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Abstract: Five-membered rings are of particular interest, due to their presence in some of 

the most common molecules in chemistry and biology. Despite their apparent simplicity, 

the structural resolution of these rings is complex, due to their inherent conformational 

flexibility. Here, we describe an application of a recently reported simple and efficient 

NMR protocol based on the measurement of spin-spin coupling constants to achieve the 

challenging relative configurations of five new halogenated C15 tetrahydrofuranyl-acetogenins, 

marilzafurollenes A–D (1–4) and 12-acetoxy-marilzafurenyne (5), isolated from the red alga, 

Laurencia marilzae. Although DFT chemical shift calculations were used to connect 

remote stereocenters, the NMR-based approach seems advantageous over computational 

techniques in this context, as the presence of halogens may interfere with reliable calculations. 
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1. Introduction 

Marine organisms synthesize a multitude of molecules with fascinating chemical structures and 

potent biological properties [1]. However, to make full use of marine natural products in drug 

discovery, accurate structure determination is required [2,3]. For this reason, the development of 

effective methods to solve stereochemical problems has recently taken the limelight. In this context, 

new techniques based on NMR spectroscopy and/or modern computational calculations, especially 

DFT, is paying off [4–6]. Nevertheless, the elucidation of some molecular architectures, like flexible 

five-membered rings, are still problematic. Recently, we presented a simple and efficient spin-spin 

coupling constant approach designed for the stereochemical analysis of five-membered rings [7].  

As a result, this usually complex problem can be easily solved in most cases by the measurement of a 

few coupling constants without the need for any conformational consideration. 

Figure 1. The structures of the new metabolites. 

Marilzafurollene A (1) 
Marilzafurollene B (2); R = H 

Marilzafurollene C (3); R = CH3 

 

Marilzafurollene D (4) 12-Acetoxy-marilzafurenyne (5) 

In the context of our ongoing studies of natural products from marine organisms [8–10], we now 

report the structures of five new halogenated C15 tetrahydrofuranyl-acetogenins (Figure 1). 

Marilzafurollenes A–D (1–4) along with 12-acetoxy-marilzafurenyne (5) were isolated from the red 

alga, Laurencia marilzae Gil-Rodríguez, Sentíes et M.T. Funjii [11], and their structures were 

elucidated by spectroscopic studies. Naturally occurring C15 tetrahydrofuranyl derivatives belong to a 

wider family of halogenated C15-acetogenins isolated from red algae of the species Laurencia [12], the 

majority of the structures of which have only partially had their relative configurations assigned or still 

need to be investigated to confirm or correct their reported structures [1,13,14]. The challenging 

relative configurations of the five-membered rings of compounds 1–5 were established by our simple 
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and effective J-based methodology [7]. In addition, a detailed study of NMR chemical shifts by DFT 

calculation analysis was also undertaken with the aim of connecting remote chiralities within these 

tetrahydrofuranyl-acetogenins [15]. 

2. Results and Discussion 

Fresh specimens of the alga, Laurencia marilzae, were extracted at room temperature using 

CH2Cl2/MeOH (1:1, v/v). The resulting extract was studied using a multi-step chromatographic 

fractionation sequence, including Sephadex LH-20, silica gel and normal-phase HPLC to yield 

compounds 1–5. 

Marilzafurollene A (1) was isolated as an optically active white amorphous solid. Its molecular 

formula was deduced to be C15H19Br2ClO3 by ESI-HRMS and isotopic pattern analysis of the  

four pseudomolecular [M + Na]+ ions at m/z: 462.9298, 464.9296, 466.9330 and 468.9385  

(ratio: 38:100:97:42, calcd.: 462.9287, 464.9267, 466.9246 and 468.9217). From its 13C NMR data 

(Table 1), along with the analysis of the HSQC experiment, the presence of a bromoallene moiety was 

evident (δC 200.6 (s), 104.1 (d) and 74.9 (d)), as were two other olefinic carbon signals (δC 143.2 (d) 

and 133.4 (d)), five heteroatom-bearing methines (δC 80.0, 79.1, 66.4, 63.2 and 55.6), three methylenes 

(δC 40.9, 38.5 and 38.3), one methyl (δC 23.7), and one carbonyl carbon (δC 198.5). The 1H-1H COSY 

spectrum, as well as the HSQC correlations, revealed the presence of a single-spin system comprising 

C-3→C-13, including a double bond between C-12 and C-13, and heteroatoms located on carbons  

C-4, C-6, C-7, C-9 and C-10 (Tables 1 and 2). 

