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Abstract

Proportional–Integral–Derivative (PID) controllers with integral action are
conventionally used as feedback controllers. They are used to obtain zero
steady-state error when the reference input or the disturbance are steps and
where zero-type systems (i.e. with no poles at the origin) are controlled. The
controller meets its objective when the controlled system is non linear, but usu-
ally introduces undesirable changes in the dynamics that must be compensated
by readjusting the proportional gain. In this paper, we compare PID with two
alternative techniques based on the use of a feed-forward system and a multiple
feedback system, respectively. A detailed comparison of the transient response
obtained with these methods is presented and validated with some simulation
examples.
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1 INTRODUCTION

When designing a linear controller, two main aspects of
the closed-loop system are taken into account: its dynam-
ics and its steady-state behavior. The focus of this paper is
on the second.

Many recent studies have demonstrated that linear con-
trol systems still have some margin for improvement. The
following examples are all worth mentioning on different
techniques for linear systems: learning [1], pole placement
[2], optimal control [3], anti-windup [4], dynamic analy-
sis [5,6], signal saturations [7,8], cascade control [9] and
state feedback control [10]. In fact, PID controllers for
non-linear systems can be found in the recent literature
[11]. In the present work, the steady-state error of feedback
linear systems is analyzed.

It is well known that adding an integral action to a P or
PD controller eliminates the steady-state error both when
the input is a step in the loop reference or in the distur-
bance [12–15]. However, although the method is a guar-
antee that the objective will be reached, it usually worsens
the transient response. The PI and PID controllers add a
pole-zero pair that increases the system order, complicat-
ing its dynamic analysis. They also introduce a dominant
real pole close to the origin which greatly smooths the tran-
sient response and forces the compensation of this effect
by empirically readjusting the proportional gain.

Additionally, many applications of feed-forward
compensators have been implemented, to achieve an
input-output closed-loop transfer function with a con-
crete transient and steady-state behavior as in [16–20].
The use of feed-forward control to compensate for
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measured disturbances was described in detail in [21]
and [22]. A mixed feed-forward compensation tech-
nique for trans-conductance amplifiers was presented
in [23]. Feed-forward compensation for the design of
high-frequency trans-conductance amplifiers was also
used in [24], in an attempt to reduce the settling-time.
Disturbance compensation methods were analyzed in
[25], focusing on time delays, in the case of both PID and
Model Predictive Control structures.

Besides, other authors have used feed-forward compen-
sation when the input is the reference. For instance, a
Preisach model was employed in [26] to describe piezo-
electric actuator hysteresis and an inverse model to build
a feed-forward controller, which proved the solution in
the case of PID, fuzzy control, and fuzzy-PID control. A
trial test using feed-forward control to compensate quad-
rant glitches occurring with bearings for rolling/sliding
was described in [27].

A tuning procedure for PID plus a feed-forward con-
troller was proposed in [28], assuming a first order plus a
dead time model of the process. Finally, a Smith predictor
in which dead-time models were used to feed-forward the
disturbance was discussed in [29].

However, most of these compensators use the inverse
transfer function of the system under control, something
that could work in theory, but that could generate severe
implementation problems. Hence, in this work we pro-
pose a feed-forward compensation block and focus on the
steady-state behavior, regardless of the above-mentioned
inverse transfer function, which is referred to in [30] as an
approximate inverse and that is likewise known as a pro-
portional anticipative control. We introduce a block in two
situations: (i) when the input is the set-point; and (ii) when
the input is a disturbance.

This paper will have the following structure. In Section
2, three methods of obtaining zero steady-state error will
be presented: adding an integral action (subsection 2.1),
adding a feed-forward compensator (subsection 2.2), and
adding a multiple feed-back compensator (subsection 2.3).
Then, in Section 3, a feed-forward method will be pre-
sented for use when the input is a disturbance instead the
reference. Subsequently, in Section 4, the previous meth-
ods are compared with different simulation experiments.
Finally, the conclusions will be drawn in Section 5.

