L g

Sβfldi
R + g

Sαfkdj ∗
L g

Sβfkdi
R g

Sαfldj ∗
R g

Sβfldi
L

]
mfkmflD0O4

+
[
g
Sαfkdj ∗
L g

Sβfkdi
L g

Sαfldj ∗
R g

Sβfldi
R + g

Sαfkdj ∗
R g

Sβfkdi
R g

Sαfldj ∗
L g

Sβfldi
L

] D2

2
O5

}
× (mSα ,mfk ,mSβ ,mfl) (F.7)

List of particles:

• Higgs-sneutrino / down: couplings from eq. (A.6).

Case 2: fk colour-singlet:

LEFT 3
1

32π2

{
g
Sαfkdj ∗
R g

Sβfkdi
L g

Sαfldj ∗
R g

Sβfldi
L mfkmflD0(O2 −O3)

+ g
Sαfkdj ∗
L g

Sβfkdi
R g

Sαfldj ∗
L g

Sβfldi
R mfkmflD0(Õ2 − Õ3)

+ (O4 −O5)

([
g
Sαfkdj ∗
R g

Sβfkdi
L g

Sαfldj ∗
L g

Sβfldi
R

+ g
Sαfkdj ∗
L g

Sβfkdi
R g

Sαfldj ∗
R g

Sβfldi
L

]
mfkmflD0

−
[
g
Sαfkdj ∗
L g

Sβfkdi
L g

Sαfldj ∗
R g

Sβfldi
R + g

Sαfkdj ∗
R g

Sβfkdi
R g

Sαfldj ∗
L g

Sβfldi
L

] D2

2

)}
× (mSα ,mfk ,mSβ ,mfl) (F.8)

List of particles:

• sup / chargino-lepton / sup / down: couplings from eqs. (A.10), (A.11).

• sdown / neutralino-neutrino / sdown / up: couplings from eqs. (A.8), (A.12).

Case 3: fk colour-triplet:

LEFT 3
1

32π2

{
− gSαfkdj ∗L g

Sβfkdi
L g

Sαfldj ∗
L g

Sβfldi
L

D2

4
O1

− gSαfkdj ∗R g
Sβfkdi
R g

Sαfldj ∗
R g

Sβfldi
R

D2

4
Õ1

+ g
Sαfkdj ∗
R g

Sβfkdi
L g

Sαfldj ∗
R g

Sβfldi
L mfkmflD0

1

6
(5O2 +O3)

+ g
Sαfkdj ∗
L g

Sβfkdi
R g

Sαfldj ∗
L g

Sβfldi
R mfkmflD0

1

6
(5Õ2 + Õ3)

+
[
g
Sαfkdj ∗
R g

Sβfkdi
L g

Sαfldj ∗
L g

Sβfldi
R

+ g
Sαfkdj ∗
L g

Sβfkdi
R g

Sαfldj ∗
R g

Sβfldi
L

]
mfkmflD0

1

6
(5O4 +O5)

+
[
g
Sαfkdj ∗
L g

Sβfkdi
L g

Sαfldj ∗
R g

Sβfldi
R

+ g
Sαfkdj ∗
R g

Sβfkdi
R g

Sαfldj ∗
L g

Sβfldi
L

]D2

4

1

3
(O4 + 5O5)

}
× (mSα ,mfk ,mSβ ,mfl) (F.9)
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List of particles:

• sdown / gluino / sdown / up: couplings from eqs. (A.12), (A.9) (stripped from Gell-

Mann matrix element); ×2 (π-rotated diagram).