Table 1. 13C NMR (150 MHz) data for compounds 1–5 in CDCl3 (δ (ppm)). 

C 1 2 3 4 5 

1 74.9, CH 74.8, CH 74.8, CH 74.8, CH 77.0, CH 
2 200.6, C 200.6, C 200.8, C 200.6, C 82.0, C 
3 104.1, CH 104.1, CH 104.2, CH 104.1, CH 111.9, CH 
4 66.4, CH 66.5, CH 66.6, CH 66.6, CH 140.7, CH 
5 38.3, CH2 38.1, CH2 38.2, CH2 38.2, CH2 35.0, CH2 
6 80.0, CH 79.7, CH 79.8, CH 79.8, CH 82.1, CH 
7 63.2, CH 63.3, CH 63.4, CH 63.4, CH 62.3, CH 
8 40.9, CH2 40.7, CH2 40.9, CH2 41.1, CH2 41.0, CH2 
9 79.1, CH 79.1, CH 79.1, CH 80.0, CH 79.6, CH 
10 55.6, CH 57.3, CH 57.9, CH 56.2, CH 54.8, CH 
11 38.5, CH2 38.5, CH2 38.4, CH2 43.1, CH2 40.8, CH2 
12 143.2, CH 126.2, CH 128.5, CH 70.4, CH 72.8, CH 
13 133.4, CH 137.6, CH 135.8, CH 133.3, CH 128.7, CH 
14 198.5, C 68.5, CH 77.7, CH 127.5, CH 130.0, CH 
15 27.3, CH3 23.4, CH3 21.3, CH3 17.7, CH3 17.8, CH3 

OCH3   56.0, CH3   
CO(Ac)     170.2, C 
CH3(Ac)     21.3, CH3 
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Table 2. 1H NMR (600 MHz) data for marilzafurollenes A–C (1–3) in CDCl3 (δ (ppm)). 

C Marilzafurollene A (1) Marilzafurollene B (2) Marilzafurollene C (3) 

1 6.13, dd (2.2, 5.6) 6.13, dd (2.2, 5.7) 6.13, ddd (1.5, 2.2, 5.6) 
3 5.52, dd (5.6, 5.6) 5.52, dd (5.5, 5.7) 5.53, dd (5.6, 5.6) 
4 4.56, ddd (3.6, 5.6, 8.2) 4.57, ddd (3.6, 5.5, 7.7) 4.57, ddd (3.4, 5.6, 8.0) 

5 
2.13, ddd (3.6, 8.8, 14.4)  
1.88, ddd (3.6, 8.2, 14.4) 

2.15, ddd (3.6, 9.1, 14.5)  
1.86, ddd (3.5, 7.7, 14.5) 

2.14, ddd (3.4, 8.7, 14.0)  
1.87, ddd (3.1, 8.0, 14.0) 

6 4.48, ddd (3.0, 3.6, 8.8) 4.46, ddd (3.3, 3.5, 9.1) 4.46, ddd (2.5, 3.1, 8.7) 
7 4.55, ddd (0.8, 3.0, 4.8) 4.53, ddd (0.8, 3.3, 4.8) 4.54, ddd (2.5, 3.4, 4.5) 

8 
α 2.55, ddd (4.8, 9.6, 13.9)  
β 2.42, ddd (0.8, 6.2, 13.9) 

α 2.52, ddd (4.8, 9.6, 13.9) 
β 2.39, ddd (0.8, 6.2, 13.9) 

α 2.52, ddd (4.5, 8.9, 14.1)  
β 2.39, ddd (3.4, 6.3, 14.1) 