2 METHODS TO OBTAIN ZERO
STEADY-STATE ERROR

Assuming a block diagram and using the Laplace trans-
form corresponding to a linear feedback system shown in
Figure 1, where G(s) is the system under control, R(s) is
the controller, and h is a constant gain sensor.

FIGURE 1 Basic feedback control loop

We will also assume that we have type-zero G(s) and
R(s), which means that they have no poles at the origin, so
all the following parameters are finite values:

KR = lim
s→0

R(s) (1)

KG = lim
s→0

G(s) (2)

KP = h lim
s→0

R(s)G(s) = hKRKG (3)

As we know, when the reference input is a unitary step,
this control schema has a non-zero steady-state error, ep.
In the following sections, this control schema will be used
as a departure point, for comparisons with other proposed
schemas with zero steady-state error.

2.1 Controller with integral action
It is well known that assuming zero-type G(s), zero
steady-state error can be obtained by adding an inte-
gral action (pole at the origin) to the controller R(s), for
instance:

R′(s) = R(s)
(

1 + 1
Tis

)
= R(s)1 + Tis

Tis
(4)

hence:
K′

R = lim
s→0

R′(s) = ∞ (5)

KG = lim
s→0

G(s) ≠ ∞ (6)

K′
P = h lim

s→0
R′(s)G(s) = ∞ (7)

so when the reference input is a unitary step, we obtain:

ep = 1
1 + K′

p
= 0 (8)

On the other hand, the following transfer functions have
changed:

Y (s)
Xr(s)

= R(s)G(s)(1 + Tis)
Tis + hR(s)G(s)(1 + Tis)

(9)

E(s)
Xr(s)

= Tis
Tis + hR(s)G(s)(1 + Tis)

(10)

U(s)
Xr(s)

= R(s)(1 + Tis)
Tis + hR(s)G(s)(1 + Tis)

(11)
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The main difference is that the feedback system is now of
a higher order, so the system dynamics will have changed.
This effect in the dynamic response will be analyzed with
an experimental example that will be presented later on.

2.2 Feed-forward control
The classical feed-forward schema is shown in Figure 2.

The goal is to obtain a constant input-output transfer
function such that Y (s) = Xr(s)

h
. In this case we have:

Y (s)
Xr(s)

=
(

1 + 1
hR(s)G(s)

)
R(s)G(s)

1 + hR(s)G(s)

= 1
h

(12)

In theory, this expression guarantees that ep = 0, but
forces the closed-loop dynamic to disappear and uses the
inverse of G(s), which has no physical interpretation. In
addition, we can propose an innovative method to obtain
zero steady-state error by using a feed-forward action, as
in Figure 3.

Here, as in the original loop, G(s) and R(s) are of the zero
type, and so all the following parameters are finite values:

KR = lim
s→0

R(s) (13)

KG = lim
s→0

G(s) (14)

KP = h lim
s→0

R(s)G(s) (15)

FIGURE 2 Classical feed-forward compensation

FIGURE 3 Proposed feed-forward compensation

In this case we obtain the following transfer function
relations:

Y (s)
Xr(s)

=
(

1 + 1
Kp

)
R(s)G(s)

1 + hR(s)G(s)
(16)

E(s)
Xr(s)

= 1 −
(

1 + 1
Kp

)
hR(s)G(s)

1 + hR(s)G(s)
(17)

U(s)
Xr(s)

=
(

1 + 1
Kp

)
R(s)

1 + hR(s)G(s)
(18)

We will now prove that, when the reference input is
a unitary step, this control schema will also have a zero
steady-state error:

ep = lim
s→0

sE(s)

= lim
s→0

s
[

1 −
(

1 + 1
Kp

)
hR(s)G(s)

1 + hR(s)G(s)

]
1
s

= 1 −
(

1 + 1
Kp

) Kp

1 + Kp
= 0

(19)

A core improvement in comparison with the previous
case (controller with integral action) is that there is now no
change to the transient response. Nevertheless, in the pres-
ence of modelling errors or non-linearities in the process
under control, we would have hlims→0R(s)G(s) ≠ KP, and
the steady-state error would be small although non-zero.
Despite which we can argue that it also happens in the
classical feed-forward compensation with G−1(s) and that
many modelling errors affect the dynamic behavior rather
than the static component alone.