F.4 Scalar/fermion/scalar/fermion “fermion-cross” box

Case 1: fk colour-singlet:

LEFT 3
1

32π2

{
g
Sαfkdj ∗
L g

Sβfkdj ∗
L gSαfldiL g

Sβfldi
L

mfkmfl

2
D0O1

+ g
Sαfkdj ∗
R g

Sβfkdj ∗
R gSαfldiR g

Sβfldi
R

mfkmfl

2
D0 Õ1

− gSαfkdj ∗R g
Sβfkdj ∗
R gSαfldiL g

Sβfldi
L mfkmflD0(O2 +O3)

− gSαfkdj ∗L g
Sβfkdj ∗
L gSαfldiR g

Sβfldi
R mfkmflD0(Õ2 + Õ3)

−
[
g
Sαfkdj ∗
L g

Sβfkdj ∗
R gSαfldiR g

Sβfldi
L + g

Sαfkdj ∗
R g

Sβfkdj ∗
L gSαfldiL g

Sβfldi
R

] D2

2
O4

+
[
g
Sαfkdj ∗
R g

Sβfkdj ∗
L gSαfldiR g

Sβfldi
L + g

Sαfkdj ∗
L g

Sβfkdj ∗
R gSαfldiL g

Sβfldi
R

] D2

2
O5

}
× (mSα ,mfk ,mSβ ,mfl) (F.10)

List of particles:

• sdown / neutrino-neutralino: couplings from eq. (A.8).

Case 2: Sα colour-singlet:

LEFT 3
1

32π2

{
− gSαfkdj ∗R g

Sβfkdj ∗
R gSαfldiL g

Sβfldi
L mfkmflD0O3

− gSαfkdj ∗L g
Sβfkdj ∗
L gSαfldiR g

Sβfldi
R mfkmflD0 Õ3

− (O4 −O5)
([
g
Sαfkdj ∗
R g

Sβfkdj ∗
L gSαfldiR g

Sβfldi
L + g

Sαfkdj ∗
L g

Sβfkdj ∗
R gSαfldiL g

Sβfldi
R

]
+
[
g
Sαfkdj ∗
L g

Sβfkdj ∗
R gSαfldiR g

Sβfldi
L + g

Sαfkdj ∗
R g

Sβfkdj ∗
L gSαfldiL g

Sβfldi
R

]) D2

2

}
× (mSα ,mfk ,mSβ ,mfl) (F.11)

List of particles:

• Charged Higgs-slepton / up / sdown / up: couplings from eqs. (A.7), (A.12).

• Higgs-sneutrino / down / sup / down: couplings from eqs. (A.6), (A.11).

Case 3: fk,l colour-octets:

LEFT 3
1

32π2

{
1

18
g
Sαfkdj ∗
L g

Sβfkdj ∗
L gSαfldiL g

Sβfldi
L mfkmflD0O1

+
1

18
g
Sαfkdj ∗
R g

Sβfkdj ∗
R gSαfldiR g

Sβfldi
R mfkmflD0 Õ1
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− 1

9
g
Sαfkdj ∗
R g

Sβfkdj ∗
R gSαfldiL g

Sβfldi
L mfkmflD0(O2 +O3)

− 1

9
g
Sαfkdj ∗
L g

Sβfkdj ∗
L gSαfldiR g

Sβfldi
R mfkmflD0(Õ2 + Õ3)

− 1

9

[
g
Sαfkdj ∗
R g

Sβfkdj ∗
L gSαfldiR g

Sβfldi
L

+ g
Sαfkdj ∗
L g

Sβfkdj ∗
R gSαfldiL g

Sβfldi
R

]D2

4
(5O4 − 3O5)

− 1

9

[
g
Sαfkdj ∗
L g

Sβfkdj ∗
R gSαfldiR g

Sβfldi
L

+ g
Sαfkdj ∗
R g

Sβfkdj ∗
L gSαfldiL g

Sβfldi
R

]D2

4
(3O4 − 5O5)

}
× (mSα ,mfk ,mSβ ,mfl) (F.12)

List of particles:

• sdown / gluinos: couplings from eq. (A.9) (stripped from Gell-Mann matrix element).