9 4.46, ddd (3.0, 6.2, 9.6) 4.47, ddd (3.1, 6.2, 9.6) 4.47, ddd (3.4, 6.3, 8.3) 
10 4.10, ddd (3.0, 5.2, 8.5) 4.06, ddd (3.1, 5.7, 7.9) 4.03, ddd (3.4, 4.6, 8.6) 
11 2.90, m (2H) 2.70, m (2H) 2.71, m (2H) 
12 6.83, ddd (7.0, 7.0, 15.9) 5.72, ddd (6.4, 7.0, 15.6) 5.67, ddd (7.0, 7.2, 15.5) 
13 6.18, br d (15.9) 5.65, br dd (6.1, 15.6) 5.48, dddd (1.5, 1.5, 6.8, 15.5) 
14  4.30, dd (6.1, 6.3) 3.72, dd (6.6, 6.8) 
15 2.28, s (3H) 1.28, d (6.3) (3H) 1.24, d (6.5) (3H) 

OCH3   3.28, s (3H) 

HMBC cross-peaks from H-6 (δH 4.48) to C-9 (δC 79.1) established an ether linkage between these 

positions, indicating the presence of a tetrahydrofuran ring in the molecule and, therefore, placed the 

remaining hydroxy group at C-4. Moreover, the HMBC correlations from the vinyl proton H-13  

(δH 6.18) and the methyl singlet (δH 2.28) to the ketone carbon C-14 (δC 198.5) completed the planar 

structure of 1. 

The stereochemical relationships between the different chiral centers of 1 were mostly based on the 

analysis of homo- and hetero-nuclear J couplings. Thus, the nJC,H values were accurately measured 

using the HSQC-HECADE (Heteronuclear couplings from ASSCI-Domain Experiments with 

E.COSY-type cross peaks) experiment. The value of the coupling constant between H-12 and H-13 

(3JH-12,H-13 = 15.9 Hz) indicated the E geometry for the double bond. The relative configuration of the 

oxolane ring was solved by using the NMR-based approach developed by our research group. 

Therefore, the relative cis orientation between H-6 and H-7 was deduced from the 2JC,H value of 5.2 Hz 

for H-6/C-7, while a 2JC,H value of −5.7 Hz for one of the diastereotopic H-8 methylene protons  

(δH 2.42) and C-7 suggested a trans orientation between H-7 and H-8a. The relative configuration of 

the C-9 stereocenter was determined by evaluating the relationship between methine H-10 and these 

stereospecifically defined H8-methylene protons. In this case, a small value for 3JC-10,H-8a (0.5 Hz) and 

a large coupling constant for 3JC-10,H-8b (6.0 Hz) were consistent with a cis configuration for H-8a and 

H-9 (Figure 2). 

In order to complete the structural determination of 1, the relative configurations for the  

1,3-methine system C-4/C-6, as well as for the C-9/C-10 segment were determined via J-based 

configuration analysis (Figure 3) [16]. Accordingly, based on the observed homo- and hetero-nuclear  

J couplings, H-4 was found to be erythro to H-5b (δH 2.13) and H-6 threo to H-5a (δH 1.88). Similarly, 

our data were consistent with a threo relationship between H-9 and H-10. Therefore, the relative 

configuration within the C-3→C-13 moiety of 1 was determined to be 4S*,6R*,7R*,9S*,10S*. Finally, 
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the intensive positive rotation of 1, as well as the existence of a positive Cotton effect, enabled the 

absolute configuration of the bromoallene moiety to be assigned as S [17–20]. 

Figure 2. Representative section of the HSQC-HECADE spectrum (600 MHz, CDCl3,  

see Supplementary Figure S7), calculated JC,H values and configuration analysis for the 

oxolane ring of marilzafurollene A (1). 

 

Figure 3. J-based configuration analysis for the (A) C-9/C-10 and (B) C-4/C-6 fragments 

of marilzafurollene A (1). 

