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Abstract

A simulation of the dynamics of a small population is used to assess the impact of different
confinement and testing strategies in the control of an epidemic. The simulation considers
individuals as agents moving randomly across the habitat according to predefined urban pat-
terns. Agents carry a simple tracing device that identifies signals emitted by other agents,
recording the position and time of the encounter. The information of every device is prop-
agated daily to an epidemic observatory based on an online graph database. Infections are
simulated as stochastic processes depending on the proximity among individuals. Different
epidemic control strategies are tested with and without the information of the tracing device
under several scenarios. We observe that the success of the strategies strongly depends on the
duration of the period of infectiousness before the presence of symptoms and the fraction of
asymptomatic agents. If these values are high, strategies based on the presence of symptoms
or on testing campaigns can hardly contain the epidemic. Strategies using massive confine-
ment of the agents are able to control the epidemic at the cost of sending a large fraction of
the population into quarantine. In cases with moderate and low values for these parameters,
the tracing devices can provide a slightly better performance but only if a large fraction of the
agents carry the device. Otherwise, the impact of these devices is found to be negligible in
comparison with other strategies not using them. Finally, we provide a methodology allowing
to use the information of the graph database to estimate basic parameters of the disease such
as the infection probability.

1 Introduction

The COVID-19 outbreak was first identified in Wuhan (China) in December 2019 [1]. On the
30th January 2020, the outbreak was declared to be a Public Health Emergency of International
Concern by the WHO [2] and a pandemic on the 11th of march 2020 [3]. Since then, apart from
the impact in the population health and the numerous casualties, the COVID-19 epidemic has
generated an unprecedented shock to the global economy through the severe social distancing and
lock-down restrictions imposed by the governments. In such a scenario, the debate was triggered
on the effectiveness of the contingency measures and how they could be improved, becoming
obvious that there is a need to understand which are the most useful tools to control the disease
spread. The ability of a country to handle such a health emergency relies on many different factors:
the decisive actions taken by the governments, the population compliance to the restrictions and
the capacity to perform adequate and meaningful testing campaigns to the population. Related
with the latter, there has been great controversy regarding the utility of contact tracing using
smartphone applications. If two smartphones with the app installed are in the proximity, they
exchange information and create a contact log. When one of the app users is detected as infected,
either because of presenting clear symptoms or because of a positive test, the contact log can
be used to quickly identify potentially infected people and apply some action on them such as
performing tests or recommending a preventive isolation. Many countries are developing such
apps but, leaving privacy considerations aside [4], the debate on their utility is still on the table.
South Korea and Singapore are the most quoted examples of the usage of such applications, but
their real impact is not clear and the available information is contradictory and incomplete [5, 6].
What seems to be clear is that one of the main caveats of the contact tracing is related with
the voluntary use of app. For this approach to be effective, it is obvious that the percentage of
population engagement is one of the key parameters. Actually, the greatest engagement among the
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countries already using this kind of apps is only of about 20%, while the experts claim that at least
a 60% engagement is needed to be useful. According to 2019 data only 76% of the people in Europe
have mobile internet subscriptions[7], being this number even lower among the elderly people, who
happen to be the most vulnerable to the COVID-19 disease. Other parameters affecting the effect
of the contingency strategies are more related with the particular characteristics of the disease
itself, such as the infectious time before the symptoms appear, the number of asymptomatic and
the infection probabilities, among others. Since we are still immersed in the COVID-19 emergency,
many of these parameters are not yet well known. The goal of this work is to present several
scenarios with different possible disease parameters and study the impact of six epidemic control
strategies (ECS), some of them including contact tracing information.

2 Epidemic modeling using agent-based simulations

The epidemic dynamics have been modelled using autonomous agents interacting with each other
in the context of a closed environment referred to as habitat. The simulation considers the time as
a discrete variable with a granularity of 1 minute.