Case 4: fk,l colour-octet+singlet:

LEFT 3
1

32π2

{
1

6
g
Sαfkdj ∗
L g

Sβfkdj ∗
L gSαfldiL g

Sβfldi
L mfkmflD0O1

+
1

6
g
Sαfkdj ∗
R g

Sβfkdj ∗
R gSαfldiR g

Sβfldi
R mfkmflD0 Õ1

− 1

3
g
Sαfkdj ∗
R g

Sβfkdj ∗
R gSαfldiL g

Sβfldi
L mfkmflD0(O2 +O3)

− 1

3
g
Sαfkdj ∗
L g

Sβfkdj ∗
L gSαfldiR g

Sβfldi
R mfkmflD0(Õ2 + Õ3)

+
1

3

[
g
Sαfkdj ∗
R g

Sβfkdj ∗
L gSαfldiR g

Sβfldi
L

+ g
Sαfkdj ∗
L g

Sβfkdj ∗
R gSαfldiL g

Sβfldi
R

]D2

4
(O4 − 3O5)

+
1

3

[
g
Sαfkdj ∗
L g

Sβfkdj ∗
R gSαfldiR g

Sβfldi
L

+ g
Sαfkdj ∗
R g

Sβfkdj ∗
L gSαfldiL g

Sβfldi
R

]D2

4
(3O4 −O5)

}
× (mSα ,mfk ,mSβ ,mfl) (F.13)

List of particles:

• sdown / gluino / sdown / neutralino-neutrino: couplings from eqs. (A.8), (A.9)

(stripped from Gell-Mann matrix element); + diagram with χ0 ↔ g̃.

F.5 Vector/fermion/scalar/fermion “straight” box

Case S colour-singlet:

LEFT 3
1

32π2

{
− gV fkdj ∗L gSfkdiL g

Sfldj ∗
L gV fldiL mfkmflD0O1

− gV fkdj ∗R gSfkdiR g
Sfldj ∗
R gV fldiR mfkmflD0 Õ1
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− 2g
V fkdj ∗
R gSfkdiL g

Sfldj ∗
R gV fldiL D2(O2 +O3)

− 2g
V fkdj ∗
L gSfkdiR g

Sfldj ∗
L gV fldiR D2(Õ2 + Õ3)

−
[
g
V fkdj ∗
L gSfkdiR g

Sfldj ∗
R gV fldiL + g

V fkdj ∗
R gSfkdiL g

Sfldj ∗
L gV fldiR

]
D2O4

+ 2
[
g
V fkdj ∗
L gSfkdiL g

Sfldj ∗
R gV fldiR + g

V fkdj ∗
R gSfkdiR g

Sfldj ∗
L gV fldiL

]
mfkmflD0O5

}
× (mV ,mfk ,mS ,mfl) (F.14)

List of particles:

• Z / down / sneutrino-neutral Higgs /down: couplings from eqs. (A.6), (A.14); ×2

(π-rotated diagram).

• W / up / charged Higgs-slepton / up: couplings from eqs. (A.7), (A.13); ×2 (π-

rotated diagram).

F.6 Vector/fermion/scalar/fermion “cross” boxes

Case S colour-singlet:

LEFT 3
1

32π2

{
−
(
g
V fkdj ∗
L gSfkdiL g

V fldj ∗
L gSfldiL mfkmfl

+ g
Sfkdj ∗
L gV fkdiL g

Sfldj ∗
L gV fldiL

)
mfkmflD0O1

−
(
g
V fkdj ∗
R gSfkdiR g

V fldj ∗
R gSfldiR + g

Sfkdj ∗
R gV fkdiR g

Sfldj ∗
R gV fldiR

)
mfkmflD0 Õ1

− 2
(
g
V fkdj ∗
R gSfkdiL g

V fldj ∗
R gSfldiL + g

Sfkdj ∗
R gV fkdiL g

Sfldj ∗
R gV fldiL

)
D2O3

− 2
(
g
V fkdj ∗
L gSfkdiR g

V fldj ∗
L gSfldiR + g

Sfkdj ∗
L gV fkdiR g

Sfldj ∗
L gV fldiR

)
D2 Õ3

+
[
g
V fkdj ∗
L gSfkdiR g

V fldj ∗
R gSfldiL + g

V fkdj ∗
R gSfkdiL g

V fldj ∗
L gSfldiR

+g
Sfkdj ∗
L gV fkdiR g

Sfldj ∗
R gV fldiL + g

Sfkdj ∗
R gV fkdiL g

Sfldj ∗
L gV fldiR

]
D2O4

+ 2
[
g
V fkdj ∗
L gSfkdiL g

V fldj ∗
R gSfldiR + g

V fkdj ∗
R gSfkdiR g

V fldj ∗
L gSfldiL

+g
Sfkdj ∗
L gV fkdiL g

Sfldj ∗
R gV fldiR + g

Sfkdj ∗
R gV fkdiR g

Sfldj ∗
L gV fldiL

]
mfkmflD0O5

}
× (mV ,mfk ,mS ,mfl) (F.15)

List of particles:

• Z / down / sneutrino-neutral Higgs / down: couplings from eqs. (A.6), (A.14).

F.7 Vector/fermion/scalar/fermion “fermion-cross” box

Case S colour-triplet:

LEFT 3
1

32π2

{
g
V fkdj ∗
R g

Sfkdj ∗
R gSfldiL gV fldiL

D2

4
(O2 −O3)

− gV fkdj ∗L g
Sfkdj ∗
L gSfldiR gV fldiR

D2

4
(Õ2 − Õ3)

– 47 –



J
H
E
P
0
2
(
2
0
1
9
)
0
6
6

+ 2
(
g
V fkdj ∗
L g

Sfkdj ∗
R + g

V fkdj ∗
R g

Sfkdj ∗
L

)(
gSfldiR gV fldiL + gSfldiL gV fldiR

)
×mfkmflD0(O4 −O5)

}
(mV ,mfk ,mS ,mfl) (F.16)

List of particles:

• W / up / sdown / up: couplings from eqs. (A.13), (A.12); ×2 (π-rotated diagram).

• Z / down / sup / down: couplings from eqs. (A.14), (A.11); vanishes from antisym-

metry of λ′′; ×2 (π-rotated diagram).
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any medium, provided the original author(s) and source are credited.
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[28] A. de Gouvêa, S. Lola and K. Tobe, Lepton flavor violation in supersymmetric models with

trilinear R-parity violation, Phys. Rev. D 63 (2001) 035004 [hep-ph/0008085] [INSPIRE].

[29] A. Vicente, Lepton flavor violation beyond the MSSM, Adv. High Energy Phys. 2015 (2015)

686572 [arXiv:1503.08622] [INSPIRE].

[30] A. Gemintern, S. Bar-Shalom, G. Eilam and F. Krauss, Lepton flavor violating decays

L→ lγγ as a new probe of supersymmetry with broken R parity, Phys. Rev. D 67 (2003)

115012 [hep-ph/0302186] [INSPIRE].

[31] C.-Y. Chen and O.C.W. Kong, Leptonic radiative decay in supersymmetry without R parity,

Phys. Rev. D 79 (2009) 115013 [arXiv:0901.3371] [INSPIRE].

[32] Y. Cheng and O.C.W. Kong, Leptonic flavor violating Higgs to µ+ τ decay in

supersymmetry without R parity, in the proceedings of the 20th International Conference on

Supersymmetry and Unification of Fundamental Interactions (SUSY 2012), August 13–17,

Beijing, China (2012), arXiv:1211.0365 [INSPIRE].