 

The last step in the elucidation of the stereochemical relationships of 1 was the connection between 

the configurations of the bromoallene and the C-4/C-10 stereocluster. We approached this task using 

quantum mechanical calculations of theoretical NMR chemical shifts that have also been shown to be 
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effective in complex marine natural products [21]. Thus, taking into account that the allene 

configuration can be considered as absolute, we built models of the two possible diastereoisomers  

(Sa,4S,6R,7R,9S,10S (diastereoisomer 1a) and Sa,4R,6S,7S,9R,10R (diastereoisomer 1b)) and 

performed conformational searches on each one using 5000 steps of a hybrid MCMM (Monte Carlo 

Multiple Minimum), Low-Mode sampling and the MMFF94 (Merck Molecular Force Field) force 

field. Redundant conformers were eliminated using an RMSD cutoff of 1.0 Å. All the resulting 

structures within an energy window of 10 kJ/mol of the global minimum found (69 conformers for 1a 

and 54 for 1b) were further submitted to density functional theory (DFT) calculations [22]. Due to the 

existence of bromine in this molecule, we used the B3LYP (Becke three-parameter Lee-Yang-Parr 

exchange functional) functional with the LACVP ** basis set to calculate the isotropic chemical 

shieldings and relative energy values for each conformer [23]. Still, as expected, calculations for those 

carbon atoms attached to bromine showed higher than average errors; thus, their values were not 

included in the subsequent analysis. Fortunately, this heavy atom effect is very local and does not 

significantly affect nearby atoms [5]. Although the experimental NMR data were obtained using 

chloroform as the solvent, all calculations were performed in vacuo, as this has been shown to be a 

valid approach [21,22,24]. Finally, we estimated average chemical shift values according to the 

relative Boltzmann population of each conformer (NMR calculations were performed for all 

conformers within the selected 10-kJ/mol threshold). The result was that the correlations obtained after 

the linear regression of those calculated against the experimental values were almost identical for the 
13C chemical shifts (R2 0.9957 vs. 0.9956), but slightly better for the Sa,4S,6R,7R,9S,10S 

diastereoisomer using the 1H chemical shifts (R2 0.9820 vs. 0.9706) (Figure 4, Supplementary 

Figure S19 and Table S2). Moreover, we also used the computed chemical shift values to calculate the  

so-called DP4 parameter, which found the Sa,4S,6R,7R,9S,10S isomer as the most likely solution, with 

a probability value of 99.7% [24]. Despite this kind of solution, based on theoretical calculations, 

having a degree of uncertainty, the fact that it is in accordance with the biogenetic hypothesis proposed 

below further supports it.  

Figure 4. 1H correlations between calculated isotropic shieldings and experimentally 

observed chemical shifts for the two studied diastereoisomers of marilzafurollene A (1). 

Fitting parameters are indicated. 
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The ESI-HRMS spectrum of marilzafurollene B (2) established a molecular formula of 

C15H21Br2ClO3 (m/z calcd. for [M + Na]+ 464.9444, 466.9423, 468.9403, 470.9373; found 464.9453, 

466.9432, 468.9418, 470.9395). A detailed comparison of the 1H and 13C NMR data of compounds 1 

and 2 (Tables 1 and 2) revealed a great similarity in their structures and suggested that compound 2 

contained an additional hydroxy group (δC 68.5, δH 4.30, dd, J = 6.1, 6.3 Hz) instead of the carbonyl 

group. This was also supported by the HMBC and 1H-1H COSY analyses. 

Marilzafurollene C (3), albeit unstable (see the Experimental Section), was shown to have the 

formula C16H23Br2ClO3; thus, the 1H NMR spectrum of 3 was nearly identical to that of 2, except for 

the presence of the O-methyl group at δH 3.28 in 3 and the relative upfield shift of H-14  

(δH 4.30 in 2 vs. δH 3.72 in 3) (Table 2). These changes indicate that a methoxy group replaces the 

hydroxy group at C-14 in 3. This was further confirmed by observation of the 13C NMR spectrum  

(an additional methyl peak appeared at δC 56.0 ppm, and C-14 was significantly deshielded in 3 

compared to 2). In order to solve the relative configuration of the remote stereocenter at C-14, we 

calculated 1H and 13C chemical shifts of the two possible diastereoisomers at the DFT level as a 

diagnostic tool. According to our results, the 4S*,6R*,7R*,9S*,10S*,14S* diastereoisomer showed a 

slightly better match with the experimental data (R2 0.971 vs. 0.968 using δ 1H) and a DP4 probability 

of 98.7% (Supplementary Table S3 and Figure S20). 