Habitat modeling

The population is distributed over a squared grid of blocks of equal sizes. The blocks can have
three differential purposes: residential buildings (RB), work places (WP) or places dedicated to
social activities (social places, SP). The fraction of each type is a configurable parameter of the
habitat. Both RB and WP have several floors according to a Poisson distribution, while the SP
have one floor in all cases. Each of the floors in a block is divided in several apartments according
to a normal distribution. The number of inhabitants per apartment is modeled as a Poisson
distribution. All the apartments have a set of locations with a higher probability of being used
by the inhabitants. These locations are known as frequent points (FP). The number of FPs is
obtained from a Poisson distribution and their position from a uniform distribution limited to the
extension of the apartment. An example of this spatial arrangement is shown in Fig. 1.

Agent modeling

The logic of the agents consists of three components: the city location scheduler, the health state
manager, and the contact tracing system (CTS). Agents are first randomly assigned to the RBs
according to the habitat structure. Each of the agents is also assigned a unique workplace and a
set of preferred SPs. The location scheduler considers a day-cycle with three phases: pernoctation
at the RBs, work activity at the WPs, and social activity at the SPs. The times at which there is
a transition between phases are extracted from normal distributions, changing for every agent and
day. Agents can freely move inside the apartments. The time that every agent stays at a given
position at the apartment is taken randomly from a Poisson distribution, different for RBs, WPs
and SPs. When this time expires a new position within the apartment is assigned first by randomly
selecting one of the FPs, and then according to a normal distribution around it. Agents in the
social activity phase can also commute among their preferred SPs, although a small probability
exists to commute to any other SP in the habitat. The length of the staying at each SP is taken
from a Poisson distribution.

Agents have three different medical states: susceptible, infected or recovered. At the beginning of
the epidemic one agent is initialized as infected while the rest are initialized as susceptible. The
behavior of the disease in each agent is determined by several parameters chosen randomly. An
agent can be symptomatic or asymptomatic accordingly to a configurable parameter expressing
the expected fraction of asymptomatic cases. Infections are modeled as random events, with a
user-defined constant probability, any time that two agents are closer than a configurable distance
during one minute. The time since an agent is infected and it can infect other agents, the time
since the agent can infect and the symptoms appear (if symptomatic), and the time until the agent
is considered recovered and can not propagate the disease, are taken randomly for each agent from
Poisson distributions. Agents with symptoms or under prescription according to some epidemic-
control strategy (ECS) can be declared as being in quarantine. If this state is activated the agent
can not infect other agents and the day-cycle of the agent is restricted to being at its corresponding
RB, until the state is revoked.
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Figure 1: Floor plan of a population habitat at different times of the epidemic progression. The
buildings are represented as boxes containing several floors (not seen in this projection) with
apartments represented as sub-boxes. Agents are represented as dots with colors indicating their
medical status: blue if susceptible, red if infected, green if cured and black if in quarantine. The
upper and lower-left figures illustrate day one at three different times in which the agents are
mainly at the RBs, WPs and SP respectively. The lower-right figure shows a case in which the
epidemic has progressed for many days.

All agents are programmed to carry a simulated CTS. Agents closer than a configurable distance to
any other agent establish a proximity contact characterized by the identification code of the other
agent and the location, time and duration of the contact. If the proximity contact extends in time,
the contact information is updated including the total duration of the event. All this information
is then stored in a graph database described in more details in the next section. The fraction of
agents actually porting such a CTS is given as a parameter to the simulation.

Epidemic observatory using a graph database

All the information concerning the medical state of the agents (if known) and their contact trace
history is given as input to an online graph database. This choice is justified by the nature of the
infection process which depends on the proximity contacts between pairs of individuals. Agents
using a CTS, have a random, predefined, daily time in which a communication is established
with the online database. The two agents involved in the proximity contact are inserted in the
database as vertices and the contact itself as an edge connecting the two. The vertices store
information on the current medical status of the agents while each of the edges contains the
time, location and duration of the contact. This study has been performed using a JanusGraph
[8] database, since it is optimized for storing and querying graphs containing billions of vertices
and edges distributed across machine clusters, supporting thousands of concurrent users executing
complex graph traversals in real time. Additionally, JanusGraph is massively scalable and could
be transparently adapted to be used on larger populations. A visual representation of a the graph
database for a small population of about 369 inhabitants after 12 days of simulation can be seen
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Figure 2: Visual representation of the graph generated in a simulation with 369 agents. The people
marked in green are healthy (or not yet detected as infected) agents and the red nodes correspond
to the confirmed infected agents.