2.3 Multiple feedback control
A second innovative method to obtain zero steady-state
error is further modification of the original simple control
loop by means of introducing a second feedback action, as
in Figure 4.

Then, as in the original loop, zero-type G(s) and R(s) are
used, and so all the previous parameters will again have
finite values:

FIGURE 4 Proposed multiple feedback compensation
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KR = lim
s→0

R(s) (20)

KG = lim
s→0

G(s) (21)

KP = h lim
s→0

R(s)G(s) (22)

Taking into account that the internal feedback transfer
function: is

G∗(s) = G(s)
1 − G(s)

KG

= KGG(s)
KG − G(s)

(23)

we have the following closed-loop transfer function rela-
tions:

Y (s)
Xr(s)

= KGR(s)G(s)
KG − G(s) + hR(s)G(s)KG

(24)

E(s)
Xr(s)

= KG − G(s)
KG − G(s) + hR(s)G(s)KG

(25)

U(s)
Xr(s)

= KGR(s)
KG − G(s) + hR(s)G(s)KG

(26)

It is also possible to prove that, when the reference
input is a unitary step, this control schema also has a zero
steady-state error:

ep = lim
s→0

sE(s)

= lim
s→0

s KG − G(s)
KG − G(s) + hR(s)G(s)KG

1
s

= KG − KG

KPKG
= 0

(27)

The main difference with the two previous systems
(integral action controller and feed-forward controller) is
that, although changes are now introduced in the system
dynamics, the feedback system order remains unchanged.
Nevertheless, in the presence of modelling errors or
non-linearities in the process under control, we would
have lims→0G(s) ≠ KG, so the steady-state error, although
of the non-zero type, would still be small.

2.4 Equivalence of methods
Multiple feedback compensation is equivalent to the
feed-forward compensation method when in the first one
we replace the controller with the following expression:

R′(s) = R(s)
(

1 + 1
KP

)
(28)

The demonstration is presented as follows. In the multi-
ple feedback compensation schema we have:

G3(s) =
KGG1(s)G2(s)

KG − G1(s)G2(s)
(29)

Y (s)
Xr(s)

= R′(s)G3(s)
1 + R′(s)G3(s)h

=
R′(s) KGG1(s)G2(s)

KG−G1(s)G2(s)

1 + R′(s) KGG1(s)G2(s)
KG−G1(s)G2(s)

)h

= R′(s)KGG1(s)G2(s)
KG + G1(s)G2(s) (R′(s)KGh − 1)

= R′(s)G1(s)G2(s)

1 + G1(s)G2(s)
(

R′(s)h − 1
KG

)
= R′(s)G1(s)G2(s)

1 + G1(s)G2(s)
(

R′(s)h − R(s)h
KP

)
= R′(s)G1(s)G2(s)

1 + G1(s)G2(s)h
(

R′(s) − R(s)
KP

)

(30)

Taking the R′(s) as proposed above, will yield:

Y (s)
Xr(s)

=
R(s)

(
1 + 1

KP

)
G1(s)G2(s)

1 + G1(s)G2(s)h
[

R(s)
(

1 + 1
KP

)
− R(s)

KP

]
=
(

1 + 1
KP

)
R(s)G1(s)G2(s)

1 + R(s)G1(s)G2(s)h
[(

1 + 1
KP

)
− 1

KP

]
=
(

1 + 1
KP

)
R(s)G1(s)G2(s)

1 + R(s)G1(s)G2(s)h

(31)

which is the same transfer function as in the feed-forward
compensation method. Nevertheless, in the comparative
examples from section 4, this modification will not be
applied to R(s), in order to obtain and to compare different
transient responses.

3 STEADY-STATE ERROR IN THE
PRESENCE OF DISTURBANCE

We will now analyze the case of a disturbance instead of a
reference input. The block diagram is shown in Figure 5.