Marilzafurollene D (4) was analyzed for the same molecular formula as 2, C15H21Br2ClO3, and 

showed similar spectral features to those of 2 (Tables 1 and 3). A comparison of the spectroscopic data 

clearly showed that compounds 2 and 4 were structural isomers. Thus, the analysis of the  
1H-1H COSY correlations indicated the position of the E double bond to be between C-13–C-14, as 

well as the hydroxy group at C-12 in 4. Furthermore, chemical shift differences between 2 and 4 were 

observed for H-9 and particularly for H-10, while values observed for H-4, H2-5, H-6, H-7 and H2-8 

remained virtually the same. Therefore, we thought that these variations could be explained either by 

the proximity of the hydroxy group at C-12 or by a change in the relative configurations of the carbon 

atoms. Again, an NMR configurational analysis performed using the above-described methods 

provided conclusive proof of the relative configurations at all the stereogenic centers of the molecule. 

This time, because of the overlapping 1H NMR signals observed in CDCl3, a different solvent (C6D6) 

was also used to record the experimental data (see Supplementary Information). The results of the 

NMR measurements are shown in Figure 5 and the conclusion was that the relative configurations of 

C-4, C-6, C-7, C-9 and C-10 were identical to those of compounds 1–3, whereas the relative 

configuration of the new chiral center at C-12 was assigned as 12S* (Figure 5C). Again, the absolute 

configuration of the bromoallene moiety was also established as S based on the observation of a 

positive Cotton effect [17]. 
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Table 3. 1H NMR (600 MHz) data for compounds 4 and 5 in CDCl3 (δ (ppm)). 

C Marilzafurollene D (4) 12-Acetoxy-marilzafurenyne (5) 

1 6.12, dd (2.1, 5.6) 2.84, br d (1.7) 
3 5.52, dd (5.6, 5.6) 5.64, dd (1.7, 16.1) 
4 4.57, ddd (3.7, 5.6, 7.8) 6.20, ddd (7.4, 7.4, 16.1) 

5 
2.15, ddd (3.7, 8.9, 14.3)  
1.87, ddd (3.6, 7.8, 14.3) 

2.60, ddd (6.8, 7.4, 14.7)  
2.50, ddd (6.8, 7.4, 14.7) 

6 4.47, ddd (3.4, 3.6, 8.9) 4.19, ddd (2.8, 6.8, 6.8) 
7 4.54, dd (3.4, 4.5) 4.49, dd (2.8, 4.8) 

8 
α 2.56, ddd (4.5, 9.5, 13.9)  

β 2.40, dd (6.2, 13.9) 
α 2.56, ddd (4.8, 9.8, 13.9)  

β 2.38, dd (6.1, 13.9) 
9 4.42, ddd (2.8, 6.2, 9.5) 4.39 ddd (2.5, 6.1, 9.8) 
10 4.35, ddd (2.8, 2.8, 11.3) 4.05 ddd (2.5, 3.1, 10.7) 

11 
2.09, ddd (3.4, 11.3, 15.0)  
1.91, ddd (2.8, 8.9, 15.0) 

2.22, ddd (3.3, 10.7, 14.3)  
2.17, ddd (3.1, 9.8, 14.3) 

12 4.41, ddd (3.4, 6.7, 8.9) 5.48, ddd (3.3, 7.0, 9.8) 
13 5.54, br dd (6.7, 15.2) 5.43, br dd (7.0, 15.1) 
14 5.74, dq (6.4, 15.2) 5.80, dq (6.5, 15.1) 
15 1.70, d (6.4) (3H) 1.69, br d (6.5) (3H) 

CH3(Ac)  2.05, s (3H) 