in Fig. 2. The database allows to easily select an infected agent and to automatically get the list
of the last agents involved in an interaction with it. This list can also be classified in terms of the
frequency and duration of the contacts. The quarantine state of the agents can be modified daily by
an epidemic-control logic which implements different strategies with and without the information
of the CTS. These strategies are described in the next section. The data analysed in this work
have been extracted from the database information filled during the simulations.

3 Implementation of epidemic control strategies

Six ECS have been tested using different criteria to send people into quarantine. Its logic is im-
plemented using the information of the graph database: the presence or absence of symptoms, the
results of a testing campaign, and the CTS logs. Strategies using CTS are especially interesting
given the lack of knowledge about their effectiveness, although approaches not using this informa-
tion are also studied to clearly establish a set of benchmarks aiming to achieve a fair comparison.
The traced contacts for a strategy using CTS refers to the list of agents who entered into the CTS
range of an infected agent during the 5 days previous to be tagged as such. Since the number
of tests is limited, when the traced contacts are used for testing purposes, they are sorted by the
total interaction duration aiming at maximizing the chances of detecting new infected people. The
person can be tagged as infected both because of the manifestation of symptoms or because of a
positive test. Several scenarios have been studied for the different ECS depending on the number
of tests available and the engagement to the tracing application.

The first ECS (ECS0) is the baseline for all the others. This ECS does not consider testing on
the population nor the use of any CTS. In this case, agents go into quarantine only when (if)
symptoms manifest. The second ECS (ECS1) extends ECS0 by performing random tests on the
population with a maximum capacity per day. Agents are set on quarantine if symptoms appear
or if they are tested positive. The next ECS (ECS2) is similar to ECS1 but using a more selective
testing that targets the cohabitants of infected people who manifested symptoms. The forth ECS
(ECS3) considers the use of a CTS to extend the testing to all the traced contacts of an agent
that manifested symptoms. The next ECS (ECS4) does not perform testing on the population and
simply sends into quarantine when an agent has symptoms or if it belongs to the traced contacts
of any other infected agent. The last ECS (ECS5) follows ECS4 but those agents being sent into
quarantine are tested and released if the result is negative. In all cases the testing of an agent is
not performed if the agent was already tested in the last 5 days. Table 1 presents a summary of
these ECS and their characteristics.
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Strategy Contact tracing Testing Quarantine

ECS0 No No People with symptoms

ECS1 No Randomly
People with symptoms
Tested positive

ECS2 No Cohabitants
People with symptoms
Tested positive

ECS3 Yes Traced contacts
People with symptoms
Tested positive

ECS4 Yes No
People with symptoms
Traced contacts

ECS5 Yes Traced contacts
People with symptoms
Traced contacts not tested or tested positive

Table 1: Summary of the strategies proposed in this study according to the confinement regime
attempted, and to whether a CTS is used and tests are made on suspicious individuals.

4 Results

Population and disease parameters setup

This study considers 70-days-long simulations with dynamics driven by the parameters shown in
table 2. This configuration corresponds to a population of roughly 10000 inhabitants. In order to
account for the fluctuations due to the random dynamics of the epidemic, a total of 10 different
seeds have been used for each simulated scenario. This has been proven to be important especially
in scenarios with a low infection probability in which the epidemic can be often stopped by the
application of the ECS.

The disease-related parameters have been set according to ranges seen in the literature [9, 10].
Three different infection probabilities, expressed as the probability of an agent being infected after
being 30 minutes within the infection radius of an infected agent, are considered. These probabili-
ties generate epidemics with R0 values in the range 2-10. The fraction of asymptomatic agents has
been considered to be 25% and 75%. The infectious period before the presence of symptoms (IPS)
has been varied between 0, 2 and 4 days. In those strategies involving massive testing campaigns,
two testing-capacities of 100 and 300 tests per day have been considered. Finally, the fraction of
agents carrying a CTS has been varied between 25%, 75% and 100%. A total of 200 simulations
have been produced to perform this study.