As there are zero-type G1(s) and G2(s) here, and

KR = lim
s→0

R(s) (32)

KG1 = lim
s→0

G1(s) (33)

KG2 = lim
s→0

G2(s) (34)

KP = h lim
s→0

R(s)G1(s)G2(s) (35)
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FIGURE 5 Basic control loop with disturbances

we therefore obtain the following transfer function rela-
tions:

Y (s)
P(s)

= G2(s)
1 + hR(s)G1(s)G2(s)

(36)

E(s)
P(s)

= −hG2(s)
1 + hR(s)G1(s)G2(s)

(37)

U(s)
P(s)

= −hR(s)G2(s)
1 + hR(s)G1(s)G2(s)

(38)

So, when the disturbance is a unitary step, then P(s) = 1
s
,

so the error is therefore non-zero and in the steady-state:

es = lim
s→0

sE(s)

= lim
s→0

s −hG2(s)
1 + hR(s)G1(s)G2(s)

1
s

=
−hKG2

1 + KP
≠ 0

(39)

3.1 Controller with integral action
Again, it is well known that assuming type-zero G(s),
zero steady-state error can be obtained adding an integral
action (pole at the origin) to the controller R(s),

R′(s) = R(s)
(

1 + 1
Tis

)
= R(s)1 + Tis

Tis
(40)

So:
K′

R = lim
s→0

R′(s) = ∞ (41)

KG1 = lim
s→0

G1(s) ≠ ∞ (42)

KG2 = lim
s→0

G2(s) ≠ ∞ (43)

K′
P = h lim

s→0
R′(s)G1(s)G2(s) = ∞ (44)

and, then, when the disturbance is a unitary step, we have:

es =
−hKG2

1 + K′
P
= 0 (45)

The previous transfer functions will have changed as
follows:

Y (s)
P(s)

= G2(s)Tis
Tis + hR(s)G1(s)G2(s)(1 + Tis)

(46)

E(s)
P(s)

= −hG2(s)Tis
Tis + hR(s)G1(s)G2(s)(1 + Tis)

(47)

FIGURE 6 Classical feed-forward loop for disturbance
compensation

FIGURE 7 Proposed feed-forward loop for disturbances
compensation

U(s)
P(s)

= −hG2(s)(1 + Tis)
Tis + hR(s)G1(s)G2(s)(1 + Tis)

(48)

The feedback system is now of higher order and the sys-
tem dynamics are no longer the same. The effect on the
dynamic response will be analyzed at a later stage.

3.2 Feed-forward control
The classical feed-forward schema is shown in Figure 6.

In this case the goal is to obtain a null transfer function
between the reference and the output, such that Y(s) = 0:

Y (s)
P(s)

=
(

1 − G1(s)
G1(s)

)
G2(s)

1 + hR(s)G1(s)G2(s)
= 0

(49)

In theory, this function guarantees that es = 0 , but
it once again forces the closed-loop dynamics to disap-
pear and applies the inverse of G(s), causing the problem
that has previously been mentioned. Again, we can obtain
zero steady-state error by using a feed-forward action as in
Figure 7.

Both here and in the original loop, zero-type G1(s), G2(s)
and R(s) are found, so all the following parameters will
have finite values:

KR = lim
s→0

R(s) (50)

KG1 = lim
s→0

G1(s) (51)

KG2 = lim
s→0

G2(s) (52)
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KP = h lim
s→0

R(s)G1(s)G2(s) (53)

and, we obtain the following transfer function relations:

Y (s)
P(s)

=
(

1 −
hKG2

KP
R(s)G1(s)

)

· G2(s)
1 + hR(s)G1(s)G2(s)

(54)

E(s)
P(s)

=
(

1 −
hKG2

KP
R(s)G1(s)

)

· −hG2(s)
1 + hR(s)G1(s)G2(s)

(55)

U(s)
P(s)

=
(

1 +
hKG2

KP
R(s)G1(s)

)

· R(s)
1 + hR(s)G1(s)G2(s))

(56)

We will now prove that, when the disturbance is a
unitary step, this control schema will also have zero
steady-state error:

es = lim
s→0

sE(s)

= lim
s→0

s
[(

1 −
hKG2

KP
R(s)G1(s)

)

· −hG2(s)
1 + hR(s)G1(s)G2(s)

]
1
s

=
(

1 − KP

KP

) −hKG2

1 + KP
= 0

(57)

Of course, once again in the presence of modelling errors
and non-linearities in the control process, we would have
hlims→0R(s)G1(s)G2(s) ≠ KP, and the non-zero steady-state
error would be small.