Figure 5. (A) Configuration analysis for the oxolane ring; (B) C-9/C-10; (C) C-10/C-12; 

and (D) C-4/C-6 fragments of marilzafurollene D (4). 
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12-Acetoxy-marilzafurenyne (5) has the molecular formula C17H22BrClO3, as deduced from mass 

spectral data (ESI-HRMS ions at m/z 411.0332, 413.0320, 415.0298; ([M + Na]+). The IR spectrum 

revealed absorption bands at 3293, 2326 (terminal alkyne moiety), 1733 (ester carbonyl group),  

1645 (double bond) and 1050 (ether functionality) cm−1. The 13C NMR data of compound 5 (Table 1) 

exhibited signals for 17 carbons corresponding to two quaternary carbons, ten methines, three 

methylenes and two methyl groups. Among these carbons, one was assigned as a carbonyl, two were 

halogenated, three were bonded to oxygen and four were olefinic. The presence of a terminal enyne 

moiety was evident from the tertiary carbon resonances at δC 77.0, 111.9 and 140.7 and the quaternary 

carbon at δC 82.0. Furthermore, the 1H NMR spectrum (Table 2) showed signals at δH 2.84 (1H, br d,  

J = 1.7 Hz), 5.64 (1H, dd, J = 1.7, 16.1 Hz) and 6.20 (1H, ddd, J = 7.4, 7.4, 16.1 Hz), supporting the 

presence of the E-enyne unit. A detailed study of the 1D and 2D NMR data of compound 5 compared 

with those of compound 4 concluded that both compounds possessed a similar structure, but with the 

significant difference of the conjugated terminal enyne functionality instead of a bromoallene unit in 5. 

In addition, the 1H NMR spectrum of 5 included a signal for an additional acetate methyl group  

(δH 2.05 (s)) and a new deshielded oxygenated methine (δH 5.48 (ddd, J = 3.3, 7.0, 9.8 Hz)) that bears 

it. The acetate functionality present in the molecule was placed at C-12 on the basis of HMBC NMR 

cross-peaks observed between the methine and methylene protons, H-12 and H2-11, and the 

corresponding carbonyl ester carbon (Table 1). 

The relative configuration of the C-6→C-10 moiety was assigned as identical to that of  

Molecules 1–4 on the basis of the observed similarity in their 3JHH and chemical shift values (Table 3). 

One more time, the relative configuration at C-12 was studied using the 1H and 13C chemical shift DFT 

calculations. Thus, the calculated values for the 4S*,6R*,7R*,9S*,10S*,12S* diastereoisomer showed a 

better match with the experimental data (R2 0.986 vs. 0.965 for δ 1H) and a DP4 probability of 100% 

(Supplementary Table S4 and Figure S21). 

The biogenesis of the large family of halogenated cyclic acetogenins, all functionalized at  

C-6, C-7, C-9, C-10, C-12 and C-13, has been suggested by Murai as ultimately arising from  

(Z,Z,Z)-hexadeca-4,7,10,13-tetraenoic acid via (Z)-6,7-epoxide 6 (or a closely related precursor) and 

electrophilic bromination events [25]. Based on this work, Braddock recently proposed a hypothesis 

concerning the biosynthesis of an interesting subset of these halogenated C15 acetogenins, the 

obtusallenes [26], whose initial steps could explain the biogenetic origin of compounds 1–5. Thus, it 

seems reasonable to suggest that these compounds derive from epoxide 6 by nucleophilic ring-opening 

with chloride to provide a threo-hydroxychloride derivative (Scheme 1). Subsequent bromoetherification 

gives a trans-tetrahydrofuran intermediate that evolves to generate bicyclic oxonium ions, which, in 

turn, can be fragmented to give compounds 4–5 and the allylic precursors of compounds 1–3. Lastly, 

the terminal bromoallene moiety in compounds 1–4 may be produced biosynthetically by bromonium 

ion formation on the terminal enyne, followed by nucleophilic attack of water. Finally, it has to be 

noted that the configurations proposed by us for these molecules (1–5) are consistent with this 

biogenetic proposal. 
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Scheme 1. Suggested biogenesis of marilzafurollenes A–D (1–4) and  

12-acetoxy-marilzafurenyne (5). 