Epidemic evolution and observables

The simulations considered in this work have been run with a granularity of 1 minute during 70
days for every scenario and seed. Six observables have been monitored at every simulation step:
the fractions of susceptible, infected and recovered population, the fraction of the population being
in quarantine, the cumulative number of tests performed (for ECS using testing), and the final
fraction of tests that resulted in a positive outcome. Figure 3 shows an example of these observ-
ables for a given scenario and seed.

The comparisons among different scenarios are performed using the extreme values of the epidemic
evolution. These observables are: the minimum susceptible rate (MSR), the maximum infected
rate (MIR), the maximum recovered rate (MRR), the maximum rate of quarantined population
(MQR), the total number of tests (N.Tests), and the total rate of positive tests (PTR).

Dependency on the infection probability

Figure 4 shows the score of the different ECS for increasing infection probabilities. The first
conclusion that we can draw after inspecting the plots in the figure, is that we can divide the ECS
into two groups according to their behaviour: strategies where quarantine only happens after the
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Population habitat parameters

Parameter Distribution Value

Surface Fixed 36000 m2

Fraction of RB (WP,SP) Uniform 0.4 (0.3, 0.3)
Number of floors per buildings Poisson λ=5
Number of apartments per floor Poisson λ=3
Number of inhabitants per apartments Poisson λ=3
Number of FPs per apartment Poisson λ=4
Proximity to FPs Gaussian µ=0, σ=3 m
Number of frequent leisure places for agent Poisson λ=3

Mobility parameters

Parameter Distribution Value

Transition from being at RB and WP Gaussian µ=9 h, σ=60 min
Transition from being at WP and SP Gaussian µ=16 h, σ=60 min
Transition from being at SP and RB Gaussian µ=20 h, σ=120 min
Time scale of changing location inside RB Poisson λ=120 min
Time scale of changing location inside WP Poisson λ=60 min
Time scale of changing location inside SP Poisson λ=30 min
Time scale of changing SP Poisson λ=60 min

Disease parameters

Parameter Distribution Value

Infection probability (30 min) Fixed 0.025/0.035/0.045
Infection radius Fixed 2 m
Latent period Poisson λ=2 days
Incubation - Latent period Poisson λ=0/2/4 days
Symptomatic period Poisson λ=10 days
Fraction of asymptomatic Uniform 0.25/0.75

Contact-tracer parameters

Parameter Distribution Value

Contact-tracer influence radius Fixed 2 m
Contact-tracer active history logs Fixed 5 days
Minimum contact duration Fixed 10 min
Engagement of contact-tracer Uniform 0.25/0.75/1

Table 2: Parameters driving the structure of the population habitat, the mobility of the agents,
the disease characteristics and the contact-tracer features. Those parameters with several values
have been studied in detail to see their impact on the dynamics of the epidemic.

presence of symptoms or after positive testing (ECS 0 to 3) and strategies where the quarantine
is massively applied to suspicious agents (ECS 4 and 5). The former group yield relatively similar
results in terms of the MIR, always ranging between to 80% to 100% for all strategies. This shows
that for such a large IPS most of the strategies have a mild impact on the disease spread because
by the time an infected agent is detected, it was already able to freely propagate the disease for
a few days. It can be observed that, in the low probability case, the epidemic can be stopped
on time for some seeds, occurring more often as the strategy number increases. Concerning the
MQR we observe similar scores and slightly higher fractions for higher infection probabilities.
The analysis of the PTR shows that in general the efficiency of the testing for detecting infected
asymptomatics is better for the strategy based on testing cohabitants only (ECS2) than for the
ones based on random testing (ECS1) or testing traced contacts (ECS3). In any case, as it was
previously mentioned, the effect of these testing campaigns has not a huge impact in the infection
containment. The strategies in the latter group, ECS4 and ECS5, are able to effectively keep the
MIR below 30-40% at the cost of a higher MQR.
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Figure 3: Time evolution of the epidemic for a given scenario and seed. The fraction of infected,
susceptible, and recovered agents, the fraction of agents in quarantine, the cumulative number of
tests and the fraction of positive tests are shown. The maximum values (minimum in the case of
susceptible) is use as the metric to compare among different ECS.