4 COMPARISON OF METHODS

4.1 Process control example
The previous methods will be tested with chains of tanks.

Figure 8 shows a tank where A is the tank section, g is
gravity, the liquid height h(t) is an internal variable, and

FIGURE 8 Example of a tank

the inputs are the input flow qi(t) and the external flow
disturbance qe(t), and, finally, the output is the output flow
qo(t).

The differential equations of the tank are as follows:{
A dh

dt
= qi(t) + qe(t) − qo(t)

qo(t) = C
√

2gh(t)
(58)

Using Laplace transform, we have:

Qi(s) + Qe(s) = (1 + Cs)Qo(s) (59)

with which the open loop block diagram is obtained shown
in Figure 9, which corresponds to a first-order system.

In the following experiment, we present the case of two
serial tanks which corresponds to a second-order system:

G1(s)G2(s) =
1

(s + 1)(s + 2)
(60)

4.2 Experiments with two serial tanks
In this case, we will suppose a P controller with R(s) = 10
and constant sensor h = 1, as in Figure 10.

Xr(s) is the second tank output flow set-point, U(s) is
the first tank input flow, and P(s) is the second tank exter-
nal flow disturbance. We will consider that the controller
includes a valve with a constant transfer function.

4.2.1 Reference input
When the set-point is the input, we obtain the following
closed-loop transfer functions:

Y (s)
Xr(s)

= 10
s2 + 3s + 12

(61)

E(s)
Xr(s)

= (s + 1)(s + 2)
s2 + 3s + 12

(62)

FIGURE 9 Block diagram of the tank

FIGURE 10 Proportional controller (two tanks)
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U(s)
Xr(s)

= 10 (s + 1)(s + 2)
s2 + 3s + 12

(63)

Adding an integral action to the controller, for example,
R(s) = 10

(
1 + 1

2s

)
the transfer functions become:

Y (s)
Xr(s)

= 10(s + 0.5)
s(s + 1)(s + 2) + 10(s + 0.5)

(64)

E(s)
Xr(s)

= s(s + 1)(s + 2)
s(s + 1)(s + 2) + 10(s + 0.5)

(65)

U(s)
Xr(s)

= 10 (s + 0.5)(s + 1)(s + 2)
s(s + 1)(s + 2) + 10(s + 0.5)

(66)

Now, using the proposed feed-forward compensation
method, and keeping R(s) = 10, we can obtain the com-
pensation block 1

KP
= 0.2 and the following transfer

functions:
Y (s)
Xr(s)

= 12
s2 + 3s + 12

(67)

E(s)
Xr(s)

= 1.2 s(s + 1)
s2 + 3s + 12

(68)

U(s)
Xr(s)

= 12 (s + 1)(s + 2)
s2 + 3s + 12

(69)

And, finally, using the proposed multiple feedback com-
pensation method, and keeping R(s) = 10, we have the
compensation block 1

KGh
= 0.5 and the transfer functions:

Y (s)
Xr(s)

= 10
s2 + 3s + 10

(70)

E(s)
Xr(s)

= s(s + 3)
s2 + 3s + 10

(71)

U(s)
Xr(s)

= 10 (s + 1)(s + 2)
s2 + 3s + 10

(72)

The unitary step evolution of both y(t) and u(t) are shown
for the four cases in Figures 11A and 11B, respectively.

The analysis of this figure can lead to the following con-
clusions (Integral Absolute Error is also provided for each
case):

1. The original P controller (in black) has steady-state
error, while the other three improvements eliminate
it (final value equal to the unitary step input).

2. The controller with integral action (in red) is a bit
smoother than the others, slightly changing the tran-
sient response in comparison with the original one.
IAE = 0.62.