 

3. Experimental Section 

3.1. General Experimental Procedures 

Optical rotations were measured at room temperature in CHCl3 using a sodium lamp. IR  

spectra were recorded using methanolic solutions over a NaCl disk. NMR spectra were recorded on a  

600 MHz equipped with a 5-mm TCI (Triple Resonance CryoProbe) inverse detection cryo-probe. 1H 

and 13C NMR chemical shifts were referenced either to the CDCl3 or C6D6 solvent peaks at 300 K 

(CDCl3: δH 7.26, δC 77.0; C6D6: δH 7.16, δC 128.4). COSY, HSQC, HMBC and ROESY experiments 

were performed using standard pulse sequences. 3JH,H values were measured from 1D 1H NMR. The 

HSQC-HECADE pulse sequence was used to measure long-range heteronuclear coupling constants. 

All experiments were performed in the phase-sensitive mode (States-TPPI (Time-Proportional  

Phase-Incrementation frequency discrimination) or echo-antiecho for quadrature detection in F1) and 

used gradient coherence selection. The HSQC-HECADE experiment was recorded using DIPSI during 

the 40 ms of the isotropic mixing period using a bandwidth of 10 kHz, and a J-scale factor of 1 was 

used. Prior to Fourier transformation, zero filling was performed to expand the data to at least double 
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the number of acquired data points. HPLC separations were carried out with a preparative silica 

column (10 μ, 19 × 150 mm) and a photodiode array detector. TLC was visualized by spraying with 

phosphomolybdic acid reagent (10% in EtOH) and heating. 

3.2. Computational Methods 

Conformational searches were performed using the Macromodel software (version 8.5, Schrödinger 

Inc., San Diego, CA, USA) and the MMFF94 force field. Solvation effects were simulated using the 

generalized Born/surface area (GBSA) solvation model with chloroform. Extended non-bonded cutoff 

distances (a van der Waals cutoff of 8.0 Å and an electrostatic cutoff of 20.0 Å) were used. Local 

minima within 10 kJ of the global minimum were saved. Analysis of the results was undertaken using 

Maestro software. 

Quantum mechanical calculations were carried out with the Jaguar package (Jaguar; Schrödinger 

LLC, New York, NY, USA). Single-point energy calculations were performed at the DFT theoretical 

level in the gas phase. The B3LYP hybrid functional with the LACVP ** basis set was used. Chemical 

shifts were calculated using the gauge-including atomic orbital (GIAO) method. Chemical shifts were 

calculated from their shielding constants that were first averaged according to their relative Boltzmann 

populations using a Schrödinger Inc. python script. Proton chemical shifts for each methyl group were 

averaged due to their conformational freedom. 

3.3. Biological Material 

Specimens of Laurencia marilzae Gil-Rodríguez, Sentíes et M.T. Funjii [11], were collected by 

hand in the intertidal zone at Paraíso Floral (Tenerife, Canary Islands, Spain). A voucher specimen  

was deposited at the Department of Biología Vegetal, Botánica, University of La Laguna, Tenerife  

(TFC Phyc 9860 (Herbarium code of University of La Laguna)). 

3.4. Extraction and Isolation 

Fresh alga (1.3 kg) was extracted with CH2Cl2:MeOH (1:1, v/v) at room temperature  

and the solvent removed in vacuo to give a dark-green viscous oil (42.9 g). The extract was  

subjected to Sephadex LH-20 (n-Hex:CH2Cl2:MeOH (2:1:1)) column chromatography. Selected 

fractions exhibiting similar TLC profiles were rechromatographed on a medium-pressure normal-phase 

chromatography using a Lobar LiChroprep Si 60 column with n-hexane:EtOAc (4:1). Final 

purifications were achieved on a μ-Porasil HPLC column, 10 μ, 19 × 150 mm, using  

n-hexane:EtOAc (9:1 and 7:3), yielding compounds 1 (1.8 mg), 2 (2.2 mg), 3 (1.2 mg), 4 (0.8 mg) and 

5 (1.0 mg). 