Figure 4: Epidemic observables for an infectious period of 4 days and a fraction of asymptomatic
population of 25%. Points very close to 0 in the MIR observable indicate that the epidemic was
controlled by the ECS.

Dependency on the number of asymptomatic agents

Figure 5 shows the score of the different ECS for two scenarios with 25% and 75% of asymptomatic
agents respectively. The infection probability has been fixed to 0.035 and the IPS to 4 days. A
detailed inspection of these scenarios and the comparison among ECS reveal that there is a clear
dependency on whether the first infected agents are asymptomatic since, contrary to the 25% case,
in the 75% scenario the epidemic cannot be controlled with any strategy. The conclusions for
the 75% scenario regarding the comparison among ECS is similar to what was discussed in the
previous subsection, being the strategies based on massive quarantine the only ones making a real
impact on the disease propagation. For all ECS, the MIR is higher in the 75% scenario. For
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ECS with massive confinement this rate increases about 20%. This was expected, since the agents
not presenting symptoms will be freely infecting other people until they are tested or sent into
quarantine.

Figure 5: Epidemic observables for an infectious period of 4 days and an infection probability of
0.035. Points very close to 0 in the MIR observable indicate that the epidemic was controlled by
the ECS.

Dependency on the infectious period before symptoms appearance

Figure 6 shows the observables for different values of the IPS using an infection probability of
0.025 and 25% of asymptomatic agents. The dynamics of the epidemic are strongly affected by
the IPS parameter. The case in which the IPS is zero, meaning that symptoms manifestation (if
any) and infectiousness occur at the same time, results in epidemics that are always contained by
any of the ECS. For an intermediate IPS of 2 days, the MIR scales to close to 50% for ECS0, with
a trend inversely correlated with the ECS number. In the case of ECS3 with 300 hundred tests
the epidemic can still be controlled in most of the cases. The ECS4 and ECS5 are also able to
contain the epidemic, as expected, with a higher MQR. For an IPS of 4 days, the results analyzed
in the previous sub-section are recovered. This study shows the capital importance of the IPS in
the evolution of an epidemic and in the choice of ECS.

Dependency on the CTS engagement

Figure 7 shows the observables for different values of the population engagement to the CTS
(100%, 75% and 25%). The infection probability has been fixed to 0.035 and the fraction of
asymptomatic agents to 25%. No change is expected for ECS 0 to 2, since they are not considering
CTS information. For the others, a clear loss of performance is observed in all cases with respect
to the full engagement scenario. The ECS4 and ECS5 can achieve a containment at the level of
10-15% in the MIR observable with full engagement. However, these values degrade to the level of
80% in the case of an engagement of 25%, showing essentially no difference with the other ECS. In
practice, this means that for low engagement scenarios using CTS information is not better than
ECS doing tests on cohabitants or even randomly.

5 Parameter estimation using a graph database

The graph database has proven to be very effective in the automation of the ECS (regardless the
success of the strategy itself). The data stored in the database allows to extract useful information
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Figure 6: Epidemic observables for an infection probability of 0.025 and a fraction of asymptomatic
agents of 75%. Points very close to 0 in the MIR observable indicate that the epidemic was
controlled by the ECS.

Figure 7: Epidemic observables for three CTS engagement values (100%, 75% and 25%). Infection
probability has been fixed to 0.035 and the fraction of asymptomatic agents is 25%. Points very
close to 0 in the MIR observable indicate that the epidemic was controlled by the ECS.

to understand the progression and characteristics of the epidemic. For instance, if a CTS can log in
the times and locations of the contacts to the database, probabilities of infection at different places
and times can be estimated. Other properties of the epidemic can also be obtained by applying
statistical methods to the data. In the following lines, we provide a mathematical framework to
perform parameter estimation using the information of a graph database with CTS information.