3. The feed-forward controller (in blue) simply mul-
tiplies the output by a scale factor to guarantee the
appropriate final value. This operation produces a
higher control action value than in the other cases (a
20 percent more). IAE = 0.53.

FIGURE 11 System output and control action evolution for the
four controllers when the input is a step in the reference

4. The multiple feedback controller (in green) tran-
sient response is a bit smoother than the others,
changing the closed-loop system dynamics as in the
case of the integral action controller. IAE = 0.55.

In all cases, the three responses with zero steady-state
error are very similar.

4.2.2 Disturbance input
When the disturbance is the input, we obtain the following
closed-loop transfer functions:

Y (s)
P(s)

= s + 1
s2 + 3s + 12

(73)

E(s)
P(s)

= −(s + 1)
s2 + 3s + 12

(74)

U(s)
P(s)

= −10(s + 1)
s2 + 3s + 12

(75)

When adding an integral action to the controller, for
example, the same as in the previous case, R(s) =
10

(
1 + 1

2s

)
the transfer functions become:

Y (s)
P(s)

= s(s + 1)
s(s + 1)(s + 2) + 10(s + 0.5)

(76)

E(s)
P(s)

= −s(s + 1)
s(s + 1)(s + 2) + 10(s + 0.5)

(77)

U(s)
P(s)

= −10(s + 0.5)(s + 1)
s(s + 1)(s + 2) + 10(s + 0.5)

(78)
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And in the case of using the proposed feed-forward
compensation method, keeping R(s) = 10, we have the
compensation block

hKG2
KP

= 0.1 and the transfer functions:

Y (s)
P(s)

= s
s2 + 3s + 12

(79)

E(s)
P(s)

= −s
s2 + 3s + 12

(80)

U(s)
P(s)

= −10s
s2 + 3s + 12

(81)

Evolution of y(t) and u(t) when the disturbance is a
unitary step are shown in Figure 12A and 12B, respectively.

The analysis of this figure can lead to the following
conclusions:

FIGURE 12 System output and control action evolution for the
three controllers when the input is a step in the disturbance

1. The original P controller (in black) has steady-state
error, while the error is eliminated by the other two
improvements (final value equal to the zero reference
input).

2. The controller with integral action (in red) is
more oscillatory than the others, changing the tran-
sient response in comparison with the original one,
and with a much more aggressive control action
due to the zero that appears in the transfer function
numerator. IAE = 0.23.

3. The feed-forward controller (in blue) also mod-
ifies the transient response, with a control action
smoother than in the other cases. IAE = 0.13.

4.3 Comparison
A comparative table of the methods when the input con-
sists of both the reference and the disturbance is shown in
table 1.

All the alternative methods to simple feedback with P or
PD like controllers eliminate steady-state error, provided
that no modelling errors are present.

Including an integral action increases system order and
therefore significantly changes the system dynamics, so
the controller gain (PI or PID) must then be tuned; further-
more, when the input is a disturbance the control action is
greatly increased. On the other hand, it can still function
in the presence of modelling errors and non-linearities.

Feed-forward controller increases control action when
the input is the set-point, but neither modifies the system
dynamics nor increases the system order. Nevertheless, it
cannot achieve zero steady-state error when high mod-
elling errors are present.

Multiple feedback controller changes the system dynam-
ics and will not eliminate the steady-state error when high
modelling errors are present, but will not increase the
control action value.

TABLE 1 Comparison of methods

Steady Increases Increases Changes Works with Works
state system control transient modelling with non

Method error order action response errors linearities

Simple
feedback Yes — — — — —
Integral
action No Yes Yes Yes Yes Yes
Feed-
forward No No Yes No No No
Multiple
feedback No No No Yes No No
(set-point)
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5 CONCLUSION

In this study, feed-forward and multiple feedback com-
pensation methods have been proven to have reasonable
transient responses in comparison with the use of inte-
gral action controllers, both when the input is the set-point
and a disturbance. We have also proven that both meth-
ods are equivalent under some conditions when the input
is the set-point. In conclusion, when there are very small
or no modelling errors at all, these methods can be consid-
ered alternatives to the use of integral action in P and PD
controllers.
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