Marilzafurollene A (1): white, amorphous substance; [α]D
25 +32 (c 0.06, CHCl3); UV (MeOH)  

λmax (logε) 205 (3.58) nm; CD (CH3CN): λmax (Δε) 217 (+0.46) nm; IR (CHCl3) νmax 3439, 3060, 2928, 

2859, 1962, 1729, 1674, 1663, 1447, 1368, 1263, 1072 cm−1; 1H and 13C NMR data (CDCl3),  

see Tables 1 and 2; ESI-HRMS m/z 462.9298, 464.9296, 466.9330, 468.9385 [M + Na]+ 

(38:100:97:42) (calcd. for C15H19
79Br2

35ClO3Na, 462.9287; C15H19
79Br81Br35ClO3Na, 464.9267; 

C15H19
81Br2

35ClO3Na, 466.9246; C15H19
81Br2

37ClO3Na, 468.9217). 
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Marilzafurollene B (2): white, amorphous substance; [α]D
25 +60 (c 0.10, CHCl3); UV (MeOH)  

λmax (logε) 203 (3.49) nm; CD (CH3CN): λmax (Δε) 221 (+0.67) nm; IR (CHCl3) νmax 3413, 2965, 2930, 

1962, 1724, 1634, 1444, 1376, 1266, 1194, 1065 cm−1; 1H and 13C NMR data (CDCl3), see  

Tables 1 and 2; ESI-HRMS m/z 464.9453, 466.9432, 468.9418, 470.9395 [M + Na]+ (46:100:71:15) 

(calcd. for C15H21
79Br2

35ClO3Na, 464.9444; C15H21
79Br81Br35ClO3Na, 466.9423; C15H21

81Br2
35ClO3Na, 

468.9403; C15H21
81Br2

37ClO3Na, 470.9373). 

Marilzafurollene C (3): white, amorphous substance; 1H and 13C NMR data (CDCl3), see  

Tables 1 and 2. Complementary spectroscopic data are not available due to the fast degradation  

of the sample. 

Marilzafurollene D (4): white, amorphous substance; [α]D
25 +22 (c 0.08, CHCl3); UV (MeOH)  

λmax (logε) 204 (3.52) nm; CD (CH3CN): λmax (Δε) 218 (+0.62) nm; IR νmax (CHCl3) 3413, 2965, 2856, 

1962, 1724, 1634, 1444, 1376, 1266, 1194, 1065 cm−1; 1H and 13C NMR data (CDCl3), see Tables 1 

and 3; 1H and 13C NMR data (C6D6), see Supplementary Table S1; ESI-HRMS m/z 464.9445, 

466.9428, 468.9416, 470.9414 [M + Na]+ (49:100:74:12) (calcd. for C15H21
79Br2

35ClO3Na, 464.9444; 

C15H21
79Br81Br35ClO3Na, 466.9423; C15H21

79Br81Br37ClO3Na, 468.9394; C15H21
81Br2

37ClO3Na, 470.9373). 

12-Acetoxy-marilzafurenyne (5): white, amorphous substance; [α]D
25 −13 (c 0.07, CHCl3); UV 

(MeOH) λmax (logε) 225 (2.79) nm; IR νmax (CHCl3) 3293, 2926, 2326, 1960, 1733, 1645, 1378, 1259, 

1188, 1050 cm−1; 1H and 13C NMR data (CDCl3), see Tables 1 and 3; ESI-HRMS m/z 411.0332, 

413.0320, 415.0298 [M + Na]+ (77:100:26) (calcd. for C17H22
79Br35ClO3Na, 411.0339, 

C17H22
81Br35ClO3Na, 413.0318, C17H22

79Br37ClO3Na, 413.0309, C17H22
81Br37ClO3Na, 415.0289). 

4. Conclusions 

We have demonstrated the value of our simple and efficient NMR protocol based on the 

measurement of spin-spin coupling constants to achieve the challenging relative configurations of  

five new halogenated C15 tetrahydrofuranyl-acetogenins isolated from indigenous species of  

Laurencia (Laurencia marilzae). Furthermore, a detailed study of NMR chemical shifts by DFT 

calculations was also undertaken with the aim of connecting remote chiralities within these 

tetrahydrofuranyl-acetogenins. Inspection of the isolated structures also provides new insights into the 

biosynthetic pathway of this class of compounds. 
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