– 49 –

https://doi.org/10.1103/PhysRevD.73.075007
https://arxiv.org/abs/hep-ph/0512163
https://inspirehep.net/search?p=find+EPRINT+hep-ph/0512163
https://doi.org/10.1016/j.nuclphysb.2007.11.014
https://doi.org/10.1016/j.nuclphysb.2007.11.014
https://arxiv.org/abs/0708.0989
https://inspirehep.net/search?p=find+EPRINT+arXiv:0708.0989
https://doi.org/10.1103/PhysRevD.88.115005
https://arxiv.org/abs/1308.0332
https://inspirehep.net/search?p=find+EPRINT+arXiv:1308.0332
https://doi.org/10.1103/PhysRevD.85.115021
https://arxiv.org/abs/1205.0019
https://inspirehep.net/search?p=find+EPRINT+arXiv:1205.0019
https://doi.org/10.1140/epjc/s10052-017-5414-4
https://arxiv.org/abs/1706.09418
https://inspirehep.net/search?p=find+EPRINT+arXiv:1706.09418
https://doi.org/10.1103/PhysRevD.26.287
https://doi.org/10.1103/PhysRevD.26.287
https://inspirehep.net/search?p=find+J+%22Phys.Rev.,D26,287%22
https://doi.org/10.1103/PhysRevD.55.7296
https://arxiv.org/abs/hep-ph/9701283
https://inspirehep.net/search?p=find+EPRINT+hep-ph/9701283
https://doi.org/10.1103/PhysRevD.64.095007
https://doi.org/10.1103/PhysRevD.64.095007
https://arxiv.org/abs/hep-ph/0101347
https://inspirehep.net/search?p=find+EPRINT+hep-ph/0101347
https://doi.org/10.1016/j.nuclphysBPS.2014.02.005
https://doi.org/10.1016/j.nuclphysBPS.2014.02.005
https://arxiv.org/abs/1310.8162
https://inspirehep.net/search?p=find+EPRINT+arXiv:1310.8162
https://doi.org/10.1103/PhysRevD.65.093013
https://arxiv.org/abs/hep-ph/0202054
https://inspirehep.net/search?p=find+EPRINT+hep-ph/0202054
https://doi.org/10.1088/1475-7516/2010/02/032
https://arxiv.org/abs/0912.0585
https://inspirehep.net/search?p=find+EPRINT+arXiv:0912.0585
https://doi.org/10.1016/S0370-2693(00)00857-1
https://arxiv.org/abs/hep-ph/0005262
https://inspirehep.net/search?p=find+EPRINT+hep-ph/0005262
https://doi.org/10.1103/PhysRevD.63.035004
https://arxiv.org/abs/hep-ph/0008085
https://inspirehep.net/search?p=find+EPRINT+hep-ph/0008085
https://doi.org/10.1155/2015/686572
https://doi.org/10.1155/2015/686572
https://arxiv.org/abs/1503.08622
https://inspirehep.net/search?p=find+EPRINT+arXiv:1503.08622
https://doi.org/10.1103/PhysRevD.67.115012
https://doi.org/10.1103/PhysRevD.67.115012
https://arxiv.org/abs/hep-ph/0302186
https://inspirehep.net/search?p=find+EPRINT+hep-ph/0302186
https://doi.org/10.1103/PhysRevD.79.115013
https://arxiv.org/abs/0901.3371
https://inspirehep.net/search?p=find+EPRINT+arXiv:0901.3371
https://arxiv.org/abs/1211.0365
https://inspirehep.net/search?p=find+EPRINT+arXiv:1211.0365


J
H
E
P
0
2
(
2
0
1
9
)
0
6
6

[33] A. Arhrib, Y. Cheng and O.C.W. Kong, Comprehensive analysis on lepton flavor violating

Higgs boson to µ∓τ± decay in supersymmetry without R parity, Phys. Rev. D 87 (2013)

015025 [arXiv:1210.8241] [INSPIRE].

[34] A. Arhrib, Y. Cheng and O.C.W. Kong, Higgs to µ+ τ decay in supersymmetry without

R-parity, EPL 101 (2013) 31003 [arXiv:1208.4669] [INSPIRE].

[35] J. Cao, L. Wu and J.M. Yang, Lepton flavor-changing processes in R-parity violating

MSSM: Z → li l̄j and γγ → li l̄j under new bounds from li → ljγ, Nucl. Phys. B 829 (2010)

370 [arXiv:0908.4556] [INSPIRE].

[36] M. Gomez and D.F. Carvalho, Lepton flavor violation in SUSY with and without R parity,

in the proceedings of the Corfu Summer Institute on Elementary Particle Physics (Corfu

2001), August 31–September 20, Corfu, Greece (2001), hep-ph/0204133 [INSPIRE].
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