An habitat as described before is considered in which the probability of an agent infecting an-
other is constant in time whenever the two agents are closer than a predefined distance. A CTS is
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present recording any proximity contact between two agents. This exercises considers the best case
scenario, in which a full adoption of this system among the agents is assumed, no asymptomatic
agents are present, and the IPS is set to 0.

According to the model, the time is considered to be discrete and to evolve with a minute gran-
ularity. Under these assumptions, after a number T of minutes, the probability of an agent not
being infected can be expressed as (1−p)N where p is the probability of being infected in a minute
when an infected agent is closer than the threshold, and where N is the total number of minutes in
which the agent has been in this situation. If, at time T+1, a measurement is made on the system
to see which agents are infected, the probability of being infected (y = 1) or not infected (y = 0)
can be written as

pj(yj) = (1 − yj)(1 − p)Nj + yj(1 − (1 − p)Nj ) (1)

where Nj is the number of minutes with another infected agent. This opens the possibility to
define a likelihood function as follows:

L =
P∏
j=1

[
(1 − yj)

(
(1 − p)

∑T

t=0

∑
i¬j

ηtjiδ
t
i

)
+ yj

(
1 −

(
(1 − p)

∑T

t=0

∑
i¬j

ηtjiδ
t
i

))]
(2)

where ηtji is 1 if there was a proximity contact between agents j and i at time t, and 0 otherwise, and
where δti is 1 if agent i was infected at time t, and 0 otherwise. Taking into account that infections
are continuous in time and determined by the infection and recovery times, the expression can be
simplified by using a function Φ(t; tinf , trec) that returns 1 if t is in between the two times and 0
otherwise. Then the expression reads:

L =

P∏
j=1

[
(1 − yj)

(
(1 − p)

∑
i¬j

ηtjiΦ(t;tiinf ,t
i
rec)
)

+ yj

(
1 −

(
(1 − p)

∑
i¬j

ηtjiΦ(t;tiinf ,t
i
rec)
))]

(3)

This quantity can be maximized (or alternatively q = -2 log(L) minimized) against unknowns in
the system such as the infection and recovery times for a subset of agents and other properties.
This procedure has been applied to estimate the infection probability in a small habitat of 1028
inhabitants. A per-minute probability of p = 0.0017 has been used in the model. Figure 8 shows
the values of the q-statistic for different values of p.

Figure 8: Value of the q-statistic associated to the likelihood as a function of the probability. The
nominal value has been indicated with a red vertical line.

6 Conclusions

This work shows the strong dependency of the epidemic control strategies on the infectious period
before the presence of symptoms and on the percentage of asymptomatic agents. This highlights
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the importance of properly estimating these parameters in order to make decisions on the plan-
ning and design of containment strategies. For large infectious periods before the manifestation
of symptoms only the massive containment strategies (those implying a greater amount of people
in quarantine) are capable of having a significant impact on the infection propagation. For low or
intermediate infectious periods before the presence of symptoms and low or intermediate infection
probabilities, the use of selective testing, either based on cohabitation or on traced contacts, can be
useful. Under these scenarios, it has been observed that, even if testing families presents a higher
positive testing rate, the strategies based on tracing contacts with high engagement are more ef-
fective since more test are performed. Additionally, it has been observed that a low engagement
of the population to the contact tracing system largely degrades the performance of the strategies.
In this scenario, random or cohabitant testing are as effective as contact tracing based strategies.
According to the level of engagement (well below 25%) observed in countries where these tracing
systems have already been used, the impact of these technologies on the epidemic control seems
very limited.

Finally, this work offers a methodology to implement an epidemic observatory using a graph
database. An example on how the stored data can be statistically treated to measure valuable
properties of the epidemic has been shown. We recommend a further exploration and expansion
of these methods in order to improve the response against an epidemic